惯性导航系统
惯性导航系统
![惯性导航系统](https://img.taocdn.com/s3/m/0e93c4df6f1aff00bed51e80.png)
目录1.惯性导航系统的概念 (2)2.惯导系统的发展历史及发展趋势 (3)惯性导航系统的发展 (3)我国的惯性导航系统 (5)捷联惯导系统现状及发展趋势 (6)3.惯性导航系统的组成 (10)4、惯性导航系统的工作原理 (14)5、惯性导航系统的功能 (18)6、惯性导航系统的服务模式与应用模式 (20)7、惯性导航系统当前的应用情况 (21)8、惯性导航系统的特点 (23)系统的主要优点 (23)系统的主要缺点 (24)9、惯性导航系统给我们的启示 (24)惯性导航系统一、惯性导航系统的概念什么是惯性导航或惯性制导呢?惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。
在给定的运动初始条件(初始地理坐标和初始速度)下,利用惯性敏感元件测量飞机相对惯性空间的线运动和角运动参数,用计算机推算出飞机的速度、位置和姿态等参数,从而引导飞机航行。
推算的方法是在运载体上安装加速度计,经过计算(一次积分和二次积分),从而求得运动轨道(载体的运动速度和距离),进而进行导航。
在运载体上安装加速度计,用它来敏感、测量运载体运动的加速度,经过计算(一次积分和二次积分),从而求得运动轨道(运载体运动的速度和距离),并且产生对运载体运动所需要的控制信号,控制运载体按要求弹道运动,称为惯性制导。
这就是说,惯性制导是对运载体进行测量和控制,使其沿预定的轨道运动。
作为一种自主式的导航方法,惯性导航是完全依靠载体上的设备自主地确定出载体的航向、位置、姿态、和速度等导航参数。
并不需要外界任何的光、电、磁参数。
因此,惯性导航系统具有隐蔽性好、全天候工作能力等独特优点。
对飞行器、舰船和地面移动载体(特别是用于军事目的)等尤为重要。
所以在近三十年来,在航空、航天、航海、交通和大地测量中惯性导航系统都得到了广泛的应用。
近今年来由于捷联技术在惯导系统中的应用为惯导系统在民用领域中的应用和发展开辟了更广阔的前景。
《惯性导航系统快速传递对准技术》记录
![《惯性导航系统快速传递对准技术》记录](https://img.taocdn.com/s3/m/b31add4411a6f524ccbff121dd36a32d7275c71c.png)
《惯性导航系统快速传递对准技术》阅读笔记1. 惯性导航系统快速传递对准技术概述惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪、加速度计和磁力计等传感器实时测量物体的角速度、加速度和磁场等信息,从而计算出物体的位置、速度和姿态等参数的导航系统。
在军事、航空、海洋、航天等领域,惯导系统具有重要的应用价值。
由于大气层扰动、地球自转引起的误差等因素,惯导系统在实际应用中可能会出现较大的误差。
为了提高惯导系统的精度和稳定性,快速传递对准技术应运而生。
快速传递对准技术是指通过一种特殊的方法,使惯导系统中的参考站与待测站之间的相对位置发生变化,从而实现对惯导系统参数的修正。
这种方法具有操作简便、效率高、精度高等优点,可以有效地减小惯导系统误差,提高导航精度。
快速传递对准技术已经广泛应用于各类惯导系统,如地面空中水下空间惯导系统等。
1.1 研究背景与意义随着科技的飞速发展,惯性导航系统(INS)在各种领域的应用越来越广泛,如航空航天、自动驾驶汽车、机器人等。
惯性导航系统的主要功能是通过陀螺仪和加速度计等惯性测量器件来测量和计算物体在空间中的位置和运动状态。
由于惯性导航系统的自主性较强,且会受到各种环境因素如温度、振动等的影响,使得其初始对准时间较长,精度受到一定程度的影响。
如何提高惯性导航系统的快速传递对准技术,缩短对准时间,提高对准精度,成为了当前研究的热点问题。
快速传递对准技术的提高对于提高惯性导航系统的性能具有重要意义。
它可以有效地缩短系统的初始对准时间,提高系统的快速反应能力。
这对于一些需要快速响应的应用场景,如军事机动、灾难救援等,具有重要的实用价值。
快速传递对准技术可以提高系统的定位精度和导航精度,这对于提高导航系统的可靠性和稳定性至关重要。
随着科技的发展,惯性导航系统正朝着更高精度、更高集成度的方向发展。
研究和发展快速传递对准技术,对于推动惯性导航系统的技术进步和产业升级具有深远的意义。
《惯性导航系统》课件
![《惯性导航系统》课件](https://img.taocdn.com/s3/m/1aea425b6fdb6f1aff00bed5b9f3f90f77c64d70.png)
软件温度补偿
通过算法对温度变化引起的误差进 行估计和补偿,提高导航精度。
混合温度补偿
