实验一 一阶、二阶系统阶跃响应曲线的绘制及系统稳定性分析

合集下载

一阶系统响应实验报告

一阶系统响应实验报告

一阶系统响应实验报告一阶系统响应实验报告引言:在控制工程中,我们经常需要了解和研究系统的响应特性,以便更好地设计和调节控制器。

本实验旨在通过对一阶系统的响应实验,探究系统的动态特性,并分析其对不同输入信号的响应。

实验设备和方法:本次实验使用了一台具备数据采集功能的控制实验台,以及相应的软件进行数据记录和分析。

实验中,我们采用了不同的输入信号,如阶跃信号、正弦信号和方波信号,并记录了系统的输出响应。

实验结果和分析:1. 阶跃信号的响应首先,我们将系统接入阶跃信号输入,并记录了系统的输出响应。

实验结果显示,系统在接收到阶跃信号后,出现了一段时间的超调现象,随后逐渐趋于稳定。

通过对实验数据的分析,我们可以得到系统的超调量、调节时间和稳态误差等重要参数。

2. 正弦信号的响应接下来,我们将正弦信号作为输入信号,并记录了系统的输出响应。

实验结果显示,系统对正弦信号的响应具有一定的频率特性。

通过进一步分析,我们可以得到系统的频率响应曲线,了解系统对不同频率信号的传递特性。

3. 方波信号的响应最后,我们将方波信号作为输入信号,并记录了系统的输出响应。

实验结果显示,系统对方波信号的响应存在一定的时间延迟和波形失真。

通过对实验数据的分析,我们可以得到系统的时间延迟和响应速度等参数,进一步了解系统的动态特性。

实验结论:通过本次实验,我们对一阶系统的响应特性进行了研究和分析。

实验结果显示,不同输入信号下,系统的响应表现出不同的特性,如超调现象、频率响应和时间延迟等。

这些特性对于控制系统的设计和调节具有重要意义。

通过深入研究系统的响应特性,我们可以更好地理解和掌握系统的动态行为,从而提高控制系统的性能和稳定性。

进一步探讨:除了一阶系统的响应特性,我们还可以进一步研究和探讨其他类型系统的响应特性,如二阶系统、高阶系统等。

通过对不同类型系统的研究,我们可以更全面地了解和应用控制工程的相关知识,为实际工程问题的解决提供更有效的方法和手段。

系统阶跃响应实验报告

系统阶跃响应实验报告

一、实验目的1. 了解系统阶跃响应的基本概念和特性。

2. 掌握系统阶跃响应的测试方法。

3. 分析系统阶跃响应的动态性能指标。

4. 通过实验验证理论知识,加深对系统动态特性的理解。

二、实验原理阶跃响应是指系统在单位阶跃输入信号作用下的输出响应。

对于线性时不变系统,其阶跃响应具有以下特点:1. 稳态值:系统达到稳定状态后的输出值。

2. 超调量:系统输出在稳定前达到的最大值与稳态值之差与稳态值之比。

3. 调节时间:系统输出达到并保持在稳态值的±2%范围内的持续时间。

4. 过渡过程时间:系统输出从0%达到并保持在100%稳态值范围内的持续时间。

三、实验仪器与设备1. 自动控制系统实验箱2. 计算机及实验软件3. 阶跃信号发生器4. 数据采集卡四、实验内容1. 构建实验系统,包括一阶系统和二阶系统。

2. 分别对一阶系统和二阶系统进行阶跃响应实验。

3. 测试并记录系统的稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 分析实验结果,验证理论公式。

五、实验步骤1. 构建一阶系统实验电路,包括惯性环节和比例环节。

2. 将阶跃信号发生器输出接入系统输入端,通过数据采集卡采集系统输出信号。

3. 测试一阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

4. 构建二阶系统实验电路,包括惯性环节、比例环节和积分环节。

5. 同样地,测试二阶系统的阶跃响应,记录稳态值、超调量、调节时间和过渡过程时间等动态性能指标。

6. 对比一阶系统和二阶系统的阶跃响应特性,分析实验结果。

六、实验结果与分析1. 一阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:0%- 调节时间:0.5s- 过渡过程时间:0.5s2. 二阶系统阶跃响应实验结果:- 稳态值:1.0- 超调量:10%- 调节时间:1.5s- 过渡过程时间:1.5s从实验结果可以看出,二阶系统的阶跃响应超调量较大,调节时间和过渡过程时间较长,说明二阶系统的动态性能相对较差。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

实验2二阶系统的阶跃响应及稳定性分析实验

实验2二阶系统的阶跃响应及稳定性分析实验

实验室二二阶系统的阶跃响应及稳定性分析实验一.实验目的1.熟悉二阶模拟系统的组成。

2.研究二阶系统分别工作在等几种状态下的阶跃响应。

3.学习掌握动态性能指标的测试方法,研究典型系统参数对系统动态性能和稳定性的影响。

二,实验内容1.ZY17AutoC12BB自动控制原理实验箱。

2.双踪低频慢扫示波器。

四.实验原理典型二阶系统的方法块结构图如图2.1所示:图2.1其开环传递函数为,为开环增益。

其闭环传递函数为,其中取二阶系统的模拟电路如图2.2所示:该电路中该二阶系统的阶跃响应如图所示:图2.3.1,2.3.2,2.3.3,2.3.4和2.3.5分别对应二阶系统在过阻尼,临界阻尼,欠阻尼,不等幅阻尼振荡(接近于0)和零阻尼(=0)几种状态下的阶跃响应曲线。

改变元件参数Rx大小,可研究不同参数特征下的时域响应。

当Rx为50k时,二阶系统工作在临界阻尼状态;当Rx<50K时,二阶系统工作在过阻尼状态;当Rx>50K时,二阶系统工作在欠阻尼状态;当Rx继续增大时,趋近于零,二阶系统输出表现为不等幅阻尼振荡;当=0时,二阶系统的阻尼为零,输出表现为等幅振荡(因导线均有电阻值,各种损耗总是存在的,实际系统的阻尼比不可能为零)。

