模拟CMOS集成电路设计精粹ppt 第二章
合集下载
模拟集成电路课件 第2章CMOS技术
重要指标
无源元件的温度特性通常用温度比例系数 TCF来表示
X是无源元件的电阻或电容 通常温度比例系数乘106,用每度百万分之几(即ppm/℃)为单 位 MOS器件的特性与温度之间的关系由公式可以看出,
vGS vT 0 0 vDS vGS VT 0 vGS VT vDS
Bi-CMOS工艺
Bi-CMOS同时包括双极和MOS晶体管的集成电路,它结 合了双极器件的高跨导、强驱动能力和CMOS器件的高 集成度、低功耗的优点,使它们互相取长补短、发挥 各自优点,制造高速、高集成度、性能好的 VLSI。
第2章CMOS技术
1.CMOS制造工艺 2.MOS器件的工作原理 3.MOS无源元件 4.CMOS技术的其他考虑
特点:寄生参量小,精度高。
金属-氧化物-多晶硅
第2章CMOS技术
1.CMOS制造工艺 2.MOS器件的工作原理 3.MOS无源元件 4.CMOS技术的其他考虑
4.CMOS技术的其他考虑
CMOS电路的闩锁(Latch-up)效应 MOS器件的温度特性 噪声
背栅效应 沟道长度调制效应 亚阈值特性 短沟效应
MOS管的阈值电压
VT是MOS晶体管的一个极其重要的参数
VT可在制造过程中加以控制
阈值电压大小取决于: 栅极材料 栅极绝缘材料 栅极绝缘层厚度
沟道掺杂浓度 源极与衬底之间电压 环境温度:随温度升高而降低 调节阈值电压大小方法: 用离子注入法改变沟道掺杂浓度 采用不同栅极绝缘材料
源/漏离子注入电阻
薄层电阻Rs在500—2000Ω/口 绝对误差精度土15% 相对误差2%(5μm)0.15%( 50 μm ) 温度系数400ppm/℃ 电压系数800ppm/V
无源元件的温度特性通常用温度比例系数 TCF来表示
X是无源元件的电阻或电容 通常温度比例系数乘106,用每度百万分之几(即ppm/℃)为单 位 MOS器件的特性与温度之间的关系由公式可以看出,
vGS vT 0 0 vDS vGS VT 0 vGS VT vDS
Bi-CMOS工艺
Bi-CMOS同时包括双极和MOS晶体管的集成电路,它结 合了双极器件的高跨导、强驱动能力和CMOS器件的高 集成度、低功耗的优点,使它们互相取长补短、发挥 各自优点,制造高速、高集成度、性能好的 VLSI。
第2章CMOS技术
1.CMOS制造工艺 2.MOS器件的工作原理 3.MOS无源元件 4.CMOS技术的其他考虑
特点:寄生参量小,精度高。
金属-氧化物-多晶硅
第2章CMOS技术
1.CMOS制造工艺 2.MOS器件的工作原理 3.MOS无源元件 4.CMOS技术的其他考虑
4.CMOS技术的其他考虑
CMOS电路的闩锁(Latch-up)效应 MOS器件的温度特性 噪声
背栅效应 沟道长度调制效应 亚阈值特性 短沟效应
MOS管的阈值电压
VT是MOS晶体管的一个极其重要的参数
VT可在制造过程中加以控制
阈值电压大小取决于: 栅极材料 栅极绝缘材料 栅极绝缘层厚度
沟道掺杂浓度 源极与衬底之间电压 环境温度:随温度升高而降低 调节阈值电压大小方法: 用离子注入法改变沟道掺杂浓度 采用不同栅极绝缘材料
源/漏离子注入电阻
薄层电阻Rs在500—2000Ω/口 绝对误差精度土15% 相对误差2%(5μm)0.15%( 50 μm ) 温度系数400ppm/℃ 电压系数800ppm/V
模拟CMOS集成电路设计复习提纲PPT课件
共源级
• 电阻负载 • 电流源负载 • 二极管接法的MOSFET负载 • 源级负反馈
Summary #9
共源MOSFET
V gs V 1 V in
R out
V out I out
| V in 0
V in 0 时,
I out
V out ro
R out r o 单管增益
V out V in
Rt ro1 ro2 ( g m2 g mb2 )ro2ro1
Rt
( g m2 g mb2 )ro2ro1
gm2ro2ro1 (忽略衬偏效应)
Rout g m3ro3 Rt
g m3ro3 g m2ro2ro1
Summary # 20
共源共栅级的输出阻抗(3)
Rup g m 3ro3ro 4
华大微电子:模拟集成电路设计
复习提纲
Summary #1
华大微电子:模拟集成电路设计
第二章 器件模型
• MOSFET的I-V特性
– 饱和区电流公式 – 线性区电流公式 – 沟道长度调制效应
• MOSFET的小信号模型
– 低频小信号模型:图2.36
• gm、ro的表达式
– 完整小信号模型:图2.38
g m1 g m2
