数控铣削加工工艺范围及铣削方式
数铣
6.3.2
常用数控铣削夹具
(1)机床用平口虎钳 工件在机床用平口虎钳上装夹时应注意:
装夹毛坯面或表面有硬皮时,钳口应加垫铜皮或铜钳口;选择高度适 当、宽度稍小于工件的垫铁,使工件的余量层高出钳口;在粗铣和半 精铣时,希望使铣削力指向固定钳口,因为固定钳口比较牢固。当工 件的定位面和夹持面为非平行平面或是圆柱面时,可采用更换钳口的 方式装夹工件。
(a)硬质合金立铣刀
(b)高速钢立铣刀
立铣刀的圆柱表面和端面上都有切削刃,它们可同时进行切削, 也可单独进行切削,主要用于加工凸轮、台阶面、凹槽和箱口面。
为了能加工较深的沟槽,并保证有足够的备磨量,立铣刀的轴 向长度一般较长。为了改善切屑卷曲情况,增大容屑空间,防止切 屑堵塞,刀齿数比较少,容屑槽圆弧半径则较大。一般粗齿立铣刀 齿数z=3~4,细齿立铣刀齿数z=5~8,套式结构z=10~20。容屑槽 圆弧半径r=2~5mm。 直径较小的立铣刀,一般制成带柄形式。 (3)模具铣刀 模具铣刀由立铣刀发展而成,可分为圆锥形立铣刀、圆柱形球 头立铣刀和圆锥形球头立铣刀三种,其柄部有直柄、削平型直柄和 莫氏锥柄。
a)整体焊接式
b)机夹-焊接式
c)可转位式
面铣刀主要以端齿为主加工各种平面,主偏角为90º的面铣刀 还能同时加工出与平面垂直的直角面,但这个面的高度受到刀片长 度的限制。 面铣刀齿数对铣削生产率和加工质量有直接影响,齿数越多, 同时工作齿数也多,生产率高,铣削过程平稳,加工质量好。可转 位面铣刀的齿数根据直径不同可分为粗齿、细齿、密齿三种(参见 下表)。粗齿铣刀主要用于粗加工;细齿铣刀用于平稳条件下的铣 削加工;密齿铣刀的每齿进给量较小,主要用于薄壁铸铁件加工。
图6-15
弹簧夹头刀柄
图6-16 弹簧夹头结构示图
数控铣削加工工艺范围及铣削方式
页脚内容1数控铣削加工工艺范围及铣削方式铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。
铣削的主要工作及刀具与工件的运动形式如图所示。
在铣削过程中,根据铣床,铣刀及运动形式的不同可将铣削分为如下几种:(1)根据铣床分类根据铣床的结构将铣削方式分为立铣和卧铣。
由于数控铣削一个工序中一般要加工多个表面,所以常见的数控铣床多为立式铣床。
(2)根据铣刀分类根据铣刀切削刃的形式和方位将铣削方式分为周铣和端铣。
用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6-2(a )所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6-2(b )所示。
图中平行于铣刀轴线测量的切削层参数ap 为背吃刀量。
垂直于铣刀轴线测量的切削层参数ac 为切削宽度,fz是每齿进给量。
单独的周铣和端铣主要用于加工平面类零件,数控铣削中常用周、端铣组合加工曲面和型腔。
(3)根据铣刀和工件的运动形式公类根据铣刀和工作的相对运动将铣削方式分为顺铣和逆铣。
铣削时,铣刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6-3)a 所示;铣削时,铣刀切入工件时的切削速度方向与工件进给方向相反,称为逆铣,如图(6-3)b所示。
顺铣与逆铣比较:顺铣加工可以提高铣刀耐用度2~3倍,工件表面粗糙度值较小,尤其在铣削难加工材料时,效果更加明显。
铣床工作台的纵向进给运动一般由丝杠和螺母来实现,采用顺铣法加工时,对普通铣床首先要求铣床有消除进给丝杠螺母副间隙的装置,避免工作台窜动;其次要求毛坯表面没有破皮,工艺系统有足够的刚度。
如果具备这样的条件,应当优先考虑采用顺铣,否则应采用逆铣。
目前生产中采用逆铣加工方式的比较多。
数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工。
数控铣削主要特点(1)生产率高(2)可选用不同的铣削方式(3)断续切削(4)半封闭切削数控铣削主要加工对象(1)平面类零件页脚内容2加工面平行或垂直水平面,或加工面与水平面的夹角为定角的零件为平面类零件。
2数控铣床加工工艺
(1)准备功能及辅助功能 (2)机床坐标系及工件坐标系
1.机床坐标系 机床上固有的坐标系。机床坐标系的原点由设计厂家在设
计机床时确定。 一般情况下,铣床原点的位置可在启动机床后,使机床三
个坐标轴的坐标依次运动到其正方向的极限位置确定,机 床三个坐标轴所达到的这个位置就是机床坐标系原点 2.工件坐标系 工件坐标系原点在工件上或在夹具的某一点上,由编程人 员设定,其位置随工件和夹具在机床工作台上的安装位置 而定,所以又叫浮动原点或编程原点,一般在程序开头设 置。
序内往往需要采用不同的刀具和切削用量,对不同的表面 进行加工。 为了便于分析和描述较复杂的工序;在工序内又细分为工 步。下面以加工中心为例来说明工步划分的原则: 1) 同一表面按粗加工、半精加工、精加工依次完成全部加工 表面,按先粗后精加工分开进行。 2) 对于既有铣面又有镗孔的零件,可先铣面后镗孔。 3) 某些机床工作台回转时间比换刀时间短,可采用按刀具划 分工步,以减少换刀次数,提高加工效率。 总之,工序与工步的划分要根据具体零件的结构特点、技 术要求等情况综合考虑。
