现代控制理论全套课件
合集下载
现代控制理论多媒体课件
航空器自动驾驶
在民航和通用航空领域, 现代控制理论用于实现航 空器的自动驾驶和自动降 落等功能。
工业自动化
智能制造
现代控制理论在智能制造 领域中用于实现生产线的 自动化、优化和调度。
工业机器人
通过现代控制理论对工业 机器人进行精确控制,提 高生产效率和产品质量。
过程控制
在化工、制药、冶金等行 业中,现代控制理论用于 实现生产过程的自动化和 优化。
现代控制理论多媒 体课件
contents
目录
• 现代控制理论概述 • 现代控制理论的核心概念 • 现代控制理论的应用领域 • 现代控制理论的基本方法 • 现代控制理论的挑战与展望 • 现代控制理论案例分析
01
CATALOGUE
现代控制理论概述
定义与特点
定义
现代控制理论是研究如何通过输入信号来控制和调节系统状态的一门科学。它 以数学为主要工具,通过建立系统的数学模型,分析系统的动态行为,以达到 优化系统性能的目的。
未来展望
03Biblioteka 随着科技的不断进步,现代控制理论将继续发展,并应用于更
多领域,解决更复杂的实际问题。
02
CATALOGUE
现代控制理论的核心概念
状态空间法
01
状态空间法是一种描述动态系统的方法,通过状态 变量和输入变量来描述系统的运动过程。
02
它能够全面地反映系统的内部结构和动态特性,为 系统的分析和设计提供了有力的工具。
控制系统的安全与稳定性
安全性
在控制系统中,安全性是一个重要的考虑因 素。系统需要能够应对各种异常和故障情况 ,确保设备和人员的安全。
稳定性
稳定性是控制系统的一个重要特性,它涉及 到系统的长期行为和响应。保持系统的稳定
现代控制理论课件第四讲
现代控制理论的应用领域
现代控制理论广泛应用于航空航天、 工业自动化、交运输、能源等领域, 为解决复杂系统的控制问题提供了有 效的方法。
课程目标
掌握状态空间分析方法的基本原 理
通过本讲的学习,学习者应能够理解状态 空间分析方法的基本概念、原理及其在控 制系统中的应用。
学会建立状态空间模型
学习者应能够根据实际系统的动态特性, 建立相应的状态空间模型,为后续的控制 设计打下基础。
特点
强调数学建模、状态空间分析、 最优控制和自适应控制等理论和 方法的应用,以实现对系统的有 效控制。
现代控制理论的重要性
工业自动化
现代控制理论在工业自动化领域 中发挥着重要作用,通过自动化 控制系统实现对生产过程的精确 控制,提高生产效率和产品质量。
航天与航空
在航天和航空领域,现代控制理 论的应用对于飞行器的导航、制 导和控制至关重要,保证飞行器
现代控制理论课件第四 讲
目录
• 引言 • 现代控制理论概述 • 线性系统理论 • 最优控制理论 • 非线性系统理论 • 现代控制理论的应用与发展趋势
引言
01
课程背景
控制理论的发展历程
课件的定位与作用
从经典控制理论到现代控制理论,再 到智能控制理论,控制理论在不断发 展与完善。
本课件作为现代控制理论的第四讲, 旨在深入探讨状态空间分析方法,为 学习者提供系统、全面的知识体系。
详细描述
非线性系统的控制设计方法主要包括逆系统方法、状态 反馈方法、滑模控制方法等。这些方法可以根据具体的 系统特性和控制要求进行选择和应用。例如,逆系统方 法通过构造一个逆系统来补偿非线性系统的非线性特性 ,实现精确跟踪控制;状态反馈方法利用状态反馈控制 器来稳定非线性系统;滑模控制方法通过设计滑模面和 滑模控制器,使得系统状态在滑模面上滑动,实现对于 非线性系统的有效控制。
《现代控制理论》课件
现代控制理论
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
现代控制理论(II)-讲稿课件ppt
03
通过具体例子说明最小值原理在最优控制问题中的应
用方法。
06 现代控制理论应用案例
倒立摆系统稳定控制
倒立摆系统模型建立
分析倒立摆系统的物理特性,建立数学模型,包括运动方程和状态 空间表达式。
控制器设计
基于现代控制理论,设计状态反馈控制器,使倒立摆系统实现稳定 控制。
系统仿真与实验
利用MATLAB/Simulink等工具进行系统仿真,验证控制器的有效性; 搭建实际实验平台,进行实时控制实验。
最优控制方法分类
根据性能指标的类型和求解方法, 最优控制可分为线性二次型最优控 制、最小时间控制、最小能量控制 等。
最优控制应用举例
介绍最优控制在航空航天、机器人、 经济管理等领域的应用实例。
05 最优控制理论与方法
最优控制问题描述
控制系统的性能指标
定义控制系统的性能评价标准,如时间最短、能量最小等。
随着网络技术的发展,分布式控制系统逐渐 成为现代控制理论的研究热点,如多智能体 系统、协同控制等。
下一步学习建议
01
02
03
04
深入学习现代控制理论相关知 识,掌握更多先进的控制方法