Summary # 14
带源极负反馈的共源级
Rup Rdown
Gm
gm 1 gmRS
Rup RD
Rdown gm1ro1RS
Rout Rup || Rdown RD (Rdown Rup)
Av0
GmRo
ut
1
gm gmRS
RD
RD RS
(gmRS 1)
Summary # 15
拉扎维模拟CMOS集成电路设计第二章作业答案详解完整版中文
IX
1 2
nCOX
W L
[2 0.2(VX
1) (VX
1)
2
]
1 2
nCOX
W L
(1.4 VX )(VX
1)
gm
nCOX
W L
VDS
nCOX
W L
(Vx
1)
Copyright for zhouqn
③ 当VX≥1.2V时,MOS管工作在饱和区
IX
+
IX
1 2
nCOX
IX
1 2
PCox
W L
(0.1)2
gm
PCox
W L
(0.1)
+ 1.9V
-
② 当1.8V<VX≤1.9V时,MOS管工作在线性区
IX
1 2
PCox
W L
[2 (0.1) (VX
1.9) (VX
1.9)2 ]
gm
PCox
W L
(VX
1.9)
Copyright for zhouqn
第二章 作业答案
Copyright for zhouqn
2.1、W/L=50/0.5,假设|VDS|=3V,当|VGS|从0上升到 3V时,画出NFET和PFET的漏电流VGS变化曲线
解:
a) NMOS管: 假设阈值电压VTH=0.7V,不考虑亚 阈值导电
① 当VGS<0.7V时,NMOS管工作在截止区,则ID=0 ② 当VGS>0.7V时, NMOS管工作在饱和区,NMOS管
0 8.854 1012 F / m sio2 3.9
模拟CMOS集成电路设计复习提纲(课堂PPT)
Summary # 20
西电微电子:模拟集成电路设计
共源共栅级的输出阻抗(3)
Rup gm3ro3ro4
Rup
Rdown gm2ro2ro1
Rdown
Rout Rup || Rdown
Av0 g R m1 out
gm1 gm2ro2ro1 || gm3ro3ro4
Summary # 21
gm1 ro2 || ro1
Summary # 13
西电微电子:模拟集成电路设计
二极管接法MOSFET负载的共源级
Rup Rdown
Rup
1 gm2
Rdown ro1
Rout
Rup
|| Rdown
1 gm2
|| ro1
ro1 1 gm2ro1
1 gm2
(
1 gm2
ro1 )
Av0
Vout Vin
Summary #2
西电微电子:模拟集成电路设计 华大微电子:模拟集成电路设计
MOSFET的I-V特性
饱和区:I D
1 2
Cox
W L
VGS
Vth 2
沟长调制:I D
1 2
Cox
W L
VGS
Vth
21
VDS
线性区:I D
Cox
W L
VGS
Vth VDS
1 2
VD2S
深线性区:I D
Rout Rup || Rdown (RD || ro )
Vout Vin
gmRout
gm (RD
|| ro )
gmRD (RD ro )
Summary # 12
西电微电子:模拟集成电路设计
模拟CMOS集成电路设计课件
医学图像处理、音频处理
PPT学习交流
6
5
2、集成电路工艺
速度高, 功耗大, 集成度低
最早MOS工 艺,速度低
超高速、高频 IC
光电集成器件
主流工艺,集 成度高、功耗 低、速度快、 抗干扰性强
PPT学习交流
7
6
CMOS工艺
B
S
G
D
B
S
G
D
n+
n+
p+
p+
p 型衬底
n 型阱
n 阱CMOS工艺
B
S
G
D
20
沿沟道x点处的电荷密度为: 沟道x点的电势,以源级为参考点
电流为:
载流子为电子,电荷为负,电荷运动方向与电流 方向相反
其中: 得到:
v=μE μ为载流子的迁移率,E为电场 E=-dV(x)/dx
PPT学习交流
22
21
在整个沟道长度内积分得:
由于ID沿沟道方向是常数,因此:
电流随VGS的 增大而增加
漏极的反型层消失,出现由耗尽层
构成的夹断区。
➢电子沿沟道从源极向漏极运动,达
到夹断区边缘时,受夹断区强电场
的作用,很快漂移到漏极。 B
➢VDS的变化主要体现在夹断区上,
p+
对沟道长度和沟道内的场强影响不
大,因此可以近似认为沟道电流保
p-
持恒定。
VDS
-+
-+
VGS
G
S
D
n+
n+
夹断区
PPT学习交流
20
19
2、NMOS 管IV特性推导与分析
PPT学习交流
6
5
2、集成电路工艺
速度高, 功耗大, 集成度低