参考平面
R
工件上表面
主轴顺时针转动 Z
主轴逆时针转动
G85:镗孔循环
• 指令格式:G85 X_ Y_ Z_ R_ F_ K_ LF • G85与G84相同,只是在孔底主轴不反转
G98 初始平面
工件平面
G99 参考平面 Z点
G86:镗削循环
指令格式:G86 X_ Y_ Z_ R_ F_ K_ LF 和G81相同,只是在孔底主轴停,然后用快速返回
二、数控加工零件的工艺性分析
1. 零件图的几何尺寸标注及轮廓的几何要素 (1)要彻底读董图样 (2)要分析透零件的加工工艺性 (3)研究分析零件的精度 (4)研究分析零件的刚性 (5)研究分析零件的定位基准 (6)研究零件的毛坯和材料
数控铣削加工工艺与编程实例
(3)工、量、刃具选择
(4)合理选择切削用量
2.编制参考程序 1)认真阅读零件图,确定工件坐标系。根据工件坐标系 建立原则,X、Y向加工原点选在φ60H7mm孔的中心, Z向加工原点选在B面(不是毛坯表面)。工件加工原点 与设计基准重合,有利于编程计算的方便,且易保证零 件的加工精度。Z向对刀基准面选择底面A,与工件的定 位基准重合,X、Y向对刀基准面可选择φ60H7mm毛坯 孔表面或四个侧面。 2)计算各基点(节点)坐标值。如图3-112所示各圆的 圆心坐标值见表3-32。
子程序:
3.6.4 加工中心零件的编程与操作
图3-105所示为端盖零件,其材料为45钢,毛坯尺寸为 160mm×160mm×19mm。试编写该端盖零件的加工 程序并在XH714加工中心上加工出来。
(1)加工方法 由图3-105可知,该盖板材料为铸铁,故毛坯为铸件,四 个侧面为不加工表面,上下面、四个孔、四个螺纹孔、 直径为φ60mm的孔为加工面,且加工内容都集中在A、 B面上。从定位、工序集中和便于加工考虑,选择A面为 定位基准,并在前道工序中加工好,选择B面及位于B面 上的全部孔在加工中心上一次装夹完成加工。 该盖板零件形状较简单,尺寸较小,四个侧面较光滑, 加工面与非加工面之间的位置精度要求不高,故可选机 用平口钳,以盖板底面A和两个侧面定位,用机用平口 钳的钳口从侧面夹紧。
3)参考程序:数控加工程序单见表3-33。
加工φ160mm中心线上孔的子程序的数控加工程序单见 表3-33。
加工φ100mm中心线上孔的子程序的数控加工程序单见 表3-33。
3.操作步骤及内容 1)机床上电。合上空气开关,按“NC启动”。 2)回参考点。选择“机械回零”方式,按下“循环启动”按钮,完成 回参考点操作。返回零点后,X、Y、Z三轴向负向移动适当距离。 3)刀具安装。按要求将所有刀具安装到刀库,注意刀具号是否正 确。 4)清洁工作台,安装夹具和工件。检查坯料的尺寸,确定工件的 装夹方式(用机用虎钳夹紧)。将机用虎钳清理干净装在干净的工 作台上,通过百分表找正、找平机用虎钳并夹紧,再将工件装正在 机用虎钳上,工件伸出钳口8mm左右。
数控铣削加工工艺与编程
数控铣削加工工艺与编程一、数控铣削主要加工对象数控铣削是机械加工中最常用的加工方法之一,它主要包括平面铣削和轮廓铣削,还可以对零件进行钻、扩、铰、镗、锪加工及攻螺纹等。
数控铣床有立式、卧式、龙门式三类,数控铣床加工工艺以普通铣床加工工艺为基础,数控加工中心从结构上看是带刀库的镗铣床,除铣削加工外,也可以对零件进行钻、扩、铰、镗、锪加工及攻螺纹等,因此数控铣床与数控加工中心从工艺上看加工工艺类似,主要适用于下列几类零件的加工。
1、平面类零件平面类零件是指加工面平行、垂直于水平面或其加工面与水平面的夹角为定角的零件,这类零件的特点是,各个加工表面是平面,或展开为平面。
如图4-1所示的三个零件都属于平面类零件,其中的曲线轮廓面M和正圆台面N,展开后均为平面。
图4-1 平面类零件2、变斜角类零件加工面与水平面的夹角呈连续变化的零件称为变斜角类零件。
图4-2是飞机上的一种变斜角梁缘条,该零件在第②肋至第⑤肋的斜角α从3°10′均匀变12肋又均匀化为2°32′,从第⑤肋至第⑨肋再均匀变化为1°20′,最后到第○变化至0°。
变斜角类零件的变斜角加工面不能展开为平面,但在加工中,加工面与铣刀圆周接触的瞬间为一条直线。
加工变斜角类零件最好采用四坐标和五坐标数控铣床摆角加工,在没有上述机床时,也可在三坐标数控铣床上进行二轴半控制的近似加工。
图4-2 变斜角零件3、曲面类零件加工面为空间曲面的零件称为曲面类零件。
曲面类零件的加工面不仅不能展开为平面,而且它的加工面与铣刀始终为点接触。
加工曲面类零件一般采用三坐标数控铣床。
加工曲面类零件的刀具一般使用球头刀具,因为其他刀具加工曲面时更容易产生干涉而过切邻近表面。
加工立体曲面类零件一般使用三坐标数控铣床,采用以下两种加工方法。
(1)行切加工法采用三坐标数控铣床进行二轴半坐标控制加工,即行切加工法。
如图4-3所示,球头铣刀沿XY平面的曲线进行直线插补加工,当一段曲线加工完后,沿X方向进给ΔX再加工相邻的另一曲线,如此依次用平面曲线来逼近整个曲面。