和技术。
关注现代控制理论在实际系统 中的应用,了解不同领域控制
系统的设计和实现方法。
加强实践环节,通过仿真或实 验验证所学理论知识的正确性
机器人运动学建模
分析机器人的运动学特性, 建立机器人运动学模型, 描述机器人末端执行器的 位置和姿态。
运动规划算法设计
基于现代控制理论,设计 运动规划算法,生成机器 人从起始点到目标点的平 滑运动轨迹。
控制器设计与实现
设计机器人运动控制器, 实现机器人对规划轨迹的 精确跟踪;在实际机器人 平台上进行实验验证。
现代控制理论绪论ppt课件
等等。
7
其主要特点有: 1.对系统进行精确的数学描述,使控制由一类工程设计方法 提高成为一门科学。 2.从系统结构的内在特性出发研究控制系统,注重系统本质 的理论刻划。 3.促进了非线性系统,最优控制,自适应控制,辨识与估计 理论,卡尔曼滤波,鲁棒控制等的发展,使它们成为独立的 学科分支。
8
三. 控制理论的进一步发展 并不是现代控制理论就可以解决一切问题了,随着经济全 球化和生产大规模化,单机、局部自动化走向综合自动化, 自动化科学技术面对越来越复杂的系统,表现为: 1.系统结构的复杂性:不确定性,非线性,变量过多,难以 用常规数学工具建模和研究(自动化工厂等)。 2. 任务的复杂性:高产量,低消耗,调度,监控、预警等。
5
二. 现代控制理论的特点和主要内容 60年代航天技术和先进武器的发展,使这样一些问题
必须得到研究(如飞行器姿态控制): 1.多输入—多输出系统,变参数系统,非线性系统 2.系统的最优化问题,最小时间系统,最小能耗问题等 3.对随机干扰的处理
现代数学(线性代数,泛函分析,微分几何等)的发展 为系统的定量化研究奠定了基础。 电子计算机的发展和普及成为这种研究的有力工具。
3
经典控制理论: 1.系统模型:微分方程(常系数线性微分方程)
L变换 传递函数
2.系统分析:稳定性:劳斯判据 根轨迹 奈氏判据 静态特性:L终值定理 动态特性:根轨迹 截止频率c 谐振频率r
谐振峰值 M r 等
3.系统综合:根轨根轨迹法、频率法分析 和设计系统的经典控制理论存在许多局限性: 1、仅适合单变量(一个输入一个输出)、线性的、定常的 系统。 2、其输入—输出的系统描述方式不关心系统内部的运行及 变量的变化,本质上忽略了系统结构的内在特性 。 3、采用工程的试探方法设计系统,依赖经验,不是最优。 但也不能否定它:对线性定常的单变量系统,它简单实用, 易于实现。并也在不断得以改进。
7
其主要特点有: 1.对系统进行精确的数学描述,使控制由一类工程设计方法 提高成为一门科学。 2.从系统结构的内在特性出发研究控制系统,注重系统本质 的理论刻划。 3.促进了非线性系统,最优控制,自适应控制,辨识与估计 理论,卡尔曼滤波,鲁棒控制等的发展,使它们成为独立的 学科分支。
8
三. 控制理论的进一步发展 并不是现代控制理论就可以解决一切问题了,随着经济全 球化和生产大规模化,单机、局部自动化走向综合自动化, 自动化科学技术面对越来越复杂的系统,表现为: 1.系统结构的复杂性:不确定性,非线性,变量过多,难以 用常规数学工具建模和研究(自动化工厂等)。 2. 任务的复杂性:高产量,低消耗,调度,监控、预警等。
5
二. 现代控制理论的特点和主要内容 60年代航天技术和先进武器的发展,使这样一些问题
必须得到研究(如飞行器姿态控制): 1.多输入—多输出系统,变参数系统,非线性系统 2.系统的最优化问题,最小时间系统,最小能耗问题等 3.对随机干扰的处理
现代数学(线性代数,泛函分析,微分几何等)的发展 为系统的定量化研究奠定了基础。 电子计算机的发展和普及成为这种研究的有力工具。
3
经典控制理论: 1.系统模型:微分方程(常系数线性微分方程)
L变换 传递函数
2.系统分析:稳定性:劳斯判据 根轨迹 奈氏判据 静态特性:L终值定理 动态特性:根轨迹 截止频率c 谐振频率r
谐振峰值 M r 等
3.系统综合:根轨根轨迹法、频率法分析 和设计系统的经典控制理论存在许多局限性: 1、仅适合单变量(一个输入一个输出)、线性的、定常的 系统。 2、其输入—输出的系统描述方式不关心系统内部的运行及 变量的变化,本质上忽略了系统结构的内在特性 。 3、采用工程的试探方法设计系统,依赖经验,不是最优。 但也不能否定它:对线性定常的单变量系统,它简单实用, 易于实现。并也在不断得以改进。
现代控制理论课件1
dt
C1
R1
C2
Ui
Uo
R2
二、系统微分方程转化为状态空间表达式 1、 微分方程中不包含输入导数项 不包含导数项的线性微分方程形式为:
y(n) a1 y(n1) an1 y ' an y bu
(1)选择状态变量:
x1 y x2 y ' x3 y ''
xn y(n1)
(2)将高阶微分方程化为一阶微分方程
第一章、控制系统的状态空间描述
