人教版数学八年级下册 第十九章 一次函数 课题学习 选择方案 专题练习题

合集下载

“一次函数实施方案选择“教学设计

“一次函数实施方案选择“教学设计

“一次函数实施方案选择“教学设计————————————————————————————————作者:————————————————————————————————日期:“一次函数”教学设计“聚焦教与学转型难点”的高效课堂教学设计课题名称:一次函数与方案选择问题姓名张发文工作单位墨江县文武镇初级中学年级学科八年级数学教材版本人教版一、教学难点内容分析(简要说明课题来源、学习内容、知识结构图以及学习内容的重要性)本课时内容为人教版八年级数学下册第十九章一次函数19.3节课题学习《选择方案》,是一次函数知识的综合运用,是运用函数知识解决实际问题。

同时是对一次函数知识的巩固。

其重点是学会利用一次函数知识解决实际问题,同时培养学生数学建模思想。

掌握一次函数的建模思想,体验数学源于生活,用于生活。

能够用数学知识解决生活中的实际问题。

难点是建立数学模型解决实际问题。

二、教学目标(从学段课程标准中找到要求,并细化为本节课的具体要求,目标要明晰、具体、可操作,并说明本课题的重难点)1.初步掌握一次函数解决实际问题——选择方案,培养学生初步建立数学模型思想。

2.通过问题探究,利用函数表示变量间的关系,利用方程、不等式反映相等或不等关系。

利用函数图像直观解决问题。

3.利用函数模型解决实际问题。

4.培养学生的建模思想,体会数学的实用性,渗透数形结合的思想,培养严谨科学的学习习惯。

三、学习者特征分析(学生对预备知识的掌握了解情况,学生在新课的学习方法的掌握情况,如何设计预习)1.学生已经掌握了一次函数的基本知识,具有一定的分析能力,大部分学生会用方程、不等式表示相等不等关系,本章开始认识函数表示变量之间的关系。

2.大部分学生能自主预习,会独立思考问题,能依据学案自主学习。

四、教学过程(设计本课的学习环节,明确各环节的子目标)本节课教学结合“1215”模式进行教学,分为四个阶段,六个环节:1.复习引入2.问题引3.依案自学4.反馈交流5.练习巩固6.小结提升五、教学策略选择与高效课堂融合的设计(针对学习流程,设计教与学的方式的变革,配置学习资源和数字化工具,设计高效课堂融合点)教师活动预设学生活动设计意图一、教师出示复习题组:1.一次函数解析式:2.一次函数的图像及性质有哪些?学生思考解答问题,并反馈。

2023-2024学年人教版 八年级数学下册19.3课题学习 选择方案 作业课件

2023-2024学年人教版 八年级数学下册19.3课题学习 选择方案 作业课件

30k+b=1200,
k=20,
解析式中,得 b=600,
解得 b=600, 即方案二中 y 关于 x 的函数解析式为
y=20x+600
(3)由两方案的图象交点为(30,1200)可知:若销售量 x 的取值范围为 0<x<30,
则选择方案二,若销售量 x=30,则选择两个方案都可以,若销售量 x 的取值范围为
(1)租用甲、乙两种客车每辆各多少元? (2)若学校计划租用8辆客车,怎样租车可使总费用最少?
解:(1)设租用甲型客车每辆 x 元,租用乙型客车每辆 y 元,根据题意可得
x+y=500,
x=200,
2x+3y=1300, 解得 y=300, ∴租用甲种客车每辆 200 元,租用乙种客车每辆 300
x>30,则选择方案一
知识点2:“一次函数增减性求最值”类方案选择问题 3.(2023·成都)2023年7月28日至8月8日,第31届世界大学生运动会在成都举行, “当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小 吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克 B种食材共需280元. (1)求A,B两种食材的单价; (2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食 材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少 总费用.
解:(1)设A厂运送水泥x吨,则B厂运送水泥(x+20)吨,根据题意得x+x+20= 520,解得x=250,此时x+20=270,答:A厂运送水泥250吨,B厂运送水泥270吨
(2)设从A厂运往甲地水泥a吨,则A厂运往乙地水泥(250-a)吨,B厂运往甲地水 泥(240-a)吨,B厂运往乙地水泥280-(250-a)=(30+a)吨,由题意得w=40a+ 35(250-a)+28(240-a)+25 (a+30) =40a+8750-35a+6720-28a+25a+750= 2a+16220,∵B厂运往甲地的水泥最多150吨,∴240-a≤150,解得a≥90,∵2>0, ∴w随a的增大而增大,∴当a=90时,W最低=2×90+16220=16400(元),∴总运 费最低运输方案为A厂运往甲地水泥90吨,运往乙地水泥160吨;B厂运往甲地水泥 150吨,B厂运往乙地水泥120吨,运费总最低为16400元

19.3 课题学习 选择方案

19.3 课题学习 选择方案

19.3课题学习选择方案一、教学目标1.核心素养:通过在实际问题中建立函数模型,根据所列函数解析式的性质,选择合理方案解决问题的学习,结合实际问题的数学信息,进行合情推理,提升建立数学模型的能力,发展应用意识.2.学习目标(1)巩固一次函数知识,进一步明确一次函数与不等式相结合的实际问题处理方法.灵活运用变量之间的关系建立函数模型.(2)让学生通过“选择上网收费方式”,提高运用函数知识解决实际问题的能力.(3)让学生通过“怎样租车”,提高运用函数知识解决实际问题的能力.3.学习重点(1)培养学生自主分析问题的实际背景中包含的变量及对应关系.(2)运用一次函数的性质解决生活中的最佳方案.4.学习难点如何构建一次函数模型.二、教学设计(一)课前设计1.预习任务任务1:预习教材P102-104页,了解上宽带网有几种收费方式,思考影响收费的因素有哪些?任务2:思考租车数量由什么决定,租车费用与哪些因素有关?(二)课堂设计2.知识回顾(1)形如y=kx+b(k,b是常数且k≠0)的函数,y是x的一次函数.(2)一次函数y=kx+b中,当k>0时,y随x的增大而增大.当k<0时,y随x 的增大而减小.(3)一元一次方程kx+b=0可看作是直线y=kx+b与x轴交点的横坐标.(4)一元一次不等式kx+b>0可看作是直线y=kx+b与x轴交点上方图象对应的x的值.3.问题探究问题探究一怎样选取上网收费方式请认真学习课本P102-103页“问题1”的内容,边学习边思考下列问题:【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一1.选择方案的依据是什么?【答】根据省钱原则选择方案2.要比较三种收费方式的费用,需要做什么?【答】分别计算每种方案的费用.3.怎样计算费用?【答】费用=月使用费+超时费超时费=超时使用价格×超时使用时间4.在A,B,C三种上网收费方式中,上网费用是变量的方式有__________,上网费用的多少与__________有关;上网费用是常量的方式是__________.【答】方案A,B的费用在超过一定时间后,随上网时间变化,是上网时间的函数.方案C费用固定.活动二 1.设上网时间为x h,A,B,C三种方式的收费y1,y2,y3各怎样表示?(注意考虑自变量x的取值范围)2.怎样比较y1,y2,y3的大小?分析:对于这个复杂的问题,我们画函数的图象,借助图象的直观性来解决.【详解】结合图象可知:(1)若y 1=y 2,即3t -45=50,解方程,得t =3123(2)若y 1<y 2,即3t -45<50,解不等式,得t <3123(3)若y 1>y 2,即3t -45>50,解不等式,得t >3123(4)若y 2=y 3,即3t -100=120,解方程,得t =7313(5)若y 2>y 3,即3t -100>120,解不等式,得t >7313综上所述:当上网时间不超过31小时40分,选择方案A 最省钱;当上网时间为31小时40分至73小时20分,选择方案B 最省钱;当上网时间超过73小时20分,选择方案C 最省钱.问题探究二怎样租车思考与讨论:阅读教材P103----P104,【知识点:一次函数应用,数学思想:建模思想】【点拨】活动一 1.影响最后的租车费用的因素有哪些?【答】主要影响因素是甲,乙两种车所租辆数.2.汽车所租辆数又与哪些因素有关?【答】与乘车人数有关.3.如何由乘车人数确定租车辆数呢?【答】(1)要保证240名师生都有车坐,汽车总数不能小于6辆;(2)要使每辆汽车上至少有1名教师,汽车总数不能大于6辆.所以共需租6辆车.活动二在汽车总数确定后,租车费用与租车的种类有关.如果租甲类车x 辆,能求出租车费用y=.在这个函数中,y 随x 的增大而.要求y 的最小值,就要先求x 的取值范围,怎样求x 的取值范围?【详解】设租用x辆甲种客车,则租用乙种客车的辆数为(6-x)辆;设租车费用为y,则y=400x+280(6-x)化简得y=120x+1680.(1)为使240名师生有车坐,则45x+30(6-x)≥240;(2)为使租车费用不超过2300元,则400x+280(6-x)≤2300.解得:4≤x≤316据实际意义可取4或5;因为y随着x的增大而增大,所以当x=4时,y最小,y的最小值为2160.所以,租甲种车4辆,乙种车2辆.结论:在涉及多变量的问题的解决中,能合理选择某个变量作为自变量,然后根据问题条件寻求可以反映实际问题的函数.3.课堂总结【知识梳理】基础知识思维导图【重难点突破】(1)本节的问题,其实质是运用一次函数选择最佳方案,一是用一次函数的图像性质;二是多变量的问题.(2)用一次函数解决生活中的方案选择问题需要根据题意列出函数解析式及图像,分三种情况:函数值相等、大于、小于,结合方程、不等式进行说明,在此基础上选择合理方案.(3)将实际问题抽象概括成函数模型体现建模思想,其步骤:审清题意---建立数学模型---数学方法解决问题----验证结果.4.随堂检测:参见ppt巩固练习提升题。

初中数学人教版八年级下册《第十九章 一次函数 19.3 课题学习 选择方案》教材教案

初中数学人教版八年级下册《第十九章 一次函数 19.3 课题学习 选择方案》教材教案

《课题学习选择方案》教案【教学目标】1.知识与技能(1)能够正确列出方案问题中相关的一次函数的表达式,写出自变量的取值范围.(2)理解方案选择问题的一般解题方法和步骤2.过程与方法使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。

3.情感态度和价值观将所学的知识应用到解决实际问题中去选择合适的方案,体会数学的实用价值,帮助学生获得生活经验,并树立正确的人生观和价值观。

【教学重点】建立数学模型,利用代数法和图像法解决选择方案的实际问题。

【教学难点】从实际问题中抽象出分段函数模型,并用方程、不等式知识或借助函数图像的性质进行综合分析问题,从而解决实际生活中方案选择问题。

【教学方法】自学与小组合作学习相结合的方法。

【课前准备】教学课件。

【课时安排】1课时【教学过程】一、情景导入【过渡】在日常生活中,我们通常会遇到这样的问题,该选择哪个旅行团更划算,该选择哪个银行收益更好,等等。

之前的学习中,我们学习过用数学知识去解决实际问题,那么我们能否用我们这章中学习的函数知识去解决上述提出的问题呢?我们先来看几个问题,看大家对之前的知识熟悉不熟悉,看谁回答的快。

如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.判断下列说法正误:①售2件时甲、乙两家售价一样;②买1件时买甲家的合算;③买3件时买乙家的合算;【过渡】这个问题是简单的函数问题,反映了我们可以借助函数解决实际问题,如果问题稍微复杂一点,又该如何解决呢?今天我们就来学习一下,如何正确的选择方案。