结合硬件和软件温度补偿的优势, 进一步提高导航精度。
05
惯性导航系统发展现状与 趋势
国内外研究现状
国内研究现状
国内在惯性导航系统领域的研究起步较晚,但近年来发展迅速,取得了一系列重要成果。国内的研究 主要集中在技术研发、系统集成和实际应用等方面,涉及的领域包括航空、航天、航海、机器人等。
陀螺仪的精度和稳定性对惯性导航系 统的性能有着至关重要的影响。
它通过高速旋转的陀螺仪能够感知方 向的变化,并将这些变化转化为电信 号,以供其他组件使用。
不同类型的陀螺仪(如机械陀螺仪、 光纤陀螺仪、激光陀螺仪等)具有不 同的特点和应用场景。
加速度计
01
加速度计用于测量物体在惯性参 考系下的加速度。
动态调整初始对准过程中的参数。
动态误差与扰动误差
要点一
动态误差与扰动误差
在动态环境下,惯性导航系统会受到各种扰动因素的影响 ,如车辆颠簸、气流扰动等。这些扰动因素会导致系统输 出数据出现偏差,从而影响导航精度。为了减小这些误差 ,可以采用多种技术手段,如滤波算法、卡尔曼滤波等。
要点二
卡尔曼滤波
卡尔曼滤波是一种基于状态方程和观测方程的递归滤波算 法,可以对系统状态进行最优估计。通过将卡尔曼滤波算 法应用于惯性导航系统中,可以有效减小由于动态环境和 扰动因素引起的误差。此外,还可以采用其他先进的滤波 算法,如扩展卡尔曼滤波、粒子滤波等,根据实际情况选 择最适合的算法来减小动态误差与扰动误差。
案例分析:无人机导航系统
案例背景介绍
介绍无人机导航系统的应用场景和需求,阐述其重要性和挑战。
惯性导航系统如何借助物理原理找到正确的方向
![惯性导航系统如何借助物理原理找到正确的方向](https://img.taocdn.com/s3/m/58b18b16657d27284b73f242336c1eb91a37332a.png)
惯性导航系统如何借助物理原理找到正确的方向惯性导航系统是一种利用物理原理来确定正确方向的导航系统。
它主要依靠惯性传感器来测量导航系统的加速度和角速度,从而实现航向、位置和速度的准确计算。
本文将介绍惯性导航系统的原理以及它是如何借助物理原理找到正确的方向的。
一、惯性导航系统的工作原理惯性导航系统是基于牛顿第一定律的惯性原理工作的。
牛顿第一定律也被称为惯性定律,它表明物体在不受力的作用下将保持静止或匀速直线运动。
惯性导航系统利用这一原理,通过测量导航系统的加速度和角速度来计算位置和速度。
惯性导航系统主要包括三个核心组件:加速度计、陀螺仪和计算单元。
加速度计用于测量系统的加速度,陀螺仪用于测量系统的角速度,而计算单元则用于处理传感器的输出并计算位置和速度。
加速度计通过测量系统的加速度来确定系统的运动状态。
它基于牛顿第二定律,利用加速度与力的关系进行测量。
加速度计可以感知系统的线性加速度,并将测量结果传递给计算单元进行处理。
陀螺仪则通过测量系统的角速度来确定系统的旋转状况。
它基于角动量守恒定律,利用角速度与力矩的关系进行测量。
陀螺仪可以感知系统的角速度,并将测量结果传递给计算单元进行处理。
计算单元是惯性导航系统的核心部分,它接收加速度计和陀螺仪的输出,并进行复杂的计算以确定位置和速度。
计算单元会根据测量到的加速度和角速度对系统的运动状态进行积分处理,从而得到位置和速度的准确数值。
二、物理原理在惯性导航系统中的应用物理原理在惯性导航系统中扮演了重要的角色。
首先,惯性导航系统利用牛顿第一定律和角动量守恒定律来解决航向、位置和速度的计算问题。
这些定律是基于数学和物理原理的深度研究得出的,确保了导航系统的准确性和可靠性。
其次,惯性导航系统依赖惯性传感器来感知系统的加速度和角速度。
加速度计和陀螺仪作为惯性传感器,利用物理原理测量加速度和角速度的变化。
它们通过多个微小的物理过程,如斥力、角动量和振动等,来转化为可供系统理解和计算的电信号。
惯导实习报告
![惯导实习报告](https://img.taocdn.com/s3/m/37a61c9f8ad63186bceb19e8b8f67c1cfad6eeec.png)
一、前言惯性导航系统(Inertial Navigation System,简称INS)是一种基于物体自身运动状态进行导航定位的系统。
在军事、民用等领域具有广泛的应用。
为了深入了解惯导系统的原理和应用,我们于近期进行了惯导实习。
以下是对本次实习的总结和报告。
二、实习目的1. 了解惯性导航系统的基本原理和组成;2. 掌握惯导系统的安装、调试和操作方法;3. 通过实际操作,提高动手能力和解决实际问题的能力;4. 为今后从事相关领域的工作奠定基础。
三、实习内容1. 惯性导航系统原理(1)惯性导航系统概述惯性导航系统是利用物体惯性原理进行导航定位的一种系统。
它通过测量物体运动过程中的加速度、速度和位置等参数,实时计算出物体的运动轨迹和位置。