一、控制系统的状态空间表达式 二、系统微分方程转化为状态空间表达式 三、传递函数与状态空间表达式的相互转换 四、状态方程的线性变换
控制系统的数学模型有两种基本类型:
1、输入输出模型 将系统看成是一个“黑箱”,只反映系统外部变 量间的因果关系,不表征系统内部结构和内部 变量,是不完全描述比如传递函数、微分方程等
(3)状态空间方程是矩阵运算。
3、线性定常连续系统的状态空间表达式的建立 建立系统状态空间表达式的两种方式:
(1)直接通过物理机理推导 A、确定系统的输入变量、输出变量和状态变量 B、根据物理化学定理列写微分方程 C、将微分方程转化为关于状态变量的一阶导数 与状态变量、输入变量的关系式
D、整理得到标准形式
(2)由系统的输入输出关系转化
根据输入输出关系的描述(系统辨识、传递函数、 差分方程)可以将其转化为相应的状态空间表达式。
注意在这种转化过程中,状态可能是没有物理含 义的。
例子(电容取电压、电感取电流做为状态)
L
R
Ui
iC
Uo
di(t) Ui (t) L dt i(t)R Uo (t) i(t) C dUo (t)
绪论
1、控制理论的发展 (1)经典控制理论
C1
R1
C2
Ui
Uo
R2
二、系统微分方程转化为状态空间表达式 1、 微分方程中不包含输入导数项 不包含导数项的线性微分方程形式为:
y(n) a1 y(n1) an1 y ' an y bu
(1)选择状态变量:
x1 y x2 y ' x3 y ''
xn y(n1)
(2)将高阶微分方程化为一阶微分方程
第一章、控制系统的状态空间描述
一、控制系统的状态空间表达式 二、系统微分方程转化为状态空间表达式 三、传递函数与状态空间表达式的相互转换 四、状态方程的线性变换
控制系统的数学模型有两种基本类型:
1、输入输出模型 将系统看成是一个“黑箱”,只反映系统外部变 量间的因果关系,不表征系统内部结构和内部 变量,是不完全描述比如传递函数、微分方程等
(3)状态空间方程是矩阵运算。
3、线性定常连续系统的状态空间表达式的建立 建立系统状态空间表达式的两种方式:
(1)直接通过物理机理推导 A、确定系统的输入变量、输出变量和状态变量 B、根据物理化学定理列写微分方程 C、将微分方程转化为关于状态变量的一阶导数 与状态变量、输入变量的关系式
D、整理得到标准形式
(2)由系统的输入输出关系转化
根据输入输出关系的描述(系统辨识、传递函数、 差分方程)可以将其转化为相应的状态空间表达式。
注意在这种转化过程中,状态可能是没有物理含 义的。
例子(电容取电压、电感取电流做为状态)
L
R
Ui
iC
Uo
di(t) Ui (t) L dt i(t)R Uo (t) i(t) C dUo (t)
绪论
1、控制理论的发展 (1)经典控制理论
现代控制理论ppt课件
5.2 极点配置
设状态反馈系统希望的极点为 s1, s2, , sn
其特征多项式为
n
Δ*K (s) (s si ) sn an*1sn1 a1*s a0* i 1
选择 k使i 同次幂系数相同。有
K a0* a0 a1* a1 an*1 an1
而状态反馈矩阵 K KP k0 k1 kn1 9
βn-1sn1 βn-2sn2 β1s sn an-1sn1 a1s a0
β0
(s) (s)
引入状态反馈 u V Kx V KP1x V Kx
令
K KP 1 k0 k1 kn1
其中 k0 , k1, , kn1为待定常数
7
5.2 极点配置
0 1
0 0
5
5.2 极点配置
证明:充分性
线性定常系统
x Ax Bu
y
Cx
经过线性变换 x P1x ,可以使系统具有能控标准形。
0 1 0 0
x
0
0
1
0
0
x
u
0
0 0
1
a0 a1 an1
0 1
y β0 β1 βn1 x
6
5.2 极点配置
系统传递函数:g(s) C[sI A]1b C [sI A]1b
0 0 1 P 0 1 12
16
1 18 144
5.2 极点配置
0 0 1
k kP 4 66 140 1 12
1 18 144
14 186 1220
17
5.2 极点配置
方法二:
k k1 k2 k3
s k1 k2
k3
a*
(
s)
现代控制理论ppt
x ( t ) f x ( t ) u( t ) y ( t ) g x ( t ) u( t )
1.1.2 控制系统的状态空间表达式
5.非线性时变系统:
x( t ) f x( t ), u( t ), t y( t ) g x( t ), u( t ), t
但因 uc1+uc2+uc3=0
显然他们是线性相关的,故只有两个变量是独立 的,因此,最小变量组的个数应是二。
一般的: 状态变量个数=系统含有独立储能元件的个数 =系统的阶数 对于n阶系统,有n个状态变量: x1(t), x2(t), … xn(t) ﹡状态变量具有非唯一性的:
1.1.1 状态、状态变量和状态空间
1 控制系统的状态空间模型
我们把这种输入/输出描述的数学模型称为系统 的外部描述,内部若干变量,在建模的中间过程, 被当作中间变量消掉了。 现代理论模型:由状态变量构成的一阶微分方 程组来描述,其中包含了系统全部的独立变量。 特别是在数字计算机上求解一阶微分方程组比 求解与之相应的高阶微分方程要容易得多,而且能 同时给出系统的全部独立变量的响应。此外,在求 解过程中,还可以方便地考虑初始条件产生的影响。 因而能同时确定系统内部的全部运动状态。
数学模型:描述系统动态行为的数学表达式, 称为控制系统的数学模型。 经典理论模型:用一个高阶微分方程或传递函 数描述。系统的动态特性仅仅由一个单输出对给定 输入的响应来表征。
实际上,系统内部还有若干其他变量,他们之 间(包含输出变量在内)是相互独立的。关于他们 对输入的响应是不易相互导出的,必须重新分别建 模求解。由此可见,单一的高阶微分方程,是不能 完全揭示系统内全部运动状态的。
1.1.1 状态、状态变量和状态空间
1.1.2 控制系统的状态空间表达式
5.非线性时变系统:
x( t ) f x( t ), u( t ), t y( t ) g x( t ), u( t ), t
但因 uc1+uc2+uc3=0
显然他们是线性相关的,故只有两个变量是独立 的,因此,最小变量组的个数应是二。
一般的: 状态变量个数=系统含有独立储能元件的个数 =系统的阶数 对于n阶系统,有n个状态变量: x1(t), x2(t), … xn(t) ﹡状态变量具有非唯一性的:
1.1.1 状态、状态变量和状态空间
1 控制系统的状态空间模型
我们把这种输入/输出描述的数学模型称为系统 的外部描述,内部若干变量,在建模的中间过程, 被当作中间变量消掉了。 现代理论模型:由状态变量构成的一阶微分方 程组来描述,其中包含了系统全部的独立变量。 特别是在数字计算机上求解一阶微分方程组比 求解与之相应的高阶微分方程要容易得多,而且能 同时给出系统的全部独立变量的响应。此外,在求 解过程中,还可以方便地考虑初始条件产生的影响。 因而能同时确定系统内部的全部运动状态。
数学模型:描述系统动态行为的数学表达式, 称为控制系统的数学模型。 经典理论模型:用一个高阶微分方程或传递函 数描述。系统的动态特性仅仅由一个单输出对给定 输入的响应来表征。
实际上,系统内部还有若干其他变量,他们之 间(包含输出变量在内)是相互独立的。关于他们 对输入的响应是不易相互导出的,必须重新分别建 模求解。由此可见,单一的高阶微分方程,是不能 完全揭示系统内全部运动状态的。
1.1.1 状态、状态变量和状态空间
《现代控制理论基础》课件第0章
2. 现代控制理论的产生和发展 随着近代科学技术的突飞猛进,特别是空间技术和各类 高速飞行器的发展,使工程系统结构和完成的任务越来越复 杂,速度和精度也越来越高。这就要求控制理论能够解决动 态耦合的多输入多输出、非线性以及时变系统的设计问题。 此外,还常常要求系统的某些性能是最优的,并且要求有一 定的环境适应能力。这些新的控制要求都是经典控制理论所 无法解决的,因此,现代控制理论应运而生。
近半个世纪以来,现代控制理论已广泛应用于工业、农 业、交通运输及国防建设等各个领域。回顾控制理论的发展 历程可以看出,它的发展过程反映了人类由机械化时代进入 电气化时代,并走向自动化、信息化、智能化时代。
0.1.2 现代控制理论与经典控制理论的差异 现代控制理论与经典控制理论的差异主要表现在研究对
另外,经典控制理论中,频率法的物理意义直观、实用, 但难于实现最优控制,现代控制理论则易于实现最优控制和 实时控制。
现代控制理论是在经典控制理论的基础上发展起来的。 虽然两者有本质的区别,但对动态系统进行分析研究时,两 种理论可以互相补充,相辅相成,而不是互相排斥。对初学 者来说,应采用与经典控制计。基于对象的输入、输出数据, 在希望的估计准则下,找到系统的阶数和参数,建立对象的 数学模型。
0.2 本书的主要内容
0.2.1 本书主要内容结构 现代控制理论主要研究线性系统状态的运动规律和改变
这种运动规律的可能性与方法,建立和揭示系统结构、参数、 行为及性能间的关系。通常,这可以分解为三个问题,即系 统数学模型的建立、系统运动规律的分析和致力于改变运动 规律的系统设计。基于控制理论的认识规律,本书内容安排 如下:
0.1.3 现代控制理论的研究内容及其分支 科学在发展,控制论也在不断发展。我们通常讲的现代
现代控制理论教学课件
数字仿真实验结果分析 阐述如何对数字仿真实验结果进 行分析,包括性能指标的计算和 评估,以及对实验结果进行解释 和讨论。
数字仿真软件 介绍常用的数字仿真软件,如 MATLAB/Simulink等,并解释其 基本原理和使用方法。