二、新课教学1.怎样选取上网收费方式【过渡】我们一起来思考一下课本的问题1。

在这几种选择方案中,我们该如何选择呢?【过渡】结合实际,我们知道,选择的依据一般都是划算,也就是说便宜的更应该选择,这就把问题转化为求三种方案下,哪一个更便宜。

【过渡】我们先对问题进行分析,这三种方案中哪种方式上网费是会变化的?哪种不变?(学生回答)【过渡】从表中,我们知道,A、B方案会变化,C不变。

新人教版八年级数学下册第十九章一次函数19.3课题学习选择方案1

新人教版八年级数学下册第十九章一次函数19.3课题学习选择方案1

当x≥0时,y3=120. 你能在同一直角坐标系中画出它们的图象吗?
当上网时间__________时, 选择方式A最省钱.
当上网时间__________时, 选择方式B最省钱.
当上网时间_________时, 选择方式C最省钱.
做Байду номын сангаас做
某移动公司对于移动话费推出两种收费方式: A方案:每月收取基本月租费15元,另收通话费
方法1:分类讨论——分5种情况;
方法2:设租甲种车x辆,确定x的范围.
载客量(单位:人/辆) 租金 (单位:元/辆)
甲种客车x 辆 45 400
乙种客车 (6-x)辆 30 280
(1)为使240名师生有车坐, (2)为使租车费用不超过2300 可以确定x的一个范围吗? 元,又可以确定x的范围吗?
收费方式 A B C
月使用费/元 包时上网时间/h 超时费/(元/min)
30
25
0.05
50
50
0.05
120
不限时
你能自己写出方式B的上网费y2关于上网时间 x之间的函数关
系式吗?
50,
(0 x 50)
y2 3x 100. (x>50)
方式C的上网费y3关于上网时间x之间的函数关系式呢?
x = 4时 y 最小.
除了分别计算两种方 案的租金外,还有其 他选择方案的方法吗?
做一做:某校校长暑假将带领该校市级“三好生”去北京旅 游.甲旅行社说:“如果校长买全票一张,则其余学生可享受 半价优惠.”乙旅行社说:“包括校长在内,全部按全票价的 6折(即按全票价的60%收费)优惠.”若全票价为240元. (1)设学生数为 x,甲旅行社收费为 y甲,乙旅行社收费为 y乙, 分别计算两家旅行社的收费(写出函数解析式);

人教版数学八年级下《19.3课题学习--选择方案》课时练习含答案

人教版数学八年级下《19.3课题学习--选择方案》课时练习含答案

八年级下册第十九章第三节选择方案课时练习一.填空题1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.①②C.①③D.②③答案:A知识点:一次函数的图像解析:解答:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100-4×(100+2)=92米;5a-4×(a+2)=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.2. 李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A.y=-2x+24(0<x <12)B. y=-21x+12(0<x <24) C. y=2x-24(0<x <12) D. y=21x-12(0<x <24) 答案:B.知识点:根据实际问题列一次函数表达式解析:解答:由题意得:2y+x=24,故可得:y=-21x+12(0<x <24). 故选B分析:根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.3. 有甲、乙两个大小不同的水桶,容量分别为x 、y 公升,且已各装一些水.若将甲中的水全倒入乙后,乙只可再装20公升的水;若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水,则x 、y 的关系式是( )A.y=20-x B .y=x+10 C .y=x+20 D .y=x+30答案:D知识点:根据实际问题列一次函数表达式解析:解答:设甲、乙两个水桶中已各装了m 、n 公升水,由“若将甲中的水全倒入乙后,乙只可再装20公升的水”得:y=m+n+20;由“若将乙中的水倒入甲,装满甲水桶后,乙还剩10公升的水”得:x=m+n-10.两式相减得:y-x=30,y=x+30.故选D .分析:设甲、乙两个水桶中已各装了m 、n 公升水,由题意可得:y=m+n+20,x=m+n-10.则y=x+30.4.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A.B.C.D.答案:A知识点:一次函数的性质一次函数的图像解析:解答:由图知蓄水池上宽下窄,深度h和放水时间t的比不一样,前者慢后者快,即前者的斜率小,后者斜率大,分析各选项知只有A正确.B斜率一样,C前者斜率大,后者小,D也是前者斜率大,后者小,因此B、C、D排除.故选A.分析:由于蓄水池不规则,上面宽,下面窄,因此在相同时间内上半部分下降缓慢,图象比较平稳.下半部分下降快,图象比较陡,据此即可解答.5. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.6. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg答案:A知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设y 与x 的函数关系式为y=kx+b ,由题意可知 ⎩⎨⎧+=+=bk b k 5090030300 所以k=30,b=-600,所以函数关系式为y=30x-600,当y=0时,即30x-600=0,所以x=20.故选A .分析:根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x 对应的值即可.7. 三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km ,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A.1B.2C.3D.4答案:D知识点:一次函数的图像解析:解答:由图可知:甲、乙的起始时间分别为0h 和2h ;因此甲比乙早出发2小时; 在3h-4h 这一小时内,甲的函数图象与x 轴平行,因此在行进过程中,甲队停顿了一小时; 两个函数有两个交点:①甲行驶4.5小时、乙行驶2.5小时时,两函数相交,因此乙队出发2.5小时后追上甲队;②甲行驶6小时、乙行驶4小时后,两函数相交,此时两者同时到达目的地.所以在整个行进过程中,乙队用的时间为4小时,行驶的路程为24千米,因此它的平均速度为6km/h.这四个同学的结论都正确,故选D.分析:本题主要考查的是分段函数的应用,应结合函数的图形,按不同的时间段进行逐段分析.8. 小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P 的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是()A.3km/h和4km/h B.3km/h和3km/hC.4km/h和4km/h D.4km/h和3km/h答案:D知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:设小敏的速度为:m,则函数式为,y=mx+b,由已知小敏经过两点(1.6,4.8)和(2.8,0),所以得:4.8=1.6m+b,0=2.8m+b,解得:m=-4,b=11.2,小敏离B地的距离y(km)与已用时间x(h)之间的关系为:y=-4x+11.2;由实际问题得小敏的速度为4km/h.设小聪的速度为:n,则函数图象过原点则函数式为,y=nx,由已知经过点(1.6,4.8),所以得:4.8=1.6n,则n=3,即小聪的速度为3km/h .故选D .分析:由已知图象上点分别设出两人的速度,写出函数关系式,求出两人的速度.9. 的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为( )A .23B .24C .25D .26答案:B知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像解析:解答:设号数为x ,用水量为y 千克,直线解析式为y=kx+b .根据题意得⎩⎨⎧+=+=b k b k 15151018 解得:⎪⎩⎪⎨⎧=-=2453b k所以直线解析式为y=-53x+24, 当y=10时,有-53x+24=10,解之得x=2331, 根据实际情况,应在24号开始送水.故选B .分析:根据两天的用水量易求直线解析式,当函数值为10时自变量的值即为开始送水的号数.10. 如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当该公司盈利(收入大于成本)时,销售量( )A.小于3t B.大于3t C.小于4t D.大于4t答案:D知识点:一次函数的性质一次函数的图像解析:解答:盈利时收入大于成本,即l1>l2,在图上应是l1在上面,在交点右边的部分满足条件.故选D.分析:从图象得出,当x>4t时,盈利收入大于成本,即l1>l2.11. 甲、乙、丙、丁四人一起到冰店买红豆与桂圆两种棒冰.四人购买的数量及总价分别如表所示.若其中一人的总价算错了,则此人是谁()甲乙丙丁红豆棒冰(枝) 18 15 24 27桂圆棒冰(枝) 30 25 40 45总价(元) 396 330 528 585A.甲B.乙C.丙D.丁答案:D知识点:一次函数的性质解析:解答:设红豆和桂圆的单价分别为x、y,假设甲是对的,那么有18x+30y=396即3x+5y=66,将此式代入乙,丙,丁中,我们发现乙,丙都和甲相同,因此,甲是正确的,丁是错误的.故选D.分析:题中,红豆和桂圆两种棒冰的单价是不变的,可设红豆和桂圆的单价分别为x、y.根据甲列出方程,然后逐一把乙、丙、丁代入,即可判断.12. 2004年6月3日中央新闻报道,为鼓励居民节约用水,北京市将出台新的居民用水收费标准:①若每月每户居民用水不超过4立方米,则按每立方米2元计算;②若每月每户居民用水超过4立方米,则超过部分按每立方米4.5元计算(不超过部分仍按每立方米2元计算).现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:由题意知,y与x的函数关系为分段函数.y= 2x(0≤x<4)和y= 4.5x-10(x≥4).故选C.分析:根据题意列出x与y之间的函数关系式,根据函数的特点解答即可.13. 汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.答案:C知识点:根据实际问题列一次函数表达式一次函数的性质一次函数的图像解析:解答:根据题意可知s=400-100t(0≤t≤4),∴与坐标轴的交点坐标为(0,400),(4,0).要注意x、y的取值范围(0≤t≤4,0≤y≤400).故选C.分析:先根据题意列出s、t之间的函数关系式,再根据函数图象的性质和实际生活意义进行选择即可.14. 在西部大开发中,为了改善生态环境,鄂西政府决定绿化荒地,计划第1年先植树1.5万亩,以后每年比上一年增加1万亩,结果植树总数是时间(年)的一次函数,则这个一次函数的图象是()A.B.C.D.答案:B知识点:一次函数的性质一次函数的图像解析:解答:根据题意:计划第1年先植树1.5万亩,即函数图象左端点为(1,1.5).以后每年比上一年增加1万亩,即第二年的植树量为2.5万亩,即x=2时,y=2.5.故选B.分析:根据题意先找出函数图象的最低点,再找出点(2,2.5)在图象上的函数即可.15. 学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()新鞋码(y)225 245 (280)原鞋码(x)35 39 (46)A.270 B.255 C.260 D.265答案:D知识点:根据实际问题列一次函数表达式一次函数的性质解析:解答:由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得⎩⎨⎧+=+=bk b k 3924535225 解得⎩⎨⎧==505b k ∴y 与x 之间的函数关系式为y=5x+50,当x=43时,y=265.故选D .分析:由表格可知,给出了3对对应值,销售原鞋码每增加4,新鞋码增加20,即销售量与销售单价是一次函数关系,设y=kx+b ,把表中的任意两对值代入即可求出y 与x 的关系.二.填空题16. 为迎接省运会在我市召开,市里组织了一个梯形鲜花队参加开幕式,要求共站60排,第一排40人,后面每一排都比前一排都多站一人,则每排人数y 与该排排数x 之间的函数关系式为____(x 为1≤x≤60的整数)答案:y=39+x知识点:根据实际问题列一次函数表达式解析:解答:根据题意得y=40+(x-1)×1=x+39(x 为1≤x≤60的整数).