人教版八年级下册数学教案-第19章 一次函数-19.1.1 变量与函数
八年级数学下册第19章一次函数19-1-1变量与函数(1)教案新人教版【2019-2020学年度】

三、课堂练习水价为4元/t.现在抽取若干户居民调查水费支出情况,记某户月用水量为xt,月应交水费y元.
2.某地手机通话费为0.2元/min.李明在手 机话费卡中存入30元,记此后他的手机通话时间为tmin,话费卡中的余额为w元.
教学重点难点
教学
重点
能判断常量和变量,感知两个变量之间的变化关系.
教学
难点
变量和常量的概念的理解.
教学媒体选择分析表
知识点
学习目标
媒体类型
教学 作用
使用
方式
所得结论
占用 时间
媒体来源
介绍
知识目标
图片
B
G
建立表 象
2分钟
自制
讲解
过程与方法
PPT
A
E
5分钟
下载
讲解
过程与方法
PPT
A
E
帮助理解
5分钟
下载
①媒体在教学中的作用分为:A.提供事实, 建立经验;B.创设情境,引发动机;C.举例验证,建立概念 ;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.其它。
四、随堂练习
选择、填空、综合应用(见课件)
(师生活动:学生完成并口答,教师评价)
五、课堂小结
变量 数值发生变化的量
常量 数值始终不变的量
(师生活动:引导学生自行归纳,梳理知识)
六、作业布置(本节课内容较简单,无需分层布置)
绩优学 案 第一小节全部
通过生活中的实例来引入,提升学生观察生活,思考问题的能力
19.1.1《变量与函数》教案设计

19.1.1《变量与函数》教案设计19.1.1变量与函数第⼀课时教学⽬标:1、知识技能:运⽤丰富的实例,使学⽣在具体情境中领悟函数概念的意义,了解常量与变量的含义,能分清实例中的常量与变量。
2、过程与⽅法:通过动⼿实践与探索,让学⽣参与变量和变量的形成过程,以提⾼分析问题和解决问题的能⼒;让学⽣体会“变化与对应”的数学思想3、情感态度:引导学⽣探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情,在解决问题的过程中体会数学的应⽤价值,并感受成功的喜悦,建⽴⾃信⼼。
教学重、难点:重点:了解常量和变量之间的关系难点:在复杂问题中常量和变量的识别课时安排:⼀课时教法与学法:教法:教师主导,学⽣主体,使学⽣从具体到抽象,感性到理性的认知。
学法:观察、分析、抽象、概括,注重过程的经历和体验。
教学过程:⼀.课前学习⼀辆汽车以60千⽶/⼩时的速度匀速⾏驶,⾏驶⾥程为s千⽶.⾏驶时间为t⼩时.1、根据题意填写下表:t⼩时 1 2 3 4 5S千⽶2、在以上这个过程中,变化的量是____ ____.不变的量是_____3、试⽤含t的式⼦表⽰s 。
⼆、创设情境,引⼊新课1多媒体展⽰现实⽣活中事物变化的图⽚,让学⽣初步感受事物运动变化中的数量关系。
2教师强调指出:完美⽣活在⼀个运动的世界⾥,⾏星在宇宙中的位置随时间⽽变化;⼈体细胞的个数随年龄⽽变化;⽓温⽓压随海拔⽽变化;........这种⼀个量随另⼀个量的变化⽽变化的现象⼤量存在,我们来回顾⼀下上节课所研究的每个问题中是否各有两个变化?同⼀问题中的变量之间有什么联系?也就是说当其中⼀个变量确定⼀个值时,另⼀个变量是否随之确定⼀个值呢?这将是我们这节研究的内容.3.板书课题:变量与函数。
三.⼩组合作,探索新知(⼀)提出问题,创设情境1、⼩明到商店买练习簿,每本单价2元,购买的总数x(本)与总⾦额y(元)的关系式,可以表⽰为________;2、圆的周长C与半径r的关系式________________;3、n边形的内⾓和S与边数n的关系式______________4、等腰三⾓形的顶⾓为x度,那么底⾓y的度数⽤含x的式⼦表⽰为 ______________.教学⼩结:通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,⾸先需确定在这个过程中哪些量是变化的,⽽哪些量⼜是不变的.在⼀个变化过程中,我们称数值发⽣变化的量为变量,那么数值始终不变的量称之为常量.如上述两个过程中,售出票数x、票房收⼊y;重物质量m,?弹簧长度L都是变量.⽽票价10元,弹簧原长10 cm……都是常量.(⼆)上述⼏个问题有共同之处吗?请同学们思考下列问题,分组讨论交流⼀下。
19.1.1-变量与函数-教案

19.1.1 变量与函数八年级科目:数学主备人:范德彪时间:年月日课时安排与说明:1课时一、教学设计1、教学目标(1)理解变量与常量、自变量与函数的含义,能指出具体问题中的常量、变量,并会用含一个变量的代数式表示另一个变量;(2)理解两个变量间的特殊对应关系,能指出由哪一个变量唯一确定另一变量,会判断两个变量是否具有函数关系,并会求自变量的取值范围;(3)通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣.引导学生探索实际问题中的数量关系,让学生体会“变化与对应”的数学思想,培养学生提高分析问题和解决问题的能力。
2、内容分析(1)函数是数学中最重要的基本概念之一,它刻画了现实世界中一类数量关系之间的“特殊对应关系”。
方程、不等式、函数是初中数学的核心概念,它们从不同的角度刻画一类数量关系。
本节课是函数入门课,要从数学的角度研究变化现象,把握变化规律,首先必须准确认识变量与常量的特征,关注变化过程中量的变化,这就是变量.有了变量的概念,便为研究成函数关系的两变量的“运动与对应”关系打下基础.本课从四个简单的实际问题入手,通过分析问题中数值的变与不变,引出变量与常量的概念,而且问题中变量的单值对应关系也为学习函数的定义作了铺垫.(2)基于以上分析,确定本节课的教学重点是能找出一个变化过程中的变量与常量,教学难点是能判断两个变量是否具有函数关系。
3、学情分析(1)学生的认知基础:变量是学生第一次接触,对一个运动变化过程中的两个变量的关系,学生往往只认为是一种确定的数量关系。
类似于一元一次方程,学生直知道代数式中的字母可以表示数,方程中的未知数求出来后也是一个“已知数”,从“静态”的角度理解字母所表示的数,并没有用运动与变化的观点去体会两个变量之间相互依赖的关系。
另外,学生在日常生活中也接触到函数图象、两个变量的关系等朴素的函数关系的生活实例.但是学生初次接触函数的概念,难以理解定义中“唯一确定”的准确含义.(2)学生是年龄心理特点:八年级学生具有很强的感性认知基础,活泼好动,思维敏捷,表现欲强,对一些具体的实践活动十分感兴趣,但思考问题单一,不会延伸运用。
2019版八年级数学下册 第十九章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案 (新版)新人教版