数字仿真实验设计 详细说明数字仿真实验的设计方 法,包括如何建立系统模型、如 何设计控制器、如何设置仿真参 数等。
该方法能够全面地反映系统的性能,具有较强的适用性和实用 性。同时,该方法可通过实验手段进行验证,可靠性高。
设计过程相对较为复杂,需要一定的专业知识和经验。
适用于高阶系统和多变量系统的控制器设计,广泛应用于工程 实践中。
最优控制设计法
定义
最优控制设计法是一种基于最优化理论进行控制器设计的 方法。
缺点
现代控制理论阶段
自20世纪60年代开始,状态空间 法成为主导,适用于多输入多输 出、非线性、时变系统的分析与 设计。
现代控制理论的特点
状态空间描述
现代控制理论基于状态空间描述 ,通过状态变量全面反映系统内 部状态,提供更深入的系统分析
。
时域分析法
相比古典控制理论的频域分析法, 现代控制理论采用时域分析法,能 够直接反映系统的时间响应特性。
05
现代控制理论进阶知 识
系统的数学模型 ,包括微分方程、差分方程和状态方程等
。
A 非线性现象
介绍系统中的非线性现象,如死区 、饱和、滞后等,并分析其对系统
性能的影响。
B
C
D
非线性系统设计
探讨非线性控制系统的设计方法,如反馈 线性化、滑模变结构控制、反步法等。
稳定性分析
利用状态空间方程的特征值分析系统的稳定性,通过判断 特征值的分布来确定系统的稳定性。
数字仿真软件 介绍常用的数字仿真软件,如 MATLAB/Simulink等,并解释其 基本原理和使用方法。
数字仿真实验设计 详细说明数字仿真实验的设计方 法,包括如何建立系统模型、如 何设计控制器、如何设置仿真参 数等。
该方法能够全面地反映系统的性能,具有较强的适用性和实用 性。同时,该方法可通过实验手段进行验证,可靠性高。
设计过程相对较为复杂,需要一定的专业知识和经验。
适用于高阶系统和多变量系统的控制器设计,广泛应用于工程 实践中。
最优控制设计法
定义
最优控制设计法是一种基于最优化理论进行控制器设计的 方法。
缺点
现代控制理论阶段
自20世纪60年代开始,状态空间 法成为主导,适用于多输入多输 出、非线性、时变系统的分析与 设计。
现代控制理论的特点
状态空间描述
现代控制理论基于状态空间描述 ,通过状态变量全面反映系统内 部状态,提供更深入的系统分析
。
时域分析法
相比古典控制理论的频域分析法, 现代控制理论采用时域分析法,能 够直接反映系统的时间响应特性。
05
现代控制理论进阶知 识
系统的数学模型 ,包括微分方程、差分方程和状态方程等
。
A 非线性现象
介绍系统中的非线性现象,如死区 、饱和、滞后等,并分析其对系统
性能的影响。
B
C
D
非线性系统设计
探讨非线性控制系统的设计方法,如反馈 线性化、滑模变结构控制、反步法等。
稳定性分析
利用状态空间方程的特征值分析系统的稳定性,通过判断 特征值的分布来确定系统的稳定性。
现代控制理论ppt
求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入
。
动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。
现代控制理论全套课件
Modern Control Theory
L01
绪论
绪论
控制理论的发展历程
经典控制理论
形成和发展
在20世纪30-40年代,初步形成。 在20世纪40年代形成体系。 频率理论 根轨迹法
以SISO线性定常系统为研究对象。 以拉氏变换为工具,以传递函数为基础在频率域中分析 与设计。 经典控制理论的局限性
1970——1980 大系统理论 控制管理综合 1980——1990 智能控制理论 智能自动化 1990——21c 集成控制理论 网络控制自动化 专家系统,模糊控制,人工智能 神经网络,人脑模型,遗传算法
Soft computing
控制理论与计算机技术相结合→计算机控制技术
Modern Control Theory
Modern Control Theory
L01
绪论
网络交流
注册方法: 向以下邮件地址发邮件,会得到一封自动回复的 邮件,按邮件提示,进行简单填写,提交,然后 等候批准。获得批准后即可加入社区,参加社区 活动。
ModernControlTheory-subscribe@
定义
所谓自动化是指机器或装置在无人干预的情况下按规定 的程序或指令自动的进行操作或运行。广义地讲,自动 化还包括模拟或再现人的智能活动。
Definition
The art of making processes or machines self-acting or self-moving. Also pertains to the technique of making a device, machine, process or procedure more fully automatic.