分析:根据“第一排40人,后面每一排都比前一排都多站一人”可列出y 与x 之间的关系式y=40+(x-1)×1,整理即可求解,注意x 的取值范围是1到60的整数.17. 如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差____km/h .(2012答案:4知识点:一次函数的性质 一次函数的图像 解析:解答:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∵甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时); 故这两人骑自行车的速度相差:20-16=4(千米/时); 故答案为:4.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.18. 一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示.当 0≤x≤1时,y 关于x 的函数解析式为y=60x ,那么当1≤x≤2时,y 关于x 的函数解析式为____.答案:y=100x-40知识点:一次函数的性质 一次函数的图像解析:解答::∵当时0≤x≤1,y 关于x 的函数解析式为y=60x , ∴当x=1时,y=60.又∵当x=2时,y=160,当1≤x≤2时,将(1,60),(2,160)分别代入解析式y=kx+b 得, ⎩⎨⎧=+=+160260b k b k解得⎩⎨⎧-==40100b k由两点式可以得y 关于x 的函数解析式y=100x-40.分析:由图象可知在前一个小时的函数图象可以读出一个坐标点,再和另一个坐标点就可以写出函数关系式.19. 利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克____元. 品种水果糖 花生糖 软 糖 单价(元/千克) 10 12 16 重量(千克) 334答案:13知识点:一次函数的性质解析:解答:3种糖果的总价=10×3+12×3+16×4=130,总重量=3+3+4=10,所以单价为13. 分析:单价=总价÷总重量.所以必须求出三种糖的总价格和总重量,然后进行解答. 20. 如图所示中的折线ABC 为甲地向乙地打长途电话需付的电话费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付电话费____元.答案:13知识点:根据实际问题列一次函数表达式 一次函数的性质 一次函数的图像 解析:解答:由图象可得,点B (3,2.4),C (5,4.4), 设射线BC 的解析式为y=kt+b (t≥3), 则⎩⎨⎧=+=+4.454.23b k b k解得⎩⎨⎧-==6.01b k所以,射线BC 的解析式为y=t-0.6(t≥3), 当t=8时,y=8-0.6=7.4元. 故答案为:7.4.分析:根据图形写出点B 、C 的坐标,然后利用待定系数法求出射线BC 的解析式,再把t=8代入解析式进行计算即可得解. 三.解答题21. 张勤同学的父母在外打工,家中只有年迈多病的奶奶.星期天早上,李老师从家中出发步行前往张勤家家访.6分钟后,张勤从家出发骑车到相距1200米的药店给奶奶买药,停留14分钟后以相同的速度按原路返回,结果与李老师同时到家.张勤家、李老师家、药店都在东西方向笔直大路上,且药店在张勤家与李老师家之间.在此过程中设李老师出发t (0≤t≤32)分钟后师生二人离张勤家的距离分别为S 1、S 2.S 1与t 之间的函数关系如图所示,请你解答下列问题:(1)李老师步行的速度为____(2)求S 2与t 之间的函数关系式,并在如图所示的直角坐标系中画出其函数图象; (3)张勤出发多长时间后在途中与李老师相遇?答案:(1)50米/分.(2)当0≤t≤6时,S 2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)张勤出发5.2分钟后在途中与李老师相遇.知识点:一次函数的性质,一次函数的图像根据实际问题列一次函数表达式,解析:解答:(1)李老师步行的速度为1600÷32=50米/分;故答案为:50米/分.(2)根据题意得:当0≤t≤6时,S2=0,当6<t≤12时,S2=200t-1200,当12<t≤26时,S2=1200,当26<t≤32时,S2=-200t+6400,(3)S 1=-50t+1600,由S 1=S 2得,200t-1200=-50t+1600, 解得t=11.2,可得t-6=11.2-6=5.2(分)则张勤出发5.2分钟后在途中与李老师相遇. 分析:(1)根据速度=时间路程,再结合图形,即可求出李老师步行的速度; (2)根据题意分0≤t≤6,6<t≤12,12<t≤26,26<t≤32四种情况进行讨论,即可得出S 2与t 之间的函数关系式;(3)由S 1=S 2得,200t-1200=-50t+1600,然后求出t 的值即可;22. 某工厂计划生产A 、B 两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B 产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B 产品不少于28件,问符合条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A 产品需加工费200元,生产一件B 产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费) 答案: (1)甲材料每千克15元,乙材料每千克25元; (2)共有三种方案,如下表:A (件) 20 21 22B (件)302928(3)当m=22时,总成本最低,此时W=-200×22+55000=50600元.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答::(1)设甲材料每千克x 元,乙材料每千克y 元,则⎩⎨⎧=+=+1053240y x y x解得⎩⎨⎧==2515y x所以甲材料每千克15元,乙材料每千克25元;(2)设生产A 产品m 件,生产B 产品(50-m )件,则生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000, 由题意:-100m+40000≤38000,解得m≥20, 又∵50-m≥28,解得m≤22, ∵20≤m≤22,∵m 的值为20,21,22, 共有三种方案,如下表: A (件) 20 21 22 B (件)302928(3)设总生产成本为W 元,加工费为:200m+300(50-m ),则W=-100m+40000+200m+300(50-m )=-200m+55000,∵W 随m 的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=-200×22+55000=50600元.分析:(1)设甲材料每千克x 元,乙材料每千克y 元,根据购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元,可列出方程组⎩⎨⎧=+=+1053240y x y x ,解方程组即可得到甲材料每千克15元,乙材料每千克25元; (2)设生产A 产品m 件,生产B 产品(50-m )件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20(50-m )+25×20(50-m )=-100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到-100m+40000≤38000,根据生产B 产品不少于28件得到50-m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m 为整数,则m 的值为20,21,22,易得符合条件的生产方案;(3)设总生产成本为W 元,加工费为:200m+300(50-m ),根据成本=材料费+加工费得到W=-100m+40000+200m+300(50-m )=-200m+55000,根据一次函数的性质得到W 随m 的增大而减小,然后把m=22代入计算,即可得到最低成本.23. 某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费.月用电量不超过200度时,按0.55元/度计费;月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费.设每户家庭月用电量为x 度时,应交电费y 元. (1)分别求出0≤x≤200和x >200时,y 与x 的函数表达式; (2)小明家5月份交纳电费117元,小明家这个月用电多少度?答案: (1)y=0.7x-30;(2)210度.知识点:一次函数的性质 根据实际问题列一次函数表达式,解析:解答:(1)当0≤x≤200时,y 与x 的函数表达式是y=0.55x ; 当x >200时,y 与x 的函数表达式是 y=0.55×200+0.7(x-200), 即y=0.7x-30;(2)因为小明家5月份的电费超过110元, 所以把y=117代入y=0.7x-30中,得x=210. 答:小明家5月份用电210度.分析:(1)0≤x≤200时,电费y 就是0.55乘以相应度数;x>200时,电费y=0.55×200+超过200的度数×0.7;(2)把117代入x>200得到的函数求解即可.24. 某商店销售A,B两种商品,已知销售一件A种商品可获利润10元,销售一件B种商品可获利润15元.(1)该商店销售A,B两种商品共100件,获利润1350元,则A,B两种商品各销售多少件?(2)根据市场需求,该商店准备购进A,B两种商品共200件,其中B种商品的件数不多于A种商品件数的3倍.为了获得最大利润,应购进A,B两种商品各多少件?可获得最大利润为多少元?答案:(1)A种商品销售30件,B种商品销售70件.(2)应购进A种商品50件,B种商品150件,可获得最大利润为2750元.知识点:一次函数的性质一次函数的图像根据实际问题列一次函数表达式一次函数与二元一次方程(组)解析:解答:(1)设A种商品销售x件,则B种商品销售(100-x)件.依题意,得10x+15(100-x)=1350解得x=30.∵100-x=70.答:A种商品销售30件,B种商品销售70件.(2)设A种商品购进a件,则B种商品购进(200-a)件.依题意,得0≤200-a≤3a解得50≤a≤200设所获利润为w元,则有w=10a+15(200-a)=-5a+3000∵-5<0,∵w随a的增大而减小.∵当a=50时,所获利润最大W最大=-5×50+3000=2750元.200-a=150.答:应购进A种商品50件,B种商品150件,可获得最大利润为2750元.分析:(1)设A 种商品销售x 件,B 种商品销售y 件,根据“销售A ,B 两种商品共100件,获利润1350元”列出二元一次方程组求解即可;(2)设A 种商品购进a 件,则B 种商品购进(200-a )件,根据“B 种商品的件数不多于A 种商品件数的3倍”列出不等式即可求得结果.25. 在社会主义新农村建设中,衢州某乡镇决定对A 、B 两村之间的公路进行改造,并有甲工程队从A 村向B 村方向修筑,乙工程队从B 村向A 村方向修筑.已知甲工程队先施工3天,乙工程队再开始施工.乙工程队施工几天后因另有任务提前离开,余下的任务有甲工程队单独完成,直到公路修通.下图是甲乙两个工程队修公路的长度y (米)与施工时间x (天)之间的函数图象,请根据图象所提供的信息解答下列问题:(1)乙工程队每天修公路多少米?(2)分别求甲、乙工程队修公路的长度y (米)与施工时间x (天)之间的函数关系式. (3)若该项工程由甲、乙两工程队一直合作施工,需几天完成? 答案: (1)乙工程队每天修公路120米; (2)y 甲=60x ,y 乙=120x-360;(3)该项工程由甲、乙两工程队一直合作施工,需9天完成.知识点:一次函数的性质 一次函数的图像 根据实际问题列一次函数表达式 一次函数与二元一次方程(组)解析:解答:(1)由图得:720÷(9-3)=120(米) 答:乙工程队每天修公路120米. (2)设y 乙=kx+b ,则⎩⎨⎧=+=+720903b k b k解得:⎩⎨⎧-==360120b k所以y 乙=120x-360, 当x=6时,y 乙=360, 设y 甲=k 1x ,∵y 乙与y 甲的交点是(6,360) ∵把(6,360)代入上式得: 360=6k 1,k 1=60, 所以y 甲=60x ;(3)当x=15时,y 甲=900,所以该公路总长为:720+900=1620(米), 设需x 天完成,由题意得: (120+60)x=1620, 解得:x=9,答:该项工程由甲、乙两工程队一直合作施工,需9天完成.分析:(1)根据图形用乙工程队修公路的总路程除以天数,即可得出乙工程队每天修公路的米数;(2)根据函数的图象运用待定系数法即可求出y 与x 之间的函数关系式;(3)先求出该公路总长,再设出需要x 天完成,根据题意列出方程组,求出x ,即可得出该项工程由甲、乙两工程队一直合作施工,需要的天数.。