第十九章一次函数19.1函数19.1.1变量与函数【教学目标】知识与技能:1.掌握常量和变量、自变量和函数的基本概念.2.了解函数值的概念,能用解析式表示函数关系.会确定函数自变量的取值范围.过程与方法:结合实例,了解常量、变量的意义,体会“变化与对应”的思想.通过动手实践与探索,让学生参与变量发现的过程,以提高分析问题和解决问题的能力.情感态度与价值观:引导学生探索实际问题中的数量关系,培养对学习数学的兴趣和积极参与数学活动的热情.在解决问题的过程中体会数学的应用价值并感受成功的喜悦,建立自信心.【重点难点】重点:了解常量与变量的含义.理解函数的有关概念,能用解析式表示函数关系.确定自变量的取值范围.难点:理解函数的有关概念,能用解析式表示函数关系.会确定自变量的取值范围.【教学过程】一、创设情境,导入新课:1.在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.看图回答:(1)这天的6时、10时和14时的气温分别为多少?任意给出这天中的某一时刻,说出这一时刻的气温.(2)这一天中,最高气温是多少?最低气温是多少?(3)这一天中,什么时段的气温在逐渐升高?什么时段的气温在逐渐降低?从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?2.五一假期,李想和朋友从学校门口出发,骑自行车去沙河游玩,假设他们匀速行驶,每分钟骑200米,骑车的总路程为s米,骑车的时间为t分钟.填一填:问题:(1)在这个行程问题中,我们所研究的对象有几个量?(2)几个所研究的对象中,哪些是变化的量,哪些是固定不变的量?它们之间存在什么样的关系?这一节我们就来探究这一问题.二、探究归纳活动1:变量与常量1.出示问题,师生探究有如下几个变化过程,请找出各变化过程中的量,并填表:(教材P71四个问题)(师生活动:教师引导学生填表,并分析问题中出现的量,发现其中有些量的数值是变化的,分析问题中的量并分类,领会“变量”、“常量”的含义.发现在同一个变化过程中,始终保持不变的量为常量,而数值发生变化的量为变量.并根据发现自己试着下定义.)2.形成概念(1)(2)定义:在一个变化过程中,数值发生变化的量,称为变量,数值始终不变的量称为常量.活动2:函数的概念1.问题:在前面的每个问题和实验中,是否各有两个变量?同一个问题中的变量之间有什么联系?师生分析得出:上面的每个问题和实验中的两个变量互相联系.当其中一个变量取定一个值时,另一个变量就有唯一确定的值.2.思考:分组讨论教科书“思考”中的两个问题.注:使学生加深对各种表示函数关系的表达方式的印象.3.归纳:一般来说,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么,我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么,b叫做当自变量的值为a时的函数值.例如在问题1中,时间t是自变量,里程s是t的函数.t=1时,其函数值s为60,t=2时,其函数值s为120.同样,在心电图中,时间x是自变量,心脏电流y是x的函数;在人口数统计表中,年份x是自变量,人口数y 是x的函数.当x=1999时,函数值y=12.52.活动3:例题讲解【例1】读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量.一次乌龟与兔子举行500 m赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20 m/min的速度跑了10 min时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10 m/min的速度匀速爬向终点.40 min后,兔子梦醒了,而此时乌龟刚好到达终点.兔子悔之晚矣,等它再以30 m/min的速度跑向终点时,它比乌龟足足晚了10 min.分析:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.解:500 m、乌龟的速度10 m/min等在整个变化过程中是常量,兔子的速度是变量.总结:“常量”与“变量”:“常量”是数值始终不变的量,一般是用具体数表示的量;“变量”是数值发生变化的量,变量是可以变化的:(1)可以取不同的数值,(2)一般用字母表示.【例2】我们知道,海拔高度每上升1 km,温度下降6 ℃.某时刻,益阳地面温度为20 ℃,设高出地面x km 处的温度为y℃.(1)写出y与x之间的函数解析式.(2)已知益阳碧云峰高出地面约500 m,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34 ℃,求飞机离地面的高度为多少千米?分析:(1)根据题意,按照等量关系:高出地面x km处的温度=地面温度-6 ℃×高出地面的距离;列出函数解析式.(2)把给出的自变量高出地面的距离0.5 km代入函数解析式求得.(3)把给出的函数值高出地面x km处的温度-34 ℃代入函数解析式求得x.解:(1)由题意得,y与x之间的函数解析式y=20-6x(x≥0).(2)由题意得x=0.5 km, y=20-6×0.5=17(℃)答:这时山顶的温度大约是17 ℃.(3)由题意得y=-34 ℃时,-34=20-6x,解得x=9 km.答:飞机离地面的高度为9 km.总结:求函数值的方法:就是将自变量x的值代入解析式,求代数式的值.【例3】函数y=自变量x的取值范围是()A.x≥1且x≠3B.x≥1C.x≠3D.x>1且x≠3分析:求自变量取值范围时,要考虑两个方面:一是被开方数非负;二是分式的分母不为零,通过建立不等式组解决问题.解:选A.根据题意可知:x-1≥0且x-3≠0,解得x≥1且x≠3.总结:确定自变量取值范围的方法(1)整式:其自变量的取值范围是全体实数.(2)分式:其自变量的取值范围是使得分母不为0的实数.(3)二次根式:其自变量的取值范围是使得被开方数为非负的实数.(4)实际问题:其自变量的取值必须使实际问题有意义.三、交流反思这节课我们学习了变量与常量、函数的概念,函数自变量的取值范围的确定方法.四、检测反馈1.在三角形面积公式S=ah,a=2 cm中,下列说法正确的是()A.S,a是变量,h是常量B.S,h是变量,是常量C.S,h是变量,a是常量D.S,h,a是变量,是常量2.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠13.下面每个选项中给出了某个变化过程中的两个变量x和y,其中y不是x的函数的选项是()A.y:正方形的面积,x:这个正方形的周长B.y:某班学生的身高,x:这个班学生的学号C.y:圆的面积,x:这个圆的直径D.y:一个正数的平方根,x:这个正数4.对于圆的面积公式S=πR2,下列说法中,正确的为()A.π是自变量B.R2是自变量C.R是自变量D.πR2是自变量5.函数y=中的自变量x的取值范围是()A.x≥0B.x≠-1C.x>0D.x≥0且x≠-16.根据如图所示程序计算函数值,若输入的x的值为,则输出的函数值为()A.B.C.D.7.一支演唱队第一排有20人,后面每排比前排多1人,则第n排的人数s与n的函数解析式为________.8.一个小球从静止开始在一个斜坡上向下滚动,通过仪器观察得到了小球滚动的距离s(m)与时间t(s)的数据如下表:(1)这一变化过程中的自变量是________.(2)写出用t表示s的关系是________.(3)求第6秒时,小球滚动的距离为________m.(4)小球滚动200 m用的时间为________.五、布置作业教科书第81页习题19.1第1,2,3,4,5题六、板书设计七、教学反思本节课学习了常量与变量,函数的概念及函数自变量的取值范围的确定,关于变量与常量概念:要通过实例引导学生分析运动变化过程中出现的数量关系,它们都刻画了某些变化规律.这里出现了各种各样的量,值得注意的是出现了一些数值会发生变化的量,有些是数值始终不变的量,总结得出并通过实例练习巩固.关于函数概念的教学,通过实例引导学生分析总结得出,并明确表示函数关系的方法通常有三种:①解析法.②列表法.③图象法.关于函数自变量的取值范围的教学,通过实例引导学生分析得出:求函数自变量取值范围的两个依据:(1)要使函数的解析式有意义.①函数的解析式是整式时,自变量可取全体实数;②函数的解析式分母中含有字母时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.(2)对于反映实际问题的函数关系,应使实际问题有意义.。
人教版八年级数学RJ下册精品教案 第19章 一次函数 19.1 函数 19.1.1 变量与函数

第十九章一次函数19.1 函数19.1.1 变量与函数第1课时变量与常量教师备课素材示例●情景导入大千世界万物皆变!物体的速度随时间的变化而变化;行星在宇宙中的位置随时间的变化而变化;人体体重随饮食和运动的变化而变化;城市人口数随时间的变化而变化;弹簧长度随所挂物体质量的变化而变化……生活中充满着许许多多变化的量.你了解这些变化的量之间的关系吗?了解这些关系,可以帮助我们更好地认识世界.而函数是刻画变化的量之间关系的常用模型,从这章开始我们就来研究这些问题吧!【教学与建议】教学:通过常见的生活情景引入新课,激发学生的学习兴趣.建议:学生通过观察、思考、分析、归纳,有助于学生把握概念的本质特征.●归纳导入飞机从武汉飞往上海,在这个飞行过程中,哪些量没有发生改变,哪些量发生了改变?学生说出自己的看法:如飞机上乘客的人数不变;飞机离地面的高度在改变;飞机油箱中的油在不停地减少;飞机离上海越来越近,离武汉越来越远……举例生活中一个量随另一个量变化的例子.如:婴幼儿随着年龄的增长,身高和体重都在变化;两个数的积不变,一个数乘n,另一个数除以n(n≠0).【归纳】在一个变化过程中,数值发生变化的量为变量,数值始终不变的量为常量.【教学与建议】教学:由学生经历过的事情提出问题,归纳并初步认识变量.建议:给学生充分的时间探究、交流,体会生活中存在的有关变量的例子.一个变化过程中的量,包含变量和常量.常量是数值始终不变的量,可以是数值不变的字母,字母不一定都是变量.变量随不同的问题而有所不同,常量和变量是相对的,是视具体问题而定的.【例1】在圆的面积公式S =πr 2中,常量是(B)A .SB .πC .rD .S 和r【例2】小王计划用100元钱买乒乓球,所购买乒乓球的个数W(个)与单价n(元/个)的关系式W =100n中(A) A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定有些运动变化现象中找不到变量之间的依赖关系,但是有些运动变化现象中变量之间存在依赖关系,这样就可以用一个变量表示出另一个变量.【例3】用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是__N =4n +2__,其中常量是__4,2__,变量是__N ,n__.【例4】某超市销售某种物品时,其销售数量x(kg)与售价y(元)如下表所示,请你根据表中所提供的信息列出y 与x 之间的关系式,指出变时,售价是21.7元.高效课堂 教学设计1.能正确认识变量与常量,会用式子表示变量间的关系.2.通过分析,探索现实生活中大量的具体实例中的变量、常量之间的关系,理解它们的相对性.▲重点理解变量的实际意义.▲难点理解常量与变量之间的关系,准确判断常量与变量.◆活动1 新课导入大千世界处在不停的运动变化之中,如何来研究这些运动变化并寻找规律呢?数学上常用常量与变量来刻画各种运动变化从今天开始我们将学习函数的相关知识,本节课将要学习的是变量与常量.◆活动2 探究新知1.教材P 71 内容.提出问题:(1)问题(1)中,汽车行驶路程s 与行驶时间t 的关系式是什么?(2)问题(2)中,票房收入y 与售出电影票的张数x 的关系式是什么?(3)问题(3)中,圆的面积S 与圆的半径r 的关系式是什么?(4)问题(4)中,矩形的邻边y 与其中一边x 的关系式是什么?(5)什么叫变量?什么叫常量?学生完成并交流展示.2.教材P 72 思考.学生完成并交流展示.◆活动3 知识归纳1.数值发生变化的量为__变量__,数值始终不变的量为__常量__.2.每个问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量就有__唯一确定的值__与其对应.◆活动4 例题与练习例1 分析下列关系中的变量与常量.(1)球的表面积S(cm 2)与球的半径R(cm)的关系式是S =4πR 2;(2)一物体自高处自由落下,这个物体运动的距离h(m)与它下落的时间t(s)之间的关系式是h =12gt 2(其中g 取9.8m/s 2); (3)已知橙子1.8元/kg ,则购买数量x(kg)与所付款w(元)之间的关系式是w =1.8x.解:(1)S =4πR 2,常量是4,π,变量是S ,R ;(2)h =12gt 2,常量是12,g ,变量是h ,t ; (3)w =1.8x ,常量是1.8,变量是w ,x.例2 观察图表,根据表格中的数据回答问题:(1)与n 的关系式;(2)在上述变化过程中,常量、变量分别是什么?(3)求n =11时图形的周长.解:(1)l =3n +2;(2)常量是3,2,变量是l ,n ;(3)当n =11时,l =3×11+2=35,即此时图形的周长为35.练习1.教材P 71 练习.2 C )A.B .仅有一个,是人口数C .有两个,一个是人口数,另一个是年份D .一个也没有3.张老师带领x 名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y 元,则y =__10+5x__,其中__10,5__是常量,__y ,x__是变量.4.写出下列问题中的关系式,并指出其中的变量和常量.(1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)甲、乙两地相距ykm ,小明骑自行车以每小时30km 的速度从甲地驶向乙地,试用行驶时间t(h)表示小明离乙地的距离s(km).解:(1)α=90°-β,α和β是变量,90°是常量;(2)s =y -30t ,s 和t 是变量,y 和-30是常量.◆活动5 完成附赠手册◆活动6 课堂小结1.变量和常量的概念.2.确定两个变量之间的关系.1.作业布置学生用书对应课时练习.2.教学反思。
八年级数学下册 第19章 一次函数 19.1 变量与函数 19.1.1 变量与函数教案

