Quadprog二次规划问题

Quadprog二次规划问题
Quadprog二次规划问题

Quadprog

什么是二次规划?

如果某非线性规划的目标函数为自变量的二次函数,约束条件全是线性函数,就称这样规划为二次规划。其数学模型为:

??

???≤≤=≤+ub x lb beq x Aeq b Ax t s x f Hx x T T x ·..21min , 式中,H,A,和Aeq 为矩阵 f,b, beq, lb, ub , 和x 为向量。

利用quadprog 函数求解二次规划问题,其调用格式为:

● x=quadprog(H,f,A,b)

这个函数的功能是:用来解最简单,最常用的模型: x f Hx x T T +2

1

Subject to

Ax ≤b

● x=quadprog(H,f,A,b,Aeq,beq) 仍然求解上面的问题,但添加了等式约束条件Aeq*x=beq 。

● x=quadprog(H,f,A,b,lb,ub,)

定义设计变量的下届Ib 和上界ub,使得lb<=x<=ub 。

● x=quadprog(H,f,A,b,lb,ub,x0)

同上,并设置初值x0。

● x=quadprog(H,f,A,b,lb,ub,x0,options)

根据options 参数指定的优化参数进行最小化。

● [x,fvaI]=quadprog(H,f,A,b)

这个函数的功能是,返回解x 处的目标函数值fval=x f Hx x T

T +2

1

● [x,fvaI,exitfIag]=quadprog(H,f,A,b)

返回exitfIag 参数,描述计算的退出条件。 ● [x,fvai,exitfIag,output]=quadprog(H,f,A,b)

返回包含优化信息的结构输出output,其中包括:迭代次数,使用的算法,共轭梯度迭代的使用次数等信息。

● [x,fvaI,exitfIag,output,Iambda]=quadprog(H,f,A,b)

返回解x 处包含拉格朗日乘子的lambda 参数。其中,LAMBDA.ineqlin 对应于线性不等式,LAMBDA.eqlin 对应于线性等式约束。

实例:

在命令窗口输入如下参数:(参数行的结尾一定要加上;以后才能换行)

>> H=[2 -2;-2 4];

>> f=[-2 -6];

>> A=[1 1;-1 2];

>> b=[2;2];

>> lb=zeros(2,1);

然后,调用工具箱函数quadprog求解

>> [x,fval,exitflag,output,lambda]=quadprog (H,f,A,b,[],[],lb)

Warning: Large-scale algorithm does not currently solve this problem formulation, using medium-scale algorithm instead.

> In quadprog at 291

Optimization terminated.

x =

0.8000

1.2000

fval =

-7.2000

exitflag =

1

output =

iterations: 2

constrviolation: 0

algorithm: 'medium-scale: active-set'

firstorderopt: []

cgiterations: []

message: 'Optimization terminated.'

lambda =

lower: [2x1 double]

upper: [2x1 double]

eqlin: [0x1 double]

ineqlin: [2x1 double]

输出中的warning说明 quadprog是采用的中型算法解决此问题的。

在默认情况下,如果制定了如下两种约束中的任意一种,quadprog采用大型算法(1)自变量的上届和下界约束;

(2)线性方程约束,约束矩阵Aep的列向量线性无关,且Aep是稀疏矩阵。

二次规划问题

序列二次规划法 求解一般线性优化问题: 12min (x) h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m } i i f g I =∈=?? ≥∈=? (1.1) 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。 1.1等式约束优化问题的Lagrange-Newton 法 考虑等式约束优化问题 min (x) s.t.h (x)0,E {1,...,m} j f j =∈= (1.2) 其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =. 则(1.3)的Lagrange 函数为: 1(,)()*()()*()m T i i i L x u f x u h x f x u h x ==-=-∑ (1.3) 其中12(,,...,)T m u u u u =为拉格朗日乘子向量。 约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =?=??. 对(1.3)求导数,可以得到下列方程组: (,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ??? ???-?===?????-???? (1.4) 现在考虑用牛顿法求解非线性方程(1.4). (,)L x u ?的Jacobi 矩阵为: (,)()(,)() 0T W x u A x N x u A x ?? -= ?-??