课题学习 选择方案(分层作业)-八年级数学下册(人教版)(解析版)

 课题学习 选择方案(分层作业)-八年级数学下册(人教版)(解析版)

人教版初中数学八年级下册19.3课题学习选择方案分层作业夯实基础篇一、单选题:A.18B.12【答案】B【分析】先求出直线AB的解析式,当2千克时,每2千克葡萄的价格为将(2,38)、(4,70)代入得,238470k b k b,解得:166y x ,当6x 时,102y ,即萌萌一次购买6千克这种葡萄需要102元;她分三次购买每次购2千克这种葡萄需要383114 (元),∴11410212 (元),萌萌一次购买6千克这种葡萄比她分三次购买每次购2千克这种葡萄可节省12元.故选:B .【点睛】本题考查了一次函数的应用、待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题,利用数形结合的思想解答.4.某电脑公司经营A ,B 两种台式电脑,分析过去的销售记录可以知道:每台A 型电脑可盈利200元,每台B 型电脑可盈利300元;在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍.已知该公司在同一时期内销售这两种电脑共210台,则该公司在这一时期内销售这两种电脑能获得的最大利润是()A .42000元B .46200元C .52500元D .63000元【答案】B【分析】设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据在同一时期内,A 型电脑的销售量不小于B 型电脑销售量的4倍可得:168x ,而20030021010063000W x x x ,由一次函数性质可得答案.【详解】解:设该公司在这一时期内销售获得的利润是W 元,销售A 型电脑x 台,则销售B 型电脑 210x 台,根据题意得: 4210x x ,解得:168x ,∵ 20030021010063000W x x x ,1000 ,∴W 随x 的增大而减小,∴当168x 时,W 取最大值,最大值为1001686300046200 (元),答:该公司在这一时期内销售这两种电脑能获得的最大利润是46200元.故选:B .【点睛】本题考查一元一次不等式的应用,涉及一次函数的应用,解题的关键是读懂题意,列出不等式求出x 的范围.5.某游泳馆新推出了甲、乙两种消费卡,设游泳次数为x 时两种消费卡所需费用分别为y 甲,y 乙元,y 甲,y 乙与x 的函数图象如图所示,当游泳次数为30次时选择哪种消费卡更合算()A .甲种更合算B .乙种更合算C .两种一样合算D .无法确定【答案】B 【分析】根据一次函数的图象,哪个函数图象在上面,哪个就大,直接得出答案即可.【详解】解:利用图象,当游泳次数大于10次时,y在y乙上面,即y甲>y乙,甲∴当游泳次数为30次时,选择乙种方式省钱.故选:B.【点睛】此题主要考查了一次函数的应用以及利用函数图象比较函数大小,利用数形结合得出是解题关键.6.如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(分)之间的关系,则以下说法正确的是()①若通话时间少于120分,则A方案比B方案便宜②若通话时间超过200分,则B方案比A方案便宜③通讯费用为60元,则B方案比A方案的通话时间多④当通话时间是170分钟/时,两种方案通讯费用相等A.1个B.2个C.3个D.4个【答案】D【分析】根据图象知道:在通话170分钟收费一样,在通话120时A收费30元,B收费50元,其中A超过120分钟后每分钟加收0.4元,B超过200分钟加收每分钟0.4元,由此即可确定有几个正确.【详解】解:依题意得A:(1)当0≤x≤120,y A=30,(2)当x>120,y A=30+(x-120)×[(50-30)÷(170-120)]=0.4x-18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70-50)÷(250-200)](x-200)=0.4x-30,所以当x≤120时,A 方案比B 方案便宜20元,故(1)正确;当x≥200时,B 方案比A 方案便宜12元,故(2)正确;当y=60时,A :60=0.4x-18,∴x=195,B :60=0.4x-30,∴x=225,故(3)正确;当A 方案与B 方案的费用相等,通话时间为170分钟,故(4)正确;故选:D .【点睛】本题考查了函数图象和性质,解题的关键是从图象中找出隐含的信息解决问题.7.某商场销售一种儿童滑板车,经市场调查,售价x (单位:元)、每星期销量y (单位:件)、单件利润w (单位:元)之间的关系如图1、图2所示.若某星期该滑板车单件利润为20元,则本星期该滑板车的销量为()A .94B .96C .1600D .1800【答案】D 【分析】先由图1求出y 与x 的函数解析式,再由图2求出x 与w 的函数解析式,然后把w =20代入即可.【详解】解:由图1可设y 与x 的函数解析式为y =kx +b ,把(92,1400)和(98,2000)代入得,140092200098k b k b解得:1007800k b,∴y 与x 的函数解析式为:y =100x ﹣7800;由图2可设x 与w 的函数解析式为x =mw +n ,把(18,98)和(24,92)代入得:98189224m n m n解得:1116m n ∴x 与w 的函数解析式为:x =﹣w +116,当w =20时,x =﹣20+116=96,y =100×96﹣7800=9600﹣7800=1800(件),∴本星期该滑板车的销量为1800件,故选:D .【点睛】本题考查一次函数的应用和待定系数法求函数解析式,关键是根据图象求出函数解析式.二、填空题:8.元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒x (2x )件,则应付款y (元)与商品数x (件)之间的关系式,化简后的结果是______.【答案】y =48x +20(x >2)/y=20+48x (x >2)【分析】根据已知表示出买x 件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x (x >2)件,∴李明应付货款y (元)与礼盒件数x (件)的函数关系式是:y =(60x -100)×0.8+100=48x +20(x >2),故答案为:y =48x +20(x >2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.9.某苹果种植合作社通过网络销售苹果,图中线段AB 为苹果日销售量y (千克)与苹果售价x (元)的函数图像的一部分.已知1千克苹果的成本价为5元,如果某天以8元/千克的价格销售苹果,那么这天销售苹果的盈利是_____元.【答案】6600【分析】根据图象求出线段AB 的解析式,求出当x =8时的y 值,再根据利润公式计算即可.【详解】解:设线段AB 的解析式为y =kx +b ,点A 、B 的坐标代入,得54000101000k b k b ,解得6007000k b,∴y =-600x +7000,当x =8时,y =600870002200 ,∴这天销售苹果的盈利是 852200 =6600(元),故答案为:6600.【点睛】此题考查了一次函数的实际应用,正确理解函数图象求出线段AB 的解析式是解题的关键.10.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金__元.【详解】设买入价x 与利润y 之间的函数关系式为:y kx b ,将4200x y ,6198x y代入得:20041986k b k b,解得:1204k b,故:204y x ,当197y 代入得:197204x ,解得:7x ,即:1吨水的买入价为7元,则买入10吨水共需71070 元.故答案为:70.【点睛】本题考查了一次函数,根据表格求出一次函数的关系式是解题的关键.13.某手工作坊生产并销售某种食品,假设销售量与产量相等,如图中的线段AB 、OC 分别表示每天生产成本1y (单位:元)、收入2y (单位:元)与产量x (单位:千克)之间的函数关系.若该手工作坊某一天既不盈利也不亏损,则这天的产量是______千克.【答案】30【分析】根据题意可设AB 段的解析式为11y k x b ,OC 段的解析式为22y k x ,再结合图象利用待定系数法求出解析式,最后根据该手工作坊某一天既不盈利也不亏损时,即12y y ,可列出关于x 的等式,解出x 即可.【详解】根据题意可设AB 段的解析式为:11y k x b ,且经过点A (0,240),B (60,480),∴124048060b k b,解得:14240k b,∴AB 段的解析式为:14240y x ;设OC 段的解析式为:22y k x ,且经过点C (60,720),∴272060k ,解得:212k ,∴OC 段的解析式为:212y x .当该手工作坊某一天既不盈利也不亏损时,即12y y ,∴424012x x ,解得:30x .所以这天的产量是30千克.故答案为:30.【点睛】本题考查一次函数的实际应用.掌握利用待定系数法求函数解析式是解答本题的关键.三、解答题:14.乡村振兴作为“十四五”期间的重要战略,受到了广大人民群众的关注.党的二十大再次对全面推进乡村振兴进行部署.为了发展乡村特色产业,百花村花费3000元集中采购了甲种树苗700株,乙种树苗400株,已知乙种树苗单价是甲种树苗单价的2倍.(1)求甲、乙两种树苗的单价分别是多少元?(2)百花村决定再购买同样的两种树苗100株用于补充栽种.其中甲种树苗不多于33株,在单价不变,总费用不超过340元的情况下,最低费用是多少元?【答案】(1)甲种树苗的单价是2元,则乙种树苗的单价是4元(2)最低费用是334元.【分析】(1)设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得到等量关系建立方程求出其解即可;(2)设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,总费用为w 元,根据题意得2400w a ,然后根据一次函数性质即可解决问题.【详解】(1)解:设甲种树苗的单价是x 元,则乙种树苗的单价是2x 元,根据题意得:70040023000x x ,解得:2x ,∴24 x ,答:甲种树苗的单价是2元,则乙种树苗的单价是4元;(2)解:设购买甲种树苗a 棵,则购买乙种树苗 100a 棵,其中a 为正整数,根据题意得:03324100340x a a,解得:3033a ,设总费用为w 元,∴ 24100w a a ,整理得2400w a ,∵20 ,∴w 随a 的增大而减小,∴当33a 时,w 最小,最小值为334,答:最低费用是334元.【点睛】本题考查了列一元一次方程解实际问题的运用,不等式组的运用,一次函数的应用,关键是正确理解题意,找出题目中的等量关系列出方程,找出不等关系列出不等式组,一次函数的关系式,利用一次函数的性质解答.15.为弘扬爱国精神,传承民族文化,某校组织了“诗词里的中国”主题比赛,计划去某超市购买A ,B 两种奖品共300个,A 种奖品每个20元,B 种奖品每个15元,该超市对同时购买这两种奖品的顾客有两种销售方案(只能选择其中一种).方案一:A 种奖品每个打九折,B 种奖品每个打六折.方案二:A ,B 两种奖品均打八折.设购买A 种奖品x 个,选择方案一的购买费用为1y 元,选择方案二的购买费用为2y 元.(1)请分别写出1y 、2y 与x 之间的函数关系式.(2)请你计算该校选择哪种方案支付的费用较少.【答案】(1)192700y x ,243600y x (2)购买A 种奖品超过180个时,方案二支付费用少;购买A 种奖品180个时,方案一和方案二支付费用一样多;购买A 种奖品少于180个时,方案一支付费用少【分析】(1)根据总费用A ,B 两种奖品费用之和列出1y 、2y 关于x 的函数关系式;(2)根据(1)中关系式分三种情况讨论即可.【详解】(1)由题意得:1200.9150.6(300)92700y x x x ;2200.8150.8(300)43600y x x x ,1y ∴与x 之间的函数关系式为192700y x ,2y 与x 之间的函数关系式为243600y x ;(2)当12y y 时,9270043600x x ,解得180x ,购买A 种奖品超过180个时,方案二支付费用少;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品180个时,方案一和方案二支付费用一样多;当12y y 时,9270043600x x ,解得180x ,购买A 种奖品少于180个时,方案一支付费用少.【点睛】本题考查一次函数的应用以及一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,列出函数解析式.16.某地计划修建一条长36千米的乡村公路,已知甲工程队修路的速度是乙工程队修路速度的1.5倍,乙工程队单独完成本次修路任务比甲工程队单独完成多20天.(1)求甲、乙两个工程队每天各修路多少千米?(2)已知甲工程队修路费用为25万元/千米,乙工程队修路费用为20万元/千米.甲工程队先单独修路若干天后,接到其它任务需要离开,剩下的工程由乙工程队单独完成.若要使修路总时间不超过55天,总费用不超过820万元,且甲工程队所修路程需为整数,请问共有几种修路方案?哪种方案最省钱?【答案】(1)甲工程队每天修路0.9千米,乙工程队每天修路0.6千米(2)共有13种方案,其中甲单独干10天,剩下的乙单独修完,最省钱.【分析】(1)设乙工程队每天修路x 千米,则甲工程队每天修路1.5x 千米,根据乙工程队单独完成本次修路任务比甲工程队单独完成多20天,列出方程,进行求解即可;(2)设甲工程队修路a 天,根据修路总时间不超过55天,总费用不超过820万元,列出不等式组,求出a 的取值范围,确定方案,设花费的总费用为w ,列出一次函数解析式,利用一次函数的性质,即可得出结套乒乓球拍和羽毛球拍进行销售,其中购进乒乓球拍的套数不超过【点睛】本题考查了一次函数和二元一次方程组的应用,解题的关键是仔细审题,找到等量关系列出函数能力提升篇一、单选题:∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些.故选D.2.小明和小张是邻居,某天早晨,小明7:40先出发去学校,走了一段后,在途中停下吃早餐,后来发现上学时间快到了,就跑步到学校;小张比小明晚出发5分钟,乘公共汽车到学校.右图是他们从家到学校已走的路程y (米)和小明所用时间x (分钟)的函数关系图.则下列说法中不正确的是()A .小明家和学校距离1000米;B .小明吃完早餐后,跑步到学校的速度为80米/分;C .小张乘坐公共汽车后7:48与小明相遇;D .小张到达学校时,小明距离学校400米.【答案】C【分析】根据函数图像中各拐点的实际意义求解可得.【详解】解:A 、由图像可知,小明家和学校距离1000米,故此选项不符合题意;B 、小明吃完早餐后,跑步到学校的速度为: 1000360201280 (米/分),故此选项不符合题意;C 、小张乘公共汽车的速度为: 1000155100 (米/分),360100 3.6 (分),故小张乘坐公共汽车后7点48分36秒与小明相遇,故此选项符合题意;,故此选项不符合题意.二、填空题:4.本年度某单位常有集体外出学习活动,因此准备与出租车公司签订租车协议.现有甲、乙两家出租车公司供选择.设每月行驶x千米,应付给甲公司1y元,应付给乙公司2y元,1y、2y分别与x之间的函数关系如图所示,若这个单位估计每月需要行驶的路程为3500千米,那么为了省钱,这个单位应租__________公司.【答案】B【分析】先由表格中数据分别表示出A y、B y关于x的函数表达式,分别令A y=B y、A y>B y、A y<B y求解,即可做出判断.【详解】解:由题意可知:A y=0.1x,B y=20+0.05x,当A y=B y时,由0.1x=20+0.05x得:x=400,两种收费方式一样省钱;当A y>B y时,由0.1x>20+0.05x得:x>400,B种方式省钱;当A y<B y时,由0.1x<20+0.05x得:x<400,A种方式省钱,∴当每月上网时间多于400分钟时,选择B种方式省钱,故答案为:B.【点睛】本题考查一次函数的应用、解一元一次方程、解一元一次不等式,理解题意,正确列出函数关系式是解答的关键.三、解答题:【答案】(1)48y x ;(2)修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【分析】(1)分别求出A 型和B 型两种沼气池的修建费用,相加即可;(2)利用题意列出不等式组,再根据y 与x 之间的函数关系式得到y 的值最小时对应的x 的值,即可得到费用最少时的修建方案,以及此时修建完沼气池剩余的用地面积.【详解】解:(1) y 3x 224x x 48 ,∴y 与x 之间的函数关系式为48y x .(2)由题可得: 20152440010824220x x x x①②,由①得:8x ,由②得:14x ≤,∴814x ,∵48y x ,其中y 随x 的增大而增大;∴当8x 时y 最小,此时84856y ,2416x 因此方案为修建A 、B 两种型号的沼气池分别为8个、16个时总费用最少;用地面积剩余: 22010824220108824812x x (平方米),答:费用最少时的修建方案为修建A 、B 两种型号的沼气池分别为8个、16个,此时修建完沼气池剩余的用地面积为12平方米.【点睛】本题涉及到了方案选择问题,考查了一次函数和一元一次不等式组的应用,要求学生能根据题意列出函数关系式和一元一次不等式组,能根据实际情况和函数的性质得到函数的极值,并确定出最优方案,考查了学生的综合分析与实际应用的能力.。

