鲁教版数学八年级上册单元测试题
鲁教版(五四学制)八年级数学上册《第二章分式与分式方程》单元检测卷(附答案)
![鲁教版(五四学制)八年级数学上册《第二章分式与分式方程》单元检测卷(附答案)](https://img.taocdn.com/s3/m/b1d5b177e3bd960590c69ec3d5bbfd0a7956d5c5.png)
鲁教版(五四学制)八年级数学上册《第二章分式与分式方程》单元检测卷(附答案)1.写出一个x取任意实数时,一定有意义的分式:.2.若分式|x|−3x−3的值为零,则x=.3.若分式5x+3x2+1的值为负数,则x的取值范围.4.若使分式42m−1的值是整数,则所有符合条件的整数m的和为.5.计算:xx+y ÷x2x2−y2.6.计算:(−b2a )2⋅(3ab)3÷a24b=.7.计算:2a+ba−b +3bb−a的结果是.8.计算x2x−2−x−2=.9.化简(x2x−3+93−x)÷x+32x的结果是.10.若1a −1b=2,那么a+3ab−ba−b的值为.11.若x−3(x+1)(x−1)=Ax+1+Bx−1,那么A−B=.12.已知a1=x+1(x≠0,且x≠−1),a2=1−1a1,a3=1−1a2,⋯,a n=1−1a n−1,则(结果用含x的代数式表示):(1)a2=;(2)a2025=.13.若关于x的分式方程3xx−1=m+21−x+2有增根,则m的值是.14.若关于x的分式方程mx−1=2x−1+1的解为非负数,则m的取值范围是.15.已知关于x的分式方程x+ax−2−5x=1.(1)若分式方程的根是x=5,则a的值为;(2)若分式方程无解,则a的值为.16.某车间接到生产任务,要求生产240个零件.原计划每小时生产a个零件,实际每小时生产的零件个数比原计划每小时生产的零件个数多了10个,那么实际比原计划可以提前小时完成生产任务.17.某工厂为了提高生产效率,更新了工厂设备,现在每台机器平均每天比原来多生产25件产品,若该工厂的机器台数不变,现在每天总的生产能力由2000件提高到了3000件,求原来每台机器平均每天生产多少件产品?设原来每台机器每天生产x件产品,根据题意可列方程为.18.4月万物复苏,是徒步踏青的好时节.某校初三年级举行6千米的徒步踏青活动,在出发1小时后,学生行进速度提高为原来的1.5倍,正好比原计划提前20分钟到达目的地,则本次徒步行完全程共用小时.19.甲、乙两位采购员同去一家面粉公司购买两次面粉,两次面粉的单价不同,两位采购员的购货方式也不同,其中,甲每次购买800kg,乙每次用去600元,设两次购买的面粉单价分别为a元/kg和b元/kg(a,b 是正数,且a≠b),那么甲所购面粉的平均单价是元/kg,乙所购面粉的平均单价是元/kg;在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为元/kg.(结果用含a,b的代数式表示,需化为最简形式)20.对于两个不等的非零实数a,b,若分式(x−a)(x−b)x的值为0,则x=a或x=b.因为(x−a)(x−b)x =x2−(a+b)x+abx=x+abx−(a+b),所以关于x的方程x+abx=a+b的两个解分别为x1=a,x2=b.利用上面建构的模型,解决下列问题:(1)若方程x+px=q的两个解分别为x1=−1,x2=4.则p=(2)已知关于x的方程2x+n 2+n−22x+1=2n的两个解分别为x1,x2(x1<x2),则2x12x2−3的值为参考答案1.解:根据题意,可写分式1x2+1∵x2≥0∵x2+1>0恒成立∵无论x取任何实数,分式1x2+1一定有意义.故答案为:1x2+12.解:∵分式|x|−3x−3的值为0∵|x|−3=0,x−3≠0∵x=−3.故答案为:−3.3.解:∵x2+1>0要使分式5x+3x2+1的值为负数,则5x+3<0解得x<−35故答案为:x<−35.4.解:要使分式42m-1的值是整数,则2m−1是4的因数故2m−1=±1,±2,±4但2m−1是奇数,则2m−1=±1所以m=1或0 ;所以1+0=1;故答案为:1.5.解:xx+y ÷x2x2−y2=xx+y·x2−y2x2=xx+y·(x+y)(x−y)x2=x−yx故答案为:x−yx.6.解:(−b2a )2⋅(3ab)3÷a24b=b24a2⋅27a3b3⋅4ba2=27a故答案为:27a.7.解:2a+ba−b +3bb−a=2a+ba−b−3ba−b=2a+b−3ba−b=2(a−b)a−b=2故答案为:2.8.解:x2x−2−x−2=x2x−2−(x+2)(x−2)x−2=x2−x2+4x−2=4x−2故答案为:4x−2.9.解:(x2x−3+93−x)÷x+32x=x2−9x−3⋅2xx+3=(x+3)(x−3)x−3⋅2xx+3=2x故答案为:2x.10.解:∵1a −1b=bab−aab=b−aab=2∵b−a=2ab,即:a−b=−2aba+3ab−ba−b =a−b+3aba−b=−2ab+3ab−2ab=ab−2ab=−12故答案为:−12.11.解:x−3(x+1)(x−1)=Ax+1+Bx−1=A(x−1)+B(x+1)(x+1)(x−1)=(A+B)x+B−A(x+1)(x−1)∵{A+B=1B−A=−3解得{A=2B=−1∵A−B=2−(−1)=3故答案为3.12.解:(1)∵a1=x+1∵a2=1−1a1=1−1x+1=xx+1(2)同理可得:a 3=1−1a 2=1−1x x+1=1−x+1x =−1x a 4=1−1a 3=1+x a 5=1−1a 4=1−1x +1=x x +1…∵发现:每三个为一个循环∵2025÷3=675∵a 2025=a 3=−1x故答案为:(1)x x+1(2)−1x . 13.解:3x x−1=m+21−x +2去分母得:3x =−(m +2)+2(x −1)去括号得:3x =−m −2+2x −2移项、合并同类项得:x =−m −4∵分式方程3x x−1=m+21−x +2有增根∵−m −4=1,解得:m =−5故答案为:−5.14.解:m x−1=2x−1+1两边同时乘以x −1,得m =2+(x −1)∴x =m −1检验得,当x =1时,方程有增根∴m −1≠1解得m ≠2由于关于x 的分式方程m x−1=2x−1+1的解为非负数∴m −1≥0解得m ≥1故m 的取值范围是m ≥1且m ≠2故答案为:m ≥1且m ≠2.15.解:(1)∵分式方程的根是x =5∴5+a3−1=1解得a=1∴a的值为1;(2)①去分母得:ax−3x+10=0∴当a−3=0时,方程无解∴a=3②当分式方程有增根∴x=0或2当x=0时0−0+10≠0当x=2时2a−6+10=0∴a=−2∴a的值为−2;∴a=−2∴若分式方程无解,a的值为3或−2.16.解:根据题意:240a −240a+10=2400a(a+10)故答案为:2400a(a+10).17.解:设原来每台机器每天生产x件产品,则现在每台机器平均每天生产(x+25)件产品∵机器台数不变,现在每天总的生产能力由2000件提高到了3000件∵3000 25+x =2000x故答案为:300025+x =2000x18.解:设原来的速度为每小时x千米,则提速后的速度为每小时1.5x千米,则,由题意,得:6 x −1−6−x1.5x=2060解得:x=3经检验,x=3时原方程的解∵本次徒步行完全程共用63−2060=53小时;故答案为:53.19.解:由题意可得,甲购买面粉的平均单价是:800a +800b 800+800=a +b 2乙购买面粉的平均单价是:600+600600a +600b=2ab a +b 在甲、乙所购买面粉的平均单价中,高的平均单价与低的平均单价的差值为:a +b 2−2ab a +b =(a +b )2−4ab 2(a +b)=(a −b )22(a +b )∵(a −b )22(a +b )≥0 ∴高的平均单价与低的平均单价的差值为:(a−b )22(a+b ).故答案为:a+b 2;2ab a+b ;(a−b )22(a+b ). 20.解:(1)由材料可知:x 1x 2=p ,x 1+x 2=q∵p =−1×4=−4;故答案为:−4.(2)∵2x +n 2+n−22x+1=2n ∵2x +1+n 2+n−22x+1=2n +1 ∵2x +1+(n+2)(n−1)2x+1=(n +2)+(n −1) ∵2x +1=n −1或2x +1=n +2∵x =n−22或x =n+12∵x 1<x 2∵x 1=n−22,x 2=n+12 ∵2x 12x 2−3=2×n−222×n+12−3=n−2n+1−3=n−2n−2=1 故答案为:1.。
鲁教版初中数学八年级上册《因式分解》单元测试1测试卷练习题
![鲁教版初中数学八年级上册《因式分解》单元测试1测试卷练习题](https://img.taocdn.com/s3/m/0a9c7ce6eefdc8d377ee3289.png)
四、用简便方法计算。 1、1002×998+4
2、303×198
3、已知 a 2 1 ,b 2 ,求 ab a b 1 的值。 25
五、解答题。 1、已知 9x2 mxy 16 y2 是完全平方式,求 m 的值。
2、已知
x
1 x
2 ,求
x2
1 x2
的值。
TB:小初高题库
D
d
鲁教版初中数学
A、 x2 16 y2
B、 x4 y3
C、 9x2 49 y2
D、 x2 1
6、下列各式中不是完全平方式的是( )
A、 m2 16m 64
B、 4m2 20mn 25n2
TB:小初高题库
鲁教版初中数学
C、 m2n2 2mn 4
D、112mn 49m2 64n2
7、在下列多项式:① 4m2 9 ② 9m2 4n2 ③ 4m2 12m 9
TB:小初高题库
鲁教版初中数学
教师不光要传授知识,还要告诉学生学会生活。数学思维 可以让他们更理性地看待人生
TB:小初高题库
四、1、 106
2、59994
3、当
a
2
1 2
,
b
2 5
时,原式=
a
1
b
1
2
1 2
1
2 5
1
3 2
3 5
9 10
五、1、24
2、6
3、约为 0.85 m3
4、∵ 9 x y2 y2 3x 4 y3x 2 y ,
∴周长= 2 3x 4 y 3x 2 y 12x 12 y
相信自己,就能走向成功的第一步
B、 x2 x 4 x 2 x 2
鲁教版初中数学八年级上册《因式分解》单元测试3测试卷练习题
![鲁教版初中数学八年级上册《因式分解》单元测试3测试卷练习题](https://img.taocdn.com/s3/m/e9eb6f28770bf78a642954a7.png)
)
A、a2-b;
B、a2+1;
C、a2+ab+b2;
6、若 ( p q)2 (q p)3 (q p)2 E ,则 E 是(
D、a2-4a+4; )
A、1 q p ; B、 q p ; C、1 p q ;
7、下列各式中不是完全平方式的是(
)
A、 m2 16m 64 ;
B、 4m2 20mn 25n2 ;
1、24m2n+18n 的公因式是________________;
2、分解因式 x(2-x)+6(x-2)=_________________;
(x2+y2)2-4x2y2=________________;
3、x2- 4 y2=(x+ 2 y)·(____);
25
5
4、在括号前面填上“+”或“-”号,使等式成立:
9、已知多项式 2x2 bx c 分解因式为 2(x 3)(x 1) ,则 b, c 的值为(
)
A、 b 3, c 1 ; B、 b 6, c 2 ;
C、 b 6, c 4 ; D、
TB:小初高题库
鲁教版初中数学
b 4, c 6
10、在边长为 a 的正方形中挖掉一个边长为 b 的小正方形(a>b).把余下的部
(1) ( y x)2 (x y)2 ;(2) (1 x)(2 x) (x 1)(x 2) 。
5、 x2 3xy y2 加上可以得到 (x y)2 ;
6、如果 a b 0, ab 5, 则a2b ab2
,a2 b2
;
7、简便计算: 7.292-2.712
三、完成下列各题(每小题 4 分,共 24 分) 1、分解因式(4×4=16 分) ① 9a 2 6ab 3a ②121x2-144y2
鲁教版(五四制)八年级数学上册第一章综合测试卷含答案
![鲁教版(五四制)八年级数学上册第一章综合测试卷含答案](https://img.taocdn.com/s3/m/19c2706c2bf90242a8956bec0975f46526d3a75f.png)
鲁教版(五四制)八年级数学上册第一章综合测试卷一、选择题(每题3分,共36分)1.【2023·济宁任城区月考】下列从左至右的变形,属于因式分解的是( )A .4a 2-8a =a (4a -8)B .-x 2+y 2=(-x +y )(-x -y )C .x 2-x +14=⎝ ⎛⎭⎪⎫x -122D .x 2+1=x ⎝⎛⎭⎪⎫x +1x2.【2023·泰安泰山区月考】多项式8a 3b 2+12ab 3c 的公因式是( )A .abcB .4ab 2C .ab 2D .4ab 2c3.【2023·淄博张店区月考】下列式子中,分解因式结果为(3a -y )(3a+y )的多项式是( ) A .9a 2+y 2 B .-9a 2+y 2 C .9a 2-y 2 D .-9a 2-y 24.【2023·东营期末】下列各式中不能用公式法分解因式的是( )A .x 2-4B .-x 2-4C .x 2+x +14 D .-x 2+4x -45.将下列多项式因式分解,结果中不含因式x -1的是( )A .x (x -3)+(3-x )B .x 2-1C .x 2-2x +1D .x 2+2x +1 6.简便计算:(-2)100+(-2)101=( )A.-2100 B.-2101C.2100 D.-27.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的数字是()A.8,1 B.16,2C.24,3 D.64,88.已知a=2b-5,则代数式a2-4ab+4b2-5的值是() A.20 B.0C.-10 D.-309. 如图,有一张边长为b的正方形纸板,在它的四角各剪去边长为a的正方形.然后将四周突出的部分折起,制成一个无盖的长方体纸盒.用M表示其底面积与侧面积的差,则M可因式分解为()A.(b-6a)(b-2a)B.(b-3a)(b-2a)C.(b-5a)(b-a)D.(b-2a)210.【母题:教材P17复习题T5】248-1能被60到70之间的某两个整数整除,则这两个整数是()A.61和63 B.63和65C.65和67 D.64和6711.【2023·烟台期中】已知M=3x2-x+3,N=2x2+3x-1,则M,N的大小关系是()A.M≥N B.M>NC.M≤N D.M<N12.若(b-c)2=4(1-b)(c-1),则b+c的值是()A.-1 B.0 C.1 D.2二、填空题(每题3分,共18分)13.【2022·常州】分解因式:x2y+xy2=________.14.多项式9a2-4b2和9a2+12ab+4b2的公因式是________.15.若4x2-(k-1)x+9能用完全平方公式因式分解,则k的值为________.16.若关于x的二次三项式x2+kx+b因式分解为(x-1)(x-3),则k+b的值为________.17.已知a+b=2,则a2-b2+2a+6b+2的值为________.18.多项式4a2-9b n(其中n是小于10的自然数,b≠0)可以分解因式,则n能取的值共有______个.三、解答题(19题12分,20题6分,24,25题每题12分,其余每题8分,共66分)19.【2023·东营广饶县月考】因式分解:(1)y (y +4)-4(y +1); (2)(x 2+1)2-4x 2; (3)12x 2+xy +12y 2;(4)x (x -y )(a -b )-y (y -x )(b -a ).20.【母题:教材P 7习题T 4】用简便方法计算:(1)2 0232-2 0242; (2)2.22+4.4×17.8+17.82.21.已知x+y=5,(x-2)(y-2)=-3,求下列代数式的值.(1)xy;(2)x2+4xy+y2;(3)x2+xy+5y.22.阅读:已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2-b2)(a2+b2). ②∴c2=a2+b2. ③∴△ABC是直角三角形. ④请根据上述解题过程回答下列问题:(1)上述解题过程,从第几步(该步的序号)开始出现错误,错误的原因是什么?(2)请你将正确的解题过程写下来.23.小刚家门口的商店在装修,他发现工人正在一块半径为R的圆形板材上,割去半径为r的四个小圆,如图所示,小刚测得R=6.8 dm,r=1.6 dm,他想知道剩余部分(阴影部分)的面积,你能利用所学的因式分解的知识帮他计算吗?请写出求解过程.(结果保留π)24.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释a2+2ab+b2=(a+b)2.实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B可以解释的代数恒等式是________________.(2)现有足够多的如图C所示的正方形和长方形卡片.①若要拼出一个面积为(a+2b)(a+b)的长方形,则需要1号卡片________张,2号卡片________张,3号卡片________张;②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的长方形(每两张卡片之间既不重叠,也无空隙),使该长方形的面积为2a2+5ab+2b2,并利用图形面积对2a2+5ab+2b2进行因式分解.25.【2023·烟台芝罘区期中】整体思想是数学解题中常见的一种思想方法:下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程.将“x2+2x”看成一个整体,令x2+2x=y,则原式=y2+2y+1=(y+1)2再将“y”还原即可.解:设x2+2x=y.原式=y(y+2)+1(第一步)=y2+2y+1(第二步)=(y+1)2(第三步)=(x2+2x+1)2(第四步).问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式(x2-4x)(x2-4x+8)+16进行因式分解;(2)请你模仿以上方法尝试计算:(1-2-3-…-2023)×(2+3+…+2024)-(1-2-3-…-2024)×(2+3+…+2023).答案一、1.C 2.B3.C 4.B5.D【点拨】A.原式=(x-3)(x-1);B.原式=(x+1)(x-1);C.原式=(x-1)2;D.