(2)惯性导航系统组成惯性导航系统主要由惯性测量单元(IMU)、数据处理单元和显示单元组成。
2. 惯导系统安装与调试(1)安装将惯导系统按照说明书要求安装到试验平台上,确保安装牢固。
(2)调试连接电源和通信线,启动系统,进行自检。
检查各部件工作状态,确保系统正常运行。
3. 惯导系统操作(1)启动系统按下启动按钮,系统开始工作。
(2)输入初始数据输入起始位置、速度和航向等初始数据。
(3)实时监测观察系统实时显示的加速度、速度和位置等信息,分析系统工作状态。
(4)数据记录记录实验过程中各参数的变化情况,为后续分析提供依据。
四、实习总结1. 通过本次实习,我们掌握了惯性导航系统的基本原理和组成,了解了惯导系统的安装、调试和操作方法。
2. 在实际操作过程中,我们遇到了一些问题,如系统不稳定、数据误差等。
通过查阅资料和请教指导老师,我们找到了解决问题的方法,提高了自己的动手能力和解决问题的能力。
3. 本次实习使我们认识到,惯性导航系统在实际应用中具有重要意义,为今后从事相关领域的工作打下了基础。
五、心得体会1. 实习过程中,我们充分认识到理论知识与实际操作相结合的重要性。
只有将所学知识运用到实际工作中,才能更好地提高自己的能力。
惯性导航系统如何在没有GPS的情况下定位
![惯性导航系统如何在没有GPS的情况下定位](https://img.taocdn.com/s3/m/4266da25fe00bed5b9f3f90f76c66137ee064fad.png)
惯性导航系统如何在没有GPS的情况下定位惯性导航系统是一种利用陀螺仪和加速度计等惯性测量单元(IMU)进行导航定位的技术。
与依赖卫星的全球定位系统(GPS)不同,惯性导航系统独立于外部信号源,可以在没有GPS信号的情况下实现定位和导航。
本文将介绍惯性导航系统在GPS不可用情况下的定位原理和应用。
一、惯性导航系统概述惯性导航系统是一种利用物体运动中的惯性原理进行导航的系统。
通常由陀螺仪和加速度计等组件构成,通过测量物体的角速度和加速度,结合初始状态的参考值,计算出物体在空间中的位置、速度和方向等导航参数。
二、惯性导航系统定位原理惯性导航系统的定位原理基于物体运动的惯性特性。
当物体运动时,陀螺仪可以测量物体的角速度,而加速度计可以测量物体的加速度。
结合初始状态的参考值,可以通过积分计算出物体相对于初始位置的运动轨迹。
同时,在运动过程中,通过不断更新采集到的角速度和加速度数据,可以对位置、速度和方向等导航参数进行连续修正。
三、惯性导航系统误差问题惯性导航系统在实际使用中存在一定的误差问题。
主要包括陀螺仪的漂移误差和加速度计的积分漂移误差。
陀螺仪的漂移误差会导致角速度的测量值逐渐偏离真实值,从而影响导航结果的准确性。
加速度计的积分漂移误差会导致位置误差的不断累积。
为了解决这些误差问题,惯性导航系统通常需要与其他导航系统(如GPS)进行组合使用,通过传感器融合技术进行自校准和误差补偿。
四、惯性导航系统应用领域惯性导航系统在很多领域都有广泛的应用,特别是在没有GPS信号或者GPS信号不稳定的环境下。
下面列举几个应用领域:1. 航空航天:惯性导航系统被广泛应用于飞机、导弹、卫星等空中航行器中,能够为飞行器提供准确的导航和姿态信息。
2. 海洋航行:惯性导航系统可以在船只、船舰等航行载体中使用,提供准确的航迹跟踪和位置定位。
3. 无人驾驶车辆:惯性导航系统在无人驾驶领域具有重要作用,可以为无人驾驶车辆提供精确的位置和姿态信息,实现自主导航和控制。
惯性导航系统
![惯性导航系统](https://img.taocdn.com/s3/m/ccb9ff81fc0a79563c1ec5da50e2524de518d0e5.png)
惯性导航系统导航系统在现代社会中扮演着至关重要的角色,无论是在陆地、海上还是空中,人们都依赖于导航系统来确定位置、规划航线和安全导航。
而在导航系统中,惯性导航系统被广泛运用,它以其独特的技术和功能在各个领域中发挥重要作用。
一、惯性导航系统的基本原理惯性导航系统是一种不依赖于外部参考的导航系统,它依靠惯性传感器实现位置和速度的确定。
惯性导航系统由三个基本部分组成:陀螺仪和加速度计以及计算单元。
陀螺仪用于测量角速度,而加速度计用于测量线加速度。
通过对这些测量数据进行积分和计算,惯性导航系统能够提供准确的位置、速度和航向信息。
二、惯性导航系统的优势相比于其他导航系统,惯性导航系统具有许多独特的优势。
首先,惯性导航系统没有对外部环境的依赖,可以在任何环境和天气条件下工作。
这使得它在航空、航海和军事领域中得到广泛应用,尤其是在恶劣的气候和极地环境下。
其次,惯性导航系统具有高精度和快速响应的特点,能够提供准确的位置和速度信息,对导航的实时性要求高的场景非常有优势。
此外,惯性导航系统体积小、质量轻,对设备和空间要求相对较低,便于安装和集成。