基于序列二次规划算法的再入轨迹优化研究

航 天 控 制Aer os pace Contr ol Dec 12009Vol 127,No .6 基于序列二次规划算法的再入轨迹优化研究 3 郑总准1  吴  浩2  王永骥 1 1.华中科技大学控制科学与工程系,武汉430074 2.北京航天自动控制研究所,北京100854 摘 要 介绍了序列二次规划算法在飞行器再入轨迹优化问题中的应用。首先 引入了能量替代变量对无量纲运动方程进行推导,使得运动方程和优化问题易于处理,考虑严格的过程约束和终端约束,以攻角和倾侧角为控制变量,总加热量最小为性能指标;然后通过直接配点法将最优控制问题转化为非线性规划问题,选取各节点的状态量和控制量作为优化参数;最后应用序列二次规划算法对非线性规划问题进行求解。针对多约束的再入飞行器的轨迹优化时对初值敏感的问题,提出一种参考轨迹快速规划算法,提高了优化速度。仿真结果表明提出的方法能够较快地搜索到最优轨迹,满足所有约束且落点精度高。关键词 轨迹优化;非线性规划;配点法;序列二次优化;参考轨迹中图分类号:V412 文献标识码:A 文章编号:100623242(2009)0620008206 3国家自然科学基金(60674105);教育部科研培育项目(20081383)和航天支撑基金(2008)资助 收稿日期:2008212212 作者简介:郑总准(1983-),男,福建福州人,博士研究生,研究方向为飞行器轨迹优化、制导与控制;吴 浩(1980-),男,湖北武汉人,博士,研究方向为飞行器制导与控制;王永骥(1955-),男,江西吉安人,教授,博士生导师,研究方向为网络控制、飞行器制导与控制。 Reen try Tra jectory O pti m i za ti on Usi n g Sequen ti a l Quadra ti c Programm i n g Z HE NG Z ongzhun 1  WU Hao 2  WANG Yongji 1 1.Huazhong University of Science and Technol ogy,W uhan 430074,China 2.Beijing Aer os pace Aut omati on Contr ol I nstitute,Beijing 100854,China Abstract Sequen tial quadratic programm ing for trajectory opti m iza tion of reentry vehicle is proposed . F irstly,Equations of m otion a re nor m a lized and an independen t variable is introduced to reduce the difficul 2ty of iterative co m putation .W ith the angle of a ttack and the bank ang le as control variables,the opti m al control proble m is set to m ini m ize hea t index,considering strict process and ter m inal constraints .A nd then,by choosing states and controls of discrete nodes as param eters,the opti m al control proble m is transfor m ed into a nonlinear programm ing proble m using direct colloca tion m ethod .F inally,sequential quadratic pro 2gramm ing is presented for solving the non linea r programm ing proble m.A ccord ing to the sensitivity to initial value in trajectory opti m ization for reen try vehicles w ith m ulti 2constraint,this paper develops a rapid refer 2ence trajectory prog ramm ing strategy .S i m ulation results sho w that the opti m al trajectory can consistently a 2chieve the desired target conditions w ithin allo w able tolerances and satisfy all the other constraints effectively . Key words Tra jectory opti m ization;N onlinear prog ramm ing;D irect colloca tion m ethod;Sequential ? 8?

求解二次规划问题

实验2 求解二次规划问题 LINDO 可以求解二次规划(QP )问题。例如: ?? ? ??<=+>++-+=7.011.19.02.1..4.03min 22y y x y x t s y xy y x f 由LAGRANGE 乘子法,得 ()()()7.011.19.02.14.0322-+-++-+-+-+y C y x B y x A y xy y x , 分别对x 、y 求偏导,得到两个约束条件: 4 .09.020 2.16->++-->+--C B A x y B A y x 在LINDO 中输入下列命令: MIN X+Y+A+B+C ST 6X-Y-1.2A+B>0 2Y-X-0.9A+B+C>-0.4 1.2X+0.9Y>1.1 X+Y=1 Y<0.7 END QCP 4 注释:MIN X+Y+A+B+C 一句只代表变量的出场顺序; QCP 4 一句代表前4行不是原问题真正的约束,原问题真正的约束从第5行开始。 LINDO 运行后输出以下结果:STATUS OPTIMAL QP OPTIMUM FOUND AT STEP 7 OBJECTIVE FUNCTION V ALUE 1) 1.355556 V ARIABLE V ALUE REDUCED COST X 0.666667 0.000000 Y 0.333333 0.000000