最早MOS工 艺,速度低
超高速、高频 IC
光电集成器件
主流工艺,集 成度高、功耗 低、速度快、 抗干扰性强
PPT学习交流
7
6
CMOS工艺
B
S
G
D
B
S
G
D
n+
n+
p+
p+
p 型衬底
n 型阱
n 阱CMOS工艺
B
S
G
D
20
沿沟道x点处的电荷密度为: 沟道x点的电势,以源级为参考点
电流为:
载流子为电子,电荷为负,电荷运动方向与电流 方向相反
其中: 得到:
v=μE μ为载流子的迁移率,E为电场 E=-dV(x)/dx
PPT学习交流
22
21
在整个沟道长度内积分得:
由于ID沿沟道方向是常数,因此:
电流随VGS的 增大而增加
漏极的反型层消失,出现由耗尽层
构成的夹断区。
➢电子沿沟道从源极向漏极运动,达
到夹断区边缘时,受夹断区强电场
的作用,很快漂移到漏极。 B
➢VDS的变化主要体现在夹断区上,
p+
对沟道长度和沟道内的场强影响不
大,因此可以近似认为沟道电流保
p-
持恒定。
VDS
-+
-+
VGS
G
S
D
n+
n+
夹断区
PPT学习交流
20
19
2、NMOS 管IV特性推导与分析
模拟cmos集成电路设计(拉扎维)第2章MOS器件物理基础PPT课件
Q d ( x ) W o ( V x G C V S ( x ) V T )H
西电微电子学院-董刚-模拟集成电路设计
16
I/V特性—推导I(VDS,VGS)
I D W o [ V G x C V S ( x ) V T ] v H
Givv E ea nn E (x d ) d(x V ) dx d(x V )
数字电路设计师一般不需要进入器件内 部,只把它当开关用即可
AIC设计师必须进入器件内部,具备器 件物理知识
❖MOS管是AIC的基本元件 ❖MOS管的电特性与器件内部的物理机制密
切相关,设计时需将两者结合起来考虑
器件级与电路级联系的桥梁?
❖器件的电路模型
西电微电子学院-董刚-模拟集成电路设计
5
本讲
基本概念
I D n C o W L ( x V G V T S ) V D H , V D S 2 S ( V G V T S )
等效为一个线性电阻
RONnCoxW L(V 1GSVTH)
在AIC设计中会用到
西电微电子学院-董刚-模拟集成电路设计
深三极管区
19
I/V特性—当VDS>VGS-VTH时?
与电源无关、与温度无关、PTAT电流、 恒Gm、速度与噪声
西电微电子学院-董刚-模拟集成电路设计
2
上一讲
研究模拟电路的重要性 模拟电路设计的难点 研究AIC的重要性 研究CMOS AIC的重要性 电路设计一般概念
❖抽象级别 ❖健壮性设计 ❖符号
西电微电子学院-董刚-模拟集成电路设计
3
上一讲
数字电路无法完全取代模拟电路,模拟 电路是现代电路系统中必不可少的一部 分
提供载流子的端口为源,收集载流子的端口为漏
CMOS模拟集成电路的设计ch2器件物理课件
开关管 恒流源 放大管 分别处在什么工作区?
CMOS模拟集成电路的设计ch2器件物理
16
怎么判断MOSFET处在什么工作区?
方法一: 比较源漏电压 Vds和过饱和电 压Vsat的高低
方法二: (源极电压不 方便算出时) 比较栅极Vg和 漏端Vd的电压 高低
管 子 导 通 ,且 V D S V G S V T H 时 , 则 管 子 进 入 线 性 区 相 反 是 饱 和 区
模拟CMOS集成电路设 计
第 2 章 MOS器件物理基础
CMOS模拟集成电路的设计ch2器件物理
1
2.1 基本概念
漏(D: drain)、 栅(G: gate)、
G
源(S: source)、衬底(B: bulk)
S
MOSFET:一个低功耗、高效率的开关
CMOS模拟集成电路的设计ch2器件物理
2
MOS符号
变化的能力。反映了器件的灵敏度
——VGS对ID的控制能力CMO。S模拟集成电路的设计ch2器件物理
14
gm ID VGSVDScontsant
nCoxW L(VGSVTH)
2nCox
W L
ID
2ID VGS VTH
CMOS模拟集成电路的设计ch2器件物理
15
到此为止,我们已经学习了MOSFET的三种用途:
17
思考题 图中MOS管的作用是什么?应该工作在什么工作区?
CMOS模拟集成电路的设计ch2器件物理
18
即NMOS开关不能传递最高电位,仅对低电位是比较理想的开关 相对的,PMOS开关不能传递最低电位,仅对高电位是比较理想的开关
CMOS模拟集成电路的设计ch2器件物理
19
CMOS模拟集成电路的设计ch2器件物理
16
怎么判断MOSFET处在什么工作区?