《现代控制理论》PPT课件
精选ppt
8
4、控制理论发展趋势
❖ 企业:资源共享、因特网、信息集成、 信息技术+控制技术 (集成控制技术)
❖ 网络控制技术
❖ 计算机集成制造CIMS:(工厂自动化)
பைடு நூலகம்
精选ppt
9
三、现代控制理论与古典控制理论的对比
❖ 共同 对象-系统 主要内容 分析:研究系统的原理和性能 设计:改变系统的可能性(综合性能)
❖ 现代控制理论 哈工大 机械专业硕研
精选ppt
12
精选ppt
7
3.智能控制理论 (60年代末至今)
❖ 1970——1980 大系统理论 控制管理综合 ❖ 1980——1990 智能控制理论 智能自动化 ❖ 1990——21c 集成控制理论 网络控制自动化
(1) 专家系统;(2)模糊控制,人工智能 (3) 神经网络,人脑模型;(4)遗传算法 控制理论与计算机技术相结合→计算机控制技术
现代控制理论
Modern Control Theory
精选ppt
1
绪论
❖ 学习现代控制理论的意义: 1.是所学专业的理论基础 2.是研究生阶段提高理论水平的重要环节。 3. 是许多专业考博士的必考课。
精选ppt
2
一、控制的基本问题
❖ 控制问题:对于受控系统(广义系统)S,
寻求控制规律μ(t),使得闭环系统满足给
现代控制理论发展的主要标志 (1)卡尔曼:状态空间法; (2)卡尔曼:能控性与能观性; (3)庞特里雅金:极大值原理;
精选ppt
6
现代控制理论的主要特点
❖ 研究对象: 线性系统、非线性系统、时变系统、多 变量系统、连续与离散系统
❖ 数学上:状态空间法
现代控制理论92课件
,则称系统是稳定的。
线性控制系统的稳定性条件 :通过分析系统的特征根来 判断,要求特征根均在复平
面的左半平面。
线性控制系统的稳定性分析 方法:包括劳斯判据、赫尔 维茨判据等。
04
非线性控制系统
非线性控制系统的基本概念
非线性控制系统
在控制过程中,系统的输入与输出关系是非线 性的。
线性控制系统
在控制过程中,系统的输入与输出关系是线性 的。
非线性系统的特点
非线性系统具有更高的复杂性和多样性,具有非线性的输入输出关系。
非线性控制系统的数学模型
建立非线性数学模型
通过非线性函数关系描述系统的输入和输出 关系。
常见的非线性函数
饱和非线性、死区非线性、分段非线性等。
非线性模型的参数确定
通过实验和辨识方法确定非线性模型的参数 。
非线性控制系统的稳定性分析
描述系统内部状态变量和外部输 入、输出的关系。
02
线性控制系统的状 态空间表达式
通过状态变量描述系统的内部动 态,包括状态转移矩阵、输入矩 阵和输出矩阵。
03
线性控制系统的标 准型
通过坐标变换将状态空间表达式 转换为标准型,便于分析和设计 。
线性控制系统的稳定性分析
稳定性的定义:如果系统受 到扰动后能够回到原始状态
随着新能源技术的不断发展,现代控制理论在风能、太阳 能等新能源领域的应用将更加广泛。例如,实现高效稳定 的能源管理,提高能源利用效率。
医疗健康领域
现代控制理论在医疗健康领域的应用将有助于实现精准医 疗和个性化治疗。例如,通过智能化的医疗设备和技术, 实现精准的诊断和治疗。
THANKS
感谢观看
性能指标
衡量系统性能优劣的标准,如控制误差、过渡过程时 间等。
线性控制系统的稳定性条件 :通过分析系统的特征根来 判断,要求特征根均在复平
面的左半平面。
线性控制系统的稳定性分析 方法:包括劳斯判据、赫尔 维茨判据等。
04
非线性控制系统
非线性控制系统的基本概念
非线性控制系统
在控制过程中,系统的输入与输出关系是非线 性的。
线性控制系统
在控制过程中,系统的输入与输出关系是线性 的。
非线性系统的特点
非线性系统具有更高的复杂性和多样性,具有非线性的输入输出关系。
非线性控制系统的数学模型
建立非线性数学模型
通过非线性函数关系描述系统的输入和输出 关系。
常见的非线性函数
饱和非线性、死区非线性、分段非线性等。
非线性模型的参数确定
通过实验和辨识方法确定非线性模型的参数 。
非线性控制系统的稳定性分析
描述系统内部状态变量和外部输 入、输出的关系。
02
线性控制系统的状 态空间表达式
通过状态变量描述系统的内部动 态,包括状态转移矩阵、输入矩 阵和输出矩阵。
03
线性控制系统的标 准型
通过坐标变换将状态空间表达式 转换为标准型,便于分析和设计 。
线性控制系统的稳定性分析
稳定性的定义:如果系统受 到扰动后能够回到原始状态
随着新能源技术的不断发展,现代控制理论在风能、太阳 能等新能源领域的应用将更加广泛。例如,实现高效稳定 的能源管理,提高能源利用效率。
医疗健康领域
现代控制理论在医疗健康领域的应用将有助于实现精准医 疗和个性化治疗。例如,通过智能化的医疗设备和技术, 实现精准的诊断和治疗。
THANKS
感谢观看
性能指标
衡量系统性能优劣的标准,如控制误差、过渡过程时 间等。
现代控制理论 刘豹 课件
( sI − A) −1 ?