A 10.888889 0.000000 B 9.400000 0.000000 C 0.000000 0.366667 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 -0.666667 3) 0.000000 -0.333333 4) 0.000000 -10.888889 5) 0.000000 9.400000 6) 0.366667 0.000000 NO. ITERATIONS= 7 这个结果说明:LINDO求解此二次规划问题(QP)共用7步迭代得到最优解fmin = 1.355556,X = 0.666667,Y = 0.333333。第5个松弛变量取值0.366667,其它松弛变量都取0值,即,这个最优解使得前4个约束条件都取等号;其对偶问题的最优解(影子价格)DUAL PRICES为Y1 = -0.666667,Y2 = -0.333333,Y3 = -10.888889,Y4 = 9.4,Y5 = 0。 农户生产的优化模型 本文内容取自生产实践,豫东一个普通农户,该农户所在地区的农业生产条件、气候状况属于中等。下列各变量的假设均建立在农村一般农业生产条件、气候状况之上。 假设(面积单位:亩): X1 = 用于完成上缴国家任务的小麦一年总种植面积 X2 = 用于生产、生活的小麦一年总种植面积 X3 =用于生产、生活的油菜一年总种植面积 X4 =用于生产、生活的红薯一年总种植面积 X5 =用于完成上缴国家任务的棉花一年总种植面积 X6 =用于生产、生活的棉花一年总种植面积 X7 =用于完成上缴国家任务的玉米一年总种植面积 X8 =用于生产、生活的玉米一年总种植面积 X9 =用于生产、生活的芝麻一年总种植面积 X10 =用于生产、生活的花生一年总种植面积 X11 =用于生产、生活的大豆一年总种植面积 X12 =用于生产、生活的西瓜一年总种植面积 X13 =用于生产、生活的番茄一年总种植面积 X14 =用于生产、生活的白菜一年总种植面积 X15 =用于生产、生活的辣椒一年总种植面积 X16 =用于生产、生活的茄子一年总种植面积

二次规划起作用集方法

《非线性规划》课程设计 题目:二次规划起作用集方法院系:数理学院应用数学系 专业:数学与应用数学 姓名学号:119084112 数112 指导教师: 日期:2014年6月19日

摘要 二次规划(QP)是指目标函数为决策变量x的二次函数,而约束函数是线性函数的非线性规划.二次规划规划问题是最简单的一类非线性约束优化问题,并且某些非线性规划可以转化为求解一系列二次规划问题,因此二次规划的求解方法也是求解非线性规划的基础之一. 关键词:二次规划;起作用集;乘子向量 Abstract Quadratic programming (QP) refers to the objective function for the quadratic function of the decision variables x, and the constraint function is a linear function of nonlinear programming, quadratic programming problem is the simplest nonlinear constraint optimization problems, and some nonlinear programming can be transformed into solving a series of quadratic programming problem, so the solving methods of quadratic programming is also one of the basis of solving nonlinear programming. Keywords: Quadratic programming; Work set; Multiplier vector

二次规划问题

9.2.4 二次规划问题 9.2.4.1 基本数学原理 如果某非线性规划的目标函数为自变量的二次函数,约束条件全是线性函数,就称这种规划为二次规划。其数学模型为: 其中,H, A,和Aeq为矩阵,f, b, beq, lb, ub,和x为向量。 9.2.4.2 相关函数介绍 quadprog函数 功能:求解二次规划问题。 语法: x = quadprog(H,f,A,b) x = quadprog(H,f,A,b,Aeq,beq,lb,ub) x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval] = quadprog(...) [x,fval,exitflag] = quadprog(...) [x,fval,exitflag,output] = quadprog(...) [x,fval,exitflag,output,lambda] = quadprog(...) 描述: x = quadprog(H,f,A,b) 返回向量x,最小化函数1/2*x'*H*x + f'*x , 其约束条件为A*x <= b。 x = quadprog(H,f,A,b,Aeq,beq)仍然求解上面的问题,但添加了等式约束条件 Aeq*x = beq。 x = quadprog(H,f,A,b,lb,ub)定义设计变量的下界lb和上界ub,使得lb <= x <= ub。 x = quadprog(H,f,A,b,lb,ub,x0)同上,并设置初值x0。 x = quadprog(H,f,A,b,lb,ub,x0,options)根据options参数指定的优化参数进行最小 化。 [x,fval] = quadprog(...)返回解x处的目标函数值fval = 0.5*x'*H*x + f'*x。 [x,fval,exitflag] = quadprog(...)返回exitflag参数,描述计算的退出条件。 [x,fval,exitflag,output] = quadprog(...)返回包含优化信息的结构输出output。 [x,fval,exitflag,output,lambda] = quadprog(...)返回解x处包含拉格朗日乘子的 lambda参数。 变量: 各变量的意义同前。