售出票数x
100
120
140
160
180
……
票房收入y
①找一名学生填表,让学生一起分析y与x是不是单值对应关系;
②描述y与x的单值对应关系.
【设计意图】通过模仿训练,尝试初步理解单值对应的含义.
3、圆形水波慢慢地扩大,在这一过程中,圆的半径r 厘米 ,圆的面积为S 平方厘米,圆周率(圆周长与直径之比)为π.
(4)思考问题4中,矩形的宽y为自变量,矩形的长x是y的函数是否正确
①强调辨别函数的关键是:是否有两个变量,并且变量是否是单值对应关系;
②补充说明:一般地,主动变化的量是自变量,随之变化的量是函数。
【设计意图】借此例,将自变量与函数互换,说明只要满足单值对应,就可以用函数来表示这种关系,灵活理解函数的定义。
【设计意图】通过这三道例题,使学生学会根据定义判断函数关系,经过反复训练,突破难点.
4、P是数轴上的一个动点,它到原点的距离记为 x,它的坐标记为 y,y 是 x 的函数吗?为什么?
【设计意图】通过这道题,说明点的坐标y与绝对值x不是单值对应关系,所以不是函数;但反过来,x却是y的函数,采用小组讨论的方式,升华对函数定义的理解.
练习1:指出下列变化过程中的变量和常量:
1、某市的自来水价为4元/吨,现要抽取若干户居民调查水费支出情况,记某户月用水量为 x 吨,月应交水费为 y 元;
2、某地手机通话费为0.2元/分,李明在手机话费卡中存入30元,记此后他的手机通话时间为t 分,话费卡中的余额为w 元;
3、水中涟漪(圆形水波)不断扩大,记它的半径为r,圆周长为C,圆周率(圆周长与直径之比)为π;
《变量与函数》公开课教学设计 人教版八年级下册

人教版八年级下册19.1.1变量与函数教学设计因为数是固定不变的,所以在一个关系式中,常量是数,而字母可以取相应变化的值,所以变量是字母。
下列运动变化过程中的关系式,哪些是变量,哪些是常量:①y=0.4x常量:变量:②a=3+2.4b常量:变量:③C=2πR常量:变量:④V=6abc常量:变量:2、函数的相关概念:P73一般地,在一个变化过程中,如果有____个变量___与___,并且对于____的每一个确定的值,____都有___________的值与其对应,那么我们就说 x是_________,y是 x的______.如果当x=a 时,对应的y=b,那么 b 叫做当自变量的值为a时的_______.P74用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的_________.x/h 1 2 3 4 (x)y/km 60 120 180 240 (60x)在上述汽车行驶的过程中, y与x的关系式是_________,这其中有____个变量,给一个x,得____个y,所以____是自变量,_____是_____的函数。
x=1时,y的函数值是60;x=2时,y的函数值是120;x=3时,y的函数值是_______;x=4时,y的函数值是_______。
函数解析式即y与x的关系式:___________.y是x的函数吗?如果是,指出自变量。
①y=0.4x 两个变量x和y,给一个x,得一个y,所以,x是自变量,y是x的函数。
②y=±x 反例:当 x=1时,y=±1,给一个x,得两个y,所以y不是x函数。
③y2=x 问题前置的目的。
左题由组代表抢答,并计入本组竞赛成绩,教师根据答题情况纠偏改错。
2、学生齐读并齐答,教师根据回答情况纠偏改错。
①②③④是难点题目,教师先讲解,学生讨论研究。
反例:(±3)2=9,当 x=9时,y=±3,给一个x,得两个y,所以y不是x的函数。
人教版八年级下第19章一次函数19.1.1变量与函数教案

3.培养学生合作交流、自主探究的学习习惯,提高数学建模和数学运算的核心素养。
4.激发学生学习兴趣,培养勇于挑战、善于思考的学习态度,提升学生的数学素养和综合素质。
在教学过程中,重点关注学生在以下方面的表现:
1.能否运用所学知识,分析并解决实际问题,体现数学的应用价值。
3.重点难点解析:在讲授过程中,我会特别强调变量与常量的区别以及函数的三要素。对于难点部分,我会通过举例和图示来帮助大家理解一次函数的定义和图像特点。
(三)实践活动(用时10ቤተ መጻሕፍቲ ባይዱ钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数相关的实际问题,如公交车票价与乘车距离的关系。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如用尺子和直尺绘制一次函数的图像,观察斜率和截距的变化。
五、教学反思
在上完这节课之后,我对自己的一些教学设计和学生的反应进行了思考。我发现,通过生活中的实例引入变量和函数的概念,学生们能够更直观地理解这些抽象的数学概念。他们对于一次函数的应用表现出浓厚的兴趣,尤其是当我将函数与他们的日常生活联系起来时,比如购物打折、手机话费等问题。
我注意到,在教学过程中,有些学生对一次函数的图像绘制感到困惑。我意识到,这里可能需要更多的直观演示和实际操作,让学生亲手尝试,从而更好地理解图像的生成过程。在接下来的课程中,我打算增加一些互动环节,比如让学生分组在教室里用道具来模拟一次函数的图像,这样既能增强他们的动手能力,也能加深对一次函数图像特征的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解变量与函数的基本概念。变量是随着某些条件变化而变化的量,而函数则是描述两个变量之间依赖关系的数学模型。它们在数学和生活中都有着广泛的应用。
19.1.1 变量与函数 课件(共16张PPT) 人教版初中数学八年级下册

当堂检测
指出下列问题中的变量和常量: (1)购买一些铅笔,单价为0.2元/支,记某同学购买铅笔 的数量为x支,应付的总价为y元;关系式为 y=0.2x 。 其中的变量是 x、y ,常量是 0.2 。
例3、根据销售记录,某型号的服装每天的售价x(元/件 )与当日的销售量y(件)的变化关系如下表:
每天的销售价 x(元/件) 200 190 180 170 160 150 140 …
每天的销售量 y(件) 80 90 100 110 120 130 140 …
(1)在这个变化过程中,有哪些变量?是哪一个量随 哪一个量的变化而变化?并指出其中的常量. 变量有:服装每天的售价x(元/件)和当日的销售量y(件), 当日的销售量y随服装每天的售价x的变化而变化.
t/h s/km
1 2345 60 120 180 240 300
在这个变化的过程中,行驶的 速度 60km/h 是固
定不变的,行驶的 路程s和时间t
是不断变化的.
路程s 着 时间t 的变化而变化.
试用含t的式子表示s 是__s_=6_0_t____
探究 (2)电影票售价为10元/张,第一场售出150张票,第二场售出205 张票,第三场售出310张票,三场电影的票房收入各多少元?设一场 电影售出x张票,票房收入y元. y的值随x的值的变化而变化吗?
x
a
图1
图2
瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数 y与层数x之间的关系式.
x1 2 3 …
x
y 1 1+2 1+2+3 … 1+2+3+ …+x
春人教版数学八下19.1《函数》教案1_4306867(1)

(2)指出自变量x的取值范围.
(3)汽车行驶200km时,油箱中还有多少汽油?
解:(1) (2) (3)
注意:1.自变量取值范围的确定,不仅要考虑,而且还要注意.
2.表示与之间关系的数学式子叫做函数解析式.
三、巩固新知,当堂训练:
课本P74-75练习第1、2题.(完成于书上)
课题:19.1.1变量与函数(1)
【学习目标】
1.通过探索具体问题中的数量关系和变化规律来了解常量、变量的意义;
2.学会用含一个变量的代数式表示另一个变量.
【前置学习】
一.自主探究
1.请自学课本P71—72“思考”以上的内容,思考下列问题:
问题1:汽车以60km/h的速度匀速行驶,行驶里程为s km,行驶时间为t h.
课题:19.1.1变量与函数(2)
【学习目标】
1.理解函数的概念,能准确识别出函数关系中的自变量和函数,学会列函数解析式;
2.能根据函数解析式和实际意义确定自变量的取值范围.
【前置学习】
一.自主探究
1.请自学课本P72页的内容,思考上节课所研究的4个问题中各有哪两个变量?这两个变量之间有什么联系?
2.归纳:上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有_.
(1)填写下表:
t/时
1
2
3
4
5
t
s/千米
(2)在以上这个过程中,变化的量是______ ___,不变化的量是__.
(3)试用含t的式子表示s,s=______ __,t的取值范围是.这个问题反映了匀速行驶的汽车__随__ _的变化过程.
问题2:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张,票房收入各多少元?
人教版八年级数学下册 第19章 19.1.1 变量与函数(第1课时)说课稿