人教版初中八年级下册数学精品教案 第十九章 一次函数19.3 课题学习 选择方案

人教版初中八年级下册数学精品教案 第十九章 一次函数19.3 课题学习 选择方案

教学设计课题课题学习选择方案授课人素养目标1.根据实际问题背景建立分段函数模型,体会数学分类讨论思想在解决实际问题中的应用2.灵活运用变量关系建立一次函数模型并选择最佳方案解决销售相关实际问题.3.体会“问题情境—建立模型—解释应用—回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值.教学重点建立一次函数模型解决实际问题.教学难点函数建模思想的理解与应用.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图通过实际问题引出方案决策的主题. 【情境导入】做一件事情,有时有不同的实施方案.比较这些方案,从中选择最佳方案作为行动计划,是非常必要的.应用数学的知识和方法对各种方案进行比较分析,可以帮助我们清楚地认识各种方案,作出理性的决策.(教材P102问题1)下表给出A,B,C三种上宽带网的收费方式.选取哪种方式能节省上网费?当我们面对不同的方案,怎样运用数学方法进行比较并作出合理的选择?这就是我们今天将要学习的内容.【教学建议】引导学生讨论,可指定学生回答.探究点运用一次函数的知识选择最佳方案1.对于活动一中的问题,我们按如下顺序进行探究.(1)哪种方式上网费是会变化的?哪种不变?A,B会变化,C不变(2)在A,B两种方式中,上网费由哪些部分组成?上网费=月使用费+超时费(3)影响超时费的变量是什么?上网时间(4)这三种方式中有一定最优惠的方式吗?答:没有一定最优惠的方式,与上网的时间有关. (5)设月上网时间为xh,方式A,B,C的收费金额分别为y1,y2,y3,请分别求出y1,y2,y3关于x的函数解析式,并画出函数图象.答:方式A:19.3 课题学习选择方案教学步骤师生活动设计意图自行选择自变量构建函数模型解决实际问题. 化简得y1=⎩⎪⎨⎪⎧30,3x-45,0≤x≤25,x>25.方式B:y2=化简,得y2=⎩⎪⎨⎪⎧50,3x-100,0≤x≤50,x>50.方式C:y3=120,x≥0.图象如图所示.(6)结合函数图象和解析式填空:当上网时间不超过3123h时,选择方式A最省钱;当上网时间超过3123h而不超过7313h时,选择方式B最省钱;当上网时间超过7313h时,选择方式C最省钱.2.阅读教材P103问题2,回答下列问题.(1)影响租车费用的因素有哪些?答:甲、乙两种车所租辆数.(2)汽车所租辆数又与哪些因素有关?答:与乘车人数有关.(3)如何由乘车人数确定租车辆数呢?答:234名学生和6名教师共240人,240÷45=513,240÷30=8.以发现对于上网时间有不同需求的人可以从中选择不同的收费方式,以达到省钱的目的.教师让学生体会通过分析变量间的关系,列出函数解析式,然后比较三个函数解析式或相应的图象,找出不同的上网时间范围内上【随堂训练】见《创优作业》“随堂小练”册子相应课时训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:选择最佳方案,往往可以用函数有关知识解决问题,你能说说建立函数模型的步骤和方法吗?【知识结构】【作业布置】《创优作业》主体本部分相应课时训练.解题方法:一、方案选取型问题的解题策略:1.若给定自变量的取值,则将自变量的值代入解析式,得到因变量的值,再进行选取;2.若给定因变量的取值,则将因变量的值代入解析式,得到自变量的值,再进行选取;3.若自变量、因变量均未给定取值:(1)方法一:可分别求出y 1<y 2,y 1=y 2,y 1>y 2的解集,再根据结果进行选取;(2)方法二:画出函数图象,求出交点坐标,再利用图象的上、下位置关系进行判断.二、方案设计型问题的解题策略:方案设计型问题一般是利润最大或费用最少问题,一般步骤如下: 1.根据题意求出函数解析式;2.由图象、题设信息列不等式(组)求得自变量的取值范围;3.利用一次函数的增减性确定利润最大或费用最少时自变量的值,从而设计出符合要求的方案.三、物资调运方案问题的解题策略:1.用表格或图示的方法,厘清数量关系;2.根据表格或图示中的数量关系列出函数解析式;3.根据题意确定自变量的取值范围;4.根据函数解析式及自变量的取值范围,结合一次函数的增减性,按题设要求确定调运方案.例某商店销售一种产品,该产品成本价为6元/件,售价为8元/件,销售人员将该产品一个月(30天)销售情况绘成如下图象,图中的折线ODE表示日销量y(单位:件)与销售时间x(单位:天)之间的函数关系,若线段DE表示的函数关系中,时间每增加1天,日销量减少5件.(1)第25天的日销量是325件,这天销售利润是650元;(2)求y关于x的函数解析式,并写出x的取值范围;(3)日销售利润不低于640元的共有多少天?销售期间日销售利润最大是多少元?解:(1)解析:340-(25-22)×5=325(件),(8-6)×325=650(元),故答案为325,650.(2)设直线OD的解析式为y=kx.将(17,340)代入y=kx,得17k=340,解得k=20.所以直线OD的解析式为y =20x +n ,得⎩⎪⎨⎪⎧22m +n =340,25m +n =325,解得⎩⎪⎨⎪⎧m =-5,n =450.所以直线DE 的解析式为y =-5x +450.联立⎩⎪⎨⎪⎧y =20x ,y =-5x +450,解得⎩⎪⎨⎪⎧x =18,y =360.所以点D 的坐标为(18,360).所以y 关于x 的函数解析式为y =⎩⎪⎨⎪⎧20x ,0≤x≤18,-5x +450,18<x≤30.(3)640÷(8-6)=320(件),当y =320时,由20x =320或-5x +450=320,解得x =16或x =26,所以26-16+1=11(天),所以日销售利润不低于640元的共有11天.因为折线ODE 的最高点D 的坐标为(18,360),360×2=720(元),所以当x =18时,日销售利润最大,最大为720元.例1 某校组织师生参加夏令营活动,现准备租用A ,B 两种型号的客车(每种型号的客车至少租用一辆).A 型车每辆租金为500元,B 型车每辆租金为600元.若5辆A 型车和2辆B 型车坐满后共载客310人;3辆A 型车和4辆B 型车坐满后共载客340人.(1)每辆A 型车、B 型车坐满后分别载客多少人?(2)若该校计划租用A 型和B 型两种客车共10辆,总租金不高于5 500元,并将全校420人载至目的地.该校有几种租车方案?哪种租车方案最省钱?(3)在这次活动中,学校除租用A ,B 两种客车外,又派出甲、乙两辆器材运输车.已知从学校到夏令营目的地的路程为300 km ,甲车从学校出发0.5 h 后,乙车才从学校出发,但乙车却比甲车早0.5 h 到达目的地.如图是两车离开学校的路程s(单位:km)与甲车行驶的时间t(单位:h)之间的函数图象.根据图象信息,求甲、乙两车第一次相遇后,t 为何值时两车相距25 km.分析:(1)设每辆A 型车、B 型车坐满后分别载客x 人、y 人,由题意列出二元一次方程组,解方程组即可求解;(2)设租用A 型车m 辆,则租用B 型车(10-m)辆,由题意列出一元一次不等式组,解不等式组,求整数解即可得出m 可取的值,设总租金为w 元,根据一次函数的增减性即可求解;(3)设s 甲=kt ,s 乙=k 1t +b ,由题意可知,甲车的函数图象经过点(4,300),乙车的函数图象经过(0.5,0),(3.5,300)两点.求出函数解析式,进而即可求解.解:(1)设每辆A 型车、B 型车坐满后分别载客x 人、y 人.由题意得⎩⎪⎨⎪⎧5x +2y =310,3x +4y =340,解得⎩⎪⎨⎪⎧x =40,y =55.答:每辆A 型车、B 型车坐满后分别载客40人、55人.(2)设租用A 型车m 辆,则租用B 型车(10-m)辆.由题意得⎩⎪⎨⎪⎧500m +600(10-m )≤5 500,40m +55(10-m )≥420,解得5≤m≤823. 因为m 取正整数,所以m 可以取5,6,7,8.所以共有4种租车方案. 设总租金为w 元,则w =500m +600(10-m)=-100m +6 000.因为-100<0,所以w随m的增大而减小,所以当m=8时,w最小.所以租8辆A型车,2辆B型车最省钱.(3)设s甲=kt,s乙=k1t+b.由题意可知,甲车的函数图象经过点(4,300),乙车的函数图象经过(0.5,0),(3.5,300)两点.所以易得s甲=75t,s乙=100t-50.因为甲、乙两车第一次相遇后相距25 km,所以s乙-s甲=25,即100t-50-75t=25,解得t=3,或300-75t=25,解得t=113.所以,在甲、乙两车第一次相遇后,t=3或113时两车相距25 km.例2 (教材P109复习题T15拓展)A城有肥料200 t,B城有肥料300 t.现要把这些肥料全部运往C,D两乡.从A城往C,D两乡运肥料的费用分别为20元/t和25元/t;从B城往C,D两乡运肥料的费用分别为15元/t和24元/t.现C乡需要肥料240 t,D乡需要肥料260 t,设A城运往C乡的肥料为xt,A,B两城往C乡运肥料的总费用为y1元,A,B两城往D乡运肥料的总费用为y2元.(1)分别写出y1,y2关于x的函数解析式,并指出自变量的取值范围;(2)怎样调运可使总运费最少?请求出最少总运费;(3)由于从B城到D乡开辟了一条新的公路,使B城到D乡的运输费用每吨减少了a元(2≤a≤8),现在又该怎样调运才能使总运费最少?请求出最少总运费(用含a的式子表示).分析:(1)从A,B两城分别运往C,D 两乡的肥料,不得大于两城各自的肥料储量,且不能小于0,即可得到取值范围;(2)结合(1)中的取值范围与函数增减性求解;(3)a的取值可能影响到函数的增减性,需要对a的取值进行分类讨论并结合自变量的取值范围来确定最值.解:(1)根据题意,得y1=20x+15(240-x),化简得y1=5x+3 600,0≤x≤200;y2=25(200-x)+24[300-(240-x)],化简得y2=-x+6 440,0≤x≤200.(2)设总运费为y元.根据题意,得y=y1+y2,所以y=5x+3 600+(-x+6 440)=4x+10 040,即y关于x的函数解析式为y=4x+10 040.因为4>0,所以y随x的增大而增大,所以当x=0时,y有最小值,最小值为10 040.所以从A城运往D乡200 t,从B城运往C乡240 t,从B城运往D 乡60 t,此时总运费最少,最少总运费为10 040元.(3)设开辟新公路后的总运费为y′元.根据题意,得y′=20x+15(240-x)+25(200-x)+(24-a)[300-(240-x)],整理,得y′=(4-a)x+10 040-60a,0≤x≤200.因为2≤a≤8,所以分以下几种情况讨论:①当4-a>0,即2≤a<4时,y′随x的增大而增大,所以当x=0时,y′有最小值,最小值为10 040-60a;②当4-a<0,即4<a≤8时,y′随x的增大而减小,所以当x=200时,y′有最小值,最小值为10 840-260a;③当4-a=0,即a=4时,y′=9 800.综上所述,当2≤a<4时,从A城运往D乡200 t,从B城运往C乡240 t,从B城运往D乡60 t,此时总运费最少,最少总运费为(10 040-60a)元;当4<a≤8时,从A城运往C乡200 t,从B城运往C乡40 t,从B城运往D乡260 t,此时总运费最少,最少总运费为(10 840-260a)元;当a=4时,在满足实际的情况下可自由调运,总运费恒定不变,为9 800元.。