方法一: 比较源漏电压 Vds和过饱和电 压Vsat的高低
方法二: (源极电压不 方便算出时) 比较栅极Vg和 漏端Vd的电压 高低
管 子 导 通 ,且 V D S V G S V T H 时 , 则 管 子 进 入 线 性 区 相 反 是 饱 和 区
模拟CMOS集成电路设 计
第 2 章 MOS器件物理基础
CMOS模拟集成电路的设计ch2器件物理
1
2.1 基本概念
漏(D: drain)、 栅(G: gate)、
G
源(S: source)、衬底(B: bulk)
S
MOSFET:一个低功耗、高效率的开关
CMOS模拟集成电路的设计ch2器件物理
2
MOS符号
变化的能力。反映了器件的灵敏度
——VGS对ID的控制能力CMO。S模拟集成电路的设计ch2器件物理
14
gm ID VGSVDScontsant
nCoxW L(VGSVTH)
2nCox
W L
ID
2ID VGS VTH
CMOS模拟集成电路的设计ch2器件物理
15
到此为止,我们已经学习了MOSFET的三种用途:
17
思考题 图中MOS管的作用是什么?应该工作在什么工作区?
CMOS模拟集成电路的设计ch2器件物理
18
即NMOS开关不能传递最高电位,仅对低电位是比较理想的开关 相对的,PMOS开关不能传递最低电位,仅对高电位是比较理想的开关
CMOS模拟集成电路的设计ch2器件物理
19
CMOS模拟集成电路设计ch2器件物理 共42页
ID =0
6
2. 线性区 triode or linear region
当 V G S V T H ,且 V D S V G S V T H 时 MOSFET 处于线性区
7
Derivation of I/V Characteristics
I Qd v Q d W o(V x C G S V T)H Q d ( x ) W o ( V x G C V S ( x ) V T )H
1
ID
2L
25
亚阈值导电性(弱反型)
在初步分析MOSFET的时候,我们假设当VGS < VTH时, 器件会突然关断,即ID会立即减小到零;但实际上当VGS 略小于VTH 时,有一个“弱”的反型层存在,ID大小随
VGS下降存在一个“过程”,与VGS呈指数关系:
26
2.4 MOS器件电容
分析高频交流特性时 必须考虑寄生电容的影响 根据物理结构,可以把 MOSFET的寄生电容分为:
模拟CMOS集成电路设计
第 2 章 MOS器件物理基础
2.1 基本概念
漏(D: drain)、 栅(G: gate)、
G
源(S: source)、衬底(B: bulk)
S
MOSFET:一个低功耗、高效率的开关
D
2
MOS符号
模拟电路中常用符号
数字电路中常用
MOSFET是一个四端器件
3
2.2 MOS的I/V特性
2. 右图中MOSFET的过饱和电压是多少?管子处于什么工 作区?
R
Vb=1V
Vds=0.5V
40
3. 如图所示,Vin随时间线性增加。在不考虑沟调效应,需考 虑体效应的前提下,画出Vout随时间的曲线。
拉扎维模拟CMOS集成电路设计第二章作业答案详解完整版.ppt
+
VGS 1VX VDS 1.9 VX VDSAT Von 0.3 VX
1V
VX
M1
-
IX
1 2
nCOX
W L
(VGS
VTH )2
1 2
nCOX
W L
(1VX )2
+ 1.9V
-
gm
nCOX
W L
(VGS
VTH
)
nCOX
W L
(1VX
)
② 当VX≥0.3V时,MOS管工作截止区
M1
• 当Vin<0.7V时,M1工作在截止区,
Vin
Vout=0
• 当0.7<Vin≤1.7V时,M1工作在饱和区,则
Vout R1
+ 1V Vout R1
ID
1 2
nCOX
W L
(Vin
Vout
0.7)2
Vout
R1
• 当1.7V<Vin<3V时,M1工作在线性区,则
ID
nCOX
的有效沟道长度Leff=0.5-2LD,则
n 350cm2 /V / s LD 0.08106 m
n 0.1V 1 tox 9 109 m
ID
1 2
nCox
W Leff
(VGS
VTH )2 (1 n 3)
ID 12.8103 (VGS 0.7)2
③ 当VX>1.9V时,MOS管S与D交换 MOS管工作线性区
VGS 1VX
VDS 1.9 VX
IX
+
模拟CMOS集成电路设计第2章MOS器件物理基础
MOS器件物理基础 Ch. 2 # 28
MOS管的开启电压VT及体效应
V T H = V T H 0 + γ2 Φ F + V S B -2 Φ F,γ =2 q ε s i N s u b C o x
体效应系数, VBS=0时,=0
源极跟随器 无体效应 有体效应 一般,体效应使设计复杂化
MOS器件物理基础 Ch. 2 # 29
第二章 MOS器件物理基础
MOS器件物理基础 Ch. 2 # 1
MOSFET的结构
MOS器件物理基础 Ch. 2 # 2
MOSFET的结构