原式=(x+1)2.6.A【点拨】(-2)100+(-2)101=2100-2101=2100(1-2)=-2100. 7.B【点拨】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x -2)=(x2+4)(x2-4)=x4-16,则■=16.8.A【点拨】∵a=2b-5,∴a-2b=-5,∴a2-4ab+4b2-5=(a-2b)2-5=(-5)2-5=25-5=20.9.A【点拨】底面积为(b-2a)2,侧面积为a·(b-2a)·4=4a(b-2a),∴M=(b-2a)2-4a·(b-2a)=(b-2a)(b-2a-4a),=(b-2a)(b-6a).10.B【点拨】248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1)=(224+1)(212+1)×65×63.11.A【点拨】∵M-N=(3x2-x+3)-(2x2+3x-1)=3x2-x+3-2x2-3x+1=x2-4x+4=(x-2)2≥0,∴M≥N.12.D【点拨】∵(b-c)2=4(1-b)(c-1),∴b2-2bc+c2=4c-4-4bc+4b,∴(b2+2bc+c2)-4(b+c)+4=0,∴(b+c)2-4(b+c)+4=0,∴(b+c-2)2=0,∴b+c=2.二、13.xy(x+y)14.3a+2b【点拨】9a2-4b2=(3a+2b)(3a-2b),9a2+12ab+4b2=(3a+2b)2,∴公因式是3a+2b.15.13或-1116.-117.10【点拨】∵a+b=2,∴a2-b2+2a+6b+2=(a+b)(a-b)+2a+6b+2=2(a-b)+2a+6b+2=2a-2b+2a+6b+2=4a+4b+2=4(a+b)+2=4×2+2=10.18.5 【点拨】多项式4a 2-9bn (其中n 是小于10的自然数,b ≠0)可以分解因式,则n 能取的值为0,2,4,6,8,共5个.三、19.解:(1)原式=y 2+4y -4y -4=y 2-4=(y +2)(y -2).(2)原式=(x 2+1+2x )(x 2+1-2x )=(x +1)2(x -1)2.(3)原式=12(x 2+2xy +y 2)=12(x +y )2.(4)原式=x (x -y )(a -b )-y (x -y )(a -b )=(x -y )(a -b )(x -y )=(x -y )2(a -b ).20.解:(1)原式=(2 023+2 024)×(2 023-2 024)=4 047×(-1)=-4 047.(2)原式=2.22+2×2.2×17.8+17.82=(2.2+17.8)2=202=400.21.解:(1)∵(x -2)(y -2)=-3,∴xy -2(x +y )+4=-3.∵x +y =5,∴xy =3.(2)∵x +y =5,xy =3,∴x 2+4xy +y 2=(x +y )2+2xy =25+6=31.(3)x 2+xy +5y =x (x +y )+5y ,∵x +y =5,∴x 2+xy +5y =5x +5y =5(x +y )=5×5=25.22.解:(1)从第③步开始出现错误,错误的原因是忽略了a 2-b 2=0的可能.(2)正确的解题过程如下:∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2).∴c2(a2-b2)-(a2+b2)(a2-b2)=0.∴(a2-b2)(c2-a2-b2)=0.∴c2-a2-b2=0或a2-b2=0.∴c2=a2+b2或a=b.∴△ABC是直角三角形或等腰三角形.23.解:剩余部分的面积为πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).将R=6.8 dm,r=1.6 dm代入上式,得π×(6.8+3.2)×(6.8-3.2)=36π(dm2).24.解:(1)(2n)2=4n2(2)①1;2;3②如图.2a2+5ab+2b2=(2a+b)(a+2b).25.解:(1)①没有;最后的结果为(x+1)4.②设x2-4x=y.原式=y(y+8)+16=y2+8y+16=(y+4)2=(x2-4x+4)2=(x-2)4.(2)设x=1-2-3-…-2 023,y=2+3+…+2 024,则1-2-3-…-2 024=x-2 024,2+3+…+2023=y-2 024,x+y=1+2 024=2 025,所以原式=xy-(x-2 024)(y-2 024)=xy-xy+2 024(x+y)-2 0242=2 024×2 025-2 0242=2 024(2 024+1)-2 0242=2 024.。
鲁教版的数学八年级上册单元测试题.doc
![鲁教版的数学八年级上册单元测试题.doc](https://img.taocdn.com/s3/m/4a606735011ca300a6c390aa.png)
数学八年级因式分解单元测试题一、填空题(每小题3分,共30分) 1、分解因式:=-22y x .2、多项式42+-kx x 是一个完全平方式,则k = .3、++x x 412=2)81(+x . 4、已知:︱b a -︳=1,则=+-222b ab a .5、已知:21=+x x ,则=+221x x .6、分解因式:=++-y x y x 22 .7、已知:052422=+++-y y x x ,则=+y x .8、分解因式:=+-962x x . 9、分解因式:=-x x 253. 10、若2=+b a ,1=ab ,则=+22b a .二、选择题(每小题3分,共30分)11、下列各式从左到右的变形是因式分解的是 ( ) A.ab a b a a -=-2)( B.1)2(122+-=+-a a a aC.)1(2-=-x x x x D.)()(2222y x y x y x y x -+-=-+-12、若)3)(3)(9(812x x x x n -++=-,则n 的值为 ( ) A.2 B.3 C.4 D.613、y x xy xyz 22936-+-的公因式是 ( ) A.x 3- B.xz 3 C.yz 3 D.xy 3-14、下列各式中不能用平方差公式分解因式的是 ( )A. 201.0x +-B.2216x y - C.2y x -- D.42-x15、把412++ma a 分解因式得2)21(-a ,则m 的值是 ( ) A. 2- B.2 C.1 D.-116、22y x +是下列哪个多项式的因式 ( )A.44y x + B. ))((y x y x -+ C.33xy y x - D.44y x -17、下列分解因式中完全正确的是 ( ) A.))((22a b a b b a -+=+-B.1))((122--+=--y x y x y x C.))(()1()(2y x y x y y x -+=--+ D.))((2224a a a a a a -+=-18、多项式224y x -与2244y xy x ++的公因式是( )A. 224y x - B.y x 2+ C. y x 2- D.y x 4+ 19、若16)3(22+--x m x 是完全平方式,则m 为 ( ) A. -5 B.3 C.7 D.7或-120若k x x +-32是完全平方式,则k 的值为 ( ) A.23 B.49 C.29 D.43 三、解答下列各题(60分) 21、分解因式(4分×8=32分) ①2241y x - ②a b b a 334- ③412+-x x④)()(2a b b a --- ⑤2244y xy x +- ⑥1)2(22-+-y xy x⑦22216)4(x x -+ ⑧)()(2x y b y x a ---22、已知:,0136422=+-+-y y x x 求x 、y 的值。
鲁教版八年级数学上 第2章 分式与分式方程 单元测试题
![鲁教版八年级数学上 第2章 分式与分式方程 单元测试题](https://img.taocdn.com/s3/m/63bb8db3f9c75fbfc77da26925c52cc58ad69054.png)
鲁教版八年级数学上册第二章 《分式与分式方程》 单元检测卷一、选择题:1. 下列各式中不属于分式的是( )xx D x C y x B xA 22211454+- 2. 分式412-a 有意义,则a 的值是( ) 2244±≠≠±≠≠a D a C a B a A 3. 化简22241-⎪⎪⎭⎫ ⎝⎛•y x yx 的结果为( )4344224141414xyD y x C x B y x x A 4. 已知1=x 是方程xx a -=+-4114的解,则a 的值为( ) 2104D C B A 5. 分式242--x x 的值为零,则x 的值为( ) 4222D C B A -±6. 方程12422=+--x x x去分母得( ) ()()()()222422422122422xx x D x x x C x x B x x x A -=---=--=++--=--7. 已知长方形的长与宽分别为b a 、,长方形的周长为6、面积为4,则bb a a b a +++2的值为( ) 41310149D C B A 8. 若方程2324-+=--x a a x 有增根,则a 的值为( ) 7321--D C B A9. 一艘轮船顺水航行40千米和逆水行驶30千米所用的时间相同。
若船在静水中的速度为每小时21千米,设水流速度为h km x/,则可列方程为( ) 21402130214021302130214021302140-=+-=+-=+-=+x x D x x C x x B x x A 10. 已知()()326332--+=-+-x x B x x x A ,则B A 、的值分别为( ) ....153A B C D - 3、-15 -15、3 -3、15 、11.如果分式12-x 与33+x 的值相等,则x 的值是( ) A.9 B.7 C.5 D.312.如果a b =2,则a 2-ab+b 2a 2+b 2 的值为( )A .45B .1C .35D .2二、填空题:13. 2241y x 与3121xy的最简公分母为 。
鲁教版数学八年级上册单元测试题.doc
![鲁教版数学八年级上册单元测试题.doc](https://img.taocdn.com/s3/m/7018f54ff46527d3250ce02a.png)
数学八年级因式分解单元测试题一、填空题(每小题3分,共30分) 1、分解因式:=-22y x .2、多项式42+-kx x 是一个完全平方式,则k = .3、++x x 412=2)81(+x . 4、已知:︱b a -︳=1,则=+-222b ab a .5、已知:21=+x x ,则=+221x x .6、分解因式:=++-y x y x 22 .7、已知:052422=+++-y y x x ,则=+y x .8、分解因式:=+-962x x . 9、分解因式:=-x x 253. 10、若2=+b a ,1=ab ,则=+22b a .二、选择题(每小题3分,共30分)11、下列各式从左到右的变形是因式分解的是 ( ) A.ab a b a a -=-2)( B.1)2(122+-=+-a a a aC.)1(2-=-x x x x D.)()(2222y x y x y x y x -+-=-+-12、若)3)(3)(9(812x x x x n -++=-,则n 的值为 ( ) A.2 B.3 C.4 D.613、y x xy xyz 22936-+-的公因式是 ( ) A.x 3- B.xz 3 C.yz 3 D.xy 3-14、下列各式中不能用平方差公式分解因式的是 ( )A. 201.0x +-B.2216x y - C.2y x -- D.42-x15、把412++ma a 分解因式得2)21(-a ,则m 的值是 ( ) A. 2- B.2 C.1 D.-116、22y x +是下列哪个多项式的因式 ( )A.44y x + B. ))((y x y x -+ C.33xy y x - D.44y x -17、下列分解因式中完全正确的是 ( ) A.))((22a b a b b a -+=+-B.1))((122--+=--y x y x y x C.))(()1()(2y x y x y y x -+=--+ D.))((2224a a a a a a -+=-18、多项式224y x -与2244y xy x ++的公因式是( )A. 224y x - B.y x 2+ C. y x 2- D.y x 4+ 19、若16)3(22+--x m x 是完全平方式,则m 为 ( ) A. -5 B.3 C.7 D.7或-120若k x x +-32是完全平方式,则k 的值为 ( ) A.23 B.49 C.29 D.43 三、解答下列各题(60分) 21、分解因式(4分×8=32分) ①2241y x - ②a b b a 334- ③412+-x x④)()(2a b b a --- ⑤2244y xy x +- ⑥1)2(22-+-y xy x⑦22216)4(x x -+ ⑧)()(2x y b y x a ---22、已知:,0136422=+-+-y y x x 求x 、y 的值。
新鲁教版五四制八年级数学上册《数据的分析》单元测试题1及答案解析.doc
![新鲁教版五四制八年级数学上册《数据的分析》单元测试题1及答案解析.doc](https://img.taocdn.com/s3/m/e32586cdb0717fd5370cdc4d.png)
第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.22.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,95.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.210.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是__________年.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是__________;众数是__________.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是__________.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为__________.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为__________,样本容量为__________.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为__________,方差为__________.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率0.55~1.05正正14 0.281.05~1.55正正正15 0.301.55~2.05正7 __________2.05~2.554 0.082.55~3.05正 5 0.103.05~3.553 __________3.55~4.05 __________0.04合计50 1.00第3章数据的分析单元测试卷一、选择题:1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.40 B.42 C.38 D.2【考点】算术平均数.【分析】根据所有数据均减去40后平均数也减去40,从而得出答案.【解答】解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.【点评】本题考查了算术平均数,解决本题的关键是牢记“一组数据减去同一个数后,平均数也减去这个数”.2.一城市准备选购一千株高度大约为2米的某种风景树来进行街道绿化,有四个苗圃基地投标(单株树的价相同),采购小组从四个苗圃中任意抽查了20株树苗的高度,得到下表中的数据.你认为应选( )A.甲苗圃的树苗 B.乙苗圃的树苗 C.丙苗圃的树苗 D.丁苗圃的树苗【考点】标准差.【专题】图表型.【分析】根据标准差和平均数的意义进行选择.【解答】解:由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D.【点评】本题考查了平均数和标准差的意义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.标准差即方差的算术平方根.3.衡量样本和总体的波动大小的特征数是( )A.平均数B.方差 C.众数 D.中位数【考点】方差.【分析】根据方差的意义可以选出合适的选项.【解答】解:根据方差的概念知,方差反映了一组数据的波动大小.故选B.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为( )A.8,9 B.8,8 C.8.5,8 D.8.5,9【考点】众数;中位数.【专题】常规题型.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8环;22是偶数,按大小顺序排列后中间两个数是8和8,所以这组数据的中位数是8(环).故选B.【点评】本题考查的是众数和中位数.注意掌握中位数和众数的定义是关键.5.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( )A.1个 B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:班级参加人数中位数方差平均数甲55 149 191 135乙55 151 110 135某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀);(3)甲班成绩的波动情况比乙班成绩的波动小.上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.(1)(2)正确.故选:B.【点评】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.某校把学生的纸笔测试,实践能力,成长纪录三项成绩分别按50%,20%,30%的比例计入学期总评成绩,90分以上为优秀.甲,乙,丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲90 83 95乙88 90 95丙90 88 90A.甲B.乙丙 C.甲乙 D.甲丙【考点】加权平均数.【专题】图表型.【分析】利用平均数的定义分别进行计算成绩,然后判断谁优秀.