数控铣床概述
数控铣床概述图1-1 立式数控数控铣床概述一.数控铣床的工艺范围数控铣床(Numerical Control Milling Machine)适合于各种箱体类和板类零件的加工。
它的机械结构除基础部件外,还包括主传动系统和进给传动系统,实现工件回转、定位的装置和附件,实现某些部件动作和辅助功能的系统和装置,如液压、气动、冷却等系统和排屑、防护等装置,特殊功能装置,如刀具破损监视、精度检测和监控装置,为完成自动化控制功能的各种反馈信号装置及元件。
铣削加工是机械加工中最常用的加工方法之一,它主要包括平面铣削和轮廓铣削,也可以对零件进行钻、扩、铰、锪及螺纹加工等。
二.数控铣床的分类1.按主轴布置形式分类按机床主轴的布置形式及机床的布局特点分类,可分为数控立式铣床、数控卧式铣床和数控龙门铣床等。
(1) 立式数控铣床一般可进行三坐标联动加工,目前三坐标数控立式铣床占大多数。
如图1-1所示,数控立式铣床主轴与机床工作台面垂直,工件装夹方便,加工时便于观察,但不便于排屑。
一般采用固定式立柱结构,工作台不升降。
主轴箱做上下运动,并通过立柱内的重锤平衡主轴箱的质量。
为保证机床的刚性,主轴中心线距立柱导轨面的距离不能太大,因此,这种结构主要用于中小尺寸的数控铣床。
此外,还有的机床主轴可以绕X 、Y 、Z 坐标轴中其中一个或两个做数控回转运动的四坐标和五坐标数控立式铣床。
通常,机床控制的坐标轴越多,尤其是要求联动的坐标轴越多,机床的功能、加工范围及可选择的加工对象也越多。
但随之而来的就是机床结构更加复杂,对数控系的要求更高,编程难度更大,设备的价格也更高。
数控立式铣床也可以附加数控转盘,采用自动交换台,增加靠模装置来扩大它的功能、加工范围及加工对象,进一步提高生产效率。
(2) 卧式数控铣床卧式数控铣床与通用卧式铣床相同,其主轴轴线平行于水平面。
如图1-2所示,数控卧式铣床的主轴与机床工作台面平行,加工时不便于观察,但排屑顺畅。
数控加工零件的工艺分析与数控铣削加工工艺
数控加工零件的工艺分析与数控铣削加工工艺数控加工是指利用计算机数控系统,通过编写程序控制机床工作来加工零件的一种加工方式。
在工业生产中,数控加工因其高精度、高效率、高灵活性等优点而被广泛应用。
其中数控铣削是一种常见的数控加工方式,本文将从工艺分析、数控铣削加工工艺等方面进行探讨。
一、数控加工零件的工艺分析工艺分析是数控加工的一项前置工作,它的目的是确定加工工艺,选择合适的加工设备和刀具,制定加工程序等,从而保证加工质量和效率。
具体而言,工艺分析主要包括以下几个方面:1. 零件的材质和形状:不同材质的加工性能不同,加工时需要选择相应的切削参数和刀具;而零件的形状和结构也会影响加工难度和精度,需要对其进行全面分析和评估。
2. 加工精度和表面质量要求:根据零件的要求,确定加工精度和表面质量目标,制定相应的切削参数和工艺措施。
3. 工序分析:对零件进行逐个工序分析,确定加工顺序、加工方向、加工路径和刀具选择等重要内容,同时把握好每个工序的加工质量和效率。
4. 刀具选择:根据加工材料、零件形状和要求,选择合适的刀具和刀具尺寸,保证零件的加工质量和加工效率。
5. 加工程序制定:通过数控编程软件,编写机床加工程序,包括各种切削参数、刀具路径、指令参数等信息,为数控加工提供参考。
二、数控铣削加工工艺数控铣削是一种高速旋转的刀具在工件表面上进行切削的加工方式,它广泛应用于金属、塑料等材料制件的加工中。
数控铣削在工件制作中具有大量价值和应用,且数控铣削加工工艺也是半自动化和自动化制造中的重要工艺之一。
要把好铣削的关,需要具备以下几点:1. 刀具选择:刀具的选择是影响加工效率和加工质量的重要因素之一。
首先需要考虑切削材料,选择高速钢、硬质合金、陶瓷等材质的刀具;其次要考虑刀具尺寸和形状,根据零件的要求选择合适的刀具。
2. 切削参数:切削参数包括切削速度、进给量和切削深度等,这些参数的选定与零件材料、刀具材料、刀具尺寸和表面质量等因素密切相关。
数控加工工艺 (3)
背吃刀量ap为平行于铣刀轴线测量的切削层尺寸,单位为mm 。端铣时ap为切削层深度;而圆周铣时,ap为被加工表面的宽度
。
侧吃刀量ae为垂直于铣刀轴线测量的切削层尺寸,单位为mm。 端铣时ae为被加工表面的宽度;而圆周铣时为切削层的深度。
背吃刀量或侧吃刀量的选取主要由加工余量和对表面质量的要求 决定。
4.铣削内外轮廓的进给路线
当内部几何元素相切无交点时,为防止刀补取消时在轮廓拐角处 留下凹口,刀具切入切出点应远离拐角。
当整圆加工完毕时,不要在切点处直接退刀,而应让刀具沿切线 方向多运动一段距离,以免取消刀补时,刀具与工件表面相碰, 造成工件报废。
铣削外圆的切入切出路径
从拐角切入切 出,容易产 生过切现象。
(1)直角沟槽的铣削 直角通槽主要用三面刃铣刀来铣削,也可用立铣刀、槽铣刀和
合成铣刀来铣削。对封闭的沟槽则都采用立铣刀或键槽铣刀。 (2)键槽的铣削方法 ①铣通键槽 ②铣封闭键槽 (3)T形槽的铣削 ①铣T形槽的步骤 ②铣T形槽应注意的事项
T形槽的铣削步骤
22
数控加工工艺