三、惯性导航系统的应用领域惯性导航系统在航空、航海和军事领域中得到广泛应用。
在航空领域,飞机上配备了惯性导航系统可以实时获取飞机的位置、速度和姿态信息,为飞行员提供准确的导航指引。
航海领域中,惯性导航系统可以帮助船舶确定位置和航向,提供给船员准确的航行信息。
而在军事领域中,惯性导航系统则被用于导弹、导航、战斗机和潜艇等武器装备中,帮助军事行动实现精确和长程的导航目标。
四、惯性导航系统的未来发展随着科技的不断进步,惯性导航系统也在不断演进和改进。
传统的惯性导航系统依靠陀螺仪和加速度计进行姿态测量,虽然具有高精度和可靠性,但体积较大、制造和维护成本较高。
近年来,光纤陀螺仪和微机电系统(MEMS)等新技术的应用,使得惯性导航系统体积更小、成本更低,且具备相当的准确度。
此外,惯性导航系统与全球定位系统(GPS)等导航系统的融合也越来越广泛,通过多传感器的数据融合,提高导航系统的可用性和鲁棒性。
惯性导航系统概论惯性导航
![惯性导航系统概论惯性导航](https://img.taocdn.com/s3/m/9c6d33251fd9ad51f01dc281e53a580216fc50cf.png)
惯性导航系统概论惯性导航惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪和加速度计等惯性传感器,通过测量物体的加速度和角速度来推导出物体的位置、方向和速度的导航系统。
与传统的基于外部引导信号的导航系统相比,惯性导航具有独立、快速响应和高精度等优点,因此在航空航天、船舶、火箭、导弹等领域得到广泛应用。
传感器部分是惯性导航系统的输入部分,主要由陀螺仪和加速度计两种惯性传感器组成。
陀螺仪用于测量物体的角速度,加速度计用于测量物体的线加速度。
陀螺仪通常有旋转式陀螺仪和光纤陀螺仪两种类型,光纤陀螺仪具有高精度和长寿命等优点。
加速度计常用的有压电式加速度计和微机械加速度计等。
计算部分是惯性导航系统的核心部分,主要包括运动方程、数值积分和误差补偿三个模块。
在运动方程模块中,根据牛顿第二定律和角动量守恒定律,建立物体的运动方程。
在数值积分模块中,对加速度和角速度数据进行积分,得到物体的速度和位移。
在误差补偿模块中,对传感器测量误差进行补偿,提高导航系统的精度和稳定性。
惯性导航系统的工作过程可以简单描述为:系统首先将初始位置和方向输入,并根据运动方程和数值积分推导出物体的速度和位移。
然后,系统利用传感器测量物体的加速度和角速度,并进行误差补偿,对上一时刻的位置和方向进行更新。
通过不断重复上述步骤,惯性导航系统能够实时更新物体的位置、方向和速度信息。
惯性导航系统具有许多优点。
首先,惯性导航系统不依赖于外部引导信号,具有独立工作的能力,能够在无GPS信号或其他导航信号的情况下进行导航定位。
其次,惯性导航系统响应速度快,能够实时更新导航信息,适用于需要高频率更新的应用场景。
此外,惯性导航系统具有高精度的特点,可以满足精密导航的需求。
然而,惯性导航系统也存在一些问题。
由于传感器测量误差的存在,惯性导航系统会产生导航漂移问题,即导航误差会随着时间的推移不断累计。
为了解决导航漂移问题,可以采用多传感器融合技术,将惯性导航系统与其他导航系统(如GPS)相结合,提高导航精度和可靠性。
惯性导航系统技术的研究与发展
![惯性导航系统技术的研究与发展](https://img.taocdn.com/s3/m/1fe3403b26284b73f242336c1eb91a37f0113241.png)
惯性导航系统技术的研究与发展惯性导航系统(Inertial Navigation System, INS)是一种利用惯性导航传感器测量和集成飞行器运动信息的导航技术。
它以惯性测量单元(Inertial Measurement Unit, IMU)为核心,通过测量加速度和角速度等物理量,计算出飞行器的位置、速度和姿态等导航参数。
惯性导航系统技术的研究与发展具有重要意义,不仅可以应用于航空航天领域,还可以拓展到其他领域,例如汽车、船舶等。
惯性导航系统技术的研究与发展主要包括三个方面:传感器技术、运动解算算法和误差补偿方法。
首先,传感器技术是惯性导航系统的基础。
目前常用的惯性导航传感器包括陀螺仪和加速度计。
陀螺仪用于测量飞行器的角速度,而加速度计则用来测量飞行器的加速度。
传感器的性能对系统导航精度和可靠性具有重要影响。
因此,研究人员致力于开发高精度、低成本、小尺寸的惯性导航传感器。
传感器技术的创新可以提供更准确的输入数据,从而提高惯性导航系统的性能。
其次,运动解算算法是惯性导航系统的核心。
传感器测量得到的加速度和角速度需要通过运动解算算法计算出飞行器的姿态、速度和位置等导航信息。