变量与函数(第1课时)说课尊敬的各位领导和同仁们:大家好,今天我说课的内容是《变量与函数》第二课时。
下面我从教材分析、教法学法、学情分析、教学流程、板书设计、课后反思六个方面进行设计说明。
第一部分:教材分析(一)说教材地位和作用本节课是义务教育课程标准人教版数学八年级下册第十九章一次函数《变量与函数》中第二节课的内容。
变量与函数的概念把学生由常量数学引入变量数学,是学生数学认识上的一次飞跃。
遵循从具体到抽象、感性到理性的渐进认识规律和以教师为主导、学生为主体的教学原则这一部分对于初中生来说是一块新的领域,但涉及的内容又与生活的实际联系非常密切,可以补充大量的实例来充实本课,进而吸引学生的学习兴趣,让学生感受数学在生活中可以广泛的应用到。
所举的实例也都能在认识函数的时候用到,有助于教师帮助学生在现实情境中,感受函数作为刻画现实世界的模型的意义,为下一节课奠定重要基础。
(二)说教学目标综上分析,本课时教学目标制定如下:教学目标:1.了解函数的概念。
2.能结合具体实例概括函数概念。
3.在函数概念形成的过程中体会运动变化与对应的思想。
(三)教学重点和难点【学习重点】概括并理解函数概念中的单值对应关系。
【学习难点】用含有一个变量的式子表示另一个变量.以及结合实际问题表示自变量的取值范围。
第二部分:教法与学法分析:1.说教法方法与手段:本节课从学生熟悉的实际问题开始,将实际问题“数学化”,有利于学生体会与实验,思考与探索。
在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
采用教师引导,学生自主探索、合作交流的教学方式,让学生充分发挥聪明才智,去发现问题,提出问题,进而分析、解决问题,充分调动学生的积极性,培养学生的应用意识。
2.说学法根据本节课的内容特点及学生的心理特征,在学法上,极力倡导了新课程的自主探究、合作交流的学习方法。
通过对学生原有知识水平的分析,创设情境,使数学回到生活,鼓励学生思考问题、发现问题,充分发挥学生的主体作用,让学生成为学习的主人。
19.1.1【教学设计】《变量与函数》(人教版)

《19.1.1变量与函数》
本课是函数的起始课,函数是刻画运动变化现象的重要数学模型,要从数学的角度研究变化现象,把握变化规律,首先要关注变化过程中量的变化,这就是变量,本课在充分体会运动变化过程中数量变化的基础上,领会变量与常量的含义.进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念.进一步讨论函数的自变量取值范围,用解析法和列表法表示函数关系,初步体会用函数描述和分析运动变化规律.
1.了解变量与常量的意义;
2.体会运动变化过程中的数量变化.
3.进一步体会运动变化过程中的数量变化;
4.从典型实例中抽象概括出函数的概念,了解函数的概念.
5.了解解析法和列表法,并能用这两种方法表示简单实际问题中的函数关系;
6.能确定简单实际问题中函数的自变量取值范围;
7.会初步分析简单实际问题中函数关系,讨论变量的变化情况.
1.了解变量与常量的意义,充分体会运动变化过程中量的变化.
2.概括并理解函数概念中的对应关系.
3.用解析法和列表法表示函数关系,确定简单实际问题的自变量取值范围.
多媒体:PPT课件、电子白板
第一课时
一、初步感知统领全章:
1.观察图片,体会变化:
【活动导语】“万物皆变”——行星在宇宙中的位置随时间而变化,气温随海拔而变化,。
八年级数学下册19一次函数教案(新版)新人教版