Ldrawn:沟道总长度 LD:横向扩散长度
衬底 (bulk、body)
Leff:沟道有效长度, Leff= Ldrawn-2 LD
MOS器件物理基础 Ch. 2 # 3
对于 的典型值,在室温下,要使I D 下降一个数量级,VGS 必须下降M约OS8器0件mC物Vh.理。2基# 3础7
NMOS管的电流公式
ID 0 截至区,Vgs<VTH
ID=n C 2 o L xW [2 (V G S-V T H )V D S-V D S 2]
线性区,Vgs >VTH VDS< Vgs - VTH
ID= nC 2o L xW(VG S-VTH)2
饱和区,Vgs >VTH VDS >Vgs - VTH
寄生二极管
MOS器件物理基础 Ch. 2 # 5
例:判断制造下列电路的衬底类型
MOS器件物理基础 Ch. 2 # 6
NMOS器件的阈值电压VTH
(a)栅压控制的MOSFET (c)反型的开始
(b)耗尽区的形成
(d)反型层的形成
MOS管的开启电压VT及体效应
V T H = V T H 0 + γ2 Φ F + V S B -2 Φ F,γ =2 q ε s i N s u b C o x
体效应系数, VBS=0时,=0
源极跟随器 无体效应 有体效应 一般,体效应使设计复杂化
MOS器件物理基础 Ch. 2 # 29
第二章 MOS器件物理基础
MOS器件物理基础 Ch. 2 # 1
MOSFET的结构
MOS器件物理基础 Ch. 2 # 2
MOSFET的结构
Ldrawn:沟道总长度 LD:横向扩散长度
衬底 (bulk、body)
Leff:沟道有效长度, Leff= Ldrawn-2 LD
MOS器件物理基础 Ch. 2 # 3
对于 的典型值,在室温下,要使I D 下降一个数量级,VGS 必须下降M约OS8器0件mC物Vh.理。2基# 3础7
NMOS管的电流公式
ID 0 截至区,Vgs<VTH
ID=n C 2 o L xW [2 (V G S-V T H )V D S-V D S 2]
线性区,Vgs >VTH VDS< Vgs - VTH
ID= nC 2o L xW(VG S-VTH)2
饱和区,Vgs >VTH VDS >Vgs - VTH
寄生二极管
MOS器件物理基础 Ch. 2 # 5
例:判断制造下列电路的衬底类型
MOS器件物理基础 Ch. 2 # 6
NMOS器件的阈值电压VTH
(a)栅压控制的MOSFET (c)反型的开始
(b)耗尽区的形成
(d)反型层的形成
拉扎维模拟CMOS集成电路设计第二章作业答案详解完整版
gmnC O XW LV D SnC O XW L(1 V x)
② 当1V<VX<1.2V时,MOS管工作在线性区
I X 1 2 n C O X W L [ 2 0 . 2 ( V X 1 ) ( V X 1 ) 2 ] 1 2 n C O X W L ( 1 . 4 V X ) ( V X 1 )
W
W
gmnC O XLV D SnC O XL(V x 1 )
精品课件
③ 当VX≥1.2V时,MOS管工作在饱和区
IX
+
IX 1 2n C O X W L ( V G S V T H )2 1 2n C O X W L (0 .2 )2
1.9V
VX
M1
-
+
g mn C O XW L(V G S V T H )0 .2n C O XW L
1
ID2
pC oxL W eff (V G SV TH)2(1p3)
ID4 .8 1 0 3(V S G0 .8 )2
08.8541012F/msio2 3.9
Cox
0 sio2 tox
3.837103F/m2
精品课件
2.2 W/L=50/0.5, |ID|=0.5mA,计算NMOS和PMOS的跨导 和输出阻抗,以及本证增益gmro
解:
gm
2Cox
W L
ID
ro
1 ID
gmro
2CoxW LID1 IDA
W L ID
精品课件
2.4 分别画出MOS晶体管的ID~VGS曲线。a) 以VDS作为参
数;b)以VBS为参数,并在特性曲线中标出夹断点
解:以NMOS为例
+
《CMOS集成电路》 (2)幻灯片
MOS二极管连接共源极的最大输出电压
M1截止
MOS二极管连接负载共源极的小结
• 增益AV[(W/L)1/(W/L)2]1/2 = Von2/ Von1 。
• 增益AV不高(一般<10),且输入、输出摆幅 小,这一特点限制了它的应用。
• 它的优点是跨导gm与电流ID无关,放大器 的线性特性好,大信号下也如此。二极管连 接的MOS管常用来构成有源电流镜。
求上例中Vinmax=? (例3)
A V=-μ μ p n ( ( W W / / L L ) ) 2 1=- | V V G G S S 2 1- -V V T T H H 1 2|=- V V o o n n 2 1
• 设电源电压 VDD=3V, | AV |=10, |VTN|= |VTP| =0.7V
W •L ID
(∵λ ∝1/L)
注意增益与ID的平方根成反比!