【解答】解:由题意知,甲的总评成绩=90×50%+83×20%+95×30%=90.1,乙的总评成绩=88×50%+90×20%+95×30%=90.5,丙的总评成绩=90×50%+88×20%+90×30%=89.6,∴甲乙的学期总评成绩是优秀.故选C.【点评】本题考查了加权平均数的计算方法.8.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是( )A.甲班 B.乙班C.两班成绩一样稳定 D.无法确定【考点】方差.【专题】应用题.【分析】根据方差的意义判断.方差越小,波动越小,越稳定.【解答】解:∵s甲2>s乙2,∴成绩较为稳定的班级是乙班.故选B.【点评】本题考查方差的意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.9.期中考试后,学习小组长算出该组5位同学数学成绩的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均值为N,那么M:N为( )A.B.1 C.D.2【考点】算术平均数.【专题】计算题;压轴题.【分析】根据5位同学数学成绩的平均分为M,求得5位同学的总分;再把M当成另一个同学的分数,与原来的5个分数一起,求得总分,再求这6个分数的平均值即为N;这样即可求得M与N的比值.【解答】解:∵5位同学数学成绩的平均分为M,∴5位同学的总分为5M,把M当成另一个同学的分数,与原来的5个分数一起,总分就为5M+M.这6个分数的平均值=(5M+M)=M=N,∴M:N=1.故选B.【点评】本题考查了样本平均数的求法.所有数据的和除以这些数据的个数叫这些数据的平均数.10.下列说法错误的是( )A.一组数据的平均数、众数、中位数可能是同一个数B.一组数据中中位数可能不唯一确定C.一组数据中平均数、众数、中位数是从不同角度描述了一组数据的集中趋势D.一组数据中众数可能有多个【考点】统计量的选择.【分析】根据平均数、众数、中位数的概念分析各个选项.【解答】解:A、在一组数据的平均数、众数、中位数有可能相同如全部相等的数据,正确;B、中位数是将数据按从大到小,或从小到大顺序排列,最中间的那个数或两个数的平均数,所以只有一个,故错误;C、众数、中位数和平均数是从不同的角度描述了一组数据集中趋势的,符合意义,正确;D、根据众数的概念即数据出现次数最多的数据,可能有多个,正确;故选C.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义,了解各个统计量的意义是解答本题的关键.二.填空题11.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.12.一组数据按从小到大顺序排列为:3,5,7,8,8,则这组数据的中位数是7;众数是8.【考点】中位数;众数.【分析】根据中位数和众数的定义解答.【解答】解:数据按从小到大排列:3,5,7,8,8,所以中位数是7;数据8出现2次,次数最多,所以众数是8.故填7;8.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.13.有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是2.【考点】方差;算术平均数.【专题】压轴题.【分析】先由平均数计算出a的值,再计算方差.一般地设n个数据,x1,x2,…x n的平均数为,=(x 1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:a=4×5﹣2﹣3﹣5﹣6=4,s2=[(2﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(6﹣4)2]=2.故填2.【点评】本题考查方差的定义与意义:一般地设n个数据,x 1,x2,…x n的平均数为,则方差S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.某公司欲招聘工人,对候选人进行三项测试:语言,创新,综合知识,并把测试得分按1:4:3比例确定测试总分,已知某候选人三项得分分别为88,72,50,则这位候选人的招聘得分为65.75.【考点】加权平均数.【专题】计算题.【分析】运用加权平均数的计算公式求解.【解答】解:这位候选人的招聘得分=(88+72×4+50×3)÷8=65.75(分).故答案为:65.75.【点评】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.此题难度不大.15.如果样本方差S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2],那么这个样本的平均数为2,样本容量为4.【考点】方差.【分析】先根据方差公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中所以字母所代表的意义,n是样本容量,是样本中的平均数进行解答即可.【解答】解:∵在公式S2=[(x 1﹣)2+(x2﹣)2+…+(x n﹣)2]中,平均数是,样本容量是n,∴在S2=[(x1﹣2)2+(x2﹣2)2+(x3﹣2)2+(x4﹣2)2]中,这个样本的平均数为2,样本容量为4;故答案为:2,4.【点评】此题考查了方差,解题的关键是根据方差的定义以及公式中各个字母所表示的意义进行解答.16.已知x 1,x2,x3的平均数=10,方差S2=3,则2x1,2x2,2x3的平均数为20,方差为12.【考点】方差;算术平均数.【分析】设2x1,2x2,2x3的平均数为,把数据代入平均数计算公式计算即可,再利用方差公式即可计算出新数据的方差.【解答】解:∵=10,∴=10,设2x1,2x2,2x3的方差为,则==2×10=20;∵S2=[(x1﹣10)2+(x2﹣10)2+(x3﹣10)],∴S′2='[(2x1﹣)2+(2x2﹣)+(2x3﹣],=[4(x1﹣10)2+4(x2﹣10)2+4(x2﹣10)],=4×3=12.故答案为:20;12.【点评】本题考查了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.三.解答题17.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为这个定额是否合理,为什么?【考点】中位数;算术平均数;众数.【专题】应用题.【分析】(1)平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.本题中应是第7个数.众数又是指一组数据中出现次数最多的数据.240出现6次.(2)应根据中位数和众数综合考虑.【解答】解:(1)平均数:=260(件);中位数:240(件);众数:240(件);(2)不合理,因为表中数据显示,每月能完成260件的人数一共是4人,还有11人不能达到此定额,尽管260是平均数,但不利于调动多数员工的积极性,因为240既是中位数,又是众数,是大多数人能达到的定额,故定额为240较为合理.【点评】在做本题的平均数时,应注意先算出15个人加工的零件总数.为了大多数人能达到的定额,制定标准零件总数时一般应采用中位数或众数.18.在某旅游景区上山的一条小路上,有一些断断续续的台阶.如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服,为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.(图中的数字表示每一级台阶的高度(单位:cm).并且数据15,16,16,14,14,15的方差S甲2=,数据11,15,18,17,10,19的方差S乙2=).【考点】方差;算术平均数;中位数;极差.【专题】应用题.【分析】(1)分别求出甲、乙的中位数、方差和极差进而分析得出即可;(2)根据方差的性质得出即可;(3)根据方差的稳定性得出即可.【解答】解:(1)∵从小到大排列出台阶的高度值:甲的,14,14,15,15,16,16,乙的,10,11,15,17,18,19,甲的中位数、方差和极差分别为,15cm;;16﹣14=2(cm),乙的中位数、方差和极差分别为,(15+17)÷2=16(cm),,19﹣10=9(cm)平均数:(15+16+16+14+14+15)=15(cm);∴(11+15+18+17+10+19)=15(cm).∴相同点:两段台阶路高度的平均数相同.不同点:两段台阶路高度的中位数、方差和极差均不相同.(2)甲路段走起来更舒服一些,因为它的台阶高度的方差小.(3)每个台阶高度均为15cm(原平均数),使得方差为0.【点评】本题考查了样本中的平均数,方差,极差,中位数在生活中的意义和应用.19.为了了解学校开展“尊敬父母,从家务事做起”活动的实施情况,该校抽取初二年级50名学生,调查他们一周(按七天计算)的家务所用时间(单位:小时),得到一组数据,并绘制成下表,请根据该表完成下列各题:(1)填写频率分布表中未完成的部分;(2)这组数据的中位数落在什么范围内;(3)由以上信息判断,每周做家务的时间不超过1.5小时的学生所占的百分比.频数分布表分组频数累计频数频率正正14 0.280.55~1.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00【考点】频数(率)分布表;中位数.【分析】(1)根据频率、频数及样本容量的关系求得表中相关数据即可;(2)根据总人数确定中位数的位置即可;(3)用相关频率乘以100%即可求得百分率.【解答】解:(1)分组频数累计频数频率0.55~正正14 0.281.05正正正15 0.301.05~1.55正7 0.141.55~2.052.05~4 0.082.55正 5 0.102.55~3.053.05~3 0.063.552 0.043.55~4.05合计50 1.00(2)∵共50人,其中第25和第26人的平均数是中位数,∴中位数落在1.05﹣1.55小组内;(3)每周做家务的时间不超过1.5小时的学生所占的百分比为(0.28+0.30)×100%=58%.【点评】本题考查了频数分布表的知识,解题的关键是能够读懂统计表并从中整理出进一步解题的有关信息,难度不大.。
鲁教版(五四制)八年级数学上册《第一章因式分解》单元检测卷-带答案
![鲁教版(五四制)八年级数学上册《第一章因式分解》单元检测卷-带答案](https://img.taocdn.com/s3/m/3cef232b00f69e3143323968011ca300a7c3f612.png)
鲁教版(五四制)八年级数学上册《第一章因式分解》单元检测卷-带答案一、单选题(共10小题,满分40分)1.下列变形属于因式分解的是( )A .()()2111x x x +-=-B .2a b ab a ÷=C .221142x x x ++=+⎛⎫⎪⎝⎭ D .()2364324x x x x -+=-+2.下列等式由左边到右边的变形中,属于因式分解的是( )A .2269(3)a a a -+=-B .432221863x y x y x y -=-⋅C .2(1)(1)1a a a +-=-D .221(2)1x x x x ++=++3.下面从左到右的变形,进行因式分解正确的是( )A .()()2339x x x +-=-B .2221(1)x x x +-=+C .()23632x xy x x y -+=--D .229(3)x x +=+4.多项式2514x x +-可因式分解成()()x a bx c ++,其中a 、b 、c 均为整数,求2a c +的值为() A .12- B .3 C .3-或12 D .3或125.下面的多项式中,能因式分解的是( )A .2m ﹣2B .m 2+n 2C .m 2﹣nD .m 2﹣n +16.下列各式从左边到右边的变形,是因式分解的为( )A .5()5ab ac a b c ++=++B .21(1)(1)a a a -=+-C .222()2a b a ab b +=++D .22a b ab =7.已知3241-可以被10到20之间的某两个整数整除,则这两个数是( )A .12,14B .13,15C .14,16D .15,178.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a -2D .(a+2)2-2(a+2)+19.下列各式因式分解正确的是( )A .222249(23)x xy y x y -+=-B .24(4)x x x x -+=-+C .3222422(1)x x x x x -+=-D .26(3)(2)x x x -=-+10.下列多项式中能用平方差公式进行分解因式的是( )A .()22a b +-B .2520m mn -C .22x y +D .29x -+二、填空题(共8小题,满分32分)11.把多项式3244x x x 分解因式的结果是 .12.()29a b +=( )2;()20.252x y -=( )2;13.将整式3223x x y x -+分解因式,则提取的公因式为 .14.若a 2﹣b 2=80,a +b =10,则a ﹣b = .15.分解因式:﹣2x 3+4x 2y ﹣2xy 2= .16.分解因式: .17.因式分解()2228ac bc abc -+= .18.如果关于x 的二次三项式24x x m -+在实数范围内不能因式分解,那么m 的值可以是 .(填出符合条件的一个值)三、解答题(共6小题,每题8分,满分48分)19.因式分解:(1)2416a -(2)322a b a b ab -+20.分解因式:(1)2(2)(3)(2)x y x y x y -+--(2)()222224x y x y +- 21.化简求值:()()()()()()22213221322123x x x x x x x +--+--+-,其中32x =22.观察下面的算式: 213142⨯+==.224193⨯+==;2351164⨯+==2461255⨯+==⋯⋯(1)请你写出2个与上述算式具有相同规律的算式;(2)用字母表示数,写出上述算式反映的规律,并加以证明.23.已知a ,b ,c ,d 表示4个不同的正整数,满足23490a b c d +++=,其中1d >,则234a b c d +++的最大值是多少?24.为纪念李时珍诞辰500周年,蕲春县投巨资建设如图所示展览馆,其外框是一个大正方形,中间四个大小相同的正方形(阴影部分)是支展馆的核心筒,标记了字母的五个大小相同的正方形是展厅,剩余的四个大小相同的图形是休息厅,已知核心筒的正方形边长比展厅的正方形边长的一半多1米(1)若设展厅的正方形边长为a 米,则用含a 的代数式表示核心筒的正方形边长为 米. (2)若设核心筒的正方形边长为b 米,求该展馆外框大正方形的周长(用含b 的代数式表示). (3)若展览馆外框大正形边长为26米,求休息厅的周长.参考答案1.C2.A3.C4.D5.A6.B7.D8.C9.C10.D11.2(2)x x -12. ()3a b + 0.5x y - 13.2x14.815.﹣2x (x ﹣y )216.(3x -3y+2)217.()22ac bc +18.519.(1)()()422a a -+;(2)()21ab a - 20.(1)()52y x y - (2)()()22x y x y +- 21.21836x x --;原式30=22.(1)2571366⨯+== 2681497⨯+== (2)()221(1)n n n ++=+ 23.8124.(1)(ax +1);(2)(32b ﹣24)米;(3)14。
鲁教版初二数学第一章单元检测卷
![鲁教版初二数学第一章单元检测卷](https://img.taocdn.com/s3/m/f18136f402020740bf1e9b9c.png)
鲁教版初二数学第一章单元检测卷数学试题(时间:60分钟满分:100分)一、选择题(每小题3分,共30分)1.(2021河南濮阳油田十中期中)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( D )A.1,2,6B.2,2,4C.1,2,3D.2,3,42.(2021泰安东平实验中学月考)如图所示,在△ABC中,已知点D,E,F 分别为BC,AD,CE的中点,且△ABC的面积是12,则△BEF的面积是( A )第2题图A.3B.3.5C.4D.4.53.(2021河南濮阳油田十中期中)如图所示,过△ABC的顶点A作BC边上的高,以下作法正确的是( A )4.如图所示,请仔细观察用直尺和圆规作一个角∠A′O′B′等于已知角∠AOB的示意图,要说明∠D′O′C′=∠DOC,需要证明△D′O′C′≌△DOC,则这两个三角形全等的依据是( A )第4题图A.边边边B.边角边C.角边角D.角角边5.已知等腰三角形两边长分别为6 cm,2 cm,则这个三角形的周长是( A )A.14 cmB.10 cmC.14 cm或10 cmD.12 cm6.(2021河南濮阳油田十中期中)如图所示,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( B )第6题图A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN7.如图所示,若△ABC≌△ADE,则下列结论中一定成立的是( B )第7题图A.AC=DEB.∠BAD=∠CAEC.AB=AED.∠ABC=∠AED8.如图所示,在△ABC中,AD是△ABC的角平分线,BE是△ABC的高, ∠C=70°,∠ABC=48°,那么∠BFD的度数为( A )第8题图A.59°B.60°C.56°D.22°9.如图所示,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,AK=BN,若∠MKN=42°,则∠P的度数为( C )第9题图A.44°B.66°C.96°D.92°10.如图所示,△ABC是格点三角形(顶点在网格线的交点所组成的三角形),则在图中能够作出与△ABC全等,且有一条公共边的格点三角形(不含△ABC)的个数是( D )第10题图A.1个B.2个C.3个D.4个二、填空题(每小题3分,共15分)11.若一个三角形的两边长分别为5和8,下列长度:①14;②10;③3;④2.其中可以作为第三边长的是②(填序号)12.(2021泰安东平实验中学月考)如图所示,在△ABC中,AD⊥BC,CE ⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当的条件CE=AD或∠DAC=∠ECA或∠BAC=∠ACB(答案不唯一) ,使△AEC≌△CDA.第12题图13.