理解变量、常量的概念.重点变量与常量的概念,变量之间的关系. 难点 理解并掌握变量以及变量之间的关系.第十九章 19.1 19.1.1 第 1 课时一次函数函数 变量与函数 变量与常量一、创设情境,引入新课情境问题:一辆汽车以60千米/时的速度行驶,行驶路程为s千米,行驶时间为t小时•请同学们根据题意填写下表:t/时12345s/千米师:在以上过程中,有没有变化的量?有没有始终不变的量?生:变化的量是时间和路程,不变的量是速度.师:1小时路程为60千米,2小时路程为2X 60千米,…,所以t小时路程为60t千米,即s = 60t.这个问题反映了匀速行驶的汽车所行驶的路程随时间变化的过程,在现实生活中,有许多类似的问题,在这些问题中都有变化着的量和始终不变的量.二、讲授新课1. 每张电影票零售价为10元,如果早场售出150张,午场售出205张,晚场售出310 张,三场电影的票房收入各是多少元?设一场电影售出x张票,如何用含x的式子表示票房收入y元?生:早场收入为150X 10= 1500(元),午场收入为205X 10= 2050(元),晚场收入为310X 10= 3100(元),当售出的票数为x张时,收入y = 10x.师:在这个过程中有没有变化着的量与始终不变的量?生:有,售出的张数与票房收入是变化着的量,每张电影票的售价是始终不变的量.2. 活动一:请大家动手画出一个面积为10 cm, 20 cm 的圆各一个.生:必须先根据圆的面积公式算出半径,再画圆.师:那么它们的半径各是多少呢?生:r = -S.n师:在这个过程中,变量与常量各是什么?生:这里变量是S和r ,常量是n .3. 活动二:用10 m长的绳子围成长方形,并记录不同长方形的长度值,计算相应的面积.生1 :当长为4 m时,宽为1 m面积为4X 1 = 4(吊).生2:当长为3 m时,宽为2 m面积为3X 2= 6(吊).师:设长方形的长度为x m,如何求出它的面积S?20莎-旳cm•师:如果圆的面积为S,怎样表示出半径r?改变长方形的长度,观察长方形面积的变化, 生:第一个圆的半径为 1.8(cm ;第二个圆的半径为生:当长为x m时,它的宽是(5 —x)m因此它的面积是S= x(5 —x)m.师:长方形的长与宽以及面积是变量,绳子的总长是常量.这些问题反映了不同事物的变化过程,其中有些量的值是按照某种规律变化的,像这种数值发生变化的量称为变量,有些量的数值始终不变,像这种数值始终不变的量称为常量.三、巩固练习1 •购买一些练习本,单价0.5元/本,总价y(元)随练习本本数x的变化而变化,指出其中的常量与变量,并写出关系式.【答案】y = 0.5x,其中x, y是变量,0.5是常量.2•一个三角形的底边长10 cm高h可以任意伸缩,写出面积S随h变化的关系式,并指出其中的常量与变量.1【答案】S= 2X 10h= 5h,其中,S, h是变量,5是常量.四、课堂小结变量:在一个变化过程中数值发生变化的量.常量:在一个变化过程中数值始终保持不变的量.本节课从学生熟知的生活出发,抽象出函数中基本的两个概念:常量与变量,然后通过练习进一步掌握.像这样取材于学生生活,结合学生已有的经验进行教学,正是新课标所要求的. 第2课时函数理解函数的概念,准确写出函数的关系式.重点函数的概念,函数解析式的求法. 难点函数概念的理解.一、创设情境,引入新课师:上一节课中的每个问题都涉及两个变量,这两个变量之间有什么联系呢?当其中一个变量确定一个值时,另一个变量是否也随之确定呢?这将是我们这节课要研究的内容.二、讲授新课师:观察问题(1)也随之确定一个值•生:是的,当t = 1 时,s= 60;当t = 2 时,s= 120;…;当t = 5 时,s= 300.师:问题⑵ 也是一样的,当早场x= 150时,收入y= 1500;当午场x = 205时,y = 2050; 当晚场x = 310时,y = 3100.也就是说售票张数x与票房收入y是两个变量,但当x取定一个值时,票房收入y也就确定一个值.2 2 师:问题(3)中,当圆的半径r = 10 cm时,S= 100 n cm,当r = 20 cm时,S= 400 n cm 等,也就是说…生:也就是说当圆的半径r取定一个值时,面积S也随之确定,并且S= n r2.2 2师:问题⑷中,当长为4 m时,面积为4 m;当长为3 m时,面积S为6 m;当长x 为2.5 m时,面积S 为6.25吊,也就是说…生:也就是说当长x取定一个值时,面积S也就随之确定一个值.师:当长取定为x m时,面积S等于多少呢?生: S= x • (5 —x) = 5x —x .师:像这样,在一个变化过程中,如果有两个变量x与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y是x的函数.前面的几个问题中,哪个是自变量,哪个是函数呢?它们之间的关系如何用式子表示?生1:问题(1)中,时间t是自变量,路程s是t的函数,s= 60t.生2:问题⑵ 中,售票数量x是自变量,收入y是x的函数,y= 10x.生3:问题⑶中,圆的半径r是自变量,面积S是r的函数,S= n r2.生4:问题⑷ 中,长方形的长x是自变量,面积S是x的函数,S= x(5 —x).师:其实,现实生活中某些函数关系是用图表的形式给出的,比如说:心脏部位的生物电流,y是x的函数吗?生:y是x的函数,因为在心电图里,对于x的每一个确定的值,y都有唯一确定的值和它对应.师:很好!再比如说下面是我国的人口统计表,人口数量y是年份x的函数吗?中国人口数统计表生:是的,因为对于表中每一个确定的年份,都对应着一个确定的人口数.教师总结:(再一次叙述函数的定义)像这样,在一个变化过程中,如果有两个变量x 与y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,我们就说x是自变量,y 是x的函数.如果当x = a时,y = b,那么b叫做当自变量x= a时的函数值,例如在问题(1)中当t =1时的函数值s = 60,当t = 2时的函数值s = 120.在人口统计表中当x= 1999时,函数值y= 12.52 亿.【例】教材第73页例1师:关于自变量的取值范围我们再来看两个题目.求下列函数中自变量x的取值范围:2y= 2x —5;1 y =X +4 ;y = x + 3.生1:对于y = 2x 2— 5, x 没有任何限制,x 可取任意实数.1生2:对于y = x ^4,(x + 4)必须不等于0式子才有意义,因此 X M — 4.生3:对于y = x + 3,由于二次根式的被开方数大于等于 0,因此x >— 3.三、巩固练习下列问题中,哪些是自变量?哪些是自变量的函数?写出用自变量表示函数的式子.1. 改变正方形的边长 x ,正方形的面积 S 随之改变. 【答案】S = x 2, x 是自变量,S 是因变量.2. 秀水村的耕地面积为 106 m l ,这个村人均占有耕地面积 y 随这个村人数n 的变化而变化.四、课堂小结本节课我们通过对问题的思考、讨论,认识了自变量、函数及函数值的概念,并通过两个活动,加深了对函数意义的理解,学会了确定函数关系式以及求自变量取值范围的方法, 从而提高了运用函数知识解决实际问题的能力.本节课引入新课所设计的一些问题都来自于学生生活, 函数的概念也是在教师引导下学 生自主发现的,这样做能充分调动学生学习的积极性, 同时能让学生更加热爱生活,增强学生利用所学知识解决实际问题的意识.19.1.2函数的图象第1课时函数的图象(1)【答案】y =10,nn 是自变量, y 是因变量.准确地运用列表、描点、连线等步骤画出函数的图象.重点函数图象的画法,观察分析图象的信息.难点函数图象的理解,概括图象中的信息.一、创设情境,引入新课下面是一张心电图,其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,变量y随x的变化而变化.师:这个问题中的函数关系很难用式子表示,但是可以用图象直观地反映出来. 事实上即使对能用函数关系式表示的函数,如果用图形表示,则会使函数关系更清晰.这就是我们这节课所要学习的内容一一函数的图象.二、讲授新课师:如何表示出正方形的面积S与边长x的函数关系呢?自变量x的取值范围又如何?2生:正方形的面积S与边长x的函数关系式为S= x ,其中自变量的取值范围是x>0. 师:我们如何用画图的方法来表示S与x的关系呢?既然对于自变量x的每一个确定的值,S都有唯一确定的值与其对应,那么我们就列把其中x的值作为点的横坐标,S的值作为纵坐标,那么这些对应值就在平面直角坐标系中对应9个点,请大家画出这样的9个点.学生画出平面直角坐标系并描出这样的9个点.师:这个图形上只有这9个点吗?生:不是的,因为x的取值不止这9个,点也就不止9个.师:那么其他的点我们还可以像这样一一地描出来吗?生:不能,因为有无数个点.师:其他的点我们怎样画出来呢?生:…师:其他的点我们不是一一描出的,而是根据这9 个特殊点的位置来确定的,也就是用平滑的曲线把这9 个点按从左到右的顺序连接起来.教师一边讲一边用平滑的曲线连接这些点,并要求学生跟着连线.师:这个图形我们就称作是函数S= x2的图象•由于X M 0,所以原点不在图象上,应用空心圆圈表示.教师总结:对于一个函数, 如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内的这些点组成的图形就是这个函数的图象.师:函数图象为我们利用数形结合的思想研究函数提供了便利, 另外, 函数图象也给我们带来许多信息,大家从下面的图象中可以得到哪些信息?生1:我知道这天的最高气温是8C,是中午14点时产生的;最低气温是—3C,是凌晨4点产生的.师:请大家仔细观察,看还能得到哪些信息?如果学生不能回答,提醒学生从气温的变化趋势上考虑.生2:我知道从0 时至4 时,气温呈下降状态;从4 时至14时,气温呈上升状态;从14时至24时,气温又呈下降状态.师:我们还可以从图象中看出这一天任一时刻的气温大约是多少,另外长期观察这样的气温图象,我们还能掌握气温的变化规律.三、例题讲解【例1】教材第76页例2【例2】教材第77页例3四、巩固练习3用描点法画出函数y = -(x丰0)的图象.X【答案】略五、课堂小结用描点法画函数图象的步骤:第一步:列表,在自变量取值范围内选定一些值,求出对应的函数值;第二步:描点,在平面直角坐标系中,以自变量的值作为横坐标,相应的函数值作为纵坐标,描出对应各点;第三步:连线,按照自变量从小到大的顺序把所描各点用平滑曲线连接起来.本节课让学生自己动手一步一步地按照列表、描点、连线的步骤画出函数的图象,并且在老师的详细讲解下理解了图象的概念. 这种通过学生自己动手来接受新知识的方法以后还要加强.第2课时函数的图象(2)进一步理解并掌握函数的不同表示方法,会发现函数图象所提供的信息.重点从图象中提取信息,利用图象解决问题. 难点利用函数的图象解决问题.一、创设情境,引入新课师:我们在前面几节课已经看到或亲自动手用列表格、写式子和画图象的方法表示了一些函数,这三种表示函数的方法分别称为列表法、解析法和图象法.大家思考一下,从前面的例子看,这三种表示函数的方法各有什么优缺点?在遇到实际问题时又该如何选择这些方法?这就是我们这节课要研究的问题.二、讲授新课师:从以前的活动可以看出,函数的表示方法有三种:列表法、解析法和图象法,下面我们通过一个活动来探究这三种方法的优缺点.•师:这是用什么方法来表示函数的?生:列表法.师:它比较直观,如果我们要更准确地了解这5个小时中水位高度y(米)随时间t(时)原2017 春八年级数学下册19 一次函数教案(新版)新人教版的关系,我们可以用什么方法?生:解析法.师:下面我们就来求y 与t 的函数关系式.由于开始时水位高度为3 米,以后每隔1 小时水位升高0.3米,于是我们有y = 0.3t + 3,由于这段时间是指5小时内,因此0W t < 5. 如果我们要想更形象、更直观地了解这两个变量间的关系,进而预测水位,哪种方法比较好呢?生:图象法.师:好,下面我们就来看这个函数的图象,如下图所示.师:如果估计这种上涨规律还会持续2 小时,那么利用哪种方法还可以预测出再过2 小时以后的高度呢?生1:利用函数解析式可以得到,当t = 7小时时,y= 0.3 X 7+ 3 = 5.1(米).生2 :利用图象也可以预测出当t=7小时时水位的高度.师:两个同学讲得都很好!利用解析式求2 小时后的水位比较准确, 通过图象估算比较直接、方便.刚才这个活动,我们主要了解的是函数的三种表示方法的优缺点以及相互转化.具体说, 列表法比较直观地反映出函数中两个变量的关系, 但它不够全面, 也不如图象法形象;解析法能比较全面、准确地表示出两个变量的关系,但它不够直观形象;图象法能形象、直观地反映出两个变量的关系, 但它不够准确. 也就是说这三种方法各有优缺点, 在实际问题中我们要根据具体情况选择适当的方法,有时为了全面地认识问题,需要同时使用几种方法.三、巩固练习1•用列表法、解析法表示n边形的内角和m是边数n的函数.2.用解析法与图象法表示等边三角形的周长l 是边长a 的函数.四、课堂小结通过本节课的学习, 我们认识了函数的三种不同表示方法, 学会根据具体情况选择适当的方法来解决问题,另外我们进一步根据图象发现其中所蕴含的信息.本节课中函数的三种表示方法的优缺点是学生在比较中自己发现的,爬山问题中图象的信息也是学生通过交流、讨论以及老师的适当提醒发现的,像这样让学生在交流、探究中学习知识的方法是值得提倡的.19.2 一次函数19.2.1 正比例函数第1 课时正比例函数(1)理解并掌握正比例函数的概念及图象.重点正比例函数的概念、图象及性质.难点正比例函数的图象及性质.一、创设情境,引入新课问题:2011 年开始运营的京沪高速铁路全长1318 km. 设列车的平均速度为300 km/ h.考虑以下问题:(1) 乘京沪高铁列车,从始发站北京南站到终点站上海虹桥站,约需多少小时?( 结果保留小数点后一位)(2) 京沪高铁列车的行程y(单位:km)与运行时间t(单位:h)之间有何数量关系?(3) 京沪高铁列车从北京南站出发 2.5 h后,是否已经过了距始发站1100 km的南京南站?分析:(1) 京沪高铁列车全程运行时间约需1318 -300 〜4.4( h).(2) 京沪高铁列车的行程y是运行时间t的函数,函数解析式为y= 300t(0 w t w4.4).(3) 京沪高铁列车从北京南站出发 2.5 h的行程,是当t = 2.5时函数y= 300t的值,即y= 300X 2.5 = 750( kn).这时列车尚未到达距始发站1100 km的南京南站.师:这个函数中,t 是自变量,y 是t 的倍数(300倍).尽管实际情况可能会与此有一 些小的不同,但这个函数基本上反映了列车的行程与运行时间的对应规律. 像这样的函数就是我们今天所要讲的函数一一正比例函数.二、讲授新课思考:下列问题中的两个变量可用怎样的函数表示?师:圆的周长I 随半径r 的大小变化而变化,I 是r 的函数吗? 生:I = 2 n r , I 是r 的函数._33师:铁的密度为7.8 g /cm ,铁块的质量 m(g )随它的体积V(cm )的变化而变化,铁块的 质量m 是体积V 的函数吗?生: m= 7.8V师:每本练习本的厚度为 0.5 cm, —些练习本的总厚度 h( cm )随本数n 的变化而变化的 函数关系是怎样的?生:h = 0.5n.师:冷冻一个 0 C 的物体,使它每分钟下降 2 C,物体的温度 T(C )随冷冻时间t(分)的变化而变化,那么它的函数关系式是怎样的呢?生:T =- 2t.师:这些函数有什么共同特点呢? 学生思考并回答,教师予以总结.师:上面这些函数与y = 300x 一样,函数都是自变量的倍数, 或者说都是常数与自变量的乘积,像这种函数就是正比例函数.一般地,形如y = kx(k 是常数,k 工0)的函数,叫做正比例函数,其中 k 叫做比例系数. 师:y = kx(k 是常数,k z 0)是正比例函数的一般形式,注意 k ^0的条件.下列函数是x 3正比例函数吗?①y = 3,②y = 一,③y = kx ,④y = kx 2,⑤y = k,(k 丰0).3 x生:①⑤是的,其他的都不是. 三、例题讲解(1)若y = 5x 3m -2是正比例函数,则m= ___⑵ 若y = (m — 1)xm 2是正比例函数,则m =-1.四、课堂小结1. 正比例函数的定义2. 正比例函数的应用解:(1)3m — 2 = 1,即卩m = 1时,它为正比例函数;(2)由题意可知 m — 1 z 0,解得m =会画正比例函数的图象.重点 一次函数图象的画法. 难点根据一次函数的图象特征理解一次函数的性质. 一、 复习引入师:什么样的函数是正比例函数?生:形如y = kx(k 是常数,k 工0)的函数,叫做正比例函数,其中 k 叫做比例系数.师:前面我们讲函数图象的画法时,是通过把解析式中的 x , y 的值分别取出来,作为横、纵坐标在直角坐标系中描点、连线来得到函数图象,那么对于正比例函数我们同样可以 用列表、描点、连线的方法来画出它的图象.二、 讲授新课操作:画出正比例函数 y = 2x , y = — 2x 的图象.师:由于k 工0,所以k >0或k v 0,这两个函数刚好一个 k >0, 一个k v 0.显然这里的 图象和前面一样是通过列表、描点、连线完成的.第一个图象老师带学生画,第二个图象由学生独立完成,教师巡视指导.本节课从实际问题中提出了正比例函数, 发了学生的学习兴趣,提高了学生的归纳能力.让学生自主的分析发现函数的定义和规律,第 2 课时 正比例函数 (2)1. 函数y = 2x中自变量x可以是任意实数.列表表示几组对应值:画出图象如图(1).2. y = —2x画出图象如图(2).师:比较这两个图象的相同点与不同点.学生讨论以后教师再进行总结.师生共同总结:两图象都是经过原点的一条直线;函数y= 2x的图象从左到右上升,经过第一、第三象限;函数y = —2x的图象从左到右下降,经过第二、第四象限.1 1为了更好地发现并总结规律,师生一起在同一坐标系中画出函数y = 2X和y =—㊁X的图象.列表如下:图象如图所示:【例】请同学们在同一直角坐标系中画出函数y=— 1.5x和y=—4x的图象.函数y= —1.5x如图,在直角坐标系中描出以表中的值为坐标的点,将这些点连接起来,得到一条经过原点和第二、第四象限的直线,它就是函数y = —1.5x的图象.用同样的方法,可以得到函数y=—4x的图象.它也是一条经过原点和第二、第四象限的直线.分析后得出结论.师:一般地,正比例函数y= kx(k为常数,k z0)的图象是一条经过原点的直线,我们称它为直线y = kx.当k>0时,直线经过第一、三象限,从左向右上升,即y随x的增大而增大;当k v 0时,直线经过第二、四象限,从左向右下降,即y随x的增大反而减小.既然我们已经知道正比例函数的图象是一条直线,那么我们以后画正比例函数的图象时,只需要描出两点,然后过这两点作一条直线即可•比如说,画直线y= 3x只需先指出两点(0 , 0)、(1 , 3),然后过这两点作出直线即可.三、巩固练习用简单的方法画出下列函数的图象,并对照两图象说出图象与函数的性质.31. y = qx.2. y = —3x.四、课堂小结本节课通过具体的正比例函数的图象探索出正比例函数的图象及其性质,这符合解决问题的一般途径.本节课教师带领学生画正比例函数的图象,系数与函数图象间的关系.第1课时又通过对函数图象的观察、总结,得到比例19.2.2 一次函数一次函数(1)了解一次函数的一般形式.重点一次函数的一般形式.难点探索实际问题中的一次函数关系.一、创设情境,引入新课问题:某登山队大本营所在地的气温是5C,海拔每升高1 km气温下降6C,登山队员由大本营向上登高x km时,他们所在位置的气温是y C,试用解析式表示y与x的关系.师:每升高1 km气温下降6C,那么升高x km气温下降6x C,因此所在位置的气温为5- 6x,即y = - 6x+5.自变量是x,右边是自变量的一次式,像这样的函数就是我们今天所要学的一次函数.二、讲授新课思考:下列问题中变量间的关系可用怎样的函数表示?这些函数有哪些共同点?师:在20C〜25C时蟋蟀每分钟鸣叫的次数C与t( C )有关,即C的值约是t的7倍与35的差.这个函数的关系式怎么写?生:C= 7t —35.师:一种计算成年人标准体重G(kg)的方法是:以厘米为单位量出身高h,再减去常数105,所得差是G的值,即:G= h —105.某市的市内电话的月收费额y(元)包括月租费22元和拨打电话按0.1元/分收取,写出y与每月电话x(分钟)的函数关系式.生:y= 0.1x + 22.师:把一个长10 cm宽5 cm的长方形的长减少x cm,宽不变,长方形的面积y( cn2) 随x的变化的关系式是什么?生:y= 5(10 —x) =—5x+ 50.师:上述这些函数有什么共同特点?比如说右边.生:右边都是自变量的倍数与一个常数的和.师:对,上述这些函数的右边都是关于自变量的一次式,像这样的函数是一次函数.一般地,形如y = kx + b(k , b是常数,k丰0)的函数叫做一次函数,当b= 0时,y= kx + b即y= kx,所以说正比例函数是一种特殊的一次函数.师:下面的函数是一次函数吗?如果是一次函数,说说其中k和b的值分别是多少.2 x① y= x—6;② y=-:③ y= 8 :④ y = 7 —x.x o生1: y= x —6是一次函数,其中k = 1, b = —6.2生2: y=-不是一次函数.—— 1生3: y= §是一次函数,其中k= o, b = 0.生4: y= 7 ——是一次函数,其中k =—1 , b = 7.—师:值得注意的是y =也是一次函数,它是当b = 0时的特殊情况.o例题:(1) 已知函数y = (k —2)x + 2k + 1,当k为何值时它是正比例函数?当k为何值时它是一次函数?1解决:当2k + 1= 0,即k=—㊁时,它为正比例函数.当k —2工0,即卩k^2时,它为一次函数.(2) 已知y与x —3成正比例,当x = 4时,y= 3,写出y与x的函数关系式并指出是什么函数.解:因为y与x —3成正比例,所以设y = k(x —3).由题意知当x = 4时,y = 3,代入得k= 3.所以y= 3(x —3),即y = 3x —9, y是x的一次函数.三、巩固练习写出下列函数关系式,并指出哪些是一次函数,其中哪些又属于正比例函数.1 .面积为10 cm i的三角形的底a(cnj与这边上的高h( cm).20【答案】h=石,不是一次函数.2. 一边长为8 cm的平行四边形的周长L( cn)与另一边长b( cm).【答案】L= 16+ 2b,是一次函数.3. 食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨. 【答案】y = 120—5x,是一次函数.4. 汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).【答案】s = 40t,是一次函数,且是正比例函数.5. 圆的面积y(平方厘米)与它的半径x(厘米)之间的关系.【答案】y =n x2,不是一次函数.6. —棵树现在高50厘米,每个月长高2厘米,x个月后这棵树的高度为y(厘米). 【答案】y = 50+ 2x,是一次函数.四、课堂小结本节课从实际出发得出一次函数的概念,并在实际问题中根据简单信息写出一次函数的表达式,进而解决问题.本节课主要学习了一次函数的概念和一次函数的一般形式. 的学习积极性,让学生参与到学习活动中,在活动的过程中,了学生的学习能力及参与意识,取得了良好的教学效果.第2课时一次函数(2)教学过程中充分调动了学生理解并掌握知识,同时也培养会画一次函数的图象.重点一次函数图象的画法.难点根据一次函数的图象特征理解一次函数的性质.一、创设情境,引入新课师:正比例函数的一般形式是y= kx(k工0),它的图象是经过原点的一条直线•一次函数的一般形式是y = kx + b(k工0),那么它的图象是什么呢?这就是我们这节课所要学的内容.二、讲授新课活动一活动内容设计:画出函数y=—6x与y = —6x + 5的图象,比较两个函数的图象,探究它们的联系并解释原因.教师活动:引导学生从图象的形状、倾斜程度以及与y轴的交点在坐标轴上的位置比较两个图象,从而认识两个图象的平移关系,进而了解解析式中的k, b在图象中的意义,体会数形结合在实际中的应用.学生活动:在教师的引导下利用列表、描点、连线作出两函数的图象,然后根据教师的引导从多方面比较两个函数的图象的相同点与不同点.生:函数y = —如下表所示:画出函数y = —6x与= —+ 的图象,如下图所示:。
八年级数学下册第十九章一次函数19.1函数19.1.1变量与函数(1)教案(新版)新人教版