五. 实验步骤1.利用实验仪器,按照实验原理设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路。

此实验可使用运放单元(一),(二),(三),(五)及元器件单元中的可调电阻。

(1)同时按下电源单元中的按键开关S001,S002,再按下S003,调节可调电位器W001,使T006(-12V—+12V)输出电压为+1V,形成单位阶跃信号电路,然后将S001,S002再次按下关闭电源。

(2)按照图2.2连接好电路,按下电路中所用到运放单元的按键开关。

(3)用导线将连接好的模拟电路的输入端于T006相连接,电路的输出端与示波器相连接。

(4)同时按下按键开关S001,S002时,利用示波器观测该二阶系统模拟电路的阶跃特性曲线,并由实验测出响应的超调量和调节时间,将结果记录下来。

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告实验报告:二阶系统的阶跃响应实验目的:本次实验的目的是研究二阶系统的阶跃响应,并对实验结果进行分析与讨论,以理解二阶系统在控制工程领域中的应用。

实验原理:二阶系统是指具有二阶特性的系统,即在系统受到激励信号后,系统的响应随时间的变化呈现出一定的规律。

在此实验中,我们将研究二阶系统的阶跃响应,其中阶跃信号指输入信号由零值跳变到一个恒定的值(或者说幅度无限大),通常用单位阶跃函数u(t)表示,即u(t)=1(t≥0),而二阶系统响应的公式可表示为:y(t) = K(1- e^(-ξωnt)cos(ωdt+φ))其中,K为系统的增益,ξ为阻尼比,ωn为自然频率,ωd为阻尼振荡频率,φ为相位角。

实验步骤:1. 确定实验装置的参数,并将之记录下来,包括:二阶系统的增益K、阻尼比ξ、自然频率ωn,以及阶跃信号的幅值u0等。

2. 将二阶系统的输入信号设置为阶跃信号u(t),并将输出信号y(t)记录下来,同时进行数据采集和记录。

3. 根据数据得出实验结果,并利用软件对实验数据进行处理和分析,包括波形比较、响应曲线分析和幅值与相位移测量等。

实验结果:在此次实验中,我们得到了如下的实验参数:增益K = 1.5V阻尼比ξ = 0.1自然频率ωn = 2π x 10Hz阶跃信号幅值u0 = 2V根据实验数据,我们得到了如下的响应曲线:图1 二阶系统的阶跃响应曲线通过对响应曲线的分析和处理,我们发现:1. 二阶系统的阶跃响应具有一定的超调和振荡特性,表明系统的稳定性较差,需要进行进一步的优化和调整。

2. 阻尼比ξ的大小与系统的响应有着密切的关系,通常应根据系统的具体情况进行合理的选择和调整,以达到最佳的控制效果。

3. 自然频率ωn的大小与系统的响应速度有关,通常应根据实际控制要求进行选择和调整,以达到最佳的控制效果。

结论:本次实验研究了二阶系统的阶跃响应,并对实验结果进行分析和讨论。

通过对实验数据的处理和比较,我们发现阻尼比ξ和自然频率ωn是影响系统响应特性的关键因素,应根据实际控制要求进行合理的选择和调整。

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。

二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。

2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。

3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。

根据系统的阶数不同,其响应形式也不同。

实验仪器:电动力控制实验台,控制箱,计算机等。

三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。

2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。

4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。

5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。

四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。

根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。

2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。

根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。

五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。

通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。

六个典型环节的阶跃响应曲线详解

六个典型环节的阶跃响应曲线详解

六个典型环节的阶跃响应曲线详解1. 引言在信号处理领域中,阶跃响应曲线是描述系统对单位阶跃输入信号的输出响应的一种常用方法。

通过分析阶跃响应曲线,我们可以了解系统的动态特性、稳态误差和稳定性等重要信息。

本文将详细探讨六个典型环节的阶跃响应曲线,以帮助读者更好地理解信号处理中的阶跃响应。

2. 一阶惯性环节让我们来讨论一阶惯性环节的阶跃响应曲线。

一阶惯性环节由一个惯性成分和一个系数组成,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。

在阶跃输入信号下,一阶惯性环节的输出响应会经历一个指数衰减的过程。

初始阶段,响应曲线呈现出较大的上升斜率,接近输入信号的增量。

随着时间的推移,响应逐渐趋于稳定的平衡状态。

通过观察阶跃响应曲线的时间常数τ,我们可以推断系统的动态特性以及稳态稳定性。

3. 一阶积分环节接下来,我们将研究一阶积分环节的阶跃响应曲线。

一阶积分环节的传递函数可以表示为G(s) = k / s,其中k为增益。

与一阶惯性环节不同,一阶积分环节的阶跃响应曲线呈现出线性增长的特点。

输出信号随时间的增加而持续积分,并逐渐达到稳态。

在实际应用中,一阶积分环节常用于控制系统中,以改善系统的稳定性和对常数误差的补偿。

4. 一阶滞后环节第三个环节是一阶滞后环节,其传递函数可以表示为G(s) = k / (τs + 1),其中k为增益,τ为时间常数。

一阶滞后环节的阶跃响应曲线表现出一种惰性的特点。

初始阶段,响应曲线的上升斜率较小,逐渐接近输入信号的增量。

随着时间的推移,响应曲线逐渐逼近稳定的平衡状态。

一阶滞后环节常用于减小系统的动态响应,并提高稳态精度。

5. 二阶过阻尼环节接下来,我们将研究二阶过阻尼环节的阶跃响应曲线。

二阶过阻尼环节的传递函数可以表示为G(s) = k / (τ^2s^2 + 2ζτs + 1),其中k为增益,τ为时间常数,ζ为阻尼比。

二阶过阻尼环节的阶跃响应曲线表现出较小的震荡和较快的收敛特性。

自动控制理论实验指导书

自动控制理论实验指导书

自动控制理论实验指导书《自动控制理论》是一门理论性和实践性都很强的专业基础课。

实验课是本课程不可少的教学环节。

通过实验课可以使学生掌握基本的实验方法和操作技能。

认真地进行实验,有助于加深对理论知识的理解;有助于培养动手能力;有助于养成良好的工作习惯;有助于培养应用型人才。

本实验指导书安排以下几项实验:实验一一、二阶系统的模型及阶跃响应的动态分析实验二控制系统根轨迹实验实验三频率特性的测试实验四控制系统的校正实验时间安排如下:实验一在第三章时域分析法结束之后进行;实验二在第四章根轨迹法结束之后进行;实验三在第五章频率法结束之后进行;实验四在第六章控制系统的校正结束之后进行。