在△ABC中,∠A∶∠B∶∠C=4∶5∶9,且△ABC≌△DEF,则∠EDF= 40 度.14.如图所示,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于点D,AD=2 cm, BE=0.5 cm,则DE= 1.5 cm.第14题图15.如图所示,锐角△ABC的高AD,BE相交于点F,若BF=AC,BC=9,DF=4,则S△ADC= 10 .第15题图三、解答题(共55分)16.(7分)已知:∠1和线段a,如图所示.求作:△ABC,使∠B=∠C=∠1,BC=a.(不写作法,保留作图痕迹)解:如图所示,△ABC 即为所求.17.(10分)如图所示,在△ABC 中,AD 是BC 边上的中线,AE 是BC 边上的高.(1)若∠ACB=100°,求∠CAE 的度数; (2)若S △ABC =12,CD=4,求高AE 的长.解:(1)因为AE 是BC 边上的高,所以∠E=90°. 因为∠ACB+∠ACE=180°,所以∠ACE=180°-∠ACB=180°-100°=80°. 所以∠CAE=90°-∠ACE=90°-80°=10°. (2)因为AD 是BC 边上的中线,所以D 为BC 的中点. 因为DC=4,所以BC=2DC=8. 因为AE 是BC 边上的高,S △ABC =12, 所以S △ABC =12BC ·AE=12×8AE=12.所以AE=3.18.(12分)(2021河南濮阳油田十中期中)如图所示,∠B=∠E,BF=EC, AC ∥DF,请问△ABC 与△DEF 全等吗?请说明理由.解:△ABC≌△DEF.理由如下:在△ABC和△DEF中,因为AC∥DF,所以∠ACB=∠DFE.因为BF=EC,所以BF+CF=EC+CF,即BC=EF.又∠B=∠E,根据ASA,所以△ABC≌△DEF.19.(12分)(2021金台一模)如图所示,AD⊥CD,BC⊥CD,∠AED=∠EBC, AD=EC,试说明:AE=EB.解:因为AD⊥CD,BC⊥CD,所以∠C=∠D=90°.在△ADE和△ECB中,因为∠D=∠C,∠AED=∠EBC,AD=EC,根据AAS,所以△ADE≌△ECB.所以AE=EB.20.(14分)如图所示,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)试说明:BC=DE;(2)若AC=12,求四边形ABCD的面积.解:(1)因为∠BAD=∠CAE=90°,所以∠BAC+∠CAD=∠DAE+∠CAD.所以∠BAC=∠DAE.在△ABC和△ADE中,因为AB=AD,∠BAC=∠DAE,AC=AE,根据SAS,所以△ABC≌△ADE.所以BC=DE.(2)因为△ABC≌△ADE,所以S△ABC=S△ADE.因为AC=AE,×122=72.所以S四边形ABCD=S△ABC+S△ACD=S△ADE+S△ACD=S△ACE=12附加题21.(15分)如图所示,A,B两点分别位于一池塘两侧,池塘左边有一水房D,在DB中点C处有一棵百年古槐,小明从A点出发,沿AC一直向前走到点E(A,C,E三点在同一条直线上),并使CE=CA,然后他测量出点E到水房D的距离,则DE的长度就是A,B两点间的距离.(1)如果小明恰好未带测量工具,但他知道水房D和古槐C到A点的距离分别是140 m和100 m,他能不能确定AB的长度范围,如果能,求出AB的长度范围;如果不能,请说明理由;(2)在(1)题的解题过程中,你找到“已知三角形一边和另一边上的中线,求第三边的长度范围”的方法了吗?如果找到了,请解决下列问题:在△ABC中,AC=5,中线AD=7,画图并确定AB边的长度范围.解:(1)能.理由如下:在△ABC和△EDC中,因为AC=EC,∠ACB=∠ECD,BC=DC,根据SAS,所以△ABC≌△EDC.所以ED=AB.在△ADE中,AD=140 m,AE=2AC=200 m,根据三角形的三边的关系,得AE-AD<DE<AE+AD,即60 m<DE<340 m. 所以AB的长度范围为60 m<AB<340 m.(2)如图所示,延长AD至点E,使DE=DA,连接CE.在△ABD和△ECD中,因为BD=CD,∠ADB=∠EDC,AD=ED, 根据SAS,所以△ABD≌△ECD.所以AB=EC.在△ACE中,AE=2AD=14,AC=5,根据三角形的三边关系,得AE-AC<CE<AE+AC,即14-5<CE<14+5,得9<CE<19.所以AB的长度范围为9<AB<19.。
鲁教版八年级数学上《第1章因式分解》单元测试含答案
![鲁教版八年级数学上《第1章因式分解》单元测试含答案](https://img.taocdn.com/s3/m/45af5fc90b4e767f5bcfcec7.png)
《第1章因式分解》一、选择题1.下列从左到右的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=(x﹣2)(x+3)+1C.a2b+ab2=ab(a+b) D.x2+1=x(x+)2.下列各式的因式分解中正确的是()A.﹣a2+ab﹣ac=﹣a(a+b﹣c)B.9xyz﹣6x2y2=3xyz(3﹣2xy)C.3a2x﹣6bx+3x=3x(a2﹣2b) D.3.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)4.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+y+y2D.x2﹣4x+45.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4x B.﹣4x C.4x4D.﹣4x46.下列分解因式错误的是()A.15a2+5a=5a(3a+1)B.﹣x2﹣y2=﹣(x2﹣y2)=﹣(x+y)(x﹣y)C.k(x+y)+x+y=(k+1)(x+y)D.1﹣a2﹣b2+2ab=(1+a﹣b)(1﹣a+b)7.下列各式中,不能用平方差公式分解因式的是()A.﹣a2+b2B.﹣x2﹣y2C.49x2y2﹣z2D.16m4﹣25n2p28.两个连续的奇数的平方差总可以被k整除,则k等于()A.4 B.8 C.4或﹣4 D.8的倍数二、填空题:9.分解因式:m3﹣4m=______.10.已知x+y=6,xy=4,则x2y+xy2的值为______.11.若ax2+24x+b=(mx﹣3)2,则a=______,b=______,m=______.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是______.三、解答题13.(1)﹣4x3+16x2﹣26x(2)mn(m﹣n)﹣m(n﹣m)(3)a2(x﹣y)+b2(y﹣x)(4)5(x﹣y)3+10(y﹣x)2;(5)18b(a﹣b)2﹣12(a﹣b)3(6)4m2﹣9n2.14.(1)9(m+n)2﹣16(m﹣n)2;(2)m4﹣16n4;(3)(x+y)2+10(x+y)+25;(4)2x2+2x+(5)﹣12xy+x2+36y2(6)(a2+b2)2﹣4a2b2.四、解答题15.已知(4x﹣2y﹣1)2+=0,求4x2y﹣4x2y2﹣2xy2的值.16.已知x+y=1,求x2+xy+y2的值.《第1章因式分解》参考答案一、选择题1.下列从左到右的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=(x﹣2)(x+3)+1C.a2b+ab2=ab(a+b) D.x2+1=x(x+)【解答】解:A、是多项式乘法,不是因式分解,错误;B、右边不是积的形式,错误;C、是提公因式法,a2b+ab2=ab(a+b),正确;D、右边不是整式的积,错误;故选C2.下列各式的因式分解中正确的是()A.﹣a2+ab﹣ac=﹣a(a+b﹣c)B.9xyz﹣6x2y2=3xyz(3﹣2xy)C.3a2x﹣6bx+3x=3x(a2﹣2b) D.【解答】解:A.﹣a2+ab﹣ac=﹣a(a﹣b+c),故本选项错误;B.9xyz﹣6x2y2=3xy(3z﹣2xy),故本选项错误;C.3a2x﹣6bx+3x=3x(a2﹣2b+1),故本选项错误;D. =,故选D.3.把多项式m2(a﹣2)+m(2﹣a)分解因式等于()A.(a﹣2)(m2+m)B.(a﹣2)(m2﹣m)C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)【解答】解:m2(a﹣2)+m(2﹣a),=m2(a﹣2)﹣m(a﹣2),=m(a﹣2)(m﹣1).故选C.4.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+y+y2D.x2﹣4x+4【解答】解:A、x2﹣y不能分解因式,故A错误;B、x2+1不能分解因式,故B错误;C、x2+y+y2不能分解因式,故C错误;D、x2﹣4x+4=(x﹣2)2,故D正确;故选:D.5.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式不可以是()A.4x B.﹣4x C.4x4D.﹣4x4【解答】解:设这个单项式为Q,如果这里首末两项是2x和1这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,故Q=±4x;如果这里首末两项是Q和1,则乘积项是4x2=2•2x2,所以Q=4x4;如果该式只有4x2项,它也是完全平方式,所以Q=﹣1;如果加上单项式﹣4x4,它不是完全平方式.故选D.6.下列分解因式错误的是()A.15a2+5a=5a(3a+1)B.﹣x2﹣y2=﹣(x2﹣y2)=﹣(x+y)(x﹣y)C.k(x+y)+x+y=(k+1)(x+y)D.1﹣a2﹣b2+2ab=(1+a﹣b)(1﹣a+b)【解答】解:A.15a2+5a=5a(3a+1),故此选项错误;B.﹣x2﹣y2两项符号相同无法运用平方差公式进行分解,故此选项正确;C.k(x+y)+x+y=(k+1)(x+y),故此选项错误;D.1﹣a2﹣b2+2ab=(1+a﹣b)(1﹣a+b),故此选项错误.故选:B.7.下列各式中,不能用平方差公式分解因式的是()A.﹣a2+b2B.﹣x2﹣y2C.49x2y2﹣z2D.16m4﹣25n2p2【解答】解:A、符合“两项、异号、平方形式”,能用平方差公式分解因式;B、不符合异号,﹣x2和﹣y2是同号的;C、符合“两项、异号、平方形式”,能用平方差公式分解因式;D、符合“两项、异号、平方形式”,能用平方差公式分解因式.故选B.8.两个连续的奇数的平方差总可以被k整除,则k等于()A.4 B.8 C.4或﹣4 D.8的倍数【解答】解:设两个连续奇数为2n+1,2n+3,根据题意得:(2n+3)2﹣(2n+1)2=(2n+3+2n+1)(2n+3﹣2n﹣1)=8(n+1),则k的值为8.故选:B.二、填空题:9.分解因式:m3﹣4m= m(m﹣2)(m+2).【解答】解:m3﹣4m,=m(m2﹣4),=m(m﹣2)(m+2).10.已知x+y=6,xy=4,则x2y+xy2的值为24 .【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.11.若ax2+24x+b=(mx﹣3)2,则a= 16 ,b= 9 ,m= ﹣4 .【解答】解:∵ax2+24x+b=(mx﹣3)2,∴ax2+24x+b=m2x2﹣6mx+9,∴a=m2,﹣6m=24,b=9,解得,a=16,m=﹣4,b=9.故答案为16,9,﹣4.12.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是a2+2ab+b2=(a+b)2.【解答】解:首先用分割法来计算,即a2+2ab+b2;再用整体计算即为(a+b)2.因此a2+2ab+b2=(a+b)2.三、解答题13.(1)﹣4x3+16x2﹣26x(2)mn(m﹣n)﹣m(n﹣m)(3)a2(x﹣y)+b2(y﹣x)(4)5(x﹣y)3+10(y﹣x)2;(5)18b(a﹣b)2﹣12(a﹣b)3(6)4m2﹣9n2.【解答】解:(1)﹣4x3+16x2﹣26x=﹣2x(2x2﹣8x+13);(2)mn(m﹣n)﹣m(n﹣m)=mn(m﹣n)+m(m﹣n)=m(m﹣n)(m+n);(3)a2(x﹣y)+b2(y﹣x)=a2(x﹣y)﹣b2(x﹣y)=(x﹣y)(a+b)(a﹣b);(4)5(x﹣y)3+10(y﹣x)2=5(x﹣y)3+10(x﹣y)2=5(x﹣y)2(x﹣y+2);(5)18b(a﹣b)2﹣12(a﹣b)3=6(a﹣b)2(3b﹣2a+2b)=6(a﹣b)2(5b﹣2a);(6)4m2﹣9n2=(2m+3n)(2m﹣3n).14.(1)9(m+n)2﹣16(m﹣n)2;(2)m4﹣16n4;(3)(x+y)2+10(x+y)+25;(4)2x2+2x+(5)﹣12xy+x2+36y2(6)(a2+b2)2﹣4a2b2.【解答】解:(1)9(m+n)2﹣16(m﹣n)2=[3(m+n)+4(m﹣n)][3(m+n)﹣4(m﹣n)]=(7m﹣n)(﹣m+7n);(2)m4﹣16n4=(m2+4n2)(m2﹣4n2)=(m2+4n2)(m+2n)(m﹣2n);(3)(x+y)2+10(x+y)+25=(x+y+5)2;(4)令2x2+2x+=0,解得:x=,则原式=2(x+﹣)(x++);(5)﹣12xy+x2+36y2=(x﹣6y)2;(6)(a2+b2)2﹣4a2b2=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.四、解答题15.已知(4x﹣2y﹣1)2+=0,求4x2y﹣4x2y2﹣2xy2的值.【解答】解:∵(4x﹣2y﹣1)2+=0,∴,即,则原式=2xy(2x﹣2xy﹣y)=4×(﹣4)=2﹣16=﹣14.精品Word 可修改欢迎下载16.已知x+y=1,求x2+xy+y2的值.【解答】解: x2+xy+y2=(x+y)2=×1=.。
鲁教版八年级数学上册第一章因式分解单元测试
![鲁教版八年级数学上册第一章因式分解单元测试](https://img.taocdn.com/s3/m/56101c1e366baf1ffc4ffe4733687e21ae45ff52.png)
鲁教版八年级数学上册第一章因式分解单元测试第一章因式分解单元测试一.单选题(共10题;共30分)1.4x2-12x+m2是一个完全平方式,则m的值应为()A.3B.-3 C.3或-3 D.92.下列多项式,能用完全平方公式分解因式的是()A.x2+xy+y2B.x2-2x-1C.-x2-2x-1D.x2+4y23.已知多项式分解因式为,则的值为()A.B.C.D.4.下列分解因式正确的是()A.B.C.D.5.若m>-1,则多项式m3-m2-m+1的值为()A.正数B.负数C.非负数D.非正数6.下列从左到右的变形,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.x2+x﹣5=x (x+1)﹣5C.x2+4x+4=(x+2)2D.x2﹣4=(x ﹣2)27.如果多项式x2﹣mx+6分解因式的结果是(x﹣3)(x+n),那么m,n的值分别是()A.m=﹣2,n=5B.m=2,n=5C.m=5,n=﹣2D.m=﹣5,n=28.﹣(3x﹣1)(x+2y)是下列哪个多项式的分解结果()A.3x2+6xy﹣x﹣2yB.3x2﹣6xy+x﹣2yC.x+2y+3x2+6xyD.x+2y﹣3x2﹣6xy9.不论a,b为何有理数,a2+b2﹣2a﹣4b+c的值总是非负数,则c的最小值是()A.4B.5C.6D.无法确定10.下列各式从左到右的变形为分解因式的是()A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6C.x2+8x﹣9=(x+3)(x﹣3)+8xD.x2+1=x (x+)二.填空题(共8题;共24分)11.因式分解:a2﹣2a=________.12.因式分解:x2﹣1= ________.13.分解因式:9a﹣a3=________ .14.分解因式:4x3﹣2x=________15.分解因式:4ax2﹣ay2=________.16.分解因式:a3﹣a=________.17.已知a+b=3,ab=2,则a2b+ab2=________.18.分解因式:xy4﹣6xy3+9xy2=________.三.解答题(共6题;共42分)19.已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b 的值.20.分解2x4﹣3x3+mx2+7x+n,其中含因式(x+2)和(x﹣1),求m,n.21.已知:a﹣b=﹣2015,ab=﹣,求a2b﹣ab2的值.22.我们对多项式x²+x﹣6进行因式分解时,可以用特定系数法求解.例如,我们可以先设x2+x﹣6=(x+a)(x+b),显然这是一个恒等式.根据多项式乘法将等式右边展开有:x2+x﹣6=(x+a)(x+b)=x²+(a+b)x+ab所以,根据等式两边对应项的系数相等,可得:a+b=1,ab=﹣6,解得a=3,b=﹣2或者a=﹣2,b=3.所以x2+x﹣6=(x+3)(x﹣2).当然这也说明多项式x2+x﹣6含有因式:x+3和x﹣2.像上面这种通过利用恒等式的性质来求未知数的方法叫特定系数法.利用上述材料及示例解决以下问题.(1)已知关于x的多项式x2+mx﹣15有一个因式为x﹣1,求m的值;(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.24.(1)计算:(﹣a2)3b2+2a4b(2)因式分解:3x﹣12x3.答案解析一.单选题1.【答案】C【考点】因式分解-运用公式法【解析】【分析】根据完全平方式的构成即可得到结果。
鲁教版八年级数学上册 第1章 《因式分解》单元测试题
![鲁教版八年级数学上册 第1章 《因式分解》单元测试题](https://img.taocdn.com/s3/m/1c9948d982d049649b6648d7c1c708a1284a0ab4.png)