数学建模线性规划

线性规划 1.简介: 线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。 (x)都是线性函数,则该模型称为在优化模型中,如果目标函数f(x)和约束条件中的g i 线性规划。 2.线性规划的3个基本要素 (1)决策变量 (2)目标函数f(x) (x)≤0称为约束条件) (3)约束条件(g i 3.建立线性规划的模型 (1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。 (2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。

(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。 生产计划问题 某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表 试拟订生产计划,使该厂获得利润最大 解答:根据解题的三个基本步骤 (1)找出未知变量,用符号表示: 设甲乙两种产品的生产量分别为x 1与x 2 吨,利润为z万元。 (2)确定约束条件: 在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制 钢材:9x 1+5 x 2 ≤360, 电力:4x 1+5 x 2 ≤200, 工作日:3x 1+10 x 2 ≤300, x 1≥0 ,x 2 ≥0, (3)确定目标函数: Z=7x 1+12 x 2

求解二次规划问题的拉格朗日及有效集方法

求解二次规划问题的拉格朗日及有效集方法 ——最优化方法课程实验报告 学院:数学与统计学院 班级:硕2041班 姓名:王彭 学号:3112054028 指导教师:阮小娥 同组人:钱东东

求解二次规划问题的拉格朗日及有效集方法 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形,它的目标函数是二次实函数,约束函数都是线性函数。由于二次规划比较简单,便于求解(仅次于线性规划),并且一些非线性优化问题可以转化为求解一些列的二次规划问题,因此二次规划的求解方法较早引起人们的重视,称为求解非线性优化的一个重要途径。二次规划的算法较多,本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字:二次规划,拉格朗日方法,有效集方法。 - 1 -

《最优化方法》课程实验报告 - 2 - 【目录】 摘要........................................................................................................................... - 1 -1 等式约束凸二次规划的解法............................................................................... - 3 - 1.1 问题描述.................................................................................................... - 3 - 1.2 拉格朗日方法求解等式约束二次规划问题............................................ - 3 - 1.2.1 拉格朗日方法的推导...................................................................... - 3 - 1.2.2 拉格朗日方法的应用...................................................................... - 4 - 2 一般凸二次规划问题的解法............................................................................... - 5 - 2.1 问题描述.................................................................................................... - 5 - 2.2 有效集法求解一般凸二次规划问题........................................................ - 6 - 2.2.1 有效集方法的理论推导.................................................................. - 6 - 2.2.2 有效集方法的算法步骤.................................................................. - 9 - 2.2.3 有效集方法的应用........................................................................ - 10 - 3 总结与体会......................................................................................................... - 11 - 4 附录..................................................................................................................... - 11 - 4.1 拉格朗日方法的matlab程序................................................................. - 11 - 4.2 有效集方法的Matlab程序 .................................................................... - 11 -