常用的运动解算算法包括卡尔曼滤波器、扩展卡尔曼滤波器等。
这些算法基于动力学模型和测量方程,结合先验信息和测量数据,通过迭代计算得到最优的导航解算结果。
研究人员对于运动解算算法进行改进和优化,旨在提高系统的导航精度和鲁棒性。
最后,误差补偿方法是惯性导航系统中不可或缺的一环。
由于传感器本身存在误差和漂移,以及环境条件的变化,惯性导航系统的导航参数会随着时间累积误差而发生偏移。
为了解决这个问题,研究人员提出了各种误差补偿方法。
常见的方法包括零偏校准、温漂补偿、初始对准等。
这些方法能够减小传感器误差对系统导航性能的影响,延长系统的导航有效性。
总的来说,惯性导航系统技术的研究与发展对于提高导航精度、降低成本、提升可靠性具有重要意义。
随着人们对于导航需求的不断提高和技术的不断进步,惯性导航系统将会得到更广泛的应用。
《2024年捷联惯性导航系统关键技术研究》范文
![《2024年捷联惯性导航系统关键技术研究》范文](https://img.taocdn.com/s3/m/7df1325817fc700abb68a98271fe910ef02dae77.png)
《捷联惯性导航系统关键技术研究》篇一一、引言捷联惯性导航系统(SINS)是一种利用惯性测量单元(IMU)来获取和解析导航信息的先进技术。
它以其高精度、高动态性以及全自主工作的特性,在航空、航天、航海、车辆导航等领域中发挥着重要的作用。
本文将深入探讨捷联惯性导航系统的关键技术研究,从系统组成、工作原理、技术难点到解决方案等方面进行详细阐述。
二、系统组成与工作原理捷联惯性导航系统主要由惯性测量单元(IMU)、导航计算机、算法处理软件等部分组成。
其中,IMU是系统的核心,它包括加速度计和陀螺仪,用于实时测量载体在三维空间中的运动状态。
导航计算机则负责采集IMU的数据,通过算法处理软件进行数据解析和处理,最终输出导航信息。
捷联惯性导航系统的工作原理主要依赖于牛顿第二定律和角动量守恒定律。
通过测量载体的加速度和角速度,系统可以推算出载体的运动轨迹和姿态信息,从而实现导航定位。
三、关键技术研究1. 高精度IMU技术研究IMU的精度直接影响到整个系统的导航精度,因此提高IMU 的精度是捷联惯性导航系统的关键技术之一。
当前,研究者们正在通过优化加速度计和陀螺仪的设计和制造工艺,提高其测量精度和稳定性。
此外,采用先进的滤波算法和校准技术,也可以有效提高IMU的精度。
2. 算法优化技术研究算法是捷联惯性导航系统的核心,其优化程度直接影响到系统的性能。
目前,研究者们正在致力于开发更加高效的算法,以实现更快的数据处理速度和更高的导航精度。
同时,针对不同应用场景,如高动态、强干扰等环境,研究者们也在进行相应的算法优化工作。
3. 系统误差校正技术研究由于惯性器件的误差积累和环境干扰等因素的影响,捷联惯性导航系统在长时间工作时会产生较大的误差。
因此,系统误差校正是捷联惯性导航系统的另一个关键技术。
研究者们正在通过建立更加精确的误差模型,采用先进的校正算法和技术手段,对系统误差进行实时校正,以保证系统的导航精度和稳定性。
四、结论捷联惯性导航系统是一种重要的导航技术,具有广泛的应用前景。
惯性导航系统的原理
![惯性导航系统的原理](https://img.taocdn.com/s3/m/d2088ec2b8d528ea81c758f5f61fb7360b4c2bd8.png)
惯性导航系统的原理在现代科技高速发展的时代,惯性导航系统成为了航空、航海、航天等领域中不可缺少的一项技术。
那么,惯性导航系统的原理是什么呢?惯性导航系统是一种基于物体惯性原理的导航技术,通过测量物体的加速度和角速度来确定物体的运动状态和位置。
它不依赖于外部信号,可以在任何没有地面设备或卫星信号的环境中精确导航。
首先,让我们了解惯性导航系统的组成部分。
主要包括加速度计和陀螺仪这两个关键单元。
加速度计用于测量物体的加速度,而陀螺仪则用于测量物体的旋转角速度。
通过这两个单元的协同工作,惯性导航系统可以准确地追踪物体的位置和方向。
加速度计的原理是基于牛顿第二定律。
它利用材料的物理性质,比如压电效应或者测量力的变化来测量物体的加速度。
当物体加速或减速时,加速度计会感应到惯性力的产生,从而测量物体的加速度。
通过积分加速度计的输出,可以得到物体的速度和位移。
陀螺仪则是利用陀螺效应来实现的。
陀螺仪中的陀螺轮保持旋转状态,当物体发生旋转时,陀螺轮会产生一个力矩,与物体的旋转角速度成正比。
通过测量这个力矩,陀螺仪可以确定物体的旋转角速度。
虽然加速度计和陀螺仪可以分别测量物体的加速度和角速度,但是它们都存在一定的误差。
这些误差可以通过复杂的算法和信号处理进行校正和补偿。
常见的校正方法包括零偏补偿、比例补偿、温度补偿等。
通过这些校正方法,可以提高惯性导航系统的精度和可靠性。