( sI − A) −1 =
⎡s −1 2 ⎤ 1 ⎥ s − 2s + 5 ⎢ ⎣ −2 s − 1⎦
2
本课程常用符号说明
小写细体字母 标量、时间、复变量
本章小结
a, b, x, y, r (t ), c(t ), t , s
小写粗体字母 大写粗体字母 大写细体字母 向量 a,b,u, x, y,r(t),c(t) 矩阵 A, B,C 拉式变换符号、系统符号
求解 转换
串联 滞后 反馈 前馈 复合
可观性 稳定性
分析
状态反馈
现代 y = Cx + Du
⎡ 1 2⎤ ⎡1 ⎤ A=⎢ , B = ⎢ ⎥ , C = [1 1], D = 0 ⎥ ⎣ −2 1 ⎦ ⎣0⎦
= Ax + Bu x
稳 快
设计
状态观测器
经典控制理论 vs 现代控制理论
时间 研究对象 研究内容 1950年以前 单输入单输出SISO 外部描述 传递函数 时域法、频域法、 根轨迹法 拉普拉斯变换 1950年以后 多输入多输出MIMO 内部描述 状态空间表达式 状态空间法 线性代数矩阵
楼旭阳
江南大学 物联网工程学院
第五章 第六章 第七章
第一章
绪论
自动控制的发展史
前期控制(公元前300-1900) 经典控制(1900-1950) 现代控制(1950-Now)
大系统理论、智能控制理论、复杂系统等(20世纪60年代至今)
第一章
绪论
§1 自动控制的发展史 §2 经典控制理论 vs 现代控制理论 §3 数学准备
内容提纲
现代控制理论
Modern Control Theory
西工大-现代控制理论课件
其状态变量的选取方法与之含单实极点时相同,可分别得出向量-矩阵形式的动态方程:
其对应的状态变量图如图(a),(b)所示。上面两式也存在对偶关系。
约当型动态方程状态变量图
西北工业大学自动化学院
*
控制系统的状态空间分析与综合
现代控制理论
202X年12月20日
引 论
经典控制理论: 数学模型:线性定常高阶微分方程和传递函数; 分析方法: 时域法(低阶1~3阶) 根轨迹法 频域法 适应领域:单输入-单输出(SISO)线性定常系统 缺 点:只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态。 现代控制理论: 数学模型:以一阶微分方程组成差分方程组表示的动态方程 分析方法:精准的时域分析法 适应领域:(1)多输入-多输出系统(MIMO、SISO、MISO、SIMO) (2)非线性系统 (3)时变系统 优越性:(1)能描述系统内部的运行状态 (2)便于考虑初始条件(与传递函数比较) (3)适用于多变量、非线性、时变等复杂大型控制系统 (4)便于计算机分析与计算 (5)便于性能的最优化设计与控制 内容:线性系统理论、最优控制、最优估计、系统辨识、自适应控制
已知:
为书写方便,常把连续系统和离散系统分别简记为S(A,B,C,D)和S(G,H,C,D)。
线性系统的结构图 :线性系统的动态方程常用结构图表示。
图中,I为( )单位矩阵,s是拉普拉斯算子,z为单位延时算子。
讨论: 1、状态变量的独立性。 2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是唯一的,与状态变量的选取方法无关。 3、动态方程对于系统的描述是充分的和完整的,即系统中的任何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入电压和输入电流,y为输出电压,xi为电容器电压或电感器电流。
现代控制理论课件
y2
up
yq
被控过程
12
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
13
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
8
❖ 经典控制理论:
引论
数学模型:线性定常高阶微分方程和传递函数;
分析方法: 时域法(低阶1~3阶)
根轨迹法 频域法
近似分析
适应领域:单输入-单输出(SISO)线性定常系统
缺 点:只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态。
❖ 现代控制理论:
数学模型:以一阶微分方程组成差分方程组表示的动态方程
6
❖ 现代控制理论的基本内容 ❖ 科学在发展,控制论也在不断发展。所以“现代”两个字加在“控制理
论”前面,其含义会给人误解的。实际上,我们讲的现代控制理论指的 是五六十年代所产生的一些控制理论,主要包括: ❖ 用状态空间法对多输入多输出复杂系统建模,并进一步通过状态方程求 解分析,研究系统的可控性、可观性及其稳定性,分析系统的实现问题; ❖ 用变分法、最大(最小)值原理、动态规划原理等求解系统的最优控制 问题;其中常见的最优控制包括时间最短、能耗最少等等,以及它们的 组合优化问题;相应的有状态调节器、输出调节器、跟踪器等综合设计 问题; ❖ 最优控制往往要求系统的状态反馈控制,但在许多情况下系统的状态是 很难求得的,往往需要一些专门的处理方法,如卡尔曼滤波技术来求得。 这些都是现代控制理论的范畴。 ❖ 六十年代以来,现代控制理论各方面有了很大的发展,而且形成几个重 要的分支课程,如线性系统理论,最优控制理论,自适应控制理论,系 统辩识理论,等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Modern Control Theory
L01
绪论
网络交流
为了配合教与学,更好地掌握《现代控制理论》 知识,交流学习经验,交换学习信息,在网络 上建立了《现代控制理论》社区。社区建在 Yahoo groups 上,社区名称为Modern Control Theory。此社区是针对所开设的课程 建立的,内容与教与学密切相关, 欢迎同学加 入该社区。
绪论
教学目标
应知
用
应会
教学内容
重点 难点 理论联系实际 启发式、讨论式
教学方法
学 习
学时安排:2
Modern Control Theory
L01
绪论
课程介绍
本课程是自动化专业的一门专业基础课,通过 本课程的学习,使学生掌握现代控制理论中最 基本的内容,它不仅是控制理论的基础,而且 是现代网络分析和线性系统理论的基础,进一 步学习有关专业知识及进行工程实践打好必要 的基础。
定义
所谓自动化是指机器或装置在无人干预的情况下按规定 的程序或指令自动的进行操作或运行。广义地讲,自动 化还包括模拟或再现人的智能活动。
DeΒιβλιοθήκη initionThe art of making processes or machines self-acting or self-moving. Also pertains to the technique of making a device, machine, process or procedure more fully automatic.