二、常见零件的数控铣削方法
二、数控铣削加工工序的划分 1.加工阶段的划分
(1)加工阶段 (2)数控铣加工工序的划分原则
按所用刀具划分。如加工中心,减少换刀次数。 按安装次数划分。减少定位误差。 按粗、精加工划分。减少误差复映,提高加工精度。 按加工部位划分。减少空行程,提高效率。
30
数控加工工艺
二、数控铣削加工工序的划分
14
数控加工工艺
三、铣刀的选择
1.铣刀形式的选择
铣刀的选择必须符合铣刀使用的规范;超规范的使用会损坏铣刀, 造成废品。
第3章数控铣削加工工艺(教案9)
第3章 数控铣削加工工艺
(3) 铣刀端刃圆角半径r的选择。铣刀端刃圆角半径 r的大小一般应与零件上的要求一致。但粗加工铣刀因尚 未切削到工件的最终轮廓尺寸,故可适当选得小些,有 时甚至可选为“清角” (即r=0~0.5mm),但不要造 成根部“过切”的现象。
(4) 立铣刀几何角度的选择。对于立铣刀,主要
第3章 数控铣削加工工艺 2. 夹具的选择 (1) 为了保持零件安装位置与机床坐标系及编程坐标系方 向的一致性,夹具应能保证在机床上实现定向安装,同时还要
求能协调零件定位面与机床之间保持一定的坐标尺寸关系。
(2) 在加工过程中,为了保证夹具与铣床主轴套筒或刀套、
刀具不发生干涉,夹具在设计和制造时应尽可能开敞, 使待加 工面充分暴露在外,同时夹紧机构元件与加工面之间应保持一
5) 鼓形铣刀
如图3-20所示的鼓形铣刀,它的切削刃分布在半径 为R的圆弧面上,端面无切削刃。加工时控制刀具上下位 置,相应改变刀刃的切削部位,可以在工件上切出从负 到正的不同斜角。R越小,鼓形铣刀所能加工的斜角范围 越广,但所获得的表面质量也越差。这种刀具的缺点是
刃磨困难,切削条件差, 而且不适于加工有底的轮廓表
还可用负前角。前角的数值主要根据工件材料和刀具材料来选择,
5°。主偏角κr 在45°~90°范围内选取,铣削铸铁时取κr=45°,
第3章 数控铣削加工工艺
· 立铣刀主要参数的选择
(1) 铣刀直径D的选择。一般情况下,为减少走刀次数, 提高铣削速度和铣削量,保证铣刀有足够的刚性以及良好的散热 条件,应尽量选择直径较大的铣刀。但选择铣刀直径往往受到零 件材料,刚性,加工部位的几何形状、尺寸及工艺要求等因素的 限制。图3-22所示零件的内轮廓转接凹圆弧半径R较小时, 铣刀 直径D也随之较小,一般选择D=2R。 若槽深或壁板高度H较大, 则应采用细长刀具,从而使刀具的刚性变差。 铣刀的刚性以铣刀 直径D与刃长l的比值来表示,一般取D/l>0.4~0.5。 当铣刀的 刚性不能满足D/l>0.4~0.5的条件(即刚性较差)时,可采用直 径大小不同的两把铣刀进行粗、精加工。先选用直径较大的铣刀 进行粗加工,然后再选用D、l均符合图样要求的铣刀进行精加工。
数控铣削加工工艺分析
数控铣削加工工艺分析数控铣削加工是现代制造业中常见的加工方式之一,它使用数控铣床进行金属材料的削除加工。
与传统的手工和半自动铣削相比,数控铣削具有高效、精度高、重复性好等优点。
本文将从工艺流程、工艺参数和加工工具选择等方面,对数控铣削加工的工艺进行详细的分析。
一、工艺流程1.加工准备:明确加工件的尺寸要求、材料和加工工艺要求,并选择合适的加工刀具和夹具。
2.编写加工程序:根据零件的几何形状和加工要求,编写数控机床可识别的加工程序。
3.加工装夹:根据加工程序,选择适当的夹具和装夹方式,在数控铣床上夹紧工件。
4.设定工艺参数:根据加工材料的性质和加工要求,设置合理的切削速度、进给速度和切削深度等参数。
5.加工加工:启动数控机床,进行自动化加工,监控加工过程的稳定性和正确性。
6.加工检验:对加工后的零件进行检验,检查尺寸精度和表面质量是否符合要求。
7.加工记录:记录加工过程中的工艺参数和检验结果,以备后续生产参考。
二、工艺参数1.切削速度:是指刀具在单位时间内切削的长度。
根据加工材料的硬度和切削性能,合理选择切削速度,既能保证加工效率,又能保证刀具寿命。
2.进给速度:是指刀具在单位时间内在加工方向上移动的距离。
进给速度的选择应考虑切削力和切削表面的要求。
3.切削深度:是指刀具在一次进给过程中所削除的材料层厚度。
切削深度的选择应使得切削力合理,既能保证加工效率,又能避免切削表面的质量。
4.刀具半径补偿:数控铣床会自动根据刀具半径补偿值进行补偿,使得加工轮廓与设计轮廓一致。
5.加工顺序:根据零件的几何形状和切削力的分布情况,合理选择加工顺序,避免零件变形和加工过程中的切削力过大。
三、加工工具选择1.刀具材料:刀具材料应具有一定的硬度、耐磨性和耐冲击性,常用的刀具材料有硬质合金、高速钢和陶瓷等。
2.刀具形状:根据零件的几何形状和加工要求,选择合适的刀具形状,如平面铣刀、立铣刀、球头铣刀等。
3.切削刃数:根据加工材料的硬度和切削性能,选择合适的刀具刃数,既能保证加工效率,又能保证刀具寿命。
第六章数控铣削加工工艺
第一节 数控铣削加工工艺的制订