惯性导航系统的工作原理可以简单概括为输入、输出和反馈的过程。
输入是物体的加速度和角速度信息,输出是物体的位置和方向信息,反馈则是通过校正和补偿算法实现的。
整个过程实现了对物体运动状态的连续监测和追踪。
然而,惯性导航系统也存在一些局限性。
由于误差累积的问题,惯性导航系统的精度会随时间逐渐降低。
因此,在长时间导航任务中,通常需要与其他导航系统(如GPS)进行组合使用,以提高整体精度和可信度。
总的来说,惯性导航系统是一项基于物体惯性原理的导航技术。
通过测量物体的加速度和角速度信息,惯性导航系统可以准确地追踪物体的位置和方向,不受外部信号的影响。
惯性导航系统讲解
![惯性导航系统讲解](https://img.taocdn.com/s3/m/8cb2d5120912a21615792907.png)
ALIGN FAULT
ON DC
DC FAIL
ALIGN FAULT
ON DC
DC FAIL
4. 惯导的基本原理
(一) 平台工作原理
陀螺稳定平台是利用 陀螺的稳定性和进动 性直接或间接地使某 一物体对地球或惯性 空间保持给定位置或 按照给定规律改变起 始位置的一种陀螺装 置
图10.4 由三自由度陀螺组成的三轴稳定平台
检查飞行中的航线数据
单独提供姿态基准信号
6.
惯导系统的精度及特点
惯导系统精度:漂移误差0.001度/秒 惯导系统特点: (1)自主式导航系统,全球、全天候导航 (2)系统校准后短时定位精度高 (3)体积小,精度高,操作简便,可与航道HSI,FDS 交连直观显示飞机位置和飞行姿态。
返回
返回
§2 惯性导航系统操作程序
飞行前
VOR/DME 有精确坐标的位置点(NDB台、机场上空、显著地标等)
航站区域飞行:截获ILS前,可根据选定的电台提供非
精密导航操作。
惯导的其他功能
顺逆风显示 平行航线飞行 距离现在航迹400nm的范围内,利用惯性导航系 统可以执行平行偏离原航线飞行。使用自动驾驶 仪时,飞机自动转向偏离航线的平行航迹上。
惯性导航系统的自校准 引入现在飞机位置(经纬度),对飞机进行校准 要求:校准过程中不能开车,移动。校准完成后不能断开 惯性导航系统电源。 引进航路导航计划(9个航路点) 依次引进航路点的经纬度坐标,人工编排飞行计划。 人工输入VOR/TAC台站的数据(9个) 经纬度坐标 频率 标高 磁差 检查航线数据 为防止编排的航线计划出错,可以使用遥控功能检查航线 距离、待飞时间和航线角
惯性导航系统
![惯性导航系统](https://img.taocdn.com/s3/m/d88593afbe1e650e53ea9972.png)
惯性导航系统一、惯性导航系统(Inertial Navigation System,INS)1、基本观点惯性导航系统( INS)是一种不依靠于外面信息、也不向外面辐射能量的自主式导航系统。
其工作环境不单包含空中、地面,还能够在水下。
惯性导航系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固态惯性仪表等多种方式。
陀螺仪由传统的绕线陀螺发展到静电陀螺、激光陀螺、光纤陀螺、微机械陀螺等。
激光陀螺丈量动向范围宽,线性度好,性能稳固,拥有优秀的温度稳固性和重复性,在高精度的应用领域中向来占有着主导地点。
因为科技进步,成本较低的光纤陀螺( FOG)和微机械陀螺( MEMS)精度愈来愈高,是将来陀螺技术发展的方向。
我国的惯导技术最近几年来已经获得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺四轴平台系统已接踵应用于长征系列运载火箭。
其余各种小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及般配 GPS修正的惯导装置等也已经大批应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。
如漂移率0.01 ° - 0.02 °/h 的新式激光陀螺捷联系统在新式战机上试飞,漂移率0.05 °/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各种导弹制导武器上的应用,都极大的改良了我军装备的性能。
惯性导航系统有以下主要长处:( 1)因为它是不依靠于任何外面信息,也不向外面辐射能量的自主式系统,故隐蔽性好,也不受外界电磁扰乱的影响;( 2)可全天流全世界、全时间地工作于空中、地球表面以致水下;( 3)能供给地点、速度、航向和姿态角数据,所产生的导航信息连续性好并且噪声低;( 4)数据更新率高、短期精度和稳固性好。
其弊端是:(1)由于导航信息经过积分而产生,定位偏差随时间而增大,长久精度差;(2)每次使用从前需要较长的初始瞄准时间;(3)设施的价钱较昂贵;(4)不可以给出时间信息。