基于序列二次规划算法的发动机性能寻优控制

收稿日期:2004-10-24;修订日期:2005-03-07基金项目:航空科学基金资助(04C 52019) 作者简介:孙丰诚(1979-) 男 山东泰安人 南京航空航天大学能源与动力学院博士 主要从事发动机数字控制方面研究. 第20卷第5期2005年10月 航空动力学报 Journal of Aerospace Power Vol.20No.5 : :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::Oct.2005 文章编号:1000-8055(2005)05-0862-06 基于序列二次规划算法的发动机 性能寻优控制 孙丰诚 孙健国 (南京航空航天大学能源与动力学院 江苏南京210016) 摘要:提出用非线性序列二次规划(SOP Seguential Ouadratic Programming )算法解决发动机性能寻优控制问题,分析了线性规划(LP Linear Programming )算法用于发动机性能寻优的固有缺陷以及SOP 算法的优点,给出了SOP 算法与LP 算法用于最大推力模式和最小油耗模式仿真结果对比曲线,数字仿真实验的结果表明 SOP 算法具有比LP 算法更好的优化效果 在工程实际中有很大的应用潜力,关 键 词:航空~航天推进系统;序列二次规划;线性规划;涡扇发动机;性能优化;最大推力模式; 最小油耗模式 中图分类号:V 231 文献标识码:A Aero -Engine Perf ormance Seeking control Based on Seguential Ouadratic Programming Algorithm SUN Feng -cheng SUN Jian -guo (College of energy and Power engineering Nanjing University of Aeronautics and Astronautics Beijing 210016 China )Abstract :A methodology based on the nonlinear algorithm of Seguential Ouadratic Programming (SOP )in aero -engine performance seeking control was presented .This article is aimed at analyzing the inherent limitation of Linear Programming used for aero -engine performance seeking control and to solve the problem of aero -engine performance optimization using nonlinear SOP method .The results of numerical simulations of maximum thrust mode and minimum fuel consumption mode using SOP and LP respectively show that SOP algorithm has better optimization result than LP algorithm .SOP algorithm has great application potential in engineering . Ke !words :aerospace propulsion system ; Seguential Ouadratic Programming (SOP )algorithm ;Linear Programming (LP )algorithm ;turbofan engine ;performance optimization ;maximum thrust mode ;minimum fuel consumption mode 推进系统性能优化是飞"推综合控制#1$ 研究 中非常重要的一个方面 系统性能优化可以在保 证发动机安全稳定工作的同时 最大限度地提高发动机的工作潜力,在不同飞行任务段 有不同的

数学建模(工厂资源规划问题)

工厂资源规划问题 冉光明 29 信息与计算科学 指导老师:赵姣珍

目录 摘要 (1) 关键词 (1) 问题的提出 (2) 问题重述与分析 (3) 符号说明 (4) 模型假设 (4) 模型建立与求解 (5) 模型检验 (9) 模型推广 (10) 参考文献 (11) 附录 (12)

摘要:本问题是个优化问题。问题首先选择合适的决策变量即各种产品数,然后通过决策变量来表达约束条件和目标函数,再利用或编写程序,求得最优产品品种计划;最后通过优化模型对问题作以解释,得出当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时,得到的是最优品种规划。 问题一回答:当技术服务消耗33小时、劳动力消耗67小时、不消耗行政管理时, 产品不值得生产。用运算分析,当产品的利润增加至25 3 时,若使产品品种计划最优, 此时需要消耗技术服务29h,劳动力消耗46h,行政管理消耗25h。 问题二回答:利用得到当技术服务增加1h时,利润增加2.5元;劳动力增加1h,利润增加1元;行政管理的增减不会影响利润。 问题三回答:增加的决策变量,调整目标函数。当技术服务消耗33h,劳动力消耗17h,不消耗行政管理,新增量50h时,管理部门采取这样的决策得到最优的产品品种规划。 问题四回答:增加新的约束条件,此时当技术服务消耗32h,劳动力消耗58h,行政管理消耗10h时,得到最优产品品种规划。 本文对模型的求解给出在线性约束条件下的获利最多的产品品种规划。 关键词:线性规划;优化模型;最优品种规划

问题的提出 某工厂制造三种产品,生产这三种产品需要三种资源:技术服务、劳动力和行政管理。下表列出了三种单位产品对每种资源的需要量: 现有100h的技术服务、600h劳动力和300h的行政管理时间可使用,求最优产品品种规划。且回答下列问题: ⑴若产品值得生产的话,它的利润是多少?假使将产品的利润增加至25/3元,求获利最多的产品品种规划。 ⑵确定全部资源的影子价格。 ⑶制造部门提出建议,要生产一种新产品,该种产品需要技术服务1h、劳动力4h 和行政管理4h。销售部门预测这种产品售出时有8元的单位利润。管理部门应有怎样的决策? ⑷假定该工厂至少生产10件产品,试确定最优产品品种规划。