1. 若W、ID不变, L↑(r02 ↑), AV↑,但过驱动电压Von↑,输出电压摆幅↓, 若同时保持Von不变(即摆幅不变) ,则需W ↑,这会导致寄生电容↑, 放 大器带宽↓。这充分体现了模拟设计中的增益、摆幅、带宽之间的折衷
关系。(电阻负载CS中 ID不变, RD↑, AV↑, 摆幅一定↓) 2. 若L、ID不变, W↑, AV↑,过驱动电压Von ↓ ,输出电压摆幅↑ ,这会导致
增益与偏置电流无关,即输入与输出 呈线性(大信号时也如此!)
问题:ID10时,M2是工作在饱和区还是线性区?
MOS二极管连接负载的共源极(例1)
若需AV=10
则有:
μn( μp(
W W
/1L)1 /2L )
0
0
通常:μn 2 μp
于是:
拉扎维模拟CMOS集成电路设计第二章作业答案 ppt课件 (2)
p 100cm2 /V / s LD 0.09106 m
p 0.2V 1 tox 9 109 m
ID
1 2
pCox
W Leff
(VGS
VTH )2 (1 p 3)
ID 4.8103 (VSG 0.8)2
0 8.854 1012 F / m sio2 3.9
Cox
0 sio2 3.837 103 F / m2
W L
ID
3.66
mA /V
ro
1
n ID
1 0.1 0.5103
20k
gmro 3.66 103 20103 73.2
2)PMOS p 100cm2 /V / s
pCox 3.835105 F /V / s
gm
2PCox
W L
ID
1.96
mA /V
ro
1
P ID
1 0.2 0.5103
数;b)以VBS为参数,并在特性曲线中标出夹断点
解:以NMOS为例
+
当VGS<VTH时,MOS截止,则ID=0
+
VGS
-
+ VDS
VBS
--
ID当VTH<VGS<VDS+VTH时, MOS工斜率作正在比于饱VDS和区
ID
1
ID 2
C WL V V n ox
VSB=0GS
2 VSTB>H0
当VGS>VDS+VTH时,MOS工作在三极管区(线性区)
第二章 作业答案
1 ppt课件
2.1、W/L=50/0.5,假设|VDS|=3V,当|VGS|从0上升到 3V时,画出NFET和PFET的漏电流VGS变化曲线
模拟CMOS集成电路设计精粹ppt 第二章
只要L和C串联损耗阻抗为0,L和C就不产生noise,在无源器件中,只有电阻产生额外的noise。电路 中加入了L就会使得gm和输出电阻都与f有关。如果不含串联的R or L,输入阻抗ZinL是容性的,现在 则变成了纯阻性的,其值为gmLS/CGS,或LSω T,原因是输入CGS被电感抵消了。这样输入电阻可以很容 易地被设计成50 ,从而与50传输线(同轴电缆,天线等)相匹配。这种方法可设计出一个超高f低 noise放大器。
采用两种相同的电流偏置,但右边电路(2)中M2和M1并联,哪一种更好呢?(2)放大器中,输出电 阻较大,∴增益相对较高,相应的带宽窄一些。可用另一个晶体管构成电流源,这个晶体管是PMOST 器件,它的栅极与参考电压相连,产生直流偏置电流。还存在下面两种电路形式。
第一种放大器有一个恒定的直流偏置电流,∵作为电流源的M2的栅极与一个直流参考电压相连。低f 情况下,负载CL不起作用, 此时,M1和M2的直流电流不随信号电平而变化。被定义为A类放大器。第 二种,连接并同时驱动两个管的栅极,结果完全不同。根据所输入信号电平的不同,流过两个管的电 流变化非常大。这就是AB类放大器。实际上,在数字输入信号和模拟输入信号中都有可能采用第二种 放大器。
实现这样一种串联反馈电阻的一个简单方法是采用一个nMOST管,让其工作在线性区。但只有当VDS2很 小,在100mV~200mV之间才有可能。两个晶体管的VGS也不同。 MOST M1工作在饱和区,包含一个参数 K‘,而M2是作为一个电阻使用,包含参数KP,它们的参数n不同,n本身也是一个不确定的值
在增益表达式中,保留输出电阻,能较好地理解同样的输出电阻是怎样来决定输出极点或者带宽的。 在计算GBW时,这个输出电阻被消去,这和单管情况一样。但GBW变成了2倍,∵单管的跨导增大了2倍, ∴这是电流复用的一个简单例子。GBW是最重要的技术指标,它表明在任意f下,可以获得多大的电压 增益。它通过gm取决于电流。
拉扎维模拟CMOS集成电路设计(前十章全部课件)
Cox:单位面积栅氧化层电容
Φ MS:多晶硅栅与硅衬底功函数之差 Qdep耗尽区的电荷,是衬源电压VBS的函数
模拟集成电路设计绪论 Ch. 1 # 23
重邮光电工程学院
MOS管的开启电压VT及体效应
VTH VTH0 2F VSB 2 F ,
2qsiNsub Cox
(a)自然界信号的数字化 ( b)增加放大器和滤波器以提高灵敏度
模拟集成电路设计绪论 Ch.1# 3
重邮光电工程学院
数字通信
数字信号通过有损电缆的衰减和失真
失真信号需放大、滤波和数字化后才再处理
模拟集成电路设计绪论 Ch.1# 4
重邮光电工程学院
数字通信
1 0
11
10 01
00
使用多电平信号以减小所需的带宽 组合二进制数据 DAC 多电平信号 ADC 确定所传送电平
模拟集成电路设计绪论 Ch. 1 # 4
重邮光电工程学院
MOS器件符号
MOS管等效于一个开关!