变量与函数( 1)知识技术目标1.掌握常量和变量、自变量和因变量(函数)基本观点;2. 认识表示函数关系的三种方法:分析法、列表法、图象法,并会用分析法表示数目关系.过程性目标1.经过实质问题,指引学生直观感知,意会函数基本观点的意义;2.指引学生联系代数式和方程的有关知识,持续研究数目关系,加强数学建模意识,列出函数关系式 .教课过程一、创建情境在学习与生活中,常常要研究一些数目关系,先看下边的问题.问题 1 如图是某地一天内的气温变化图.看图回答:(1)这日的 6 时、 10 时和 14 时的气温分别为多少?随意给出这日中的某一时辰,说出这一时辰的气温.(2)这天中,最高气温是多少?最低气温是多少?(3) 这天中,什么时段的气温在渐渐高升?什么时段的气温在渐渐降低?解(1) 这日的6时、 10 时和 14 时的气温分别为-1℃、 2℃、 5℃;(2) 这天中,最高气温是5℃.最低气温是-4℃;(3) 这天中, 3 时~ 14 时的气温在渐渐高升.0 时~ 3 时和 14 时~ 24 时的气温在渐渐降低.从图中我们能够看到,跟着时间 t (时)的变化,相应地气温 T(℃)也随之变化.那么在生活中能否还有其余近似的数目关系呢?二、研究概括问题 2 银行对各种不一样的存款方式都规定了相应的利率,下表是 2002 年 7 月中国工商银行为“整存整取”的存款方式规定的年利率:察看上表,谈谈跟着存期x 的增添,相应的年利率y 是怎样变化的.解跟着存期x 的增添,相应的年利率y 也跟着增添.问题 3 收音机刻度盘的波长和频次分别是用米(m) 和千赫兹(kHz)为单位标刻的.下边是一些对应的数值:察看上表回答:(1)波长 l 和频次 f 数值之间有什么关系?(2)波长 l 越大,频次 f 就________.解 (1)l与f的乘积是一个定值,即lf= 300 000,或许说.(2) 波长l越大,频次f就越小.问题 4 圆的面积跟着半径的增大而增大.假如用之间满足以下关系: S=_________.利用这个关系式,试求出半径为 1 cm、 1.5 cm 结果填入下表:r 表示圆的半径, S表示圆的面积则S 与、 2 cm、 2.6 cm 、 3.2 cm 时圆的面积,并将r由此能够看出,圆的半径越大,它的面积就_________.解 S=π r 2.圆的半径越大,它的面积就越大.在上边的问题中,我们研究了一些数目关系,它们都刻画了某些变化规律.这里出现了各种各种的量,特别值得注意的是出现了一些数值会发生变化的量.比如问题 1 中,刻画气温变化规律的量是时间t 随和温 T,气温 T 跟着时间 t 的变化而变化,它们都会取不一样的数值.像这样在某一变化过程中,能够取不一样数值的量,叫做变量 ( variable) .上边各个问题中,都出现了两个变量,它们相互依靠,亲密有关.一般地,假如在一个变化过程中,有两个变量,比如x 和 y,对于 x 的每一个值, y 都有唯一的值与之对应,我们就说x 是自变量( independent variable) ,y是因变量( dependent variab le) ,此时也称 y 是x 的函数( function) .表示函数关系的方法往常有三种:(1) 分析法,如问题 3 中的,问题 4 中的S=πr2,这些表达式称为函数的关系式.(2)列表法,如问题 2 中的利率表,问题 3 中的波长与频次关系表.(3)图象法,如问题 1 中的气温曲线.问题的研究过程中,还有一种量,它的取值一直保持不变,我们称之为常量 ( constant ) ,如问题 3 中的 30 0 000 ,问题 4 中的π等.三、实践应用例 1 下表是某市2000 年统计的该市男学生各年纪组的均匀身高.(1)从表中你能看出该市 14 岁的男学生的均匀身高是多少吗?(2)该市男学生的均匀身高从哪一岁开始快速增添?(3)上表反应了哪些变量之间的关系?此中哪个是自变量 ?哪个是因变量 ?解 (1) 均匀身高是 146.1cm ;(2) 约从 14 岁开始身高增添特别快速;(3) 反应了该市男学生的均匀身高和年纪这两个变量之间的关系,此中年纪是自变量,平均身高是因变量.例 2 写出以下各问题中的关系式,并指出此中的常量与变量:(1)圆的周长 C与半径 r 的关系式;(2) 火车以 60 千米 / 时的速度行驶,它驶过的行程s(千米)和所用时间t(时)的关系式;(3)n 边形的内角和 S 与边数 n 的关系式.解(1) C= 2πr, 2π是常量,r、C是变量;(2)s=60t ,60是常量, t 、 s 是变量;(3)S=( n-2)×180,2、180是常量, n、 S是变量.四、沟通反省1.函数观点包括:(1)两个变量;(2)两个变量之间的对应关系.2.在某个变化过程中,能够取不一样数值的量,叫做变量;数值一直保持不变的量,叫做常量.例如x和 y,对于 x的每一个值, y都有唯一的值与之对应,我们就说x是自变量, y是因变量.3.函数关系三种表示方法:(1)分析法;(2)列表法;(3)图象法.五、检测反应1.举 3 个平时生活中碰到的函数关系的例子.2.分别指出以下各关系式中的变量与常量:(1) 三角形的一边长5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是;(2)若直角三角形中的一个锐角的度数为α ,则另一个锐角β (度)与α 间的关系式是β=90-α;(3) 若某种报纸的单价为a元,x表示购置这类报纸的份数,则购置报纸的总价y(元)与x 间的关系是: y= ax.3.写出以下函数关系式,并指出式中的自变量与因变量:(1)每个同学购一本代数教科书,书的单价是 2 元,求总金额Y(元)与学生数n(个)的关系;(2) 计划购置50 元的乒乓球,求所能购置的总数n(个)与单价a(元)的关系.4. 填写如下图的乘法表,而后把全部填有24 的格子涂黑.若用x 表示涂黑的格子横向的乘数,y 表示纵向的乘数,试写出y 对于x 的函数关系式.。
人教版数学八年级下册19.1.1《变量与函数》说课稿