实验仪器设备:微型计算机一台实验报告:实验报告是实验工作的最终总结,是反映分析能力和工作能力的重要手段,要求学生独立完成,每人一份。

实验报告主要内容有:1、实验名称、专业班级、本人姓名、同组人员名单、实验日期、实验地点;2、实验目的、要求;3、实验内容、步骤、方法;4、实验数据及记录或绘制的实验曲线;5、分析实验数据,写出心得体会,总结经验,提出改进意见。

实验一 一、二阶系统的模型及阶跃响应的动态分析一、实验目的1、熟悉并掌握MATLAB 在自动控制仿真中的应用。

2、学习时域响应的测试方法,树立时域的概念。

3、明确一、二阶系统的阶跃响应及其性能指标与结构参数的关系。

二、实验内容1、建立一阶系统的模型,观察并测量不同时间常数T 的阶跃响应及性能指标调节时间t s 。

2、建立二阶系统的模型,观察并测量不同阻尼比ξ时的阶跃响应及性能指标调节时间t s 、超调量σ%。

三、实验原理及方法1、一阶系统 传递函数()11s +=Ts φ,系统结构如图所示运用MATLAB 建立系统模型,选取参数T 分别为0.1、0.5、1秒时,分别观测系统的阶跃响应曲线,测试并纪录性能指标调节时间t s 。

2、二阶系统 传递函数()2222s nn ns s ωξωωφ++=建立系统模型,参数选取见下表,分别观测系统的阶跃响应曲线,测试并纪录性能指标调节时间t s、超调量σ%。

二阶系统的阶跃响应实验报告

二阶系统的阶跃响应实验报告

实验二 二阶系统的阶跃响应实验报告1.实验的目的和要求1)掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术;2)定量分析二阶控制系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响;3)加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质;4)了解与学习二阶控制系统及其阶跃响应的MATLAB 仿真。

2.实验内容1)分析典型二阶系统2222)(n n n s s s G ωξωω++=的ξ(ξ取值为0、0.25、0.5、1、1.2……)和n ω(n ω取值10、100……)变化时,对系统阶跃响应的影响。

2)典型二阶系统,若0.707ξ=,110n s ω-=,确定系统单位阶跃响应的特征量%σ、r t 和s t 。

3.需用的仪器计算机、Matlab6.5编程软件4.实验步骤1)利用MA TLAB 分析n ω=10时ξ变化对系统单位阶跃响应的影响。

观察并记录响应曲线,根据实验结果分析ξ变化对系统单位阶跃响应的影响。

2)利用MA TLAB 分析ξ=0时n ω变化对系统单位阶跃响应的影响。

观察并记录响应曲线,根据实验结果分析n ω变化对系统单位阶跃响应的影响。

3)利用MA TLAB 计算特征量%σ、r t 和s t 。

5.教案方式讲授与指导相结合6.考核要求以实验报告和实际操作能力为依据7.实验记录及分析1)程序:》t=[0:0.01:10]。

y1=step([100],[1 0 100],t)。

y2=step([100],[1 5 100],t)。

y3=step([100],[1 10 100],t)。

y4=step([100],[1 20 100],t)。

y5=step([100],[1 80 100],t)。

subplot(3,2,1)。

plot(t,y1,'-')。

gridxlabel('time t')。

ylabel('y1')。

自控原理实验报告 实验一

自控原理实验报告 实验一

自动控制原理实验报告一、二阶系统的电子模拟及时域响应的动态测试学院姓名班级学号日期一、实验目的1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、实验内容1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间Ts。

2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间Ts。

三、实验原理1.一阶系统:系统传递函数为:∅(S)=C(S)R(S)=KTS+1模拟运算电路如图1- 1所示:图1- 1由图1-1得U0(S)U i(S)=R2/R1R2CS+1=KTS+1在实验当中始终取R2= R1,则K=1,T= R2C取不同的时间常数T分别为:0.25s、0.5s、1s2.二阶系统:其传递函数为:ϕ(S)=C(S)R(S)=ωn2S+2ζωn S+ωn令ωn=1弧度/秒,则系统结构如图1-2所示:图1-2根据结构图,建立的二阶系统模拟线路如图1-3所示:图1-3取R2C1=1 ,R3C2 =1,则R 4R 3=R 4C 2=12ξ及 ξ=12R 4C 2s T 理论及σ%理论由公式21-e %ξπξσ-=和)(8.05.3T ns <=ξξω及)(8.07.145.6T ns ≥-=ξωξ计算得到。

ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1,ζ=0.707四、实验步骤1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路;2. 将系统输入端 与D/A1相连,将系统输出端 与A/D1相;3. 检查线路正确后,模拟机可通电;4. 双击桌面的“自控原理实验”图标后进入实验软件系统。

5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。

实验四 一阶、二阶系统阶跃响应曲线的绘制及系统稳定性分析

实验四    一阶、二阶系统阶跃响应曲线的绘制及系统稳定性分析

实验四 一阶、二阶系统阶跃响应曲线的绘制及系统稳定性分析【实验目的】熟悉采用Matlab 软件所进行的自动控制原理分析。

【实验内容】1、一阶系统的阶跃响应曲线的绘制;2、二阶系统的阶跃响应曲线的绘制;3、求解系统闭环极点并判断系统的稳定性。

【实验步骤】1、 已知系统传递函数为:=)(s φ11+Ts ,分别作T=0.1,1,10时的阶跃响应曲线。

其程序为:subplot(3,1,1);num=1;den=[0.1,1];step(num,den);gridsubplot(3,1,2);den=[1,1];step(num,den);gridsubplot(3,1,3);den=[10,1];step(num,den);grid2、 已知二阶系统2222)(w w s w s ++=ςφ;当w=5时,分别作出2,1,6.0,0=ς的阶跃响应曲线。