鲁教版八年级数学上册第1章 《因式分解》 单元综合测试题一.选择题:1.下列等式从左到右的变形,属于因式分解的是( )A .a (x ﹣y )=ax ﹣ayB .x 2+2x +1=x (x +2)+1C .x 3﹣x =x (x +1)(x ﹣1)D .(x +1)(x +3)=x 2+4x +32.多项式①2x 2﹣x ,②(x ﹣1)2﹣4(x ﹣1)+4,③(x +1)2﹣4x (x +1)+4,④﹣4x 2﹣1+4x ;分解因式后,结果含有相同因式的是( )A .①④B .①②C .③④D .②③3.下列因式分解正确的是( )A .m 2+n 2=(m +n )2B .a 2+b 2+2ab =(b +a )2C .m 2﹣n 2=(m ﹣n )2D .a 2+2ab ﹣b 2=(a ﹣b )24.把8x 2y ﹣2xy 分解因式结果是( )A .2xy (4x +1)B .2x (4x ﹣1)C .xy (8x ﹣2)D .2xy (4x ﹣1)5.计算:(﹣2)2020+(﹣2)2019=( )A .22020B .﹣22020C .22019D .﹣220196.若)5)(3(--x x 是多项式152+-px x 分解因式的结果,则p 的值是( )A.2B.-2C.8D.-87.若a 2+(m ﹣3)a +4能用完全平方公式进行因式分解,则常数m 的值是( )A .1或5B .1C .﹣1D .7或﹣18.在x 3+5x 2+7x +k 中,若有一个因式为(x +2),则k 的值为( )A .2B .﹣2C .6D .﹣69.计算1.22+2×1.2×6.7+6.72﹣2.12的值为( )A .58B .57C .56D .5510.若a ,b ,c 是△ABC 的三边长,且a 2﹣15b 2﹣c 2+2ab +8bc =0,则下列式子的值为0的是( )A .a +5b ﹣cB .a ﹣5b +cC .a ﹣3b +cD .a ﹣3b ﹣c二.填空题:11.已知a2﹣a﹣1=0,则a3﹣a2﹣a+2022=.12.因式分解:x(x+4)+4=.13.如果二次三项式x2+ax+2可分解为(x﹣1)(x+b),则a+b的值为.14.多项式56x3yz+14x2y2z﹣21xy2z2各项的公因式是.15.已知x+y=﹣3,xy=3,则x2y+xy2的值为.16.分解因式:(3a﹣b)(a+b)﹣ab﹣b2=.17.已知x4+mx3+nx﹣16分解后有因式(x﹣1)和(x﹣2),则m=,n =.18.分解因式:(x+y)2﹣10(x+y)+25=.三.解答题:19.分解因式:(1)6x(a﹣b)+4y(b﹣a)(2)9(a+b)2﹣25(a﹣b)2(3)3x2y﹣6xy+3y (4)(a2+1)2﹣4a2(5)﹣4x3y2+28x2y﹣2xy (6)a3﹣4ab220.已知:a+b=5,ab=3。
鲁教版五四制八年级上册数学全册各个单元测试卷(及答案)
![鲁教版五四制八年级上册数学全册各个单元测试卷(及答案)](https://img.taocdn.com/s3/m/01f35cbbdc3383c4bb4cf7ec4afe04a1b071b0f6.png)
鲁教版五四制八年级上册数学全册试卷(五套单元测试卷+一套期末测试卷)第一章测试卷一、选择题(每题3分,共30分)1.下列各式从左到右的变形中,是因式分解的为()A.x(a-b)=ax-bx B.x2-1+y2=(x-1)(x+1)+y2⎛1⎫C.x-1=(x+1)(x-1)D.x+1=x x+⎪22⎝x⎭2.下列四个多项式中,能因式分解的是()A.a-1B.a2+1C.x2-4y D.x2-6x+93.下列分解因式正确的是()A.-a+a3=-a(1+a2)B.2a-4b+2=2(a-2b)C.a2-4=(a-2)2D.a2-2a+1=(a-1)24.因式分解x3-2x2+x,正确的是()A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)25.多项式:①16x2-x;②(x-1)2-4(x-1);③(x+1)2-4x(x+1)+4x2;④-4x2-1+4x,分解因式后,结果中含有相同因式的是()A.①和②B.③和④C.①和④D.②和③6.若多项式x2+mx-28可因式分解为(x-4)(x+7),则m的值为() A.-3B.11C.-11D.37.已知a+b=2,则a2-b2+4b的值是()A.2B.3C.4D.68.已知△ABC的三边长分别为a,b,c,且满足a2+b2+c2=ab+ac+bc,则△ABC 的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形9.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值() A.总不小于2B.总不小于7C.可为任何实数D.可能为负数10.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)二、填空题(每题3分,共24分)11.分解因式:m3n-4mn=________________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为________.13.比较大小:a2+b2________2ab-1(填“>”“≥”“<”“≤”或“=”).14.若m-n=-2,则m2+n22-mn的值是________.15.如果x2+kx+64是一个整式的平方,那么k的值是________.16.已知P=3xy-8x+1,Q=x-2xy-2,当x≠0时,3P-2Q=7恒成立,则y =________.17.多项式4y2+1加上一个单项式后,能成为一个完全平方式,那么加上的单项式可以是__________(写出一个即可).18.如图是两邻边长分别为a,b的长方形,它的周长为14,面积为10,则a2b +ab2的值为________.三、解答题(19~21题每题10分,其余每题12分,共66分) 19.分解因式:(1)a2b-abc;(2)(2a-b)2+8ab;121(3)(m-m)+(m-m)+.2162220.先分解因式,再求值:(1)4a2(x+7)-3(x+7),其中a=-5,x=3;11(2)(2x-3y)-(2x+3y),其中x=,y=.682221.已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.22.已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.23.如图,在一个边长为a m的正方形广场的四个角上分别留出一个边长为b m 的正方形花坛(a>2b),其余的地方种草坪.(1)求草坪的面积是多少;(2)当a=84,b=8,且每平方米草坪的成本为5元时,种这块草坪共需投资多少元?24.观察猜想:如图所示的大长方形是由一个小正方形和三个小长方形拼成的,请根据此图填空:x2+(p+q)x+pq=x2+px+qx+pq=(__________)·(__________).说理验证:事实上,我们也可以用如下方法进行变形:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=____________=(__________)·(________).于是,我们可以利用上面的方法继续进行多项式的因式分解.尝试运用:例题把x2+5x+4因式分解.解:x2+5x+4=x2+(4+1)x+4×1=(x+4)(x+1).请利用上述方法将多项式x2-8x+15因式分解.答案一、1.C2.D3.D4.B5.D6.D 7.C :a 2-b 2+4b =(a +b )·(a -b )+4b =2(a -b )+4b =2a +2b =2(a +b )=4.8.D 9.A 10.D二、11.mn (m +2)(m -2):先提公因式,再利用平方差公式.注意分解因式要彻底.12.x +213.>14.2:15.±1616.2:∵P =3xy -8x +1,Q =x -2xy -2,∴3P -2Q =3(3xy -8x +1)-2(x -2xy -2)=7.∴9xy -24x +3-2x +4xy +4=7,∴13xy -26x =0,即13x (y -2)=0.∵x ≠0,∴y -2=0.∴y =2.17.4y (答案不唯一)18.70三、19.解:(1)原式=ab (a -c ).(2)原式=4a 2-4ab +b 2+8ab=4a 2+4ab +b 2=(2a +b )2.22⎤21⎡1114⎛⎫1⎛⎫22222(3)原式=(m -m )+2·(m -m )·+ ⎪=(m -m +)=⎢ m -⎪⎥=(m -).4⎝4⎭422⎭⎦⎣⎝m 2+n 22-mn =m 2+n 2-2mn (m -n )2(-2)22=2=2=2.20.解:(1)原式=(x +7)(4a 2-3).当a =-5,x =3时,(x+7)·(4a2-3)=(3+7)×[4×(-5)2-3]=970.(2)原式=[(2x-3y)+(2x+3y)]·[(2x-3y)-(2x+3y)]11=-24xy.当x=,y=时,68111-24xy=-24××=-.68221.解:∵a2+b2+2a-4b+5=0,∴(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0.∴a+1=0且b-2=0.∴a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.22.解:a2+b2-4a-6b+13=(a-2)2+(b-3)2=0,故a=2,b=3.当腰长为2时,则底边长为3,周长=2+2+3=7;当腰长为3时,则底边长为2,周长=3+3+2=8.所以这个等腰三角形的周长为7或8.23.解:(1)草坪的面积是(a2-4b2)m2.(2)当a=84,b=8时,草坪的面积是a2-4b2=(a+2b)(a-2b)=(84+2×8)·(84-2×8)=100×68=6 800(m2),所以种这块草坪共需投资5×6 800=34 000(元).24.解:观察猜想x+p;x+q说理验证x(x+p)+q(x+p);x+p;x+q尝试运用x2-8x+15=x2+(-8x)+15=x2+(-3-5)x+(-3)×(-5)=(x-3)(x-5).第二章测试卷一、选择题(每题3分,共30分)1.下列式子是分式的是()A.a -b25+y B.πx +3C.xD.1+x x 2-12.如果分式的值为0,那么x 的值是()2x +2A.1B.0C.-1D.±1x +23.函数y =的自变量x 的取值范围是()xA.x ≥-2B.x ≥-2且x ≠0C.x ≥0D.x >0a +2a -b 4a 14.分式:①,②,③,④,其中最简分式有()a 2+3a 2-b 212(a -b )x -2A.1个B.2个C.3个D.4个5.下列各式中,正确的是()-3x 3x a +b -a +b -a -b a -b a a A.-=B.-= C.=D.-=5y -5yc c c c b -a a -b 346.分式方程=的解是()x x +1A.x =-1B.x =1C.x =2D.x =3a 2-2a +1⎛1⎫7.当a =2时,计算÷ -1⎪的结果是()a 2⎝a ⎭3A.23B.-21C.2321D.-28.对于非零的两个实数a ,b ,规定a *b =-,若5*(3x -1)=2,则x 的值为()b a5A.63B.42C.31D.-69.若分式方程x x -1-1=有增根,则m 的值为()(x -1)(x +2)B.1C.1或-2D.3mA.0或310.某次列车平均提速20 km/h,用相同的时间,列车提速前行驶400 km,提速后比提速前多行驶100 km,设提速前列车的平均速度为x km/h,下列方程正确的是()400+100400400-100400400+100400400-100A.=B.=C.=D.=x x +20x x -20x x -20x x +20二、填空题(每题3分,共24分)400x y 11.与的最简公分母是________.6ab 29a 2bc x 2y ⎛y ⎫12.计算·÷ -⎪的结果是________.y x ⎝x ⎭a -2113.若x =1是分式方程-=0的根,则a =________.x x -21314.若代数式和的值相等,则x =________.x -22x +115.关于x 的分式方程mx -1+3=1的解为正数,则m 的取值范围是________.1-x 116.已知a -5a +1=0,则a +2=________.22a 111117.数学家们在研究15,12,10这三个数的倒数时发现:-=-.因此12151012就将具有这样性质的三个数称为调和数.如6,3,2也是一组调和数.现有一组调和数:x ,5,3(x >5),则x =________.18.某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元,若每户每月用水超过5 m 3,则超出部分每立方米收取较高的费2用.1月份,张家用水量是李家用水量的,张家当月水费是17.5元,李家当3月水费是27.5元,则超出5 m 3的部分每立方米收费________元.三、解答题(19~21题每题10分,其余每题12分,共66分)19.计算:(1)2a 1-;a 2-9a -3⎛11⎫a2-b2(2) -⎪÷.a b ab⎝⎭x2-4x+4⎛2⎫20.先化简,再求值:÷ -1⎪,其中x=2- 2.x⎝x⎭21.解分式方程:23x+14(1)=;(2)+=1.x x+2x-1x2-122.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用含x 的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,求做出三棱柱盒子的个数.23.阅读下面的材料,解答后面的问题.x -14x解方程:-=0.x x -1x -14解:设y =,则原方程可化为y -=0,方程两边同时乘y ,得y 2-4=0,x y解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -=0的解.4y x -1x -11当y =2时,=2,解得x =-1;当y =-2时,=-2,解得x =.x x 31经检验,x 1=-1,x 2=都是原分式方程的解.故原分式方程的解为x 1=-1,31x 2=.3这种解分式方程的方法称为换元法.问题:x -1x x -1(1)若在方程-=0中,设y =,则原方程可化为______________;4x x -1x (2)若在方程x -14x +4x -1-=0中,设y =,则原方程可化为_____________;x +1x -1x +1x -13(3)模仿上述换元法解方程:--1=0.x +2x -124.华联商场预测某品牌衬衫能畅销,先用了8万元购入这种衬衫,面市后果然该品牌衣衫供不应求.于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.(1)第一批购入的衬衫价格是多少?(2)销售这两批衣衫,华联商场一共盈利多少元?答案一、1.C 2.A3.B4.B5.D6.D7.D38.B:根据题意得-3x -1233=2,解得x =.经检验x =是原方程的解.故选B.5449.D 10.A2x 二、11.18a 2b 2c 12.-ya -2113.1:∵x =1是分式方程-=0的根,x x -21∴-=0.11-2解得a =1.14.715.m >2且m ≠316.23:由a 2-5a +1=0可知a ≠0,1所以a +=5.a -2a⎛1⎫2所以a +2= a +⎪-2=52-2=23.a ⎝a ⎭1111117.15:由题意可知-=-,解得x =15.5x 35经检验,x =15是该方程的根.18.2:设超出5 m 3的部分每立方米收费a 元,17.5-1.5×5⎛27.5-1.5×5⎫2+5⎪×,由题意得+5=a a ⎝⎭3解得a =2.经检验a =2是原方程的根.三、19.解:(1)原式22a a+3=-(a+3)(a-3)(a+3)(a-3)a-3=(a+3)(a-3)1=.a+3(2)原式b-a ab=·ab(a+b)(a-b)a-b ab=-·ab(a+b)(a-b)1=-.a+bx2-4x+4⎛2⎫20.解:÷ -1⎪x⎝x⎭(x-2)22-x=÷x x(2-x)2x=·x2-x=2-x.当x=2-2时,2-x=2-(2-2)= 2.21.解:(1)方程两边都乘x(x+2),得2(x+2)=3x,解得x=4.检验:当x=4时,x(x+2)≠0,所以原分式方程的解为x=4.(2)方程两边都乘(x+1)(x-1),得(x+1)2+4=(x+1)·(x-1),解得x=-3.检验:当x=-3时,(x+1)·(x-1)≠0,所以原分式方程的解为x =-3.22.解:(1)裁剪时x 张用A 方法,则裁剪时(19-x )张用B 方法.∴侧面的个数为6x +4(19-x )=2x +76,底面的个数为5(19-x )=95-5x .2x +763(2)由题意,得=.95-5x 2解得x =7.经检验,x =7是原方程的根.2x +762×7+76==30.33故做出的三棱柱盒子的个数是30.y 123.解:(1)-=0.4y(2)y -=0.4y (3)原方程化为x -1x +2-=0,x +2x -1设y =x -1,x +21则原方程可化为y -=0.y 方程两边同时乘y ,得y 2-1=0,解得y 1=1,y 2=-1.1经检验,y 1=1,y 2=-1都是方程y -=0的解.yx -1当y =1时,=1,该方程无实数解,x +2x-1当y=-1时,=-1,x+21解得x=-,21经检验,x=-是原分式方程的解.21故原分式方程的解为x=-.224.解:(1)设第一批购入的衬衫价格为x元/件,80 000176 000根据题意,得×2=.x x+4解得x=40.经检验,x=40是原方程的解.故第一批购入的衬衫的价格为40元/件.(2)由(1)知,第一批购入了80 000÷40=2 000(件).在这两笔生意中,华联商场共盈利:2 000×(58-40)+(2000×2-150)×(58-44)+150×(58×0.8-44)=90 260(元).故华联商场共盈利90 260元.第三章测试卷一、选择题(每题3分,共30分)1.有一组数据:1,3,3,4,5.这组数据的众数为()A.1B.3C.4D.52.小明记录了当地今年元月份某五天的最低温度(单位:℃):1,2,0,-1,-2.这五天最低温度数据的平均数是()A.1B.2C.0D.-13.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.8,9,则这5个数据的中位数是()A.9.7B.9.5C.9D.8.84.某制鞋厂准备生产一批男皮鞋,经抽样(120名中年男子)调查得知,所需鞋号和人数如下:鞋号/cm24人数824.515252025.525263026.520272现求出鞋号的中位数是25.5 cm,众数是26 cm,平均数约是25.5 cm.下列说法正确的是()A.因为需要鞋号为27 cm的人数太少,所以鞋号为27 cm的鞋可以不生产B.因为平均数约是25.5 cm,所以这批男鞋可以一律按鞋号为25.5 cm的鞋生产C.因为中位数是25.5 cm,所以25.5 cm的鞋的生产量应占首位D.因为众数是26 cm,所以26 cm的鞋的生产量应占首位5.