人教版数学八年级下册19.1.1《变量与函数》说课稿一. 教材分析《变量与函数》是人教版数学八年级下册第19.1.1节的内容,属于初中数学的函数单元。
本节内容主要介绍了变量的概念,函数的定义及其表示方法,旨在让学生理解变量之间的关系,掌握函数的基本概念和表示方法。
二. 学情分析学生在学习本节内容前,已经学习了代数基础知识,对代数表达式有一定的理解,但对于变量的概念和函数的定义可能还比较陌生。
因此,在教学过程中需要引导学生理解变量之间的关系,逐步引入函数的概念,并通过实例让学生掌握函数的表示方法。
三. 说教学目标1.知识与技能目标:让学生理解变量之间的关系,掌握函数的定义及其表示方法,能够识别和表示简单的函数关系。
2.过程与方法目标:通过观察、分析实例,培养学生的抽象思维能力,提高学生分析问题和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的探究精神和合作意识。
四. 说教学重难点1.教学重点:函数的定义及其表示方法。
2.教学难点:理解变量之间的关系,掌握函数的表示方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作学习法等,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的实例,引导学生观察和分析变量之间的关系,引出函数的概念。
2.探究新知:让学生通过小组合作,探讨函数的定义及其表示方法,教师进行引导和讲解。
3.巩固新知:通过练习题让学生巩固函数的概念和表示方法,教师进行点评和指导。
4.应用拓展:让学生运用函数的知识解决实际问题,提高学生解决问题的能力。
5.课堂小结:对本节课的内容进行总结,强调函数的概念和表示方法。
七. 说板书设计板书设计要清晰、简洁,能够突出函数的概念和表示方法。
主要包括以下几个部分:1.变量与函数的定义2.函数的表示方法3.函数的性质八. 说教学评价教学评价主要包括学生的学习效果评价和教师的教学评价两个方面。
一次函数全章教案新人教版[1]1
![一次函数全章教案新人教版[1]1](https://img.taocdn.com/s3/m/23d5fd2e2a160b4e767f5acfa1c7aa00b52a9dbf.png)
第十九章一次函数教案19.1.1变量教具;课件, 直尺, 三角板教学目标知识与技能: 理解变量与函数的概念以与相互之间的关系。
增强对变量的理解过程与方法: 师生互动, 讲练结合情感态度世界观:渗透事物是运动的, 运动是有规律的辨证思想重点: 变量与常量难点: 对变量的判断教学媒体: 多媒体电脑, 绳圈,教学说明:本节渗透找变量之间的简单关系, 试列简单关系式教学设计:引入:新课:问题: (1)每张电影票的售价为10元, 如果早场售出票150张, 日场售出票205张, 晚场售出票310张, 三场电影的票房收入各多少元?设一场电影受出票x张, 票房收入为y元, 怎样用含x的式子表示y?(2)在一根弹簧的下端悬挂中重物, 改变并记录重物的质量, 观察并记录弹簧长度的变化规律, 如果弹簧原长10cm, 每1kg重物使弹簧伸长0.5cm, 怎样用含重物质量 m(单位: kg)的式子表示受力后弹簧长度l(单位: cm)?(3)要画一个面积为10cm2的圆, 圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积S的式子表示圆的半径r?(4)用10m长的绳子围成长方形, 试改变长方形的长度, 观察长方形的面积怎样变化。
记积的值, 探索它们的变化规律, 设长方形的长为xm,面积为Sm2,怎样用含x的式子表示S?在一个变化过程中, 我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
(1)范例: 写出下列各问题中所满足的关系式, 并指出各个关系式中, 哪些量是变量, 哪些量是常量?(2)用总长为60m的篱笆围成矩形场地, 求矩形的面积S (m2)与一边长x(m)之间的关系式;(3)购买单价是0.4元的铅笔, 总金额y(元)与购买的铅笔的数量n(支)的关系;运动员在4000m一圈的跑道上训练, 他跑一圈所用的时间t(s)与跑步的速度v(m/s)的关系;银行规定: 五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
人教版八年级数学下册变量与函数优质教学设计教案