① 在要求工件表面粗糙度值为Ra12.5~25μm时,如果圆 周铣削的加工余量小于5mm,端铣的加工余量小于6mm, 则粗铣一次进给就可以达到要求。但在余量较大,工艺系 统刚性较差或机床动力不足时,可分两次进给完成。 ② 在要求工件表面粗糙度值为Ra3.2~12.5μm时,可分粗 铣和半精铣两步进行。粗铣时背吃刀量或侧吃刀量选取同 前。粗铣后留0.5~1.0mm余量,在半精铣时切除。
图6-13 顺铣与逆铣 a)顺铣 b)逆铣
第一节 数控铣削加工工艺的制订
3)顺铣与逆铣的判断方法。
图6-14 切削外轮廓时顺铣、逆铣与进给的关系 a)顺铣与进给的关系 b)逆铣与进给的关系
第一节 数控铣削加工工艺的制订
图6-15 切削内轮廓时顺铣、逆铣与进给的关系 a)顺铣与进给的关系 b)逆铣与进给的关系
第一节 数控铣削加工工艺的制订
图6-3 通用可调气动台虎钳 a)通用可调气动台虎钳 b) 、c)更换调整件 1、2—可更换调整件 3—活动钳口 4—粗调螺杆 5—活塞杆
6—杠杆 7—活塞ຫໍສະໝຸດ 第一节 数控铣削加工工艺的制订
图6- 4 通用可调夹具系统 1—基础件 2—立式液压缸 3—卧式液压缸 4、5—销
第一节 数控铣削加工工艺的制订
表6-1 面铣刀的前角数值
(2)立铣刀主要参数的选择 立铣刀主切削刃的前角在法剖 面内测量,后角在端剖面内测量,前、后角的标注如图628b所示。
表6-2 立铣刀前角数值
第一节 数控铣削加工工艺的制订
表6-3 立铣刀后角数值
第一节 数控铣削加工工艺的制订
图6-35 立铣刀尺寸参数
第一节 数控铣削加工工艺的制订
图6-31 硬质合金模具铣刀
典型薄壁零件数控铣削加工工艺
典型薄壁零件数控铣削加工工艺
随着数控技术的不断发展和普及,传统的机械加工方式已逐渐被数控加工所取代。
具
有复杂形状的零件加工越来越受到重视,薄壁零件的加工也成为数控铣削加工中的一个重
要领域。
本文将介绍几种常见的典型薄壁零件数控铣削加工工艺。
一、空间曲面薄壁零件的加工
1. 先导铣削法:先导铣削法是指在进行数控铣削之前,通过手工或其他加工方式,
先将工件的主要外形进行加工,以便在数控铣削中能够准确定位和定位,确保加工精度。
这种方法通常适用于工件的结构单一,不涉及过多曲面的薄壁零件。
2. 内壁铣削法:对于空间曲面薄壁零件的加工,往往会涉及到一些内壁的加工。
内
壁铣削法是指利用特殊形状的刀具进行内壁加工,通常采用搅拌刀或球头刀进行加工。
这
种方法相比传统的刀具在内壁加工过程中更容易掌握,提高加工质量和效率。
3. 全固定装夹法:对于薄壁零件的加工来说,固定装夹是一个非常关键的环节,直
接关系到加工精度和质量。
全固定装夹法是指在加工过程中,将工件的切削力用于装夹上,使其实现稳定加工。
这种方法适用于一些形状复杂、精度要求高的薄壁零件。
典型薄壁零件的数控铣削加工工艺有很多种,根据不同的零件形状和要求,选择合适
的加工工艺能够提高加工效率和质量,满足工程的需求。
随着数控技术的不断发展和应用,相信在将来的发展中,还会出现更多的创新加工工艺,以适应各种需要。
数控铣削加工工艺的主要内容
数控铣削加工工艺
数控铣削加工工艺的实质,就是在分析零件精度和表面 粗糙度的基础上,对数控铣削的加工方法、装夹方式、切削 加工进给路线、刀具选择和切削用量等工艺内容进行正确而 合理的选择。
下列加工内容比较适宜采用数控铣削加工: ① 零件上的平面曲线轮廓表面(如图所示)特别是由数学表达
① 需要进行长时间占机人工进行调整的加工和粗加工。
② 零件毛坯上的加工余量不大或者不太稳定的加工部位。
③ 必须使用细长铣刀加工的部位,一般指狭长深槽和加工精 度要求不高的筋板处连接曲线。
数控机床编程与操作
式给出的非圆曲线和列表曲线建立的空间曲线。 ② 由给出数学模型的空间曲面或通过测量数据建立起来的空间
曲面。 ③形状复杂、尺寸繁多、零件画线和检测都比较困难的零件加
工部位。
数控铣削加工工艺
④ 能够在一次装夹中铣削加工出多部位的零件表面或零件 形状。
⑤ 用普通的铣床进行加工的观察、检测困难的零件加工, 以及各种内、外凹凸槽形状的零件的加工。 ★下列内容不适宜采用数控铣削加工:
数控铣削加工工艺
立式数控 铣床
卧式数控 铣床
多坐标联 动的卧式 加工中心
适于加工箱体、箱盖、平面凸轮、样板、形状复杂 的平面或立体零件,以及模具的内、外型腔等。 适于加工复杂的箱体类零件、泵体、阀体、壳体等。
用于加工各种复杂的曲线、曲面、叶轮、模具等。
6.2.2 数控铣削加工零件的工艺性分析
零件的工艺性分析是制定数控铣削加工工艺 的前提,主要内容包括: (1)零件图及其结构工艺性分析 ① 分析零件的形状、结构及尺寸特点 零件上是否有妨碍刀具运动的部位 是否有会产生加工干涉或加工不到的区域 零件外形尺寸是否超过机床行程范围 零件刚性在加工过程中是否太有大的变化
数控铣床简介
1.数控铣床的用途 一般的数控铣床是指规格较小的升降台式数
控铣床,数控铣床多为三坐标、两轴联动的机 床。
一般情况下,在数控铣床上只能用来加工平 面曲线的轮廓。
与普通铣床相比,数控铣床的加工精度高, 精度稳定性好,适应性强,操作劳动强度低, 特别适应于板类、盘类、壳具类、模具类等复 杂形状的零件或对精度保持性要求较高的中、 小批量零件的加工。
6.1 数控铣削加工的主要对象