模拟集成电路设计绪论 Ch. 1 # 5
重邮光电工程学院
MOS器件的阈值电压VTN(P)
(a)栅压控制的MOSFET
(c)反型的开始
(b)耗尽区的形成
(d)反型层的形成
模拟集成电路设计绪论 Ch. 1 # 6
源极跟随器
无体效应
有体效应
模拟集成电路设计绪论 Ch. 1 # 24
重邮光电工程学院
MOSFET的沟道调制效应
模拟集成电路设计绪论 Ch. 1 # 25
重邮光电工程学院
MOSFET的沟道调制效应
L
L’
L' L L 1 1/ L' (1 L / L) L 1 1/ L' (1 V DS ), VDS L / L L nCox W ID (VGS VTH )2 (1 VDS) 2 L
Φ MS:多晶硅栅与硅衬底功函数之差 Qdep耗尽区的电荷,是衬源电压VBS的函数
模拟集成电路设计绪论 Ch. 1 # 23
重邮光电工程学院
MOS管的开启电压VT及体效应
VTH VTH0 2F VSB 2 F ,
2qsiNsub Cox
(a)自然界信号的数字化 ( b)增加放大器和滤波器以提高灵敏度
模拟集成电路设计绪论 Ch.1# 3
重邮光电工程学院
数字通信
数字信号通过有损电缆的衰减和失真
失真信号需放大、滤波和数字化后才再处理
模拟集成电路设计绪论 Ch.1# 4
重邮光电工程学院
数字通信
1 0
11
10 01
00
使用多电平信号以减小所需的带宽 组合二进制数据 DAC 多电平信号 ADC 确定所传送电平
模拟集成电路设计绪论 Ch. 1 # 4
重邮光电工程学院
MOS器件符号
MOS管等效于一个开关!
模拟集成电路设计绪论 Ch. 1 # 5
重邮光电工程学院
MOS器件的阈值电压VTN(P)
(a)栅压控制的MOSFET
(c)反型的开始
(b)耗尽区的形成
(d)反型层的形成
模拟集成电路设计绪论 Ch. 1 # 6
源极跟随器
无体效应
有体效应
模拟集成电路设计绪论 Ch. 1 # 24
重邮光电工程学院
MOSFET的沟道调制效应
模拟集成电路设计绪论 Ch. 1 # 25
重邮光电工程学院
MOSFET的沟道调制效应
L
L’
L' L L 1 1/ L' (1 L / L) L 1 1/ L' (1 V DS ), VDS L / L L nCox W ID (VGS VTH )2 (1 VDS) 2 L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际上,Miller C在传输性能上产生了一个零点。这样一个单个电路可以产生与两个极点同样的相移。 而在通常情况下,每个C只能产生一个极点。
单管放大器中通常应用一个RS实现串联反馈。有RS的效应-环路增益(1+gmRS),它影响了电路的所有 其它参数。环路增益↓gm,if RS较大,跨导相当于降低了1/RS,跨导gm和电流无关。一个主要效应是 输出阻抗急剧↑,其增大的比例系数是环路增益。输出阻抗↑→放大器增益↑。反馈电路使输入C↓, RS↑→输入电容↓。If 用一个直流电流源代替RS,那么输入C可忽略。这就构成了后面源级跟随器 (source followers)。RS的主要问题是它们的noise,∴在低noise RF电路中常用L代替RS.