其程序为:num=25;den=[1,0,25];step(num,den);hold onden=[1,6,25];step(num,den);hold onden=[1,10,25];step(num,den);hold onden=[1,20,25];step(num,den);axis([0, 5 ,0 ,2.2])text(0.7,2.0,'\zeta=0','FontSize',8)text(0.7,1.2,'0.6','FontSize',8)text(0.7,0.8,'1','FontSize',8)text(0.7,0.5,'2','FontSize',8)(2)作出二阶系统单位阶跃响应曲线:(要求zeta 每次变化0.1)其程序为:num=25;for zeta=[0:0.1:1,2];den=[1,10*zeta,25];step(num,den);hold on;end3、 求解系统闭环极点并判断系统的稳定性:(1)025103234=++++s s s sp=[3,10,5,1,2];roots(p)(2)04832241232345=+++++s s s s sp=[ 1,3,12,24,32,48];roots(p)。

实验一一,二阶系统阶跃响应

实验一一,二阶系统阶跃响应

综合性实验:二阶系统的单位阶跃响应综合实验一、实验目的:1.在给定系统的内部结构、系统的阶跃响应性能指标,掌握系统的电路模拟方法。

2.掌握系统校正PID算法的实现和参数计算方法。

3.观察最优二阶系统的单位阶跃响应曲线,了解高阶系统的最优阶跃响应动、静态性能。

二、实验说明:1.本实验包括自控原理的线性定常系统分析的大部分内容,帮助学生复习、巩固书中的内容,提高学生的实验应用能力。

2.给定二阶系统的阶跃性能指标:o%=20% , t s=2s,设计一个电路模拟系统,计算电路的系统参数。

3.设计一个PID调节器,使系统具有二阶阶跃响应最优性能指标。

4.在实验平台上观察模拟系统的单位阶跃响应,观察系统校正前、后的输出响应。

说明最优二阶系统的动静态性能指标。

5.对模拟系统进行频域分析,计算其幅频和相频特性,在实验中观察系统的频率响应,对比计算和实验结果。

三、实验要求:按照实验过程作好实验前的准备工作<包括安排布置软件、硬件设备,编写实验步骤,需要观察记录的数据准备);记录好实验中的调试过程、数据变化,进行实验后的报告总结。

实验二二阶系统的阶跃响应实验二二阶系统的阶跃响应、实验目的1学习二阶系统阶跃响应曲线的实验测试方法2•研究二阶系统中无阻尼自然频率和阻尼比对阶跃瞬态响应指标的影响、实验设备1.XMN—2 型机;2.LZ3系列函数纪录仪或 CAE983.DT— 830数字万用表三、实验内容1对单一自然频率和阻尼比测量响应曲线2•保持阻尼比不变,改变自然频率记录响应曲线3•保持自然频率不变,改变阻尼比记录响应曲线四、实验步骤[步1]调整Rf和Ri使阻尼比为0.2,选择R,C使自然频率为1/0.47,假如幅度为1V的阶跃函数X(t>,观察并记录响应曲线。

以下标称中电阻单位为千欧姆,电容为微法拉。

[步2]调整Rf和Ri使阻尼比为0.2,选择R,C使自然频率为1/1.47,假如幅度为1V的阶跃函数X(t>,观察并记录响应曲线。

自控原理实验二阶系统的阶跃响应

自控原理实验二阶系统的阶跃响应

二阶系统的阶跃响应一、实验目的1. 通过实验了解参数ζ(阻尼比)、n ω(阻尼自然频率)的变化对二阶系统动态性能的影响;2. 掌握二阶系统动态性能的测试方法。

二、实验内容1. 观测二阶系统的阻尼比分别在0<ζ<1,ζ=1和ζ>1三种情况下的单位阶跃响应曲线;2. 调节二阶系统的开环增益K ,使系统的阻尼比21=ζ,测量此时系统的超调量p δ、调节时间t s (Δ= ±0.05);3. ζ为一定时,观测系统在不同n ω时的响应曲线。

三、实验原理1. 二阶系统的瞬态响应用二阶常微分方程描述的系统,称为二阶系统,其标准形式的闭环传递函数为2222)()(nn n S S S R S C ωζωω++= (2-1)闭环特征方程:0222=++n n S ωζω其解 122,1-±-=ζωζωn n S ,针对不同的ζ值,特征根会出现下列三种情况: 1)0<ζ<1(欠阻尼),22,11ζωζω-±-=n n j S此时,系统的单位阶跃响应呈振荡衰减形式,其曲线如图2-1的(a)所示。

它的数学表达式为:)(111)(2βωζζω+--=-t Sin e t C d t n式中21ζωω-=n d ,ζζβ211-=-tg。

2)1=ζ(临界阻尼)n S ω-=2,1此时,系统的单位阶跃响应是一条单调上升的指数曲线,如图2-1中的(b)所示。

3)1>ζ(过阻尼),122,1-±-=ζωζωn n S此时系统有二个相异实根,它的单位阶跃响应曲线如图2-1的(c)所示。

(a) 欠阻尼(0<ζ<1) (b)临界阻尼(1=ζ) (c)过阻尼(1>ζ)图2-1 二阶系统的动态响应曲线虽然当ζ=1或ζ>1时,系统的阶跃响应无超调产生,但这种响应的动态过程太缓慢,故控制工程上常采用欠阻尼的二阶系统,一般取ζ=0.6~0.7,此时系统的动态响应过程不仅快速,而且超调量也小。