1.平面类零件 加工面平行或垂直于水平面,或加工面与水平面的夹角为定角的零件
为平面类零件。其特点是各个加工面是平面,或可以展开成平面。一般只 需用三坐标数控铣床的两坐标联动(即两轴半坐标联动)就可以把它们加工 出来。
a)带平面轮廓的平面零件 b)带斜平面的平面零件 c)带正圆台和斜筋的平面零件
件的加工面不能展开为平面,加工时,加工面与铣刀始终 为点接触。常用两轴半联动数控铣床来加工精度要求不高 的曲面;精度要求高的曲面类零件一般采用三轴联动数控 铣床加工;当曲面较复杂、通道较狭窄、会伤及毗邻表面 及需刀具摆动时,要采用四轴甚至五轴联动数控铣床加工。
数控铣削加工工艺
第四章 数控铣削加工工艺
(4) 角铁 适用于加工基准面比较宽而加工面比较窄的工件。
角铁装夹宽而薄的垂直面
第四章 数控铣削加工工艺
(5) V形架 常用来加工圆柱形工件。
a)V形架装夹下 立铣键槽
第四章 数控铣削加工工艺
5.模具铣刀
圆柱形球头铣刀
圆锥形球头铣刀
圆锥形立铣刀
第四章 数控铣削加工工艺
6.角度铣刀
主要用于卧式铣床上加工各种角度槽、斜面等。 (1)单角铣刀
圆锥面上切削刃是主切削刃,端面上的切削刃是副切 削刃。
第四章 数控铣削加工工艺
(2)不对称双角铣刀 两圆锥面上切削刃是主切削刃,无副切削刃。
3) 定位件。 它用来确定各元件之间的相对位置, 以保证夹具的组
装精度, 包括定位键、 定位销、 定位盘以及各类定位支 座、 定位支撑等。
定位件
第四章 数控铣削加工工艺
4) 导向件 它主要起引导刀具的作用, 包括各种结构形式和规格
尺寸的模板、 导向套及导向支撑等。
导向件
第四章 数控铣削加工工艺
5) 压紧件。 它是指各种形状和尺寸的压板。其作用是压紧工
组合夹具的基本特点是满足标准化、 系列化、 通 用化的要求,具有组合性、 可调性、 柔性、 应急性和 经济性,使用寿命长,能适应产品加工中的周期短、 成本低等要求,比较适合在加工中心上应用。
(1) 组合夹具的元件及作用
一套组合夹具主要由基础件、 支撑件、 定位件、 导向件、 压紧件、 紧固件、 其他元件及组合件八大类 元件所组成。
第四章 数控铣削加工工艺
数控铣削加工工艺及对刀操作PPT课件
进给速度的选择同样重要,过快或过 慢的进给速度都可能导致加工质量下 降或损坏刀具。
切削深度的选择
切削深度
根据工件材料、铣刀直径和加工要求等参数,合理选择切削深度,以确保切削 效率和加工质量。
总结
切削深度的选择对切削效率和加工质量均有影响,过大的切削深度可能导致刀 具损坏或加工质量下降。
刀具的选择与使用
05
数控铣削加工的未来发展与挑战
数控铣削加工技术的发展趋势
80%
智能化
随着人工智能和机器学习技术的 不断发展,数控铣削加工将更加 智能化,能够实现自适应加工和 智能优化。
100%
高效化
为了提高加工效率和降低成本, 数控铣削加工将不断优化切削参 数和加工路径,实现高效、高精 度的加工。
80%
柔性化
随着个性化需求的增加,数控铣 削加工将更加柔性化,能够快速 适应不同工件和加工需求的调整 。
数控铣削加工面临的挑战与问题
加工精度要求高
随着产品质量的不断提高,对 数控铣削加工的精度要求也越 来越高,如何保证高精度加工 是当前面临的重要问题。
切削参数优化
切削参数的优化是提高数控铣 削加工效率和加工质量的关键 ,但如何实现切削参数的合理 匹配和优化仍是一个挑战。
引入智能化技术
利用人工智能和机器学习技术,实现 加工过程的自适应控制和智能优化, 提高加工效率和精度。
THANK YOU
感谢聆听
详细描述
数控铣削加工是指利用数控机床进行铣削加工的一种技术,通过 计算机控制机床的运动和切削参数,实现高精度、高效率、高柔 性的加工。相比于传统铣削加工,数控铣削加工具有更高的加工 精度和更广泛的加工范围,能够满足各种复杂零件的加工需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数控铣削加工工艺围及铣削方式铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。
铣削的主要工作及刀具与工件的运动形式如图所示。
在铣削过程中,根据铣床,铣刀及运动形式的不同可将铣削分为如下几种:(1)根据铣床分类根据铣床的结构将铣削方式分为立铣和卧铣。
由于数控铣削一个工序中一般要加工多个表面,所以常见的数控铣床多为立式铣床。
(2)根据铣刀分类根据铣刀切削刃的形式和方位将铣削方式分为周铣和端铣。
用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6-2(a)所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6-2(b)所示。
图中平行于铣刀轴线测量的切削层参数ap为背吃刀量。
垂直于铣刀轴线测量的切削层参数ac为切削宽度,fz是每齿进给量。
单独的周铣和端铣主要用于加工平面类零件,数控铣削中常用周、端铣组合加工曲面和型腔。
(3)根据铣刀和工件的运动形式公类根据铣刀和工作的相对运动将铣削方式分为顺铣和逆铣。