数学建模-线性规划

-1- 第一章线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济 效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947 年G. B. Dantzig 提出 求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性 规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000 元与3000 元。 生产甲机床需用A、B机器加工,加工时间分别为每台2 小时和1 小时;生产乙机床 需用A、B、C三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时 数分别为A 机器10 小时、B 机器8 小时和C 机器7 小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1 x 台甲机床和2 x 乙机床时总利润最大,则1 2 x , x 应满足 (目标函数)1 2 max z = 4x + 3x (1) s.t.(约束条件) ?? ? ?? ? ? ≥ ≤ + ≤ + ≤ , 0 7 8 2 10 1 2 2 1 2 1 2 x x x x x x x (2) 这里变量1 2 x , x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性

0-1二次规划的全局最优性条件及算法

0-1二次规划的全局最优性条件及算法 全局优化问题广泛见于工程、国防、经济等诸多重要领域,是数学规划理论的一个重要研究领域。本文首先讨论一类特殊结构的全局优化问题:二次规划的全局优化问题。我们给出了0-1二次规划的全局最优性条件,并讨论了其相应的算法。 然后,对于一般结构的全局优化问题,我们给出了一个新的无参数的填充函数方法。本论文的第一章介绍全局优化理论的一些研究成果。第二章讨论无约束0-1二次规划的全局最优性条件。 在第二节得到一个充分条件和一个必要条件的基础上,我们希望能够得到一些充要条件。为此,我们首先在第三节中给出在线性约束条件下,(?)成为一个凸的二次函数的全局极大点的充分必要条件。从这个结论出发,在第四节,我们得到了无约束0-1二次问题全局最优的充分必要条件及其等价形式。 在第五节,我们将注意力放在全局最优的必要条件上。我们得到的必要条件都不含对偶变量,仅用到原问题的数据。这样,这些条件在实际中都是可以被检验的。 进一步,为了使必要条件在实际中易被检验、易操作,我们降低了必要条件中的维数,在比原问题维数更低的空间中,给出一些简洁的必要条件,以达到方便检验的目的。在第三章,我们进一步研究有约束的0-1二次规划的全局最优条件。对于带有线性不等式约束的0-1二次问题,我们在第一节中得到了它全局最优的充分条件和必要条件。 必要条件也不含对偶变量。当系数矩阵正定时,我们建立了原0-1问题的解与松弛问题的解之间的联系。对于带有线性等式约束的0-1二次问题,我们在第

二节证明了一个带有线性等式约束的0-1二次规划问题,它的全局最优解集和其相应的罚问题的全局最优解集是相等的。 这样,带有线性等式约束的0-1二次问题的解,可以通过无约束0-1二次规划问题的解得到。第三章的另一个内容是讨论0-1二次规划问题的实际应用。将我们得到的一些结论运用于极大团问题和二次分派问题,我们得出了一些相关的结论。 将全局最优条件发展成为可实现的算法,是全局优化研究中的重要的工作。本文的第四章讨论无约束0-1二次规划问题的算法。首先我们将原0-1问题化为一个等价的半正定的0-1二次问题。 在得到这个半正定二次问题的松弛解x之后,取与x“最接近的”0-1解y,在一定的条件之下,y就是原0-1问题的全局最优解。由于松弛后的问题是凸的二次规划问题,可以在多项式时间内求解,所以,我们的算法是可实现的。为了确定y是否是原问题的最优解,我们设计了三种算法。 在研究了第二章所给。