人教版八年级下册数学优秀作业课件(RJ) 第十九章 一次函数 课题学习 选择方案

人教版八年级下册数学优秀作业课件(RJ) 第十九章 一次函数 课题学习 选择方案

6.(20分)在乡村道路建设的过程中,甲、乙两村之间需要修建水泥路,它们准备 合作完成.已知甲、乙村分别需要水泥70 t,110 t,A,B两厂分别可提供100 t,80 t水泥,两厂到两村的运费如下表.设从A厂运往甲村水泥x t,总运费为y元.
(1)求y与x之间的函数关系式; (2)请你设计出运费最低的运送方案,并求出最低运费.
y=20x, y=10x+100,
解得xy= =12000,比较合算;②当入园次数等于 10 次时,选择两种消费卡费用一 样;③当入园次数大于 10 次时,选择乙消费卡比较合算
4.(12分)为了更好地运用信息技术辅助教学,某校计划购买进价分别为3 500 元/台、4 000元/台的A,B两种型号的笔记本电脑共15台.设购进A型笔记本电脑x 台,购买这两种型号的笔记本电脑共需的费用为y元.
数学 八年级下册 人教版
第十九章 一次函数
19.3 课题学习 选择方案
1.(4分)一家电信公司提供了有、无月租费两种上网收费的方式供用户选择, 这两种收费方式所收取的上网费用y(元)与上网时间x(min)之间的关系如图所示, 则下列说法错误的是( C )
A.图象甲描述的是无月租费的收费方式 B.图象乙描述的是有月租费的收费方式 C.当每月的上网时间为350 min时,选择有月租费的收费方式更省钱 D.当每月的上网时间为500 min时,选择有月租费的收费方式更省钱
(1)求y与x之间的函数解析式; (2)若购买的B型笔记本电脑的数量不少于A型笔记本电脑数量的2倍,请你帮该 校设计出一种费用最省的方案,并求出该方案所需的费用. 解:(1)由题意,得y=3 500x+4 000(15-x)=-500x+60 000 (2)由题意,得15-x≥2x,解得x≤5,∵-500<0,∴当x=5时,y有最小值,且 y最小值=-500×5+60 000=57 500,∴当该校购买A型笔记本电脑5台,B型笔记 本电脑15-5=10(台)时费用最省,所需的费用为57 500元

初中人教版数学八年级下册:19.3 课题学习 选择方案 习题课件(含答案)

初中人教版数学八年级下册:19.3 课题学习 选择方案  习题课件(含答案)

7.(2020·河南中考)暑期将至,某健身俱乐部面向学 生推出暑期优惠活动,活动方案如下. 方案一:购买一张学生暑期专享卡,每次健身费用 按六折优惠; 方案二:不购买学生暑期专享卡,每次健身费用按 八折优惠.
设某学生暑期健身 x(次),按照方案一所需费用为 y1(元),且 y1 =k1x +b ;按照方案二所需费用 为 y2(元),且 y2=k2x.其函数图象如图所示. (1)求 k1 和 b 的值, 并说明它们的实际意义;
目录页
A 分点训练•打好基础 B 综合运用•提升能力
知识点 选择方案 1.某公司急需用车,但又不准备买车,公司准备和 一个个体车主或一家出租车公司签订月租车合同, 他们的月收费 y(元)与公司每月用车的路程 x(千米)
之间的关系如图所示(其中个体车主收费为 y1 元,出 租车公司收费为 y2 元),则当 x >1800 时,选 用个体车主较合算.
解:(1)∵y1=k1x+b 过点(0,30),(10,180),
∴ b=30,
解得 k1=15,
10k1 +b=180,
b=30.
k1=15 表示的实际意义是:购买一张学生暑期专享
卡后每次健身费用为 15 元;
b=30 表示的实际意义是:购买一张学生暑期专享
卡的费用为 30 元.
(2)求打折前的每次健身费用和 k2 的值; (2)由题意可得, 打折前的每次健身费用为 15÷0.6=25(元), 则 k2=25×0.8=20.
(3)八年级学生小华计划暑期前往该俱乐部健身 8 次,应选择哪种方案所需费用更少?说明理由.
(3)选择方案一所需费用更少.理由如下: 由(1)(2)可知,y1=15x+30,y2=20x. 当健身 8 次时,选择方案一所需费用为 y1=15×8+ 30=150(元),选择方案二所需费用为 y2=20×8= 160(元). ∵150<160, ∴选择方案一所需费用更少.

人教版八年级数学 下册教案设计:19.3课题学习 方案选择

人教版八年级数学 下册教案设计:19.3课题学习 方案选择

方式B:y2=50x3100,(50)x x≤≤⎧⎨->⎩,(050);方式C:y3=120(x≥0).提问:用什么方法比较函数y1,y2,y3 的大小呢?学生独立思考, 有的学生可能会用不等式或方程考虑,但发现由于y1,y2 是分段函数,用不等式或方程比较麻烦,此时教师引导学生还可以借助函数图象来分析问题和解决问题.教师解析:(1)设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C 上网费用为y3元,则y1=y2=y3=120(x≥0).问题转化为比较y1,y2,y3 的大小.(2)引导学生画出函数的图象:由函数图象可知:(1)函数y1=3x-45与函数y2=50的图象的交点横坐标满足:3x-45=50,故交点的横坐标为x=31,(2)函数y2=3x-100与函数y3=120的图象的交点横坐标满足:3x-100=120, 故交点的横坐标为x=73.由数形结合思想可知:当上网时间不超过31小时40分钟时,选择方式A最省钱;当上网时间为31小时40分钟至73小时20分钟时,选择方案B最省钱;当上网时间超过73小时20分钟时,选择方案C最省钱.引导学生写出详细的解答过程:解:设上网时间为x h,方式A上网费用为y1元,方式B上网费用为y2元,方式C 上网费用为y3元,则y1=y2=y3=120(x≥0).(1)令y1=y2,即3x-45=50,解方程,得x=31.(2)令y2=y3,即3x-100=120,解方程,得x=73.画出函数的图象如下图:结合函数的图象可知:当上网时间不超过31小时40分时,选择方案A最省钱;当上网时间为31小时40分至73小时20分时,选择方案B最省钱;当上网时间超过73小时20分时,选择方案C最省钱.2.怎样租车问题二:某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示 :甲种客车乙种客车载客量(人/辆) 45 30租金(元/辆) 400 280(1)共需租多少辆汽车?(2)给出最节省费用的租车方案.引导学生阅读教师给出的材料,并思考下列问题:(1)租车的方案有几种?(2)如果单独租甲种车需要多少辆?单独租乙种车需要多少辆?(3)如果甲、乙两种车都租,你能确定租车的车辆范围吗?(4)要保证240名师生有车坐,则汽车总数不能小于.要使每辆汽车上至少有1名教师,则汽车总数不能大于.综合起来可知汽车总数为.学生根据教师所提出的问题进行思考,利用分类讨论的数学思想进行求解.解:(1)要保证240名师生有车坐,由甲种客车每辆载客45人可知汽车总数不能小于6;要使每辆汽车上至少有1名教师,有6名教师可知汽车总数不能大于6.综合起来可知汽车总数为6.(2)若单独租甲种车,需要费用:400×6=2400(元),不满足总费用2300元的限额. 若租甲、乙两种车,设租用x辆甲种客车,则租用(6-x)辆乙种客车,则车费y与 x 的函数关系式为y=400x+280(6-x)=120x+1680.由题意可知x应满足:_____________________________________.解这个不等式组,得4≤x≤.∵x为正整数,∴x=4或5.综上可知:共有两种方案:方案一:租4辆甲种客车,2辆乙种客车,y=120×4+1680=2160(元).方案二:租5辆甲种客车,1辆乙种客车,y=120×5+1680=2280(元).故应选择方案一,它的费用最少,为2160元.三、课堂小结1.本节课学习了用一次函数解决实际问题的基本思路:2.本节课渗透的数学思想方法.(建立数学模型、数形结合、分类讨论)3.在选择方案时,往往需要从数学角度进行分析,涉及变量的问题常用到函数.解决含有多个变量的问题时,可以分析这些变量之间的关系,从中选取一个取值能影响其他变量的值的变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数,以此作为解决问题的数学模型.四、板书设计1.怎样选取上网收费方式例12.怎样租车例2作业设计必做教材第105页活动1.选做教材第105页活动2.教学反思。

初中数学人教版八年级下册第十九章 一次函数19.3 课题学习 选择方案-章节测试习题(2)

初中数学人教版八年级下册第十九章 一次函数19.3 课题学习 选择方案-章节测试习题(2)