某校规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95分,90分,88分,则小彤这学期的体育成绩为()A.89分B.90分C.92分D.93分6.某校要从四名学生中选拔一名参加市“风华小主播”大赛,将多轮选拔赛的成绩的数据进行分析得到每名学生的平均成绩x及其方差s2如下表所示,如果要选择一名成绩高且发挥稳定的学生参赛,那么应选择的学生是()A.甲B.乙C.丙D.丁7.已知一组数据2,3,4,x,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是()A.4,4B.3,4C.4,3D.3,38.某小组5位同学参加实验操作考试(满分20分)的平均成绩是16分,其中三位男生成绩的方差为6,两位女生的成绩分别为17分、15分,则这5位同学成绩的标准差为()A.3B.2 C.6D.69.如果一组数据a1,a2,a3,…,an的方差是2,那么一组新数据2a1,2a2,2a3,…,2an的方差是()A.2B.4C.8D.1610.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁.则下列结论中正确的是()A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=13二、填空题(每题3分,共24分)11.高一新生入学军训射击训练中,小张同学的射击成绩(单位:环)为5,7,9,10,7,则这组数据的众数是________.12.一组数据-1,0,1,2,x的众数是2,则这组数据的平均数是________.13.已知一组数据0,1,2,2,x,3的平均数是2,则这组数据的方差是________.14.某校男子足球队队员的年龄分布如图所示,则这些队员的年龄的中位数是________.15.某超市购进一批大米,大米的标准包装为每袋30k g,售货员任选6袋进行了称重检验,超过标准质量的记作“+”,不足标准质量的记作“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米质量数据的平均数和极差分别是________.16.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s2甲__________s2乙(填“>”或“<”).17.若一组数据6,9,11,13,11,7,10,8,12的中位数是m,众数是n,⎧mx-10y=10,则关于x,y的方程组⎨的解是________.⎩10x-ny=618.学校篮球队五名队员的年龄(单位:岁)分别为17,15,16,15,17,其方差为0.8,则三年后这五名队员年龄的方差为________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.一个电梯的最大载质量是1 000 kg,现有平均体重为80 kg的11人和平均体重为70 kg的2人,他们能否一起搭乘这个电梯?他们的平均体重是多少千克?(结果精确到0.1 kg)20.八年级(2)班组织了一场经典诵读比赛,甲、乙两队各10人的比赛成绩(10分制,单位:分)如下表:甲乙71088977910810109101091010109(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是________队.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组的各项得分(单位:分)如下表:小组甲乙丙研究报告小组展示答辩918179807483788590(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?22.某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次测试成绩中随机抽取8次,记录如下:甲乙95838292888081959390798084857875(1)请你计算这两组数据的平均数;(2)现要从中选派一人参加操作技能比赛,从稳定性的角度考虑,你认为选派谁参加比较合适?请说明理由.523.已知一组数据x 1,x 2,…,x 6的平均数为1,方差为3.(1)求x 21+x 22+…+x 26的值;(2)若在这组数据中加入另一个数据x 7,重新计算,平均数无变化,求这7个数据的方差(结果用分数表示).24.荆门市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门”知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图如图所示,成绩统计分析表如表所示,其中七年级代表队得6分、10分的选手人数分别为a,b.队别七年级八年级平均分/分中位数/分方差6.77.1m7.53.411.69合格率90%80%优秀率n10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说:“七年级代表队的合格率、优秀率均高于八年级代表队,所以七年级代表队的成绩比八年级代表队好.”但也有人说:“八年级代表队的成绩比七年级队好.”请你给出两条支持八年级代表队成绩好的理由.答案一、1.B 2.C3.C4.D5.B 6.B 7.D 8.B 9.C 10.A5二、11.712.0.813.314.15岁15.30;1.516.>⎧x =5,17.⎨:这组数据按从小到大的顺序排列为6,7,8,9,10,11,11,12,⎩y =413.由题意得m =10,n =11.⎧10x -10y =10,由⎨⎩10x -11y =6⎧x =5,解得⎨⎩y =4.18.0.8三、19.解:80×11+70×2=1 020(kg),1 020 kg>1 000 kg ,所以他们不能一起搭乘这个电梯.他们的平均体重为1 020÷(11+2)≈78.5(kg).20.解:(1)9.5;10(2)x 乙=10+8+7+9+8+10+10+9+10+9=109(分).1s 2乙=10×[(10-9)2+(8-9)2+…+(9-9)2]=1.(3)乙21.解:(1)由题意可得,91+80+78x 甲==83(分),381+74+85x 乙==80(分),379+83+90x 丙==84(分).3∵x 丙>x 甲>x 乙,∴从高分到低分确定小组的排名顺序为丙、甲、乙.(2)甲组的成绩是91×40%+80×30%+78×30%=83.8(分),乙组的成绩是81×40%+74×30%+85×30%=80.1(分),丙组的成绩是79×40%+83×30%+90×30%=83.5(分).∵83.8>83.5>80.1∴甲组的成绩最高.122.解:(1)x 甲=8×(95+82+88+81+93+79+84+78)=85;1x 乙=8×(83+92+80+95+90+80+85+75)=85.这两组数据的平均数都是85.(2)(答案不唯一)选派甲参加比较合适.1理由如下:由(1)知x 甲=x 乙=85,则s 甲=8×[(78-85)2+(79-85)2+(81-85)221+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=8×[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41,∴s 2甲<s 2乙,∴甲的成绩较稳定,∴选派甲参加比较合适.23.解:(1)∵数据x 1,x 2,…,x 6的平均数为1,∴x 1+x 2+…+x 6=1×6=6.5又∵方差为3,1∴6[(x 1-1)2+(x 2-1)2+11…+(x 6-1)2]=6[x 21+x 22+…+x 26-2(x 1+x 2+…+x 6)+6]=6(x 21+x 22+…+x 26-2×156+6)=6(x 21+x 22+…+x 26)-1=3,∴x 21+x 22+…+x 26=16.(2)∵数据x 1,x 2,…,x 7的平均数为1,∴x 1+x 2+…+x 7=1×7=7.∵x 1+x 2+…+x 6=6,15∴x 7=1.∵6[(x 1-1)2+(x 2-1)2+…+(x 6-1)2]=3,∴(x 1-1)2+(x 2-1)2+…+(x 6-1)2=10,1110∴s 2=7[(x 1-1)2+(x 2-1)2+…+(x 7-1)2]=7[10+(1-1)2]=7.24.解:(1)依题意得⎧3×1+6a +7×1+8×1+9×⎨1+10b =6.7×10,⎩a +1+1+1+b =90%×10,⎧a =5,解得⎨⎩b =1.(2)m =6,n =20%.(3)(答案不唯一)①八年级代表队的平均分高于七年级代表队;②八年级代表队的成绩比七年级代表队稳定.第四章测试卷一、选择题(每题3分,共30分)1.下面的每组图形中,平移左图可以得到右图的一组是()2.下面的图形是天气预报使用的图标,从左到右分别代表“霾”“浮尘”“扬沙”和“阴”,其中是中心对称图形的是()3.下列图形中,既是轴对称图形又是中心对称图形的是()4.将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是() A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,△ABC绕旋转中心顺时针旋转90°后得到△A′B′C′,则其旋转中心的坐标是()A.(1.5,1.5)B.(1,0)C.(1,-1)D.(1.5,-0.5)6.如图,在Rt△ABO中,∠ABO=90°,OA=2,AB=1,把Rt△ABO绕着原点逆时针旋转90°,得△A′B′O,那么点A′的坐标为()A.(-3,1)B.(-2,3)C.(-1,3)D.(-3,2)7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连接对称点的线段都被对称中心平分C.在平面直角坐标系中,一个点向右平移a个单位长度,则该点的纵坐标加aD.在平移和旋转图形中,对应角相等,对应线段相等且平行8.如图,在正方形ABCD中,点E为DC边上的点,连接BE,若△BCE绕C 点按顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD 的度数为()A.10°B.15°C.20°D.25°9.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC平移的距离为()A.4B.5C.6D.810.如图所示的四个图形都可以看成是由一个“基本图案”经过旋转所形成的,则旋转角相同的图形为()A.①②B.①④C.②④D.③④二、填空题(每题3分,共24分)11.如图,已知△ABD沿BD方向平移到了△FCE的位置,若BE=12,CD=5,则平移的距离是________.12.在平面直角坐标系中,将点P(-2,1)先向右平移3个单位长度,再向上平移4个单位长度,得到点P′,则点P′的坐标是________.13.在平面直角坐标系中,点(a,5)关于原点对称的点的坐标是(1,b+1),则a +b的值为________.14.等边三角形至少绕中心旋转________才能与自身重合.15.如图,△ABC的顶点分别为A(3,6),B(1,3),C(4,2).若将△ABC绕点B 顺时针旋转90°,得到△A′BC′,则点A的对应点A′的坐标为________.16.如图,把边长为3 cm的正方形ABCD先向右平移1 cm,再向上平移1 cm,得到正方形EFGH,则阴影部分的面积为________.17.如图,在△AOB中,AO=AB,点A的坐标是(4,4),点O的坐标是(0,0),将△AOB平移得到△A′O′B′,使得点A′在y轴上,点O′,B′在x轴上,则点O′的坐标是________.18.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上的两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后得到△AFB,连接EF,则有下列结论:①△AED≌△AEF;②BE+DC=DE;③S△ABE +S△ACD>S△AED;④BE2+DC2=DE2.其中正确的有________(填入所有正确结论的序号).三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,在正方形网格中,△ABC为格点三角形(即三角形的各顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,得到△A1B2C2,在网格中画出旋转后的△A1B2C2.20.如图,在Rt△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm,△ABC沿AB 方向平移至△DEF,若AE=8 cm,BD=2 cm.求:(1)△ABC沿AB方向平移的距离;(2)四边形AEFC的周长.21.如图,△ABO与△CDO关于O点中心对称,点E,F在线段AC上,且AF =CE.求证:FD=EB.22.实践与操作:现有如图①所示的两种瓷砖,请从这两种瓷砖中各选2块,拼成一个新的正方形地板图案,且拼铺的图案是轴对称图形或中心对称图形(如图②所示).(1)分别在图③、图④中各设计一种与图②不同的拼法,使其中的一个是轴对称图形而不是中心对称图形,另一个是中心对称图形而不是轴对称图形;(2)分别在图⑤、图⑥中各设计一个拼铺图案,使这两个图案都既是轴对称图形又是中心对称图形,且互不相同(两个图案之间若能通过轴对称、平移、旋转变换相互得到,则视为相同图案).23.如图①,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF,BE.(1)线段AF和BE有怎样的数量关系?请说明理由;(2)将图①中的△CEF绕点C旋转一定的角度,得到图②,(1)中的结论还成立吗?作出判断并说明理由.24.如图,在平面直角坐标系xOy中,已知Rt△DOE中,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5,∠ACB+∠ODE=180°,∠B=∠OED,BC=DE.(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN(不写作法,保留作图痕迹);(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM的重合,画出△A′B′C′(不写作法,保留作图痕迹);(3)求OE的长.答案一、1.D 2.A 3.B 4.D 5.C6.C:在Rt△ABO中,∠ABO=90°,OA=2,AB=1,所以OB′=OB=3,A′B′=AB=1.因为点A′在第二象限,所以点A′的坐标为(-1,3).故选C.7.B8.B9.A:∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.又∵∠CAB=90°,BC=5,∴AC=4.当点C落在直线y=2x-6上时,令2x-6=4,解得x=5,故线段BC平移的距离为5-1=4.10.D二、11.3.512.(1,5)13.-714.120°15.(4,1)16.4 cm217.(-4,0)18.①③④:由旋转的性质知:AF=AD,BF=CD,∠FBA=∠DCA,∠F AD =∠BAC=90°,∴∠F AE=∠EAD=45°.又AE=AE,∴△AED≌△AEF.∴DE=EF.∵∠EBF=∠FBA+∠ABE=∠ACD+∠ABE=90°,∴BE2+BF2=BE2+DC2=EF2=DE2.S△ABE +S△ACD=S△ABE+S△AFB>S△AED,BE+DC=BE+FB>EF=ED,∴正确的结论有①③④.三、19.解:(1)如图.(2)如图.20.解:(1)∵△ABC沿AB方向平移至△DEF,∴AD=BE.∵AE=8 cm,BD=2 cm,8-2∴AD==3(cm),2即△ABC沿AB方向平移的距离是3 cm.(2)由平移的特征及(1)得,CF=AD=3 cm,EF=BC=3 cm.又∵AE=8 cm,AC=4 cm,∴四边形AEFC的周长=AE+EF+CF+AC=8+3+3+4=18(cm).21.证明:∵△ABO与△CDO关于O点中心对称,∴OB=OD,OA=OC.∵AF=CE,∴OF=OE.在△DOF和△BOE中,OD=OB,∠DOF=∠BOE,OF=OE,∴△DOF≌△BOE(SAS).∴FD=EB.22.解:(1)如图①是轴对称图形而不是中心对称图形.如图②是中心对称图形而不是轴对称图形.(2)如图③、图④、图⑤既是轴对称图形又是中心对称图形(画出其中的两个即可).:本题答案不唯一.23.解:(1)AF=BE.理由如下:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°.在△AFC与△BEC中,⎧AC=BC,⎨∠ACF=∠BCE,⎩CF=CE,∴△AFC≌△BEC(SAS).∴AF=BE.(2)成立.理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°.∴∠ACB-∠FCB=∠FCE-∠FCB,即∠ACF=∠BCE.在△AFC与△BEC中,⎧AC=BC,⎨∠ACF=∠BCE,⎩CF=CE,∴△AFC≌△BEC(SAS).∴AF=BE.24.解:(1)△OMN如图所示.(2)△A′B′C′如图所示.(3)设OE=x,则ON=x,过点M作MF⊥A′B′于点F,如图所示.由作图可知,∠ONC′=∠OED,∠A′B′C′=∠B,∵∠B=∠OED,∴∠ONC′=∠A′B′C′.∴B′C′平分∠A′B′O.∵C′O⊥OB′,易得△FB′C′≌△OB′C′.∴B′F=B′O=OE=x,FC′=OC′=OD=3.∵A′C′=AC=5,∴A′F=A′C′2-C′F2=52-32=4,∴A′B′=x+4,易知A′O=5+3=8.在Rt△A′B′O中,A′O2+B′O2=A′B′2,即82+x2=(4+x)2,解得x=6.∴OE=6.第五章测试卷一、选择题(每题3分,共30分)1.在▱ABCD中,∠A=50°,则∠C等于()A.130°B.40°C.50°D.60°2.若n边形的内角和是1 080°,则n的值是()A.6B.7C.8D.93.下列不能判定一个四边形是平行四边形的条件是()A.两组对角分别相等B.两组对边分别相等C.一组对边平行且相等D.一组对边平行,另一组对边相等4.如图,▱ABCD的对角线AC,BD相交于点O,则下列结论中错误的是() A.AD=BC B.OA=OC C.AC⊥BD D.▱ABCD是中心对称图形5.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为() A.30°B.36°C.38°D.45°6.