铣削时,铣刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6-3)a 所示;铣削时,铣刀切入工件时的切削速度方向与工件进给方向相反,称为逆铣,如图(6-3)b所示。
顺铣与逆铣比较:顺铣加工可以提高铣刀耐用度2~3倍,工件表面粗糙度值较小,尤其在铣削难加工材料时,效果更加明显。
铣床工作台的纵向进给运动一般由丝杠和螺母来实现,采用顺铣法加工时,对普通铣床首先要求铣床有消除进给丝杠螺母副间隙的装置,避免工作台窜动;其次要求毛坯表面没有破皮,工艺系统有足够的刚度。
如果具备这样的条件,应当优先考虑采用顺铣,否则应采用逆铣。
目前生产中采用逆铣加工方式的比较多。
数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工。
数控铣削主要特点(1)生产率高(2)可选用不同的铣削方式(3)断续切削(4)半封闭切削数控铣削主要加工对象(1)平面类零件加工面平行或垂直水平面,或加工面与水平面的夹角为定角的零件为平面类零件。
目前,在数控铣床上加工的绝大多数零件属于平面类零件。
(2)变斜角类零件加工面与水平面的夹角呈连续变化的零件称为斜角类零件。
这类零件多为飞机零件,如飞机上的整体梁、框、橡条与肋等。
(3)曲面类零件加工面为空间曲面的零件称为曲面类零件。
如模具、叶片、螺旋桨等。
加工曲面类零件一般采用三坐标数控铣床。
当曲面较复杂、通道较狭窄、会伤及毗邻表面及需刀具摆动时,要采用四坐标或五坐标铣床。
数控铣削的刀具与选用对数控铣削刀具的基本要求(1)铣刀刚性要好(2)铣刀的耐用度要高此外,铣刀切削刃的几何参数的选择及排屑性能也非常重要。
铣刀的种类(1)面(端)铣刀面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。
由于面铣刀的直径一般较大,为直径50~500mm,故常制成套式镶齿结构,即将刀齿和刀体分开,刀齿为高速或硬质合金,刀体采用40cr制作,可长期使用。
高速钢面铣刀按国家标准规定,直径d=直径80~250mm,螺旋角β=10度,刀齿数Z=10~26.硬质合金面铣刀与高速钢铣刀相比,铣削速度较高,加工效率高,加工表面质量也较好,并可加工带有硬皮和淬硬层的工件,故得到广泛应用。
硬质合金面铣刀按刀片和刀齿的安装方式不同,可分为整体焊接式、机夹一焊接式和可转位式三种(见图6-4)。
面铣刀主要以端齿为主加工各种平面,主偏角为90度的面铣刀还能用时加工出与平面垂直的直角面,但这个面的高度受到刀片长度的限制。
面铣刀齿数对铣削生产率和加工质量有直接影响,齿数越多,同时工作齿数也多,生产率高。
铣削过程平稳,加工质量好。
可转拉面铣刀的齿数根据直径不同可分为粗齿,细齿,密齿三种(参见下表)。
粗齿铣刀主要用于粗加工;细齿铣刀用于平稳条件下的铣削加工;密齿铣刀的每齿进给量较小,主要用于薄壁铸铁件加工。
(2)立铣刀立铣刀是数控铣床上用得最多的一种刀具,主要有高速钢立铣刀和硬质合金立铣刀两种类型,其结构如图6-5所示。
立铣刀的圆柱表面和端面上都有切削刃,它们可同时进行切削,也可单独进行切削,主要用于加工凸轮、台阶面、凹槽和箱口面。
为了能加工较深的沟槽,并保证有足够的备磨量,立铣刀的轴向长度一般较长。
为了改善切屑卷曲情况,增大容屑空间,防止切屑堵塞,刀齿数比较少,容屑槽圆弧半径则较大。
一般粗齿立铣刀具数Z=3~4,细齿立铣刀齿数Z=5~8,套式结构Z=10~20。
容屑槽圆弧半径r=2-5cm。
直径较小的立铣刀,一般制成带柄形式。
(3)模具铣刀模具铣刀由立铣刀发展而成,可分为圆锥形立铣刀、圆柱形球头立铣刀和圆锥形球头立铣刀三种,其柄部有直柄、削平型直柄和莫氏锥柄。
(4)键槽铣刀键槽铣刀有两个刀齿,圆柱面和端面都有切削刃,端面刃延至中心,可以短距离的轴向进给,既像立铣刀,又类似钻头。
加工时先轴向进给达到槽深,然后沿键槽方向铣出键槽全长,如图所示:按国家标准规定,直柄键槽铣刀直径d=2~22mm,锥柄键槽铣刀直径d=14~50mm。
键槽铣刀直径偏差有e8t和d8两种。
(5)鼓形铣刀如图所示是一种典型的鼓形铣刀,它的切削刃分布在半径为R的圆弧上,端面无切削刃。
加工时控制刀具上下位置,相应改变刀刃的切削部位,可以在工件上切出从负到正的不同斜角。
R越小,鼓形铣刀所能加工的斜角围越广,但所获得的表面质量也越差。
这种刀具的缺点是刃磨困难,切削条件差,而且不适于加工有底的轮廓表面。
(6)成形铣刀图6-10是常见的几种成形铣刀,一般都是为特定的工件结构或加工容专门设计制造的,如角度面、凹槽、特形孔或特形台等。
除了上述几种典型的铣刀类型外,数控铣刀的结构还在不断发展和更新中,例如图6-11所示铣刀(俗称牛鼻铣刀)的刚度、刀具而用度和切削性能都较好。
铣刀的选择(1)铣刀类型的选择铣刀类型应与工件表面形状与尺寸相适应,加工较大的平面应选择面铣刀;加工凹槽、较小的台阶面及平面轮廓应选择立铣刀;加工空间曲面、模具型腔或凸模成形表面等多选用模具铣刀;加工封闭的键槽选择键槽铣刀;加工变斜角零件的变斜角面应选用鼓形铣刀;加工各种直的或圆弧的凹槽、斜角面、特殊孔等应选用成形铣刀。