人教版八年级数学下册变量与函数教案2023年4月第十九章一次函数19.1 函数19.1.1 变量与函数课时1 变量与常量教学目标【知识与技能】借助简单实例,学生初步感知用常量与变量来刻画一些简单的数学问题,能指出具体问题中的常量、变量.初步理解存在一类变量可以用函数方式来刻画,能举出涉及两个变量的实例,并指出由哪一个变量确定另一个变量,这两个变量是否具有函数关系。
初步理解对应的思想,体会函数概念的核心是两个变量之间的特殊对应关系,能判断两个变量间是否具有函数关系。
【过程与方法】借助简单实例,引领学生参与变量的发现和函数概念的形成过程,体会从生活实例抽象出数学知识的方法,感知现实世界中变量之间联系的复杂性,数学研究从最简单的情形入手,化繁为简。
【情感态度与价值观】从学生熟悉、感兴趣的实例引入课题,引领学生参与变量的发现和函数概念的形成过程,体验“发现、创造”数学知识的乐趣。
学生初步感知实际生活蕴藏着丰富的数学知识,感知数学是有用、有趣的学科。
教学重点正方形的定义及正方形与平行四边形、矩形、菱形的联系.教学难点正方形与矩形、菱形的关系及正方形的性质与判定的灵活运用..教学准备多媒体课件一、创设情境、导入新课我们生活在一个运动的世界中,周围的事物都是运动的。
例如,地球在宇宙中的运动这一问题,此时地球在宇宙中的位置随着时间的变化而变化,这是生活中的常识,学生都很容易理解。
再例如,气温随着高度的升高而降低,年龄随着时间的增长而增长。
这几个问题中都涉及两个量的关系,地球的位置与时间,温度与高度,年龄与时间。
教学过程:二、合作交流、解读探究1、气温问题:下图是北京春季某一天的气温T随时间t变化的图象,看图回答:(1)这天的8时的气温是℃,14时的气温是℃,最高气温是℃,最低气温是℃;(2)这一天中,在4时~12时,气温(),在16时~24时,气温()。
A.持续升高B.持续降低C.持续不变思考:(1)气温随的变化而变化,即T随的变化而变化;(2)当时间t取定一个确定的值时,对应的温度T的取值是否唯一确定?2、当正方形的边长x分别取1、2、3、4、5、6、7,……时,正方形的面积S分别是多少?3、某城市居民用的天然气,1m3收费2.88元,使用xm3天然气应缴纳费用y=2.88x ,当x=10时,缴纳的费用为多少?思考:上述三个问题,分别涉及哪些量的关系?哪些量是变化的?哪些量是不变的?哪个量的变化导致另一个量的变化而变化?在一个问题中,当一个量取了确定的值之后,另一个量对应的能取几个值?在上面的三个问题中,其中一个量的变化引起另一个量的变化(按照某种规律变化),变化的量叫作变量;有些量的值始终不变(如正方形的面积……).并且当其中一个变量取定一个值时,另一个变量就随之确定,且它的对应值只有一个。
八年级数学下册第十九章一次函数19.1函数19.1.1变量与函数第1课时常量与变量导学案

第十九章 函数19.1 函数19.1.1 变量与函数 第1课时 常量与变量学习目标:1.了解常量与变量的概念,掌握常量与变量之间的联系与区别.2.学会用含一个变量的代数式表示另一个变量.重点:能够区分同一个问题中的常量与变量. 难点:用式子表示变量间的关系.一、知识链接1.人们在认识和描述某一事物时,经常会用“量”来具体表达事物的某些特征(属性),如:速度、时间、路程、温度、面积等,请你再写出三个“量”: 、 、 .同时用“数”来表明“量”的大小.2.写出路程(s )、速度(v )、时间(t )之间的关系: . 二、新知预习1.小明去文具店购买一些铅笔,已知铅笔的单价为0.2元/支,总价y 元随铅笔支数x 的变化而变化,在这个问题中,变量是________,常量是________.2.圆的面积S 随着半径r 的变化而变化,已知它们的关系为:2r S π=,在这个问题中,常量是 ,变量是 .3.自主归纳:变量:在一个变化过程中,数值________的量为变量. 常量:在一个变化过程中,数值________的量为常量. 三、自学自测1.指出下列关系式中的常量和变量.(1)长方形的长为2,长方形面积S 与宽x 之间的关系S=2x ; (2)一批香蕉每千克6元,则总金额y (元)与销售量x (千克)之间的关系式为y=6x.2.一名运动员以8米/秒的速度奔跑,写出他奔跑的路程s (米)与时间t (秒)之间的关系式,并指出其中的变量和常量.四、我的疑惑____________________________________________________________ ____________________________________________________________一、要点探究探究点1问题1:小时.(1(2)试用含t(3问题2:售出310(1(2(3)试用含x张数_____问题3:r分别为(1)填空:当圆的半径为当圆的半径为当圆的半径为当圆的半径为(2要点归纳:例1(1)变量是________;(2)周长C________;(3)中,其中常量是变式题阅读并完成下面一段叙述:1.若球体体积为V ,半径为R ,则343V R π=,其中变量是________、________,常量是________.2.计划购买50元的乒乓球,所能购买的总数n(个)与单价 a (元)的关系式是________,其中变量是________,常量是________.3.汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q (升)与5.瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y 与层数x 之间的关系式.完成上表,并写出瓶子总数y 与层数x 之间的关系式.。
人教版八年级数学下册19章19.1.1变量与函数(教案)

(二)新课讲授(用时10分钟)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与函数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示函数的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
3.在小组讨论中,要注意问题的设置,引导学生正确地思考和解决问题。
4.课后要加强作业和练习的布置,帮助学生巩固所学知识。
在今后的教学中,我会根据这节课的反思,不断调整和优化教学方法,以提高学生的学习效果。
在总结回顾环节,我强调了对函数概念和三要素的掌握,希望学生们能够在日常生活中运用所学知识。然而,我也意识到,仅仅依靠课堂上的讲解和练习是远远不够的,还需要在课后布置一些相关的作业和练习,以巩固所学知识。
1.在理论讲解时,要尽量用简单明了的语言,结合实际案例,让学生更好地理解抽象的概念。
2.在实践活动前,要进行充分的讲解和演示,确保学生能够顺利地进行实验操作。
-举例:在函数y = 2x + 3中,2和3是常量,x和y是变量。
2.教学难点
-函数关系式的建立:学生需要学会从实际问题中பைடு நூலகம்象出函数关系,并用数学符号进行表达。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .份数/份 1 2 3 4 5 6 7 100 价钱/元0.40.81.21.62.02.42.840x 与y 之间的关系是y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时 函 数教学目标一、基本目标 【知识与技能】1.认识变量中的自变量与函数. 2.进一步掌握确定函数关系式的方法. 3.会确定自变量的取值范围. 【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯. 二、重难点目标 【教学重点】1.进一步掌握确定函数关系的方法. 2.确定自变量的取值范围. 【教学难点】认识函数、领会函数的意义.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P74的内容,完成下面练习. 【3 min 反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式. 3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x =a 时,y =b ,函数有唯一的值b 与之对应,则这个对应值b 叫做x =a 时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表: 时间 (秒) 012345678910速度 (米/秒)0.31.32.84.97.611.014.118.424.228.9(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大? (4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是v 随着t 的增大而增大.(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加量最大. (4)120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3 拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围; (2)7:55时,水箱内还有多少水? (3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水, ∴y =200-2t .∵y ≥0,∴200-2t ≥0, 解得t ≤100, ∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100). (2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升), ∴7:55时,水箱内还有水150升. (3)令y =0,即200-2t =0,解得t =100. 100分=1时40分,7时30分+1时40分=9时10分, 故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x 的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x 的值,实际上就是解方程.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!。