如图,在△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20B.18C.14D.137.已知▱ABCD的对角线相交于点O,点O到AB的距离为1,且AB=6,BC=4,则点O到BC的距离为()1A.2B.13C.2D.28.如图,在▱ABCD中,延长AB到点E,使BE=AB,连接DE交BC于点F,则下列结论不一定成立的是()A.∠E=∠CDF B.EF=DF C.AD=2BF D.BE=2CF9.如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,则△ABC的周长是()A.28B.32C.18D.2510.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF,CF,EF=FC,则下列结论中一定成立的是()1①∠DCF=2∠BCD;②EC2+CD2=4EF2;③∠DFE=3∠AEF;④S△BEC <2S△CEF.A.①②③B.②③④C.①②④D.①③④二、填空题(每题3分,共24分)11.已知一个正多边形的一个外角为36°,则这个正多边形的边数是________.12.如图,在四边形ABCD中,对角线AC,BD交于点O,AD∥BC,请添加一个条件:______________,使四边形ABCD为平行四边形(不添加任何辅助线).13.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长为________.14.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.E是CD的中点,BD=12,则△DOE的周长为________.15.如图,∠A+∠B+∠C+∠D+∠E+∠F=________.16.如图,在▱ABCD中,∠ABC=60°,E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,EF=3,则AB=________.17.如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F,∠EAF=45°,且AE+AF=22,则▱ABCD的周长是________.18.如图,在▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处.若△FDE的周长为8,△FCB的周长为22,则FC的长为________.三、解答题(19~21题每题10分,其余每题12分,共66分)19.如图,在▱ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:GD=CD.20.一个多边形的内角和与它某一外角的度数的总和为1 350°,试求这个多边形的边数及外角的度数.21.如图,在ABCD中,AC交BD于点O,点E,F分别是OA,OC的中点,连接BE,DF.请判断线段BE,DF的关系,并证明你的结论.22.如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.求证:(1)AE=AF;1(2)BE=(AB+AC).223.如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连接AC,AD,CE,AB=AC.(1)求证:△BDA≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求ABDE的面积.(提示:=53+5)10 3-124.分别以ABCD(∠CDA≠90°)的三边AB,CD,DA为斜边作等腰直角三角形ABE,等腰直角三角形CDG,等腰直角三角形ADF.(1)如图①,当三个等腰直角三角形都在该平行四边形外部时,连接GF,EF.请判断GF与EF的数量关系和位置关系(只写结论,不需证明);(2)如图②,当三个等腰直角三角形都在该平行四边形内部时,连接GF,EF,(1)中结论还成立吗?若成立,请给出证明;若不成立,请说明理由.答案一、1.C2.C3.D4.C5.B6.C 117.C :设点O 到BC 的距离为x ,易知S △OAB =S △OBC ,∴2×1×6=2×x ×4.解得x3=2.故选C.8.D9.D :如图,延长线段BN 交AC 于点E .∵AN 平分∠BAC ,∴∠BAN =∠EAN .∵BN ⊥AN ,∴∠ANB =∠ANE =90°.又∵AN =AN ,∴△ABN ≌△AEN .∴AE =AB =6,BN =EN .又∵点M 是BC 的中点,∴MN 是△BCE 的中位线.∴CE =2MN =2×1.5=3.∴△ABC 的周长是AB +BC +AC =6+10+6+3=25.故选D .10.D :①∵点F 是AD 的中点,∴AF =FD .∵四边形ABCD 为平行四边形,∴AD ∥BC ,AB ∥CD ,AB =CD .在ABCD 中,AD =2AB ,∴AF =FD =CD .∴∠DFC =∠DCF .∵AD ∥BC ,∴∠DFC =∠BCF ,1∴∠DCF =∠BCF =2∠BCD .故①正确;②延长EF,交CD的延长线于点M,∵AB∥CD,∴∠A=∠MDF,∠AEF=∠M.又∵AF=DF,∴△AEF≌△DMF.∴EF=MF.又∵CE⊥AB,AB∥CD,∴CE⊥CM.∴∠ECM=90°.在Rt△ECM中,有EC2+CM2=EM2.又∵EM=EF+MF=2EF,∴EC2+CM2=4EF2.而CM>CD.故②错误;③设∠FEC=x,∵EF=FC,∴∠FCE=∠FEC=x.∴∠DFC=∠DCF=90°-x,∠EFC=180°-2x.∴∠DFE=90°-x+180°-2x=270°-3x.∵∠AEF=90°-x,∴∠DFE=3∠AEF.故③正确;④∵EF=MF,∴S△EFC =S△CFM.∵MC>BE,∴S△BEC <2S△EFC.故④正确.故选D.二、11.1012.AD=BC(答案不唯一)13.2014.1515.360°16.117.8:由题意易得△ABE,△ADF都是等腰直角三角形,∴AB=BE2+AE2=2AE.同理AD=2AF.∴AB+AD=2(AE+AF)=2×22=4.∴▱ABCD的周长为2(AB+AD)=8.18.7:△FDE的周长=FD+DE+EF,△FCB的周长=FC+BC+BF.由折叠知EF=AE,BF=AB,所以▱ABCD的周长=△FDE的周长+△FCB的周长=30.在ABCD中,AD=BC,AB=CD,所以BC+BF=BC+AB=15.所以FC=△FCB的周长-15=7.三、19.证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D.∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°.又∵BE=DF,∴△ABE≌△GDF.∴AB=GD.又∵AB=CD,∴GD=CD.20.解:∵1 350°=180°×7+90°,多边形的一个外角大于0°小于180°,∴多边形的这一外角的度数为90°,多边形的边数为7+2=9.21.解:BE∥DF.理由如下:如图,连接DE,BF.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵E,F分别是OA,OC的中点,∴OE=OF.∴四边形BFDE是平行四边形.∴BE∥DF.22.证明:(1)∵AD平分∠BAC,∴∠BAD=∠CAD.∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE.∴∠AEF=∠AFE.∴AE=AF.(2)如图,过点C作CG∥EM,交BA的延长线于点G.易得∠AGC =∠AEF ,∠ACG =∠AFE .由(1)知∠AEF =∠AFE ,∴∠AGC =∠ACG .∴AG =AC .11∵M 为BC 的中点,∴BM =CM .∵EM ∥CG ,∴BE =EG =2BG =2(AB +AG )1=2(AB +AC ).23.(1)证明:∵AB =AC ,∴∠B =∠ACB .又∵四边形ABDE 是平行四边形,∴AE ∥BD ,AE =BD .∴∠ACB =∠CAE =∠B .在△BDA 和△AEC 中,⎧AB =CA ,⎨∠B =∠CAE ,⎩BD =AE ,∴△BDA ≌△AEC (SAS).(2)解:过点A 作AG ⊥BC ,垂足为点G .设AG =x ,在Rt △AGD 中,∵∠ADG =45°,∴DG =AG =x .在Rt △AGB 中,∵∠B =30°,∴AB =2AG =2x .∴BG =3x .∵BD =10,∴BG -DG =10,即3x -x =10.解得x ==503+50.24.解:(1)GF =EF ,GF ⊥EF .10=53+5.∴S ABDE =BD ·AG =10×(53+5)3-1(2)成立.证明如下:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠DAB+∠ADC=180°,即∠BAE+∠DAF+∠EAF+∠ADF+∠CDF=180°.∵△ABE,△CDG,△ADF都是等腰直角三角形,AB=CD,∴AE=BE=DG=CG,DF=AF,∠DAF=∠ADF=∠BAE=∠CDG=45°.∴∠EAF+∠CDF=45°.∵∠CDF+∠GDF=45°,∴∠GDF=∠EAF.在△GDF和△EAF中,⎧DF=AF,⎨∠GDF=∠EAF,⎩DG=AE,∴△GDF≌△EAF(SAS).∴GF=EF,∠GFD=∠EF A.∴∠GFD+∠GF A=∠EF A+∠GF A.∴∠GFE=∠AFD=90°.∴GF⊥EF.。
鲁教版八年级上册数学第二章单元测试卷
![鲁教版八年级上册数学第二章单元测试卷](https://img.taocdn.com/s3/m/13ba734a6137ee06eef91844.png)
第二章达标测试卷一、选择题(每题3分,共30分)1.下列式子是分式的是( )A.a -b 2B.5+y πC.x +3x D .1+x2.如果分式x 2-12x +2的值为0,那么x 的值是( ) A .1 B .0 C .-1 D .±13.函数y =x +2x的自变量x 的取值范围是( ) A .x ≥-2 B .x ≥-2且x ≠0 C .x ≥0 D .x >04.分式:①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2,其中最简分式有( ) A .1个 B .2个 C .3个 D .4个5.下列各式中,正确的是( )A .--3x 5y =3x -5yB .-a +b c =-a +b c C.-a -b c =a -b c D .-a b -a =a a -b 6.分式方程3x =4x +1的解是( ) A .x =-1 B .x =1 C .x =2 D .x =37.当a =2时,计算a 2-2a +1a 2÷⎝ ⎛⎭⎪⎫1a -1的结果是( ) A.32 B .-32 C.12D .-12 8.对于非零的两个实数a ,b ,规定a *b =3b -2a,若5*(3x -1)=2,则x 的值为( ) A.56 B.34 C.23 D .-169.若分式方程xx-1-1=m(x-1)(x+2)有增根,则m的值为( )A.0或3 B.1 C.1或-2 D.310.某次列车平均提速20 km/h,用相同的时间,列车提速前行驶400 km,提速后比提速前多行驶100 km,设提速前列车的平均速度为x km/h,下列方程正确的是( )A.400x=400+100x+20 B.400x=400-100x-20 C.400x=400+100x-20 D.400x=400-100x+20二、填空题(每题3分,共24分)11.x6ab2与y9a2bc的最简公分母是________.12.计算x2y·yx÷⎝⎛⎭⎪⎫-yx的结果是________.13.若x=1是分式方程a-2x-1x-2=0的根,则a=________.14.若代数式1x-2和32x+1的值相等,则x=________.15.关于x的分式方程mx-1+31-x=1的解为正数,则m的取值范围是________.16.已知a2-5a+1=0,则a2+1a2=________.17.数学家们在研究15,12,10这三个数的倒数时发现:112-115=110-112.因此就将具有这样性质的三个数称为调和数.如6,3,2也是一组调和数.现有一组调和数:x,5,3(x>5),则x=________.18.某自来水公司水费计算办法如下:若每户每月用水不超过5 m3,则每立方米收费1.5元,若每户每月用水超过5 m3,则超出部分每立方米收取较高的费用.1月份,张家用水量是李家用水量的23,张家当月水费是17.5元,李家当月水费是27.5元,则超出5 m 3的部分每立方米收费________元.三、解答题(19~21题每题10分,其余每题12分,共66分)19.计算:(1)2a a 2-9-1a -3;(2)⎝ ⎛⎭⎪⎫1a -1b ÷a 2-b 2ab .20.先化简,再求值:x 2-4x +4x ÷⎝ ⎛⎭⎪⎫2x -1,其中x =2- 2.21.解分式方程:(1)2x =3x +2; (2)x +1x -1+4x 2-1=1.22.用正方形硬纸板做三棱柱盒子,每个盒子由3个长方形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A 方法:剪6个侧面;B 方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x 张用A 方法,其余用B 方法.(1)用含x 的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,求做出三棱柱盒子的个数.23.阅读下面的材料,解答后面的问题.解方程:x -1x -4x x -1=0.解:设y =x -1x ,则原方程可化为y -4y=0,方程两边同时乘y ,得y 2-4=0,解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -4y=0的解. 当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13. 经检验,x 1=-1,x 2=13都是原分式方程的解.故原分式方程的解为x 1=-1,x 2=13. 这种解分式方程的方法称为换元法.问题:(1)若在方程x -14x -x x -1=0中,设y =x -1x,则原方程可化为______________; (2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为_____________; (3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.24.华联商场预测某品牌衬衫能畅销,先用了8万元购入这种衬衫,面市后果然该品牌衣衫供不应求.于是商场又用了17.6万元购入第二批这种衬衫,所购数量是第一批购入量的2倍,但单价贵了4元.商场销售这种衬衫时每件定价都是58元,最后剩下的150件按定价的八折销售,很快售完.(1)第一批购入的衬衫价格是多少?(2)销售这两批衣衫,华联商场一共盈利多少元?答案一、1.C 2.A 3.B 4.B 5.D 6.D 7.D8.B :根据题意得33x -1- 25=2,解得x =34.经检验x =34是原方程的解.故选B. 9.D 10.A二、11.18a 2b 2c 12.-x 2y13.1 :∵x =1是分式方程a -2x -1x -2=0的根, ∴a -21-11-2=0. 解得a =1.14.715.m >2且m ≠316.23 :由a 2-5a +1=0可知a ≠0,所以a +1a=5. 所以a 2+1a 2=⎝ ⎛⎭⎪⎫a +1a 2-2=52-2=23. 17.15 :由题意可知15-1x =13-15,解得x =15. 经检验,x =15是该方程的根.18.2 :设超出5 m 3的部分每立方米收费a 元,由题意得17.5-1.5×5a +5=⎝ ⎛⎭⎪⎫27.5-1.5×5a +5×23, 解得a =2.经检验a =2是原方程的根.三、19.解:(1)原式=2a (a +3)(a -3)-a +3(a +3)(a -3)=a -3(a +3)(a -3)=1a +3. (2)原式 =b -a ab ·ab (a +b )(a -b )=-a -b ab ·ab (a +b )(a -b )=-1a +b. 20.解:x 2-4x +4x ÷⎝ ⎛⎭⎪⎫2x -1 =(x -2)2x ÷2-x x=(2-x )2x ·x 2-x=2-x .当x =2-2时,2-x =2-(2-2)= 2.21.解:(1)方程两边都乘x (x +2),得2(x +2)=3x ,解得x =4.检验:当x =4时,x (x +2)≠0,所以原分式方程的解为x =4.(2)方程两边都乘(x +1)(x -1),得(x +1)2+4=(x +1)·(x -1),解得x =-3.检验:当x =-3时,(x +1)·(x -1)≠0,所以原分式方程的解为x =-3.22.解:(1)裁剪时x 张用A 方法,则裁剪时(19-x )张用B 方法.∴侧面的个数为6x +4(19-x )=2x +76,底面的个数为5(19-x )=95-5x .(2)由题意,得2x +7695-5x =32. 解得x =7.经检验,x =7是原方程的根.2x +763=2×7+763=30. 故做出的三棱柱盒子的个数是30.23.解:(1)y 4-1y=0. (2)y -4y=0. (3)原方程化为x -1x +2-x +2x -1=0, 设y =x -1x +2, 则原方程可化为y -1y=0. 方程两边同时乘y ,得y 2-1=0,解得y 1=1,y 2=-1.经检验,y 1=1,y 2=-1都是方程y -1y=0的解. 当y =1时,x -1x +2=1,该方程无实数解,当y =-1时,x -1x +2=-1, 解得x =-12, 经检验,x =-12是原分式方程的解. 故原分式方程的解为x =-12. 24.解:(1)设第一批购入的衬衫价格为x 元/件,根据题意,得80 000x ×2=176 000x +4. 解得x =40.经检验,x =40是原方程的解.故第一批购入的衬衫的价格为 40元/件.(2)由(1)知,第一批购入了80 000÷40=2 000(件).在这两笔生意中,华联商场共盈利:2 000×(58-40)+(2 000×2-150)×(58-44)+150×(58×0.8-44)=90 260(元). 故华联商场共盈利 90 260元.。
鲁教版八年级数学上册 第2章 分式及分式方程单元测试题