(2)铣刀参数的选择1.面铣刀主要参数的选择标准可转位面铣刀直径为16~630mm。
铣刀的直径应根据铣削宽度、深度选择,一般铣前深度、宽度越大、越深,铣刀直径也应越大。
精铣时,铣刀直径要大些,尽量包容工件整个加工面宽度,以提高加工精度和生产效率,并减小相邻两次进给之间的接刀痕。
铣刀齿数应根据工件材料和加工要求选择,一般铣削塑性材料或粗加工时,选用粗齿铣刀;铣削脆性材料或半精加工、精加工时,选用中、细齿铣刀。
面铣刀几何角度的标注见图。
前角的选择原则与车刀基本相同,只是由于铣削时有冲击,故前角数值一般比车刀略小,尤其是硬质合金面铣刀,前角数值一般减小得更多些。
铣削强度和硬度都高的材料时可选用负前角。
前角的数值主要根据工件材料和刀具材料来选择。
铣刀的磨损主要发生在后刀面上,因此适当加大后角可减少铣刀磨损。
常取a=50~120,工件材料较软时取大值,工件材料硬取小值,细齿铣刀取大值。
铣削时冲击力大,为了保护刀尖,硬质合金面铣刀的刃倾角常取λS= -50~ -150。
只有在铣削低强度材料时,取λS= 50。
主偏角κγ在450~900围选取,铣削铸铁常用450,铣削一般钢材常用750,铣削带凸肩的平面或薄壁零件时要用900。
2.立铣刀主要参数的选择立铣刀主切削刃的前角在法剖面测量,后角在端剖面测量,前、后角的标注如图(6-5b)所示。
前、后角都为正值,根据工件材料和铣刀直径选取,其具体数值可分别参考表6.3和表6.4。
立铣刀的有关尺寸参数如图6.13所示,推荐按下述经验数据选取。
●刀具半径R小于零件轮廓面的最小曲率半径Rmin,一般取R=(0.8~0.9)Rmin.●零件的加工高度H小于等于1/4~1/6 R,以保证刀具有足够的刚度。
●对不通孔(深槽),选取1=H+(5~10)mm(1为刀具切削部分长度,H为零件高度)。
●加工外型及通槽时,选择1=H+r+(5~10)mm(r为端刃圆角半径)。
●加工助时,刀具直径为D=(5~10)b(b为肋的厚)。
●粗加工轮廓面时,立铣刀最大直径D可按下式计算(见图6-14)。
式中:D 轮廓的最小凹圆角半径;δ圆角邻边夹角等分线上的精加工余量;δ1 精加工余量;φ圆角两邻边的最小夹角。
切削用量的选择切削用量的基本选择原则,在保证加工质量和刀具耐用度的前提下,使生产率达到最大,从而获得最大的切削效益。
切削用量的确定顺序,粗加工时,先选取尽可能大的背吃刀量或侧吃刀量,其次选定尽可能大的进给速度,最后根据刀具耐用度确定最佳切削速度。
精加工时,先根据粗加工后的余量确定背吃刀量,其次根据零件表面粗糙度要求,选取较小的进给速度,最后在保证刀具而用度的前提下尽可能选取大的切削速度。
背吃刀量(端铣)或侧吃刀量(圆周铣)如图所示,背吃刀量ap为平行于铣刀轴线测量的切削层尺寸。
端铣时,ap为切削层深度;而圆周铣削时,ap为被加工表面的宽度。
侧吃刀量ap为垂直于铣刀轴线测量的切削层尺寸。
端铣时,ap为被加固工表面宽度;圆周铣削时,ap为切削层深度。
背吃刀量或侧吃刀量的选取主要由加工余量的多少和对表面质量的要求决定。
当侧吃刀量ac小于d/2(d为铣刀直径)时,取ap-(1/3~1/2)d当侧吃刀量d/2小于等于d时,取ap=(1/4~1/3)d;当侧吃刀量ac=d(即满刀切削)时,取ap-(1/5~1/4)d。
当机床的刚性较好,且刀具的直径较大时,ap可取得更大。
粗加工的铣削宽度一般取0.6~0.8倍刀具的直径,精加工的铣削宽度由精加工余量确定。
进给速度进给速度vf是单位时间工件与铣刀沿进给方向的相对位移。
对铣削一般采用每齿进给量fz表示。
每齿进给量fz的选取主要取决于工件材料和刀具材料的力学性能、工件表面粗糙度值等因素。
工件材料的强度、硬度较高,fz越小;反之则取大值。
刀具材料的硬度越高,fz可取大值;反之则fz越小,硬质合金铣刀的每齿进给量一般高于同结构高速钢铣刀的每齿进给量。
工件表面粗糙度值要求越小,fz就应越小。
工件刚性差或刀具强底低时,应取小值。
每齿进给量的确定可参考下表选取。
进给速度vf与铣刀每齿进给量fz、铣刀齿数Z及主轴转速n(r/min)的关系为:fv=f.z(min/ r)或vf=n.f.z(mm/min)切削速度铣削的切削速度计算公式为:由上式可知铣削的切削速度与刀具耐用度T,每齿进给量fz,背吃刀量ap,侧吃力量ac以及铣刀齿数Z成反比,而与铣刀直径成正比。
此外,铣削的切削速度也可参考下表选取。
主轴转速n(r/min)与铣削速度vc(m/min)及铣刀直径d(mm)的关系为:零件图的工艺性分析(1)数控铣削加工容的选择(2)零件结构工艺性分析●零件图样尺寸的正确标注●保证获得要求的加工精度●尽量统一零件轮廓圆弧的有关尺寸●保证基准统一原则●分析零件的变形情况(3)零件毛坯的工艺性分析●毛坯应有充分,稳定的加工余量●分析毛坯的装夹适应性●分析毛坯的余量大小及均匀性装夹方案的确定(1)定位基准的选择选择定位基准时,应注意减少装夹次数,尽量做到在一次安装中能把零件上所有要加工的表面都加工出来。