章节测试题1.【题文】为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.【答案】见解答.【分析】本题考查了一次函数与的应用.【解答】(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得,∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:.(2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,由图可得:,由,可得,∴图中两函数图象的交点坐标为(2,1.5),又∵,结合图象可得:当时,李老师用“手机支付”更合算;当时,李老师选择两种支付分式花费一样多;当时,李老师选择“会员支付”更合算.2.【题文】某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为______元;用方案二处理废渣时,每月利润为______元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【答案】见解答.【分析】本题考查了一次函数与的应用.【解答】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.3.【答题】若等腰△ABC的周长是50cm,底边长为xcm,一腰长为ycm,则y与x 的函数关系式及自变量x的取值范围是()A. y=50-2x(0<x<50)B. y=50-2x(0<x<25)C. y=(50-2x)(0<x<50)D. y=(50-x)(0<x<25)【答案】D【分析】本题考查了一次函数的应用.【解答】由题意得2y+x=50,∴y =(50-x),且0,选D.4.【答题】在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,若购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨单价应该是()A. 820元B. 840元C. 860元D. 880元【答案】C【分析】本题考查了一次函数的应用.【解答】设购买量y吨与单价x元之间的一次函数关系式为y=kx+b ,由题意,得,解得,解析式为:y=-10x+9000,当y=400时,400=-10x+9000,,选C.5.【答题】春节期间,某批发商欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开放海产品的运输业务,两货运公司的收费项目及收费标准如下表所示.已知运输路程为120千米,汽车和火车的速度分别为60千米/小时,100千米/小时,请你选择一种交通工具()运输工具运输单位(元/吨·千米)冷藏单位(元/吨·小时)过路费(元)装卸及管理费(元)汽车 2 5 200 0A. 当运输货物重量为60吨,选择汽车B. 当运输货物重量大于50吨,选择汽车C. 当运输货物重量小于50吨,选择火车D. 当运输货物重量大于50吨,选择火车【答案】D【分析】本题考查了一次函数的应用.【解答】(1)y1=2×120x+5×(120÷60)x+200=250x+200,y2=1.8×120x+5×(120÷100)x+1600=222x+1600;(2)若y1=y2,则x=50,∴当海产品不少于30吨但不足50吨时,选择汽车货运公司合算;当海产品恰好是50吨时选择两家公司都一样,没有区别;当海产品超过50吨时选择铁路货运公司费用节省一些,选D.6.【答题】学校春季运动会期间,负责发放奖品的张也同学,在发放运动鞋(奖品)时,对运动鞋的鞋码统计如下表:如果获奖运动员李伟领取的奖品是43号(原鞋码)的运动鞋,则这双运动鞋的新鞋码是()A. 270B. 255C. 260D. 265【答案】D【分析】本题考查了一次函数的应用.【解答】由题中的表格知,y是x的一次函数,可设y与x的关系为y=kx+b,由题意得,解得,∴y与x之间的函数关系式为y=5x+50,当x=43时,y=265,选D.7.【答题】如图,小明从A地前往B地,到达后立刻返回,他与A地的距离千米和所用时间小时之间的函数关系如图所示,则小明出发6小时后距A地()A. 120千米B. 160千米C. 180千米D. 200千米【答案】B【分析】本题考查了一次函数的应用.【解答】设当时,y与x的函数关系式为,,得,即当时,y与x的函数关系式为,当时,,即小明出发6小时后距A地160千米,选B.8.【答题】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400m,先到终点的人原地休息.已知甲先出发4min,在整个步行过程中,甲、乙两人的距离y(m)与甲出发的时间t(min)之间的关系如图所示,以下结论:①甲步行的速度为60m/min;②乙走完全程用了32min;③乙用16min追上甲;④乙到达终点时,甲离终点还有300m,其中正确的结论有______(填序号).【答案】①【分析】本题考查了一次函数的应用.【解答】由图可得,甲步行的速度为:240÷4=60米/分,故①正确;乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误;乙追上甲用的时间为:16-4=12(分钟),故③错误;乙到达终点时,甲离终点距离是:2400-(4+30)×60=360米,故④错误,故答案为:①.9.【答题】某体育用品商场为推销某一品牌运动服,先做了市场调查,得到数据如下表:卖出价格x(元/件)50 51 52 53销售量P(件)500 490 480 470则P与x的函数关系式为______,当卖出价格为60元时,销售量为______件.【答案】P=-10x+1000;400【分析】本题考查了一次函数的应用.【解答】(1)P与x成一次函数关系,设函数关系式为P=kx+b,则,解得,∴P=−10x+1000,经检验可知:当x=52,P=480,当x=53,P=470时也适合这一关系式,∴所求的函数关系为P=−10x+1000.(2)当x=60时,P=−10×60+1000=400,故答案为:P=−10x+1000;400.10.【题文】某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神州行”不缴月租费,每通话1min付费0.6元.若一个月内通话xmin,两种方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数解析式;(2)一个月内通话多少分钟,两种通讯业务费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯业务合算些?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)y1=50+0.4x,y2=0.6x.(2)令y1=y2,则50+0.4x=0.6x,解之,得x=250.∴通话250分钟两种费用相同.(3)令x=300,则y1=50+0.4×300=170,y2=0.6×300=180,∴选择全球通合算.11.【题文】甲、乙两个厂家生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每张椅子80元.甲、乙两个厂家推出各自销售的优惠方案,甲厂家:买一张桌子送三张椅子;乙厂家:桌子和椅子全部按原价8折优惠.现某公司要购买3张办公桌和若干张椅子,若购买的椅子数为x张(x≥9).(1)分别用含x的式子表示甲、乙两个厂家购买桌椅所需的金额;(2)购买的椅子至少多少张时,到乙厂家购买更划算?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)根据甲、乙两个厂家推出各自销售的优惠方案:甲厂家所需金额为:3×800+80(x﹣9)=1680+80x;乙厂家所需金额为:(3×800+80x)×0.8=1920+64x.(2)由题意,得:1680+80x≥1920+64x,解得:x≥15.答:购买的椅子至少15张时,到乙厂家购买更划算.12.【题文】为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得,∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:.(2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,由图可得:,由,可得,∴图中两函数图象的交点坐标为(2,1.5),又∵,结合图象可得:当时,李老师用“手机支付”更合算;当时,李老师选择两种支付分式花费一样多;当时,李老师选择“会员支付”更合算.13.【题文】某工厂生产某种产品,每件产品的出厂价为1000元,其原材料成本价为550元,同时在生产过程中平均每生产一件产品有10千克的废渣产生.为达到国家环要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接进行处理,每处理10千克废渣所用的原料费为50元,并且每月设备维护及损耗费为2000元.方案二:工厂将废渣集中到废渣处理厂统一处理,每处理10千克废渣需付100元的处理费.(1)设工厂每月生产x件产品.用方案一处理废渣时,每月利润为______元;用方案二处理废渣时,每月利润为______元(利润=总收入-总支出);(2)若每月生产30件和60件,用方案一和方案二处理废渣时,每月利润分别为多少元?(3)如何根据月生产量选择处理方案,既可达到环保要求又最划算?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)由题意可得,用方案一处理废渣时,每月的利润为:x(1000-550)-50x-2000=400x-2000;用方案二处理废渣时,每月利润为:x(1000-550)-100x=350x,故答案为:400x-2000;350x.(2)当x=30时,用方案一处理废渣时,每月的利润为:400×30-2000=10000元;用方案二处理废渣时,每月利润为:350×30=10500元;x=60时,用方案一处理废渣时,每月的利润为:400×60-2000=22000;用方案二处理废渣时,每月利润为:350×60=21000.(3)令400x-2000=350x,解得x=40,即当生产产品数量少于40时,选择方案二;当生产产量大于40时,选择方案一.14.【题文】水果商贩小李去水果批发市场采购被誉为“果中之王”的泰顺猕猴桃,他了解到猕猴桃有精品盒与普通盒两种包装,精品盒的批发价格每盒60元,普通盒的批发价格每盒40元,现小李购得精品盒与普通盒共60盒,费用共为3100元.(1)问小李分别购买精品盒与普通盒多少盒?(2)小李经营着甲、乙两家店铺,每家店铺每天部能售出精品盒与普通盒共30盒,并且每售出一盒精品盒与普通盒,在甲店获利分别为30元和40元,在乙店获利分别为24元和35元.现在小李要将购进的60盒弥猴桃分配给每个店铺各30盒,设分配给甲店精品盒a盒,请你根据题意填写下表:精品盒数量(盒)普通盒数量(盒)合计(盒)甲店a30乙店30小李希望在甲店获利不少于1000元的前提下,使自己获取的总利润W最大,应该如何分配?最大的总利润是多少?【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)设小李购买精品盒x盒,普通盒y盒,根据题意得,解得,答:小李购买精品盒35盒,普通盒25盒.(2)由(1)可知精品盒共35盒,普通盒共25盒,则分给甲店精品盒a盒,则分给乙店精品盒35-a盒,甲店分得普通盒30-a盒,乙店分得普通盒a-5盒.故答案为:30-a;35-a;a-5.获取的总利润W=30a+40×(30-a)+24×(35-a)+35×(a-5)=a+1865,∵甲店获利不少于1000元,∴30a+40×(30-a)=1200-10a≥1000,解得:a≤20,由W=a+1865的增减性可知:当a=20时,W取最大值,最大值为20+1865=1885(元),此时30-a=10;35-a=15;a-5=15.答:甲店分精品盒20盒普通盒10盒,乙店分精品盒15盒普通盒15盒,才能保证总利润最大,总利润最大为1885元.15.【题文】某中学为丰富学生的课余生活,准备购买一批每副售价50元的羽毛球拍和每筒售价10元的羽毛球,购买时,发现商场正在进行两种优惠促销活动.活动甲:买一副羽毛球拍送一筒羽毛球;活动乙:按购买金额打9折付款.学校欲购买这种羽毛球拍10副,羽毛球x(x≥.10)筒.(1)写出每种优惠办法实际付款金额y甲(元),y乙(元)与x(筒)之间的函数关系式;(2)比较购买同样多的羽毛球时,按哪种优惠办法付款更省钱?(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种羽毛球拍10副和羽毛球60筒设计一种最省钱的购买方案.【答案】见解答.【分析】本题考查了一次函数的应用.【解答】(1)y甲=50×10+10(x-10)=10x+400,y乙=(10x+50×10)×0.9=9x+450,即:y甲=10x+400,y乙=9x+450.(2)由y甲=y乙得10x+400=9x+450,解得x=50;由y甲<y乙得10x+400<9x+450,解得x<50;由y甲>y乙得10x+400>9x+450,解得x>50.∴当10≤x<50时,按活动甲更省钱,当x=50时,两种活动付款一样,当x>50时,按活动乙更省钱.(3)甲活动方案:y甲=10x+400=60×10+400=1000(元);乙活动方案:y乙=9x+450=9×60+450=990(元);两种活动方案买:50×10+50×10×0.9=950(元).∴按甲活动方案购买10副羽毛球拍,其余按乙活动方案购买最省钱,共花950元.。

八年级数学下册第十九章一次函数19.3课题学习选择方案教案

八年级数学下册第十九章一次函数19.3课题学习选择方案教案

19.3 课题学习选择方案1.巩固一次函数知识,灵活运用变量关系解决相关实际问题;(重点)2.有机地把各种数学模型通过函数统一起来使用,提高解决实际问题的能力.(难点)一、情境导入某校打算组织八年级师生进行春游,负责组织春游的老师了解到本地有甲乙两家旅行社满足要求,针对团体出游,两家旅行社的优惠方案各不相同,甲旅行社表示可在原价基础上打八折优惠,乙旅行社则推出学生半价,教师九折的优惠,经统计得知有300名学生和24名老师将参加此次春游,你能帮忙分析出如何选择旅行社更划算吗?二、合作探究探究点:运用一次函数解决方案选择性问题【类型一】利用一次函数解决自变量是非负实数的方案选择问题小刚和他父亲一起去灯具店买灯具,灯具店老板介绍说,一种节能灯的功率是10瓦(即0.01千瓦)的,售价60元;一种白炽灯的功率是60瓦(即0.06千瓦)的,售价为3元.两种灯的照明效果是一样的.使用寿命也相同(3000小时以上).如果当地电费为0.5元/千瓦·时,请你帮助他们选择哪种灯可以省钱?解析:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元.根据“费用=灯的售价+电费”,分别列出y1、y2与x的函数解析式;然后根据y1=y2,y1>y2,y2>y1三种情况进行讨论即可求解.解:设照明时间是x个小时,节能灯的费用为y1元,白炽灯的费用为y2元,由题意可知y1=0.01×0.5x+60=0.005x+60,y2=0.06×0.5x+3=0.03x+3.①当使用两灯费用相等时,y1=y2,即0.005x+60=0.03x+3,解得x=2280;②当使用节能灯的费用大于白炽灯的费用时,y1>y2,即0.005x+60>0.03x+3,解得x<2280;③当使用节能灯的费用小于白炽灯的费用时,y2>y1,即0.03x+3>0.005x+60,解得x>2280.所以当照明时间小于2280小时,应买白炽灯;当照明时间大于2280小时,应买节能灯;当照明时间等于2280小时,两种灯具费用一样.本题中两种灯的照明效果是一样的.使用寿命也相同(3000小时以上),所以买节能灯可以省钱.方法总结:解题的关键是要分析题意,根据实际意义求解.注意要把所有的情况都考虑进去,分情况讨论问题是解决实际问题的基本能力.【类型二】利用一次函数解决自变量是非负整数的方案选择问题某灾情发生后,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息,解答物资种类食品药品生活用品每辆汽车运载量(吨)65 4每吨所需运费(元/吨)120160100(1)设装运食品的车辆数为,装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.解析:(1)装运生活用品的车辆为(20-x -y )辆,根据三种救灾物资共100吨列出关系式;(2)根据题意求出x 的取值范围并取整数值从而确定方案;(3)分别表示装运三种物资的费用,求出表示总运费的表达式,运用函数性质解答.解:(1)根据题意,装运食品的车辆为x 辆,装运药品的车辆为y 辆,那么装运生活用品的车辆数为(20-x -y )辆,则有6x +5y +4(20-x -y )=100,整理得,y =-2x +20;(2)由(1)知,装运食品,药品,生活用品三种物资的车辆数分别为x ,20-2x ,x ,由题意得⎩⎪⎨⎪⎧x ≥5,20-2x ≥4,解得5≤x ≤8.因为x为整数,所以x 的值为5,6,7,8.所以安排方案有4种:方案一:装运食品5辆、药品10辆,生活用品5辆;方案二:装运食品6辆、药品8辆,生活用品6辆;方案三:装运食品7辆、药品6辆,生活用品7辆;方案四:装运食品8辆、药品4辆,生活用品8辆;(3)设总运费为W (元),则W =6x ×120+5(20-2x )×160+4x ×100=16000-480x .因为k =-480<0,所以W 的值随x 的增大而减小.要使总运费最少,需x 最大,则x =8.故选方案四,W 最小=16000-480×8=12160(元).答:选方案四,最少总运费为12160元. 方法总结:解答此类问题往往通过解不等式(组)求出自变量的取值范围,然后求出自变量取值范围内的非负整数,进而得出每种方案,最后根据一次函数的性质求出最佳方案.【类型三】 利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题已知A 、B 两地的路程为240千米.某经销商每天都要用汽车或火车将x 吨保鲜品一次性由A 地运往B 地.受各种因素限制,下一周只能采用汽车和火车中的一种进行运输,且须提前预订.现有货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象(如图①)、上周货运量折线统计图(如图②)等信息如下:货运收费项目及收费标准表 运输工具 运输费单价: 元/(吨·千米)冷藏单价:元/(吨·时)固定费用:元/次汽车 2 5 200 火车1.652280货运收费项目及收费标准表:(1)汽车的速度为______千米/时,火车的速度为______千米/时;(2)设每天用汽车和火车运输的总费用分别为y 汽(元)和y 火(元),分别求y 汽、y 火与x 的函数关系式(不必写出x 的取值范围),当x 为何值时,y 汽>y 火(总费用=运输费+冷藏费+固定费用);(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解析:(1)根据图①上两点的坐标分别为(2,120),(2,200),直接得出两车的速度即可;(2)根据图表得出货运收费项目及收费标准表、行驶路程s (千米)与行驶时间t (时)的函数图象,得出关系式即可;(3)根据平均数的求法以及折线图走势两个角度分析得出运输总费用较省方案.解:(1)60 100(2)根据题意得y 汽=240×2x +24060×5x+200=500x +200;y火=240×1.6x +240100×5x +2280=396x +2280.若y 汽>y 火,得出500x +200>396x +2280.解得x >20,当x >20时,y 汽>y 火;(3)上周货运量x =(17+20+19+22+22+23+24)÷7=21>20,从平均数分析,建议预定火车费用较省.从折线图走势分析,上周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车费用较省.方法总结:解答方案选择问题,要注意根据具体情境适当调整方法,如解统计有关的方案选择问题时,要注意从统计图表中读取信息,然后利用这些信息解决问题.三、板书设计1.利用一次函数解决自变量是非负实数的方案选择问题2.利用一次函数解决自变量是非负整数的方案选择问题3.利用一次函数、统计等知识解决最省钱、更划算、更优惠的问题教学时,突出重点把握难点.能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例.同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想.。