实验一-系统响应及系统稳定性实验报告

实验一-系统响应及系统稳定性实验报告

模块综合测评(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.问题:①有1 000个乒乓球分别装在3种箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是( )A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ【解析】本题考查三种抽样方法的定义及特点.【答案】 B2.从装有2个红球和2个白球的红袋内任取两个球,那么下列事件中,互斥事件的个数是( )①至少有一个白球;都是白球.②至少有一个白球;至少有一个红球.③恰好有一个白球;恰好有2个白球.④至少有1个白球;都是红球.A.0 B.1C.2 D.3【解析】由互斥事件的定义知,选项③④是互斥事件.故选C.【答案】 C3.在如图1所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )图1A.6 B.8C.10 D.14【解析】由甲组数据的众数为14,得x=y=4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10,故选C.【答案】 C4.101110(2)转化为等值的八进制数是( )A.46 B.56C.67 D.78【解析】∵101110(2)=1×25+1×23+1×22+1×2=46,46=8×5+6,5=8×0+5,∴46=56(8),故选B.【答案】 B5.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下:(单位:cm)甲:9.0,9.2,9.0,8.5,9.1,9.2;乙:8.9,9.6,9.5,8.5,8.6,8.9.据以上数据估计两人的技术的稳定性,结论是( ) A.甲优于乙B.乙优于甲C.两人没区别D.无法判断【解析】x甲=16(9.0+9.2+9.0+8.5+9.1+9.2)=9.0,x乙=16(8.9+9.6+9.5+8.5+8.6+8.9)=9.0;s2甲=16[(9.0-9.0)2+(9.2-9.0)2+(9.0-9.0)2+(8.5-9.0)2+(9.1-9.0)2+(9.2-9.0)2]=0.346,s2乙=16[(8.9-9.0)2+(9.6-9.0)2+(9.5-9.0)2+(8.5-9.0)2+(8.6-9.0)2+(8.9-9.0)2]=1.046.因为s2甲<s2乙,所以甲的技术比乙的技术稳定.【答案】 A6.某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有100名学生,他们参加活动的次数统计如图2所示,则从文学社中任意选1名学生,他参加活动次数为3的概率是( )图2A.110B.310C.610D.710【解析】从中任意选1名学生,他参加活动次数为3的概率是30100=310.【答案】 B7.(2014·北京高考)当m=7,n=3时,执行如图3所示的程序框图,输出的S值为( )图3A.7 B.42C.210 D.840【解析】程序框图的执行过程如下:m=7,n=3时,m-n+1=5,k=m=7,S=1,S=1×7=7;k=k-1=6>5,S=6×7=42;k=k-1=5=5,S=5×42=210;k=k-1=4<5,输出S=210.故选C.【答案】 C8.已知函数f (x )=x 2-x -2,x ∈[-5,5],那么在区间[-5,5]内任取一点x 0,使f (x 0)≤0的概率为( )A .0.1B .23C.0.3D .25【解析】 在[-5,5]上函数的图象和x 轴分别交于两点(-1,0),(2,0),当x 0∈[-1,2]时,f (x 0)≤0.P =区间[-1,2]的长度区间[-5,5]的长度=310=0.3.【答案】 C9.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )【导学号:28750073】 A.19 B .29C.49D .89【解析】 法一:设2个人分别在x 层,y 层离开,则记为(x ,y ).基本事件构成集合Ω={(2,2),(2,3),(2,4),…,(2,10),(3,2),(3,3),(3,4),…,(3,10),(10,2),(10,3),(10,4),…,(10,10)},所以除了(2,2),(3,3),(4,4),…,(10,10)以外,都是2个人在不同层离开,故所求概率P =9×9-99×9=89.法二:其中一个人在某一层离开,考虑另一个人,也在这一层离开的概率为19,故不在这一层离开的概率为89.【答案】 D10.(2016·沾化高一检测)点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14 B .12C.π4D .π【解析】 如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P 到定点A 的距离|PA |<1的概率为S ′S =π4.【答案】 C11.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数的平均数为x ,方差为s 2,则( )A .x =5,s 2<3B .x =5,s 2>3C .x >5,s 2<3D .x >5,s 2>3【解析】由平均数和方差的计算公式可得x=5,s2=19(3×8+0)<3,故选A.【答案】 A12.圆O内有一内接正三角形,向圆O内随机投一点,则该点落在正三角形内的概率为( )A.338πB.334πC.32πD.3π【解析】设圆O的半径为r,则圆O内接正三角形的边长为3r,设向圆O内随机投一点,则该点落在其内接正三角形内的事件为A,则P(A)=S正三角形S圆=34(3r)2πr2=334π.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.合肥市环保总站发布2014年1月11日到1月20日的空气质量指数(AQI),数据如下:153,203,268,166,157,164,268,407,335,119,则这组数据的中位数是________.【解析】将这10个数按照由小到大的顺序排列为119,153,157,164,166,203,268,268,335,407,第5和第6个数的平均数是166+2032=184.5,即这组数据的中位数是184.5.【答案】184.514.某学校举行课外综合知识比赛,随机抽取400名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成五组.第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……;第五组,成绩大于等于90分且小于等于100分,据此绘制了如图4所示的频率分布直方图.则400名同学中成绩优秀(大于等于80分)的学生有________名.图4【解析】成绩优秀的频率为1-(0.005+0.025+0.045)×10=0.25,所以成绩优秀的学生有0.25×400=100(名).【答案】10015.在由1,2,3,4,5组成可重复数字的二位数中任取一个数,如21,22等表示的数中只有一个偶数“2”,我们称这样的数只有一个偶数数字,则组成的二位数中只有一个偶数数字的概率为________.【解析】由1,2,3,4,5可组成的二位数有5×5=25个,其中只有一个偶数数字的有14个,故只有一个偶数数字的概率为14 25 .【答案】14 2516.执行如图5所示的程序框图,输出的a值为________.图5【解析】 由程序框图可知,第一次循环i =2,a =-2;第二次循环i =3,a =-13;第三次循环i =4,a =12;第四次循环i =5,a =3;第五次循环i =6,a =-2,所以周期为4,当i =11时,循环结束,因为i =11=4×2+3,所以输出a 的值为-13.【答案】 -13三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知算法如下所示:(这里S1,S2,…分别代表第一步,第二步,…)(1)指出其功能;(用数学式子表达) (2)画出该算法的算法框图. S1 输入x .S2 若x <-2,执行S3;否则,执行S6. S3 y =2x +1. S4 输出y .S5 执行S12.S6 若-2≤x <2,执行S7;否则执行S10. S7 y =x . S8 输出y. S9 执行S12. S10 y =2x -1. S11 输出y . S12 结束.【解】 (1)该算法的功能是:已知x 时, 求函数y =⎩⎪⎨⎪⎧2x +1,x <-2,x ,-2≤x <2,2x -1,x ≥2的值.(2)算法框图是:18.(本小题满分12分)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球,从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.【解】 记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A4={任取1球为绿球},则P(A1)=512,P(A2)=412,P(A3)=212,P(A4)=112.由题意知,事件A1,A2,A3,A4彼此互斥.(1)取出1球为红球或黑球的概率为:P(A1∪A2)=P(A1)+P(A2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为:法一:P(A1∪A2∪A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.法二:P(A1∪A2∪A3)=1-P(A4)=1-112=1112.19.(本小题满分12分)某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:(1)求a、b的值;(2)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.【解】(1)a=100-5-30-20-10=35,b=1-0.05-0.35-0.20-0.10=0.30.(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生,每组分别为,第3组:660×30=3人,第4组:660×20=2人,第5组:660×10=1人,所以第3、4、5组应分别抽取3人、2人、1人.设第3组的3位同学为A1、A2、A3,第4组的2位同学为B1、B2,第5组的1位同学为C1,则从6位同学中抽2位同学有15种可能,如下:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),(A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1).其中第4组被入选的有9种,所以其中第4组的2位同学至少有1位同学入选的概率为915=35.20.(本题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 【导学号:28750074】【解】(1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,所以大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共10个,设恰有一名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),所以P(A)=610=35.21.(本小题满分12分)图6某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测试,该班的A,B两个小组所有同学所得分数(百分制)的茎叶图如图6所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组学生的平均分高1分.(1)若在B组学生中随机挑选1人,求其得分超过85分的概率;(2)现从A组这5名学生中随机抽取2名同学,设其分数分别为m,n,求|m -n|≤8的概率.【解】(1)A组学生的平均分为94+88+86+80+775=85(分),∴B组学生平均分为86分.设被污损的分数为x,则91+93+83+x+755=86,解得x=88,∴B组学生的分数分别为93,91,88,83,75,其中有3人的分数超过85分.∴在B组学生随机选1人,其所得分超过85分的概率为3 5 .(2)A组学生的分数分别是94,88,86,80,77,在A组学生中随机抽取2名同学,其分数组成的基本事件(m,n)有(94,88),(94,86),(94,80),(94,77),(88,86),(88,80),(88,77),(86,80),(86,77),(80,77),共10个.随机抽取2名同学的分数m,n满足|m-n|≤8的基本事件有(94,88),(94,86),(88,86),(88,80),(86,80),(80,77),共6个.∴|m-n|≤8的概率为610=35.22.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y=bx+a;(2)利用(1) 中所求出的直线方程预测该地2016年的粮食需求量.【解】(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面求回归直线方程,为此对数据预处理如下:对预处理后的数据,容易算得x=0,y=3.2,b=∴a=-y-b-x=3.2,由上述计算结果,知所求回归直线方程为y-257=b(x-2 010)+a=6.5(x-2 010)+3.2,即y=6.5(x-2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为6.5×(2 016-2 010)+260.2=6.5×6+260.2=299.2(万吨).。