![鲁教版八年级数学上册 第2章 分式及分式方程单元测试题](https://img.taocdn.com/s3/m/e6093e3ecbaedd3383c4bb4cf7ec4afe04a1b1bd.png)
八年级数学上册第二章 《分式与分式方程》 单元测试卷一、选择题:1.下列代数式中,属于分式的是( )A .﹣3B .1xC .﹣a ﹣bD .﹣14 2.若分式1x x+有意义,则x 的取值范围是( ) A .1x ≠B .1x ≠-C .1x ≥-D .1x >- 3.把分式方程2x x -+2=12x-化为整式方程,正确的是( ) A .x +2=﹣1B .x +2(x ﹣2)=1C .x +2(x ﹣2)=﹣1D .x +2=﹣1 4.计算211x x x ---的结果是( ) A .11x - B .1 C .﹣1 D .11x + 5.PM2.5是指大气中直径小于或等于0.0000025 m 的颗粒物,将0.0000025用科学记数法表示为( )A .B .C .2.5×10-5D .2.5×10-66.如果把分式232x x y -中的x ,y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .扩大2倍 7.下列各式中,是最简分式的是 ( )A .ab aB .4x 2yC .2x 1x 1--D .x 2x 2+- 8.若分式2254x x -+的值为负数,则x 的取值范围是( ) A .x 为任意数 B .52x < C .52x > D .52x <- 9.甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元.若设甲单位有x 人捐款,则所列方程是( ) A .48006000150x x =++ B .48006000150x x =+- C .48006000150x x =-+ D .48006000150x x =--10.若关于x 的不等式组2341x x x a -≤⎧⎨->⎩有三个整数解,且关于y 的分式方程2122y a y y=---有整数解,则满足条件的所有整数a 的和是( ) A .2B .3C .5D .6二、填空题 11. 式子-23a ,a a +b,x y 2,a +1π,x -1x 中,分式有________个. 12.化简111a a a ---的结果是______. 13.分式2213x y 、314xy z -的最简公分母是______.14.化简2222936a b a b ab =-________. 15.若分式11x x --的值为0,则x =______. 16.化简分式22231⎛⎫--÷ ⎪+--⎝⎭x y x y x y x y的结果为_____. 17.南昌至赣州的高铁全程约416km ,已知高铁的平均速度比普通列车的平均速度快100km/h ,人们的出行时间将缩短一半,求高铁的平均速度.设高铁的平均速度为x ,则可列方程:______.18.分式方程15102x m x x-=--无解,则m =_______. 三、解答题:19.先化简,再求值:22222111a a a a a a a -+⎛⎫-÷- ⎪+-⎝⎭,其中a 是方程2702x x --=的根.20.解方程:(1)251093x x +=-- (2)22510x x x x -=+-21.水源村在今年退耕还林活动中,计划植树200亩,全村在完成植树40亩后,某环保组织加入此活动,并且该环保组织植树的速度是水源村植树速度的1.5倍,整个植树过程共用了13天,水源村每天植树多少亩?22.某水果经销商看准商机,第一次用8000元购进某种水果进行销售,销售良好,于是第二次用了24000元购进同种水果,但此次进价比第一次提高了20%,所购数量比第一次购进数量的2倍还多200千克.(1)求第一次所购该水果的进货价是每千克多少元?(2)在实际销售中,两次售价均相同,但第一次购进的水果在销售过程中,消费者挑选后,由于水果品相下降,最后50千克八折售出;第二次购进的水果由于同样的原因,最后100千克九折售出,若售完这两批水果的获利不低于9400元,则每千克售价至少为多少元?23.观察下列方程的特征及其解的特点.解答下列问题:12121221,2623123 4.x x x xx x x xx x x x +=-=-+=-=-+=-=-① =-3的解为 ② =-5的解为,③ 的解为, (1)请你写出一个符合上述特征的方程为_______,其解为14x =-,25x =-.(2)根据这类方程特征,写出第n 个方程为_________,其解为1x n =-,21x n =--; (3)请利用(2)的结论,求关于x 的方程()232233n n x n x +++=-++的解。
鲁教版数学八年级上册 第一章 《因式分解》 单元检测卷
![鲁教版数学八年级上册 第一章 《因式分解》 单元检测卷](https://img.taocdn.com/s3/m/7331ff920408763231126edb6f1aff00bed570b3.png)
鲁教版数学八年级上册第一章《因式分解》单元测试卷一、选择题:1.把多项式4x2−36分解因式,结果正确的是()) A.(2x+6)(2x−6)B.4(x−3)2C.4(x+3)(x−3)D.4x(x−9x 2.下列因式分解正确的是()A.−3a2x−3ax=−3ax(a−1)B.x2−2xy2+y4=(x−y2)2C.4x2−y2=(4x+y)(4x−y)D.x(x−y)−y(y−x)=x2−y2 3.对于①a2b−ab2=ab(a−b),①(x+2)(x−3)=x2−x−6,从左到右的变形,下面的表述正确的是().A.①①都是因式分解B.①①都是乘法运算C.①是因式分解,①是乘法运算D.①是乘法运算,①是因式分解4.已知a−2b=−3,那么a(a−4b)+4b2的值为()A.-9B.9C.-6D.65.把多项式x2+ax+b分解因式,得(x+1)(x−3),则a+b的值是()A.1B.-1C.5D.-56.下列各组代数式中,没有公因式的是()A.ax+y和x+y B.2x和4y C.a-b和b-a D.-x2+xy和y-x 7.整式n2﹣1与n2+n的公因式是()A.n B.n2C.n+1 D.n﹣18.下列各式可以用完全平方公式分解因式的是()A.x2+2x−1B.1+x2C.x+xy+1D.x2−2x+1二、填空题:9.多项式x2+mx−5因式分解得(x+5)(x−1),则m=.10.3mx−6mx2中公因式是11.边长为m、n的长方形的周长为14,面积为10,则m2n+mn2的值为.12.已知x2+4mx+16是完全平方式,则m的值为.13.若ab=﹣2,a+b=﹣1,则代数式a2b+ab2的值等于.14.已知|x−2y−1|+x2+4xy+4y2=0,则x+y的值为15.已知:a,b,c是等腰三角形ABC的三条边,其中a,b满足a2+b2﹣2a﹣8b+17=0,则△ABC的周长为.三、解答题:16.分解因式:(1)6ab3﹣24a3b;(2)a2(x﹣y)+4b2(y﹣x);(3)(a−b)2+4ab(4)9-12(x-y)+4(x-y)217.若△ABC的三边长是a、b、c,且a2+b2+c2=ab+bc+ac,试推断这个三角形的形状是什么三角形..18.阅读材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,可以得到:原式=(x+y+1)2.上述解题用到的是“整体思想”,整体思想是数学解题中常用的一种思想方法,问题解决:(1)因式分解:1+6(x−y)+9(x−y)2(2)因式分解:(a2−4a+1)(a2−4a+7)+9(3)证明:若n为正整数,则代数式(n+1)(n+2)(n2+3n)+1的值一定是某个整数的平方.。
鲁教版八年级数学上册第三章数据的分析单元测试
![鲁教版八年级数学上册第三章数据的分析单元测试](https://img.taocdn.com/s3/m/99375cbbb0717fd5360cdce1.png)
第三章数据的分析单元测试一.单选题(共10题;共30分)1.今年3月份某周,我市每天的最高气温(单位:℃)12,9,10,6,11,12,17,则这组数据的中位数与极差分别是()A. 8,11B. 8,17C. 11,11D. 11,172.某一公司共有51名员工(其中包括1名经理),经理的工资高于其他员工的工资,今年经理的工资从去年的200000元增加到225000元,而其他员工的工资同去年一样,这样,这家公司所有员工今年工资的平均数和中位数与去年相比将会()A. 平均数增加,中位数不变B. 平均数和中位数不变C. 平均数不变,中位数增加D. 平均数和中位数均增加3.已知一组数据:12,5,9,5,14,下列说法不正确的是( )A. 极差是5B. 中位数是9C. 众数是5D. 平均数是94.技术员小张为考察某种小麦长势整齐的情况,从中抽取了20株麦苗,并分别测量了苗高,则小张最需要知道这些麦苗高的()A. 平均数B. 方差C. 中位数D. 众数5.小明同学上学期的5科期末成绩,语文、数学、英语每科成绩均为90分,科学、社会每科成绩均80分,则他5科成绩的平均分是()A. 84B. 85C. 86D. 876.下列一组数据:﹣2、﹣1、0、1、2的平均数和方差分别是()A. 0和2B. 0和C. 0和1D. 0和07.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是()A. 70,80B. 70,90C. 80,90D. 90,1008.下面获取数据的方法不正确的是()A. 我们班同学的身高用测量方法B. 快捷了解历史资料情况用观察方法C. 抛硬币看正反面的次数用实验方法D. 全班同学最喜爱的体育活动用访问方法9.10,20,40,20,80,90,50,40,40,50这10个数据最大值与最小值的差是()A. 40B. 70C. 80D. 9010.计算器已进入统计状态的标志是显示屏上显示()A. DATAB. STATC. RADD. DEG二.填空题(共8题;共36分)11.(2015•武汉)一组数据2,3,6,8,11的平均数是________ .12.(2015•巴中)有一组数据:5,4,3,6,7,则这组数据的方差是 ________.13.我们进入中学以来,已经学习过不少有关数据的统计量,例如________ 等,它们分别从不同的侧面描述了一组数据的特征.14.一组数据﹣1,x,0,5,3,﹣2的平均数是1,则这组数据的中位数是________ .15.一组数据按从小到大的顺序排列为1,2,3,3,4,5,则这组数据的方差是________ .16.八(6)班组织了一次经典朗读比赛,甲、乙两队各9人的比赛成绩如表(10分制):(1)甲队成绩的中位数是________分,乙队成绩的众数是________分;(2)计算乙队的平均成绩和方差________,________;(3)若选择其中一队参加校级经典朗读比赛则应选________队.17.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩________.18.如果一组数据1,11,x,5,9,4的中位数是6,那么x=________三.解答题(共6题;共36分)19.一家广告公司想招聘一名策划部经理,对甲、乙两名应聘应试者进行面试、文案策划、已有经历三项考评,他们的各项成绩(百分制)如下表(1)如果这家公司想招聘一名综合能力较强的部门经理,计算两名应试者的平均成绩(百分制),从他们成绩看,应录取谁?(2)如果这家公司想招聘一名综合能力较强的部门经理,面试、文案策划、已有成绩按照4:3:3的比确定,计算两名应试者的平均成绩(百分制),从他们成绩看,应录取谁?20.为了解某学校初三男生1000米长跑,女生800米长跑的成绩情况,从该校初三学生中随机抽取了10名男生和10名女生进行测试,将所得的成绩分别制成如下的表1和图1,并根据男生成绩绘制成了不完整的频率分布直方图(图2).表1(1)根据表1,补全图片2;(2)根据图1,10名女生成绩的中位数是多少?众数是多少?(3)按规定,初三女生800米长跑成绩不超过3′19″就可以得满分.该校初三学生共490人,其中男生比女生少70人.如果该校初三女生全部参加800米长跑测试,请你估计可获得满分的人数约为多少?21.甲、乙、丙、丁四支足球队在世界杯预选赛中进球数分别为9,9,x,7,若这组数据的众数和平均数恰好相等,求出其中的x值以及此组数据的标准差.22.有甲、乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码为不重复的整数,乙箱内没有球.已知紫悦从甲箱内拿出m颗球放入乙箱后,乙箱内球的号码的中位数为40,若此时甲箱内剩有a 颗球的号码小于40,b颗球的号码大于40.(1)当m=49时,求a、b之值,并问甲箱内球的号码的中位数能否为40?说明理由;(2)当甲箱内球的号码的中位数与乙箱内球的号码的中位数都是x,求x的值.23.某广告公司欲招聘一名职员,对甲、乙、丙三名候选人进行了三项素质测试,他们的各项测试成绩如表:根据实际需要,为公司招聘一名网络维护人员,公司将公关能力,计算机能力,创新能力三项测试的得分按3:5:2的比例确定各人的测试成绩,计算甲、乙、丙各自的平均成绩,谁将被录用?24.在校园歌手大奖赛上,比赛规则为七位评委打分,去掉一个最高分和一个最低分后,所剩数据取平均数即为选手的最后得分,七位评委给某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,则这位歌手的最后得分是多少?答案解析一.单选题1.【答案】C【考点】中位数、众数,极差【解析】【分析】首先把所给数据按照由小到大的顺序排序,然后利用中位数和极差定义即可求出结果.【解答】把已知数据按照由小到大的顺序排序后为6、9、10、11、12、12、17,∴这组数据的中位数是11;极差是17-6=11.故选C.【点评】此题主要这样考查了中位数和极差的定义,解题关键是把所给数据按照由小到大的顺序排序,然后确定最大值和最小值.2.【答案】A【考点】算术平均数,加权平均数,中位数、众数【解析】【解答】设这家公司除经理外50名员工的工资和为a元,则这家公司所有员工去年工资的平均数是元,今年工资的平均数是元,显然<;由于这51个数据按从小到大的顺序排列的次序完全没有变化,所以中位数不变.故选A.【分析】本题考查统计的有关知识,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,平均数是指在一组数据中所有数据之和再除以数据的个数.本题主要考查了平均数,中位数的概念,要掌握这些基本概念才能熟练解题.同时注意到个别数据对平均数的影响较大,而对中位数和众数没影响.3.【答案】A【考点】算术平均数,中位数、众数,极差【解析】【分析】分别计算该组数据的平均数、中位数、众数及极差后即可得到正确的答案.【解答】极差为:14-5=9,故A错误;中位数为9,故B正确;5出现了2次,最多,众数是5,故C正确;平均数为(12+5+9+5+14)÷5=9,故D正确.由于题干选择的是不正确的,故选A.【点评】本题考查了数据的平均数、中位数、众数及极差,属于基础题,比较简单.4.【答案】B【考点】统计量的选择【解析】【分析】根据平均数、方差、中位数及众数的定义求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学八年级因式分解单元测试题
一、填空题(每小题3分,共30分) 1、分解因式:=-22y x .
2、多项式42
+-kx x 是一个完全平方式,则k = .
3、++x x 412
=2)8
1(+x .
4、已知:︱b a -︳=1,则=+-2
22b ab a .
5、已知:21=+x x ,则=+22
1x
x .
6、分解因式:=++-y x y x 22 .
7、已知:052422=+++-y y x x ,则=+y x .
8、分解因式:=+-962
x x . 9、分解因式:=-x x 253
.
10、若2=+b a ,1=ab ,则=+2
2b a . 二、选择题(每小题3分,共30分)
11、下列各式从左到右的变形是因式分解的是 ( ) A.ab a b a a -=-2)( B.1)2(122+-=+-a a a a
C.)1(2-=-x x x x
D.)()(2222y x y x y x y x -+-=-+-
12、若)3)(3)(9(812x x x x n -++=-,则n 的值为 ( ) A.2 B.3 C.4 D.6
13、y x xy xyz 2
2936-+-的公因式是 ( ) A.x 3- B.xz 3 C.yz 3 D.xy 3-
14、下列各式中不能用平方差公式分解因式的是 ( ) A. 201.0x +- B.2216x y - C.2y x -- D.42
-x 15、把412
+
+ma a 分解因式得2
)2
1(-a ,则m 的值是 ( ) A. 2- B.2 C.1 D.-1
16、22y x +是下列哪个多项式的因式 ( )
A.44y x +
B. ))((y x y x -+
C.33xy y x -
D.4
4y x - 17、下列分解因式中完全正确的是 ( ) A. ))((22a b a b b a -+=+- B. 1))((12
2--+=--y x y x y x C.))(()1()(2y x y x y y x -+=--+ D.))((2
224a a a a a a -+=-
18、多项式224y x -与2
244y xy x ++的公因式是( )
A. 2
24y x - B.y x 2+ C. y x 2- D.y x 4+ 19、若16)3(22
+--x m x 是完全平方式,则m 为 ( ) A. -5 B.3 C.7 D.7或-1
20若k x x +-32
是完全平方式,则k 的值为 ( )
A.
23 B.49 C.29 D.4
3 三、解答下列各题(60分)
21、分解因式(4分×8=32分) ①22
41y x - ②a b b a 334- ③4
1
2+-x x
④)()(2a b b a --- ⑤2244y xy x +- ⑥1)2(22-+-y xy x
⑦22216)4(x x -+ ⑧)()(2x y b y x a ---
22、已知:,0136422=+-+-y y x x 求x 、y 的值。
(7分)
23、计算:)10
1
1()511)(411)(311)(211(22222-⋅⋅⋅----
,(7分) 24、先分解因式,再求值,当x=1时,求代数式)41(3)14(3x x x -+-的值(7分)
25、已知:a 、b 、c 为△ABC 的三边长,且0)()()(2
22=-----b a c a b b b a a 试判定△ABC
的形状。
(7分)。