惯性导航系统
![惯性导航系统](https://img.taocdn.com/s3/m/8625fcd176a20029bd642dad.png)
一、惯性导航系统基本工作原理:根据牛顿定律,利用一组加速度计连续地进行测量,而后从中提取运动载体相对某一选定导航坐标系(可以是人工建立的物理平台,也可以使计算机参处的“数学平台”)的加速的信息;通过一次积分运算(载体初始速度已知)使得到载体相对导航坐标系的即时速度信息;在通过一次积分运算(载体初始位置已知)便得到载体相对导航系统的即时位置信息。
二、组成一个典型的惯性导航系统一般有关行测量装置、专用计算机、葱汁显示器等几大部分组成。
三、分类按关行测量装置在载体上的安装方式,可分为平台式惯性导航系统和捷联式惯性导航系统。
1 平台式惯性导航的基本原理平台式惯性导航系统是将关行测量原件安装在惯性平台(物理平台)的台体上。
体积重量达,结构复杂2 捷联式大大降低了系统的体积、重量和合成本,但对计算机的算法误差要求较高,不超过系统误差的百分之五十。
可靠性高,故障率低。
对惯性器件要求高,要求两次装卸的期间内,器件有较高的参数稳定性。
3 组合式其他导航系统与惯性导航系统组成的整个系统提高导航精度和提高可靠性四、加速度计的测试、标定及评价标准1灵敏度、线性度测试1)加速度计重力场静态翻滚试验2)静态漂移测试:加速度计在静态工作期间(在不同时间)输出值的变化。
首先寻找该加速度计的机械零位,然后将其置于机械零位,并测试其输出,从而得到静态漂移曲线,即标定了加速度计的静态稳定性。
3) 温度性能测试零位漂移测试灵敏度漂移测试2阈值测试3分辨率测试4重复性测试加速度计在通电(或不通电)状态下,经过整栋、冲击、热储存、高低温试验及热冲击等各种不同环境条件下的考核。
在每次考核后,在纪念性加速的计重力场四点法测试,每种环境至少重复三次。
5噪声测试五、硅微加速度计的评价标准1)量程加速度计可测量加速的大小的范围,是1g的倍数。
2)零点漂移当没有加速度输入的时候,加速的机的输出,为±1g的倍数。
3)比例因子和比例因子误差每单位输入加速德的变化所导致的输出变化。
mems惯导原理 -回复
![mems惯导原理 -回复](https://img.taocdn.com/s3/m/d6f2b76059fb770bf78a6529647d27284a733751.png)
mems惯导原理-回复【惯导原理】导语:惯性导航系统(Inertial Navigation System,简称INS)是一种基于惯性原理的导航系统,它可以独立于外部参考系进行导航定位,为飞行器、舰艇等提供高精度的导航信息。
本文将详细介绍INS的原理、应用以及未来发展。
一、惯导原理的基础1.1 什么是惯性导航?惯性导航是利用物体在空间中的惯性运动特性来进行定位和导航的方法。
它不依赖于外部参考系,通过测量物体在惯性坐标系中的加速度和角速度等参数,从而实现定位导航。
1.2 惯性导航系统的组成惯性导航系统由加速度计和陀螺仪两种测量元件组成。
加速度计测量物体的加速度,而陀螺仪测量物体的角速度。
二、惯导原理的工作原理2.1 加速度计的工作原理加速度计利用压电效应、气浮测量等原理来感知物体的加速度。
它通过测量加速度产生的惯性力或感知质量的改变,来获得物体在空间中的加速度信息。
2.2 陀螺仪的工作原理陀螺仪利用刚体角动量守恒原理来感知物体的角速度。
它通过测量角速度引起的旋转力矩或感知转动惯量的改变,来获得物体在空间中的角速度信息。
2.3 惯导原理的数据处理惯导系统将加速度计和陀螺仪测量得到的数据经过滤波、积分等处理,得到物体的位姿、速度和加速度等导航参数。
这些参数可以用于推算出物体的位置、方向和速度等导航信息。
三、惯导原理的应用领域3.1 航空航天领域在航空航天领域,惯性导航系统被广泛应用于飞行器的导航定位。
它可以实时提供高精度的姿态、速度和位置参数,为飞行员提供可靠的导航信息,提高飞行器的导航精度和安全性。
3.2 船舶领域在船舶领域,惯导系统可以通过监测和计算船舶的位置、航向和速度等参数,实现自主导航和航迹维持功能。
它不受海洋环境的限制,对海上航行的安全性和效率提升具有重要意义。
3.3 汽车领域在汽车领域,惯导系统可以实时监测和计算车辆的位置、姿态和速度等参数,为自动驾驶、智能交通等技术提供关键信息。
它能够提高驾驶安全性、减少交通事故,并改善交通拥堵问题。
《惯性导航系统》课件
![《惯性导航系统》课件](https://img.taocdn.com/s3/m/6dfa542f59fafab069dc5022aaea998fcd224077.png)
轨道监测。
惯较高的测量精度,适用于精密导航和定位。
可靠性
不受外界环境干扰,适用于复杂环境和恶劣条件。
鲁棒性