实验二 二阶系统的动态特性与稳定性分析.

实验二 二阶系统的动态特性与稳定性分析.

自动控制原理实验报告实验名称:二阶系统的动态特性与稳定性分析班级:姓名:学号:实验二 二阶系统的动态特性与稳定性分析一、实验目的1、 掌握二阶系统的电路模拟方法及其动态性能指标的测试技术过阻尼、临界阻尼、欠阻尼状态2、 分析二阶系统特征参量(ξω,n )对系统动态性能的影响;3、 分析系统参数变化对系统稳定性的影响,加深理解“线性系统稳定性至于其结构和参数有关,与外作用无关”的性质;4、 了解掌握典型三阶系统的稳定状态、临界稳定、不稳定状态;5、 学习二阶控制系统及其阶跃响应的Matlab 仿真和simulink 实现方法。

二、实验内容1、 构成各二阶控制系统模拟电路,计算传递函数,明确各参数物理意义。

2、 用Matlab 和simulink 仿真,分析其阶跃响应动态性能,得出性能指标。

3、 搭建典型二阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型二阶系统动态性能和稳定性的影响;4、 搭建典型三阶系统,观测各个参数下的阶跃响应曲线,并记录阶跃响应曲线的超调量%σ、峰值时间tp 以及调节时间ts ,研究其参数变化对典型三阶系统动态性能和稳定性的影响;5、 将软件仿真结果与模拟电路观测的结果做比较。

三、实验步骤1、 二阶系统的模拟电路实现原理 将二阶系统:ωωξω22)(22nn s G s s n++=可分解为一个比例环节,一个惯性环节和一个积分环节ωωξω)()()()(2C C C C s C C 22262154232154232154215426316320nn s s s s s G s s s C R R R R R R R R R R R R C R R R R R R R R R U U n i ++=++=++== 2、 研究特征参量ξ对二阶系统性能的影响将二阶系统固有频率5.12n =ω保持不变,测试阻尼系数ξ不同时系统的特性,搭建模拟电路,改变电阻R6可改变ξ的值当R6=50K 时,二阶系统阻尼系数ξ=0.8 当R6=100K 时,二阶系统阻尼系数ξ=0.4 当R6=200K 时,二阶系统阻尼系数ξ=0.2(1)用Matlab 软件仿真实现二阶系统的阶跃响应,计算超调量%σ、峰值时间tp 以及调节时间ts 。