《课题学习 选择方案》一次函数

《课题学习 选择方案》一次函数

2023-11-07•引言•一次函数概述•一次函数的应用•一次函数的优化方案选择•实证研究目•结论与展望录01引言课题背景介绍随着现代社会的发展,面临的选择越来越多,如何从众多方案中选取最优方案,成为了亟待解决的问题。

本课题旨在通过理论研究和实践分析,为人们在现实生活中遇到的选择问题提供可参考的解决方案。

本课题来源于现实生活,通过对实际问题的分析,研究如何优化选择方案,提高决策效率。

研究目的和意义通过对选择方案的研究,为人们在决策过程中提供更加合理、高效的方法。

通过分析影响选择方案的多种因素,揭示选择方案内在规律,提高决策效率和准确性。

本研究对于提高个人和组织的决策水平、优化资源配置具有重要的理论和实践意义。

010302研究方法和研究路线采用文献综述、实证分析和案例分析等多种研究方法,确保研究的科学性和可靠性。

首先对选择方案的相关理论进行梳理,然后进行实证分析,验证理论的有效性。

通过案例分析,对研究成果进行进一步的实践检验,为人们在现实生活中遇到的选择问题提供解决方案。

01020302一次函数概述一次函数的定义一次函数的定义:一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。

符号的意义:k是自变量系数,b是常数项。

一次函数表达式的求解方法。

一次函数的性质一次函数的单调性当k>0时,函数单调递增;当k<0时,函数单调递减。

一次函数的零点当b>0时,函数与x轴交于点(−b/k,0);当b<0时,函数与x轴交于点(b/k,0)。

一次函数的斜率斜率k等于函数图像上任意两点的纵坐标差与横坐标差的比值。

03图像的性质:与x轴的交点、与y轴的交点、直线的倾斜角和斜率的关系。

一次函数的图像01一次函数的图像是一条直线。

02图像的绘制方法:描点法、两点法、斜截式、截距式。

03一次函数的应用一次函数在方程中的应用在一次方程中,我们常常需要利用一次函数来求解,通过令未知数为x,然后建立关于x的方程,再通过求解得到未知数的值。

第19章《一次函数(课题学习——选择方案)》教学设计5

第19章《一次函数(课题学习——选择方案)》教学设计5

19.3选择方案学习目标1、能综合运用一次函数及相关知识解决实际问题。

2、体会一次函数在解析式和解决实际问题中的重要作用。

自主学习问题1 怎样选取上网收费方式?1.选择哪种方式节省上网费?并说明理由.①选择A方式的理由:.②选择B方式的理由:.③选择C方式的理由:.2.在方式A ,B 中上网费有哪些量组成 , , .方式C 上网费是常量 .3.如何用函数关系式表示方式A ,B 的总费用?上网费是随 的变化而变化的.所以设 .填写下表: 解:设 , 表示方案A 的收费金额. 表示方案B 的收费金额. 表示方案C 的收费金额.⎩⎨⎧=1y 化简,得⎩⎨⎧=1yxyO⎩⎨⎧=2y 化简,得⎩⎨⎧=2y=3y由实际意义得x 0,在图中画出y 1,y 2,y 3的图像.选择哪种方式能节省上网费?考虑(1)x 取何值时,y 1最小.(2)x 取何值时,y 2最小.(3)x 取何值时,y 3最小.结合函数图象与解析式完成下列问题当上网时间 时,选择方式A 最省钱; 当上网时间 时,选择方式B 最省钱; 当上网时间 时,选择方式C 最省钱;交流展示1、展示自学内容,不会的小组研讨,质疑点拨。

整理好上述各题。

2、自学103页的问题2,回答课本上给出的问题,组内交流.xyO44xy O 1 2 3 4 5 6 7 8 12 3 4 5 6 7 8归纳总结通过这节课的学习,我学会了 我会运用 我体会到了 达标检测1.如图,L 1反映了某公司产品的销售收入(单位:百元)和销售数量(单位:件)的关系, L 2反映产品的销售成本(单位:百元)与销售数量(单位:件)的关系,根据图象判断公司盈利时销售量( )A 小于4件B 大于4件C 等于4件D 大于或等于4件2.如图是甲、乙两家商店销售同一种产品的销售价y 元与销售量x 件之间的函数图象,下列说法(1)售2件时,甲、乙两家的售价相同;(2)买1件时,买乙家的合算;(3)买3件时买甲家的合算;(4)买乙家的1件售价约为3元.其中说法正确的是: .乙 甲L 1L 2练习题1. 某地电话拨号入网有两种收费方式,用户可以任选其一: (A)计时制:0.05元/分;(B) 包月制:50元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通信费0.02元/分.(1)某用户某月上网的时间为x 小时,两种收费方式的费用分别为1y (元),2y (元),写出1y ,2y 与x 之间的函数关系式(2) 若某用户估计一个月内上网的时间为20小时,你认为采用哪种方式较为合算? (3) 在上网时间相同的情况下,请你帮该用户选择哪种上网方式更省钱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷
人教版数学八年级下册第十九章一次函数课题学习选择方案专题练习题
1.一家电信公司提供两种手机的月通话收费方式供用户选择,其中一种有月租费,另一种无月租费.这两种收费方式的通话费用y(元)与通话时间x(分钟)之间的函数关系如图所示.小红根据图象得出下列结论:①l1描述的是无月租费的收费方式;②l2描述的是有月租费的收费方式;③当每月的通话时间为500分钟时,选择有月租费的收费方式省钱.其中正确结论的个数是( )
A.0 B.1 C.2 D.3
2.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.
(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;
(2)小明选择哪家快递公司更省钱?
3.随着信息技术的快速发展,“互联网”渗透到我们日常生活的各个领域,网上在线收费方式月使用费/元包时上网时间/h超时费(元/min)
A 7 25 0.01
B m n 0.01
A B.
(1)下图是y B与x之间函数关系的图象,请根据图象填空:m=____,n=____;
(2)写出y A与x之间的函数关系式;
(3)选择哪种方式上网学习合算,为什么?
4.某游泳馆普通票价20元/张,暑期为了促销,新推出两种优惠卡:
①金卡售价600元/张,每次凭卡不再收费;
②银卡售价150元/张,每次凭卡另收10元.
暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数.设游泳x次时,所需总费用为y元.
(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;
(2)在同一个坐标系中,若三种消费方式对应的函数图象如图,请求出点A,B,C的坐标;
(3)请根据函数图象,直接写出选择哪种消费方式更合算.
5.某单位准备印刷一批证书,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数
量x(千个)的函数关系图象分别如图中甲、乙所示.
(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价;
(2)当印制证书8千个时,应选择哪个印刷厂节省费用,节省费用多少元?
(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?
6.某农机租赁公司共有50台收割机,其中甲型20台、乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如下表:
每台甲型收割机的租金每台乙型收割机的租金
A地区1800元1600元
B地区1600元1200元
为y元,求y关于x的函数关系式;
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;
(3)为农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.
方法技能:
用数学方法选择方案一般可分为三步: ①构建函数模型,找出函数关系式;
②确定自变量的取值范围或是针对自变量的取值进行讨论; ③由函数的性质(或经过比较后)直接得出最佳方案. 易错提示:
利用一次函数解决实际问题时,因忽视或弄错自变量的取值范围而出错. 答案: 1. D
2. 解:(1)y 甲=⎩
⎪⎨⎪⎧22x (0<x ≤1),
15x +7(x >1);y 乙=16x +3 (2)①当0<x ≤1时,令y 甲<y 乙,
即22x <16x +3,解得0<x <12;令y 甲=y 乙,即22x =16x +3,解得x =1
2;令y 甲>y
乙,即22x >16x +3,解得1
2
<x ≤1.②当x >1时,令y 甲<y 乙,即15x +7<16x +3,解
得x >4;令y 甲=y 乙,即15x +7=16x +3,解得x =4;令y 甲>y 乙,即15x +7>16x
+3,解得1<x <4.综上可知:当12<x <4时,选乙快递公司省钱;当x =4或x =1
2
时,
选甲、乙两家快递公司快递费一样多;当0<x <1
2
或x >4时,选甲快递公司省钱
3. (1) 10 50
(2) y A =⎩⎪⎨⎪⎧7(0≤x ≤25)
0.6x -8(x >25)
(3)当x ≤50时,y B =10;当x >50时,y B =0.6x -20.当0<x ≤25时,y A =7,y B =10,∴y A <y B ,∴选择A 方式上网学习合算;当25<x ≤50时,令y A =y B ,即0.6x -8=10,解得x =30,∴当25<x <30时,y A <y B ,选择A 方式上网学习合算,当x =30时,y A =y B ,选择A 或B 方式上网学习都行,当30<x ≤50,y A >y B ,选择B 方式上网学习合算;当x >50时,∵y A =0.6x -8,y B =0.6x -20,∴y A >y B ,∴选择B 方式上网学习合算,综上所述:当0<x <30时,y A <y B ,选择A 方式上网学习合算;当x =30时,y A =y B ,选择A 或B 方式上网学习都行;当x >30时,y A >y B ,选择B 方式上网学习合算
4. 解:(1)银卡:y =10x +150;普通票:y =20x
(2)把x =0代入y =10x +150,得y =150,∴A(0,150);由题意知⎩
⎪⎨⎪⎧y =20x ,
y =10x +150,解
得⎩⎪⎨⎪⎧x =15,y =300,
∴B(15,300);把y =600代入y =10x +150,得x =45,∴C(45,600) (3)当0<x <15时,选择购买普通票更合算;当x =15时,选择购买银卡、普通票的总费用相同,均比金卡合算;当15<x <45时,选择购买银卡更合算;当x =45时,选择购买金卡、银卡的总费用相同,均比普通票合算;当x >45时,选择购买金卡更合算 5. 解:(1) 制版费1千元,y 甲=0.5x +1,证书印刷单价0.5元
(2) 把x =6代入y 甲=0.5x +1中得y =4,当x ≥2时,由图象可设y 乙与x 的函数关
系式为y 乙=kx +b ,由已知得⎩⎪⎨⎪⎧2k +b =3,6k +b =4,解得⎩
⎪⎨⎪⎧k =0.25,
b =2.5,则y 乙=0.25x +2.5,当x =
8时,y 甲=0.5×8+1=5,y 乙=0.25×8+2.5=4.5,5-4.5=0.5(千元),即当印制8千张证书时,选择乙厂,节省费用500元 (3)设甲厂每个证书的印刷费用降低a 元,则8000a ≥500,解得a ≥0.0625,则甲厂每个证书印刷费用最少降低0.0625元
6. 解:(1)由于派往A 地乙型收割机x 台,则派往B 地乙型收割机为(30-x)台,派往A ,B 地区的甲型收割机分别为(30-x)台和(x -10)台,∴y =1600x +1200(30-x)+1800(30-x)+1600(x -10)=200x +74000(10≤x ≤30且x 为整数) (2)由题意得200x +74000≥79600,解得x ≥28,∵28≤x ≤30,x 是正整数,∴x =28,29,30,∴有3种不同分派方案:①当x =28时,派往A 地区的甲型收割机2台,乙型收割机28台,余者全部派往B 地区;②当x =29时,派往A 地区的甲型收割机1台,乙型收割机29台,余者全部派往B 地区;③当x =30时,即30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区 (3)∵y =200x +74000中y 随x 的增大而增大,∴当x =30时,y 取得最大值,此时,y =200×30+74000=80000, 建议农机租赁公司将30台乙型收割机全部派往A 地区,20台甲型收割机全部派往B 地区,这样公司每天获得租金最高,最高租金为80000元。

相关文档
最新文档