深亚微米CMOS器件提供的电压增益越来越小。但if L相对大时,如取2.5 (当VE=4V/ ),则VEmL≈10V, 当VGS-VT=0.2V产生的AV≈100.对于最小的90nm沟道长度,∵VE变化不大,∴AV=3.6,∴需用所有的电 路技巧去提高增益,共源共栅结构有可能使增益↑,if AV=100,在一般运放中,需获得106的电压增益 需要三级放大器,而if采用双极型只需二级放大器。
所有analog circuits都是由基本单元构成,对这些基本单元进行仔细研究是分析复杂电路的基础。
所有的analog circuits中,OP是最通用的电路模块。它是由一个差分输入部分和单端output构成。OP 的增益非常大,通常用于一个反馈环路中。该电路第一级是一个差分对管,load是一个电流镜。第二 级是一个单管放大器,负载是一个直流电流源,是电流镜的一部分。
该放大器是由一个电压源VIN进行偏置,在VIN上叠加了一个小信号输入电压vIN。一个放大器通常由一 个直流电流源作为负载,这种情况下可获得最大增益。一个理想电流源ro=∞,∴所示小信号等效电路 中电流源就被省略了(交流通路I=0,open)
设计模拟放大器时从不选择最小沟道长度,L取4~5Lmin,欲使VGS-VT的值尽可能的小,通常取 0.15~0.2V,但不能再小,否则进入弱反型区,这时I和gm会变得很小,noise↑。电流值较小时,不 可避免地产生大的noise和小的信噪比(SNR)。If SNR<40dB,可将放大器控制在弱反型区,这种 情况适于传感器接口电路和生物医学前置放大器。通信电路中的放大器通常>70dB的SNR,∴需将放 大器控制在弱反型区和强反型区之间。
加一个小信号电流到直流电流中,如图所示的小信号等效电路。小信号等效电阻 rds=1/gm‖rDS,∵rDS>>,所以MOST二极管的小信号的等效电阻总是g1m ,这点与双极型晶体管类似。
一个晶体管通过并联反馈构成一种二极管,对于双极型晶体管把集电极接到基极上,就形成了一个基 板-发射极二极管。在MOST管中并没有栅-源二极管,但将漏极连接到栅极形成了类似的二极管。将图 中线性区和饱和区分界成的曲线VDS=VGS-VT,向右平移VT后,就得到二极管的电流-电压曲线。∴可以应 用MOST在饱和区的电流-电压特性,曲线非线性强,类似于二极管的特性曲线。可用这个简单的电路 将电流转换成电压。
最后电路中可能增加的一个电容CF,是从输出端到输入端的反馈C,也称密勒C。∵这个C从输出端达 到输入端,它和输入端的源电阻生成了时间常数,但大小被×AV。,与CGS起到了同样的作用。由于输 出信号的幅度是输入信号的AV。倍,因此从输入端看过去,CF同样增大了AV。倍。GBW与晶体管参数不 相关,这正是所期望的∵反馈电路增益和放大器的参数不再相关,只取决于外部反馈元件的值。 带宽由输入端的源电阻生成的时间常数决定。但大小×AV。,与CGS起同样的作用。Miller效应从输入 端看过去的阻抗起了作用,对输出端的阻抗没有起作用。
实现这样一种串联反馈电阻的一个简单方法是采用一个nMOST管,让其工作在线性区。但只有当VDS2很 小,在100mV~200mV之间才有可能。两个晶体管的VGS也不同。 MOST M1工作在饱和区,包含一个参数 K‘,而M2是作为一个电阻使用,包含参数KP,它们的参数n不同,n本身也是一个不确定的值
单个晶体管可以构成的单元模块数量是很少。一个单管可被用作一个放大器,源极跟随器或者共源共 栅管。也可用一个共源共栅管做增益提升(gain boosting),只要将共源共栅管与一个放大器组合即 可。一个MOST管也可做成一个开关。用两个晶体管可构成另外两种组态,分别是差分对和电流镜电 路,将它们进行组合就构成了一个全差分的四晶体管的电压和电流放大器。这种差分的电流放大器可 以做到四个input,其电路形式非常多样。
只要L和C串联损耗阻抗为0,L和C就不产生noise,在无源器件中,只有电阻产生额外的noise。电路 中加入了L就会使得gm和输出电阻都与f有关。如果不含串联的R or L,输入阻抗ZinL是容性的,现在 则变成了纯阻性的,其值为gmLS/CGS,或LSωT,原因是输入CGS被电感抵消了。这样输入电阻可以很容 易地被设计成50 ,从而与50传输线(同轴电缆,天线等)相匹配。这种方法可设计出一个超高f低 noise放大器。
在高f下,由于寄生C,电压增益↓,负载C最大(它包括了所有的与下一级的互联C和反馈C.低f增益AV 和前面一样。在增益开始↓的那一点f称为带宽BW(或-3dBf)。它只取决于RC时间常数。
为了更好地研究BW和GBW与低f增益的关系,引入波特图,显然GBW=AVBW,在BW f点处相移-45°,而在 高f,相移增加到-90
If 没有负载C,但有一个大的输入CGS,带宽由输入决定。用于许多传感器和生物医学预放大器,它们 的源阻抗非常大(>1M )。此时,带宽BW有输入端的RC决定。但GBW不象BW那么简单,晶体管的许多 参数将会起到重要作用,其中一些参数与高f参数fT相关。要获得高f性能,增大fT往往不够,需将 fTrDS进行转化,这是工艺技术的挑战。如GBW所示,它与沟道长度不相关,但W和VGS-VT必须取小。