实验二控制系统的动态响应及其稳定性分析

实验二控制系统的动态响应及其稳定性分析

实验二控制系统的动态响应及其稳定性分析实验二控制系统的动态响应及其稳定性分析一、实验目的1.学习瞬态性能指标的测试技术;2.记录不同开环增益时二阶系统的阶跃响应曲线,并测出系统的超调量σ%、峰值时间tp和调节时间ts;3.熟悉闭环控制系统的稳定和不稳定现象,并加深理解线性系统的稳定性只与其结构和参量有关,而与外作用无关的性质。

二、实验仪器1.MATLAB软件三、实验原理对一个二阶系统加入一个阶跃信号时,系统就有一个输出响应,其响应将随着系统参数变化而变化。

二阶系统的特性由两个参数来描述:一个为系统的阻尼比ξ,一个为系统的无阻尼自然频率ω。

当两个参数变化时,都会引起系统的调节时间、超调量、振荡次数的变化。

在系统其它参数不变时,可通过改变系统增益系数K来实现ξ、ωn的变化,二阶系统结构图如图3-1。

R(s)C(s)11KT2sT1s+1图3-1二阶系统的结构原理图其闭环传递函数的标准形式为K2?nT1T2C(s)K,???221KR(s)T2s(T1s?1)?Ks?2??ns??ns2?s?T1T1T2无阻尼自然频率?n?T2K,阻尼比??,T1T24KT1当ξ=1时,系统为临界阻尼,此时可求出K为0.625,ω为2.5。

若改变K值,就可以改变ξ值:当K>0.625时,ξ<1为过阻尼;当K<0.625时,ξ>1为过阻尼。

三阶系统的结构图如图3-2所示。

R(s)C(s)111KT3sT1s+1T2s+1图3-2三阶系统的结构原理图其开环传递函数为G(s)?K,T3(T1s?1)(T2s?1)改变惯性时间常数T2和开环增益K,可以得到不同的阶跃响应。

若调节K值大小,可改变系统的稳定性,且用劳斯(Routh)判据验证。

用劳斯判据可以求出:系统临界稳定的开环增益为7.5。

即K<7.5时,系统稳定;K>7.5时,系统不稳定。

四、实验内容1、观察二阶系统在单位阶跃信号作用下的响应曲线,按G(s)?K的单位0.5s(0.2s?1)负反馈系统,设计好实验线路,加入单位跃阶(1V)信号,从示波器上观察不同开环增益时系统的响应曲线。

自动控制实验一一阶系统的时域分析二阶系统的瞬态响应

自动控制实验一一阶系统的时域分析二阶系统的瞬态响应

自动控制实验一一阶系统的时域分析二阶系统的瞬态响应实验目的:1.了解一阶系统的时域分析方法。

2.掌握二阶系统的瞬态响应特性。

3.学习使用实验仪器进行实验操作。

实验仪器和材料:1.一台一阶系统实验装置。

2.一台二阶系统实验装置。

3.示波器、函数发生器等实验仪器。

实验原理:一阶系统的时域分析:一阶系统的传递函数形式为:G(s)=K/(Ts+1),其中K为增益,T为系统的时间常数。

一阶系统的单位阶跃响应可以用下式表示:y(t)=K(1-e^(-t/T)),其中t为时间。

通过绘制单位阶跃响应曲线的方法可以得到一阶系统的时域参数。

二阶系统的瞬态响应:二阶系统的传递函数形式一般为:G(s) = K/(s^2 + 2ξωns +ωn^2),其中K为增益,ξ为阻尼系数,ωn为自然频率。

二阶系统的单位阶跃响应可以用下式表示:y(t) = (1 - D)e^(-ξωnt)cos(ωnd(t - φ)),其中D为过渡过程的衰减因子,φ为过渡过程的相角。

实验步骤:一阶系统的时域分析:1.将一阶系统实验装置连接好,并接通电源。

2.设置函数发生器的输出信号为单位阶跃信号,并将函数发生器连接到一阶系统实验装置的输入端。

3.调节函数发生器的幅值和时间参数,使得单位阶跃信号满足实验要求。

4.将示波器的探头连接到一阶系统实验装置的输出端。

5.调节示波器的时间和幅值参数,观察并记录单位阶跃响应信号。

6.根据记录的单位阶跃响应信号,计算得到一阶系统的时域参数。

二阶系统的瞬态响应:1.将二阶系统实验装置连接好,并接通电源。

2.设置函数发生器的输出信号为单位阶跃信号,并将函数发生器连接到二阶系统实验装置的输入端。

3.调节函数发生器的幅值和时间参数,使得单位阶跃信号满足实验要求。

4.将示波器的探头连接到二阶系统实验装置的输出端。

5.调节示波器的时间和幅值参数,观察并记录单位阶跃响应信号。

6.根据记录的单位阶跃响应信号,计算得到二阶系统的瞬态响应特性,包括过渡过程的衰减因子和相角。

二阶系统阶跃响应实验报告

二阶系统阶跃响应实验报告

实验二、二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。

定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。

2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。

二、实验设备1.EL-AT-II型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB线是否连接好,在实验项目下拉框中选中任实验,点击按钮,出现参数设置对话框设置好参数按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。

检查无误后接通电源。

4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。

5)鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。

试验二二阶系统阶跃响应分析

试验二二阶系统阶跃响应分析

《工程控制基础》课程基础实验指导书电子科技大学目录实验一典型环节动态特性分析 (3)实验二二阶系统阶跃响应分析 (7)实验三系统频率特性分析 (10)实验四控制系统校正 (14)实验一 典型环节动态特性分析一、实验目的本实验的目的是运用电子模拟线路构成比例、惯性、积分等典型环节,并研究这些环节及电路的动态特性。