数学建模之规划问答

一、线性规划 1.简介 1.1适用情况 用现有资源来安排生产,以取得最大经济效益的问题。如: (1)资源的合理利用 (2)投资的风险与利用问题 (3)合理下料问题 (4)合理配料问题 (5)运 输 问 题 (6)作物布局问题 (7)多周期生产平滑模型 (8)公交车调度安排 1.2建立线性规划的条件 (1)要求解问题的目标函数能用数值指标来反映,且为线性函数; (2)要求达到的目标是在一定条件下实现的,这些约束可用线性等式或不等式描述。 1.3线性规划模型的构成 决策变量、目标函数、约束条件。 2、一般线性规划问题 数学标准形式: 目标函数: 1 max == ∑ n j j j z c x 约束条件:1 ,1,2,...,,..0,1,2,...,.=?==???≥=?∑n ij j i j j a x b i m s t x j n matlab 标准形式:

min , ,.,.?≤?? ?=??≤≤? T s t Aeq beq lb ub f x A x b x x 3、可以转化为线性规划的问题 例:求解下列数学规划问题 1234123412341234min ||2||3||4||,2,..31,123. 2=+++? ?--+≤-?-+-≤-???--+≤-? z x x x x x x x x s t x x x x x x x x 解:作変量変换1||||,,1,2,3,4,22 +-= ==i i i i i x x x x u v i 并把新变量重新排序成一维变量[]1414,,,,,??==???? L L T u y u u v v v ,则可把模型转化为线性规划模型 []min , ,,..0.???-≤???????≥? T c y u A A b s t v y 其中:[]1,2,3,4,1,2,3,4;=T c 12,1,;2??=---??? ?T b 111111131 - - ?? ??= - -???? -1 -1 3??A 。 利用matlab 计算得最优解:12342,0,=-===x x x x 最优值z=2。 程序如下: 略

二次规划解法

2、对于二次规划模型求解: 问题1: 先求出ij c ,结果如下表: 330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302 370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162 由于二次规划模型中约束条件151 {0}[500,],1,2,7,ij i j X s i =∈=∑的存 在,必须加以处理。引进0-1变量15,...2,1,=i n i ,则 151{0}[500,],1,2,7,ij i j X s i =∈=∑可以等价转换为下面的三个约束条件: i j ij s X ≤∑=151 i j ij Mn X ≤∑=151 i j ij n X *500151≥∑= 其中M 为一个很大数。 这样就可以得到下面的lingo 程序: sets : s/1..7/:sx; a/1..15/:z,y,n,t; links(s,a):c,x; endsets

数学建模常见问题

1 预测模块:灰色预测、时间序列预测、神经网络预测、曲线拟合(线性回归); 2 归类判别:欧氏距离判别、fisher判别等; 3 图论:最短路径求法; 4 最优化:列方程组用lindo 或lingo软件解; 5 其他方法:层次分析法马尔可夫链主成分析法等; 6 用到软件:matlab lindo (lingo)excel ; 7 比赛前写几篇数模论文。 这是每年参赛的赛提以及获奖作品的解法,你自己估量着吧…… 赛题解法 93A非线性交调的频率设计拟合、规划 93B足球队排名图论、层次分析、整数规划 94A逢山开路图论、插值、动态规划 94B锁具装箱问题图论、组合数学 95A飞行管理问题非线性规划、线性规划 95B天车与冶炼炉的作业调度动态规划、排队论、图论 96A最优捕鱼策略微分方程、优化 96B节水洗衣机非线性规划 97A零件的参数设计非线性规划 97B截断切割的最优排列随机模拟、图论 98A一类投资组合问题多目标优化、非线性规划 98B灾情巡视的最佳路线图论、组合优化 99A自动化车床管理随机优化、计算机模拟 99B钻井布局0-1规划、图论 00A DNA序列分类模式识别、Fisher判别、人工神经网络 00B钢管订购和运输组合优化、运输问题 01A血管三维重建曲线拟合、曲面重建 01B 工交车调度问题多目标规划 02A车灯线光源的优化非线性规划 02B彩票问题单目标决策 03A SARS的传播微分方程、差分方程 03B 露天矿生产的车辆安排整数规划、运输问题 04A奥运会临时超市网点设计统计分析、数据处理、优化 04B电力市场的输电阻塞管理数据拟合、优化 05A长江水质的评价和预测预测评价、数据处理 05B DVD在线租赁随机规划、整数规划