Fundamental knowledge of automation
Modern Control Theory
L01
绪论
绪论
关于自动化的介绍 Brief Introduction to Automation
狭义自动化和广义自动化
狭义自动化是指工业自动化,自动化也是最早应用于工 业生产领域的。 广义的自动化包括工业自动化、生活自动化、办公自动 化和商务自动化。
Modern Control Theory
L01
绪论
课程内容
绪论 控制系统的状态空间表达式 控制系统状态空间分析 线性控制系统能控性和能观性 控制系统的稳定性分析 线性定常系统的综合 最优控制
Modern Control Theory
L01
绪论
教材及参考书
教材:
《现代控制理论》(第三版),刘豹主编,机械工 业出版社
建议:在Yahoo 上建立帐号 sjzu+校园卡编号,以此账号注册
Modern Control Theory
L01
绪论
网络交流
社区所能提供的:
Lecture notes/slides, Related learning materials, Outline of the general review, Information and news in this course.
Modern Control Theory
L01
绪论
绪论
学习现代控制理论的意义
科学技术的发展不仅需要迅速地发展控制理论,而 且也给现代控制理论的发展准备了两个重要的条 件—现代数学和数字计算机。 现代数学,例如泛函分析、现代代数等,为现代控 制理论提供了多种多样的分析工具;而数字计算机 为现代控制理论发展提供了应用的平台。 在二十世纪五十年代末开始,随着计算机的飞速发 展,推动了核能技术、空间技术的发展,从而对出 现的多输入多输出系统、非线性系统和时变系统。
Modern control theory, William L. Brogan, Ph.D., PRENTICE-HALL, INC. Englewood Cliffs, New Jersey 《现代控制理论》 于长官,哈尔滨工业大学出版社 《现代控制理论基础》,王照林,国防大学出版社
,
参考书:
Modern Control Theory
L01
绪论
绪论
关于自动化的介绍 Brief Introduction to Automation
自动化的理论基础
自动化技术是一门新兴的科学技术,它以控制论、信息 论和系统论为理论基础,以哲学的方法论为研究方法。 Cybernetics Information Theory Systemism
Modern Control Theory
L01
绪论
网络交流
注册方法: 向以下邮件地址发邮件,会得到一封自动回复的 邮件,按邮件提示,进行简单填写,提交,然后 等候批准。获得批准后即可加入社区,参加社区 活动。
ModernControlTheory-subscribe@
Modern Control Theory
沈阳建筑大学 信息与控制工程学院
L01
绪论
课程介绍
学习方法 学习要求 参考文献
Modern Control Theory
L01
绪论
课程结构
控制系统数学 模型
状态空间 分析
能控能观性 分析
稳定性分析
系统综合设计
Modern Control Theory
L01
Modern Control Theory
L01
绪论
绪论
控制理论的发展历程 Progress of Control Theory
经典控制理论 (Classical Control Theory) 现代控制理论 (Modern Control Theory) 智能控制理论 (Intelligent Control Theory) 控制理论发展趋势 (Trend of Development of Control Theory)
Modern Control Theory
L01
绪论
教学要求
参加本课程的同学必须
人手一册教材 出勤听课 记课堂笔记 完成作业
(缺课达到1/3,缺作业达1/4者取消正常考试资格。)
Modern Control Theory
L01
绪论
绪论
本节主要内容
学习现代控制理论的意义 关于自动化的介绍 控制理论的发展历程 现代控制理论研究的对象、方法及内容 现代控制理论与经典控制理论的对比
Modern Control Theory
L01
绪论
绪论
学习现代控制理论的意义
是自动化专业的理论基础 是提高学生专业理论水平的重要环节 是许多专业报考研究生的必考课
Modern Control Theory
L01
绪论
绪论
关于自动化的介绍 Brief Introduction to Automation