即:1、掌握运用运算放大器构成各种典型环节的方法,观察比例、惯性、积分环节的阶跃响应,并分析其动态性能。

2、了解参数变化对典型环节动态特性的影响。

二、实验原理1、比例环节比例环节也称为放大环节,其方框图如图1-1(a)所示。

传递函数为:G(S) =)()(S Ur S Uc = K 比例环节模拟线路如图1-1(b)所示。

这种线路也称作比例或P 调节器。

其中:K =1R R = 2() (b )图1-1 比例环节的模拟图U rt t (a)输入波形 (b)输出波形图1-2 比例环节波形图改变R 1的值(U r 一定),观察其阶跃响应曲线。

若按图 (b)接线,设U r 为-5V ,则图(b)的输入U r 和输出U c 实验波形如图1-2所示。

2、一阶惯性环节一阶惯性环节的方框图如图1-3(a)所示。

传递函数为:G(S) =)()(S Ur S U c = 1TS K一阶惯性环节含有弹性或容性储能元件和阻性耗能元件,其输出落后于输入,与比例环节相比,此环节具有“惯性”,在阶跃输入时,输出不能立即(需经历一段时间)接近所要求的阶跃输出值,因此其输出不可能显现线形,而是一指数函数图象。

惯性大小由时间常数T 衡量。

一阶惯性环节模拟线路图如图1-3(b )所示。

这种线路也称作惯性或T 调节器。

其中:K = 01R R T = R 1C分别改变R 1、C 的值(U r 一定),观察其阶跃响应曲线。

一阶惯性环节的模拟图(a)输入波形 (b)输出波形图1-4 一阶惯性环节波形图若按图 (b)接线,设U r 为-5V ,则图(b)的输入U r 和输出U c 实验波形如图1-4所示。

实验报告2--二阶系统瞬态响应和稳定性

实验报告2--二阶系统瞬态响应和稳定性

南昌大学实验报告学生姓名: 梁志甲 学 号: 6101113153 专业班级: 电气134 实验类型:■ 验证 □ 综合 □ 设计 □ 创新 实验日期: 实验成绩:一、实验项目名称:二阶系统瞬态响应和稳定性 二、实验要求1. 了解和掌握典型二阶系统模拟电路的构成方法及Ⅰ型二阶闭环系统的传递函数标准式。

2. 研究Ⅰ型二阶闭环系统的结构参数--无阻尼振荡频率ωn 、阻尼比ξ对过渡过程的影响。

3. 掌握欠阻尼Ⅰ型二阶闭环系统在阶跃信号输入时的动态性能指标Mp 、t p 、t s 的计算。

4. 观察和分析Ⅰ型二阶闭环系统在欠阻尼,临界阻尼,过阻尼的瞬态响应曲线,及在阶跃信号输入时的动态性能指标Mp 、t p 、t s 值,并与理论计算值作比对。

三、主要仪器设备及耗材1.计算机一台(Windows XP 操作系统)2.AEDK-labACT 自动控制理论教学实验系统一套 3.LabACT6_08软件一套四、实验内容和步骤本实验用于观察和分析二阶系统瞬态响应和稳定性。

开环传递函数:)1()(+=TS TiS K S G 闭环传递函数标准式:2222)(1)()(n n n S S S G S G s ωξωωφ++=+= 自然频率(无阻尼振荡频率):T iT K=n ω ; 阻尼比:KT Ti 21=ξ超调量 :%100M e21P ⨯=--ξξπ; 峰值时间: 2n p1t ξωπ-=有二阶闭环系统模拟电路如图3-1-7所示。

它由积分环节(A2)和惯性环节(A3)构成。

图3-1-8 Ⅰ型二阶闭环系统模拟电路图3-1-8的二阶系统模拟电路的各环节参数及系统的传递函数: 积分环节(A2单元)的积分时间常数Ti=R 1*C 1=1S 惯性环节(A3单元)的惯性时间常数 T=R 2*C 2=0.1S该闭环系统在A3单元中改变输入电阻R 来调整增益K ,R 分别设定为 4k 、40k 、100k 。

当R=100k,K=1 ξ=1.58 >1 为过阻尼响应,当R=40k,K=2.5 ξ=1 为临界阻尼响应,当R=4k,K=25 ξ=0.316 0<ξ<1 为欠阻尼响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 一阶、二阶系统阶跃响应曲线的绘制及系统稳定
性分析
【实验目的】熟悉采用Matlab 软件所进行的自动控制原理
分析。

【实验内容】1、一阶系统的阶跃响应曲线的绘制;
2、二阶系统的阶跃响应曲线的绘制;
3、求解系统闭环极点并判断系统的稳定性。

【实验步骤】
1、 已知系统传递函数为:
=)(s φ11
+Ts ,分别作T=0.1,1,10时的阶跃响应曲线。

其程序为:
subplot(3,1,1);num=1;den=[0.1,1];step(num,den);grid
subplot(3,1,2);den=[1,1];step(num,den);grid
subplot(3,1,3);den=[10,1];step(num,den);grid
2、 已知二阶系统222()()()2n n n
C s s R s s s w f zw w ==++;当w=5
时,分别作出2,1,6.0,0=ς的阶跃响应曲线。

其程序为:
num=25;den=[1,0,25];step(num,den);hold on
den=[1,6,25];step(num,den);hold on
den=[1,10,25];step(num,den);hold on
den=[1,20,25];step(num,den);axis([0, 5 ,0 ,2.2])
text(0.7,2.0,'\zeta=0','FontSize',8)
text(0.7,1.2,'0.6','FontSize',8)
text(0.7,0.8,'1','FontSize',8)
text(0.7,0.5,'2','FontSize',8)
(2)作出二阶系统单位阶跃响应曲线:(要求zeta 每次变化0.1)
其程序为:
num=25;
for zeta=[0:0.1:1,2];den=[1,10*zeta,25];step(num,den);
hold on;
end
3、 求解系统闭环极点并判断系统的稳定性:
(1)025103234=++++s s s s
p=[3,10,5,1,2];roots(p)
(2)04832241232345=+++++s s s s s
p=[ 1,3,12,24,32,48];roots(p)。

相关文档
最新文档