数学建模课程设计——优化问题

在手机普遍流行的今天,建设基站的问题分析对于运营商来说很有必要。本文针对现有的条件和题目的要求进行讨论。在建设此模型中,核心运用到了0-1整数规划模型,且运用lingo 软件求解。 对于问题一: 我们引入0-1变量,建立目标函数:覆盖人口最大数=所有被覆盖的社区人口之和,即max=15 1j j j p y =∑,根据题目要求建立约束条件,并用数学软件LINGO 对其模型求解,得到最优解。 对于问题二: 同样运用0-1整数规划模型,建立目标函数时,此处假设每个用户的正常资费相同,所以68%可以用减少人口来求最优值,故问题二的目标函数为:max=∑=15 1j j j k p 上述模型得到最优解结果如下: 关键字:基站; 0-1整数规划;lingo 软件

1 问题的重述.........................3 2 问题的分析.........................4 3 模型的假设与符号的说明...................5 3.1模型的假设...................... 5 3.2符号的说明...................... 5 4 模型的建立及求解...................... 5 4.1模型的建立...................... 5 4.2 模型的求解...................... 6 5 模型结果的分析.......................7 6 优化方向..........................7 7 参考文献..........................8 8、附录........................... 9

数学建模之线性规划

第一章 线性规划 §1 线性规划 在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。自从1947年G. B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。 1.1 线性规划的实例与定义 例1某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大? 上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则2 1,x x 应满足 (目标函数)2134m ax x x z += (1) s.t.(约束条件)???????≥≤≤+≤+0 ,781022122 121x x x x x x x (2) 这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式 是问题的约束条件,记为s.t.(即subject to)。由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。 总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。 在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。而选适当的决策变量,是我们建立有效模型的关键之一。 1.2 线性规划的Matlab 标准形式 线性规划的目标函数可以是求最大值,也可以是求最小值,约束条件的不等号可以是小于号也可以是大于号。为了避免这种形式多样性带来的不便,Matlab 中规定线性规划的标准形式为 b Ax x c x T ≤ that such min beq x Aeq =? ub x lb ≤≤ 其中c 和x 为n 维列向量,A 、Aeq 为适当维数的矩阵,b 、beq 为适当维数的列向 量。 例如线性规划 b Ax x c x T ≥ that such max

改进求解凸二次规划中的Lemke算法.

改进求解凸二次规划中的Lemke 算法 张璐 辽宁工程技术大学理学院,辽宁阜新(123000 E-mail:zhanglu85517@https://www.360docs.net/doc/8517077707.html, 摘要:通过对经典的Lemke 互补转轴算法求解凸二次规划问题的分析,找到了Lemke 算法的局限性。本文在Lemke 算法求解线性互补问题的基础上修正了经典的Lemke 算法的迭代过程,提出了一种改进的Lemke 算法,通过算例证明了算法能有效克服解的局限性,减少了凸二次规划问题的迭代过程,提高了算法的效率。 关键词:非线性规划;凸二次规划;线性互补问题;Lemke 算法 1.引言 二次规划问题是最简单而又最基本的非线性规划问题,其目标函数是二次函数,约束是线性等式或不等式。对于二次规划问题,可行域是凸集,所以当目标函数是凸函数时,任何K-T 点都是二次规划问题的极小点。研究二次规划问题的算法不仅仅是为了解决二次规划问题本身,同时也是为了更好的求解其他非线性规划问题。因为大多数最优化方法是从二次函数模型导出的,这种类型的方法在实际中常常是有效的,其主要是因为一般函数的极小点附近常可用二次函数很好地进行近似。由于二次规划是特殊的非线性规划,因此求解非线性规划问题的方法均可用于二次规划问题的求解。同时,由于二次规划本身的特殊性,对它的求解可以采用一些更有效的方法[1]。因此,不论从数学角度还是应用角度来看,二次规划问题的研究都具有重要意义。到目前为止,已经出现了很多求解二次规划问题的算法,并且现在仍有很多学者在从事这方面的研究工作。所以,需要我们对现存的有效的求解二次规划问题的算法进行改进,得到新的求解算法来克服某些算法的缺点,并且给出具体的实例显示该算法的有效性。本文主要研究凸二次规划的求解算法,以及线性互补问题的性质等相关问题。对Lemke 算法进行进一步研究,对它可能出现退化的原因和迭代过程以及局限性进一步分析。本文通过分析经典的Lemke 互补转轴算法求解含有等式

相关文档
最新文档