不受信号遮挡和干扰,适用于密集城市和山区等特殊环境。
惯性导航系统的发展趋势
1
集成化
将惯性传感器和导航算法集成在一起,提高系统性能。
2
精度提升
《惯性导航系统》PPT课
件
本课件介绍了惯性导航系统的定义、组成和原理,以及在航空、航海、矿业
和地震勘探等领域的应用场景。
什么是惯性导航系统
惯性导航系统是一种利用惯性传感器测量和计算对象运动状态和位置的系统。
惯性导航系统的应用场景
1
航空 ✈️
2
飞机、无人机等飞行器的导航和姿态控
航海 ⛵️
船舶的导航、位置定位和目标跟踪。
引入更精密的传感器技术和导航算法,提高导航精度。
3
多源数据融合
融合其他导航系统数据,提高位置和姿态的准确性。
惯性导航系统的应用前景
航空航天领域
工业制造领域
军事领域
飞行器导航、姿态控制和自主
机器人导航、定位和轨迹规划
武器系统导航、目标跟踪和战
导航技术的重要组成部分。
的关键技术。
场监测的重要手段。
结论
惯性导航系统在现代导航领域具有重要作用,随着技术的不断发展,其应用
前景将更加广泛。
制。
3
矿业 ⛏️
地下矿场的测量和导航。
4
地震勘探
地震仪的定位和震源分析。
惯性导航系统与其他导航系统的比较
GPS
北斗卫星导航系统
轨道测量系统
全球卫星定位系统,依赖卫
中国自主建设的卫星导航系
惯性导航系统
![惯性导航系统](https://img.taocdn.com/s3/m/d1373f1ba216147917112817.png)
惯性导航系统惯性导航系统(INS,以下简称惯导)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。
其工作环境不仅包括空中、地面,还可以在水下。
惯导的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。
惯性导航系统(英语:INS )惯性导航系统是以陀螺和加速度计为敏感器件的导航参数解算系统,该系统根据陀螺的输出建立导航坐标系,根据加速度计输出解算出运载体在导航坐标系中的速度和位置。
惯性导航系统(INS,Inertial Navigation System)也称作惯性参考系统,是一种不依赖于外部信息、也不向外部辐射能量(如无线电导航那样)的自主式导航系统。
其工作环境不仅包括空中、地面,还可以在水下。
惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。
惯性导航系统属于推算导航方式,即从一已知点的位置根据连续测得的运动体航向角和速度推算出其下一点的位置,因而可连续测出运动体的当前位置。
惯性导航系统中的陀螺仪用来形成一个导航坐标系,使加速度计的测量轴稳定在该坐标系中,并给出航向和姿态角;加速度计用来测量运动体的加速度,经过对时间的一次积分得到速度,速度再经过对时间的一次积分即可得到距离。
惯性导航系统有如下优点:1、由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的影响;2、可全天候、全时间地工作于空中、地球表面乃至水下;3、能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且噪声低;4、数据更新率高、短期精度和稳定性好。
其缺点是:1、由于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;2、每次使用之前需要较长的初始对准时间;3、设备的价格较昂贵;4、不能给出时间信息。
惯性导航系统
![惯性导航系统](https://img.taocdn.com/s3/m/d0d21b537f21af45b307e87101f69e314332fa81.png)
惯性导航系统惯性导航系统(Inertial Navigation System,简称INS)是一种基于惯性测量单元(Inertial Measurement Unit,简称IMU)的导航系统,它利用加速度计和陀螺仪来计算和跟踪自身的位置、速度、姿态以及其他相关信息。
INS的主要优势在于其独立性、高精度和实时性。
一、惯性导航系统的原理及构成1.1 原理惯性导航系统基于牛顿力学的基本原理,根据物体在三维空间中的运动状态(位置、速度、姿态),利用加速度计测量加速度,陀螺仪测量角速度,从而获得物体的运动信息。
1.2 构成惯性导航系统由加速度计和陀螺仪构成。
加速度计用于测量物体的加速度,而陀螺仪则用于测量物体围绕轴的旋转角速度。
这两个组件通常被称为惯性测量单元(IMU)。
二、惯性导航系统的工作原理惯性导航系统通过对加速度和角速度的测量结果进行积分运算,得到物体的位置、速度和姿态等导航参数。
根据这些参数,可以进行航行过程中的定位、导航、控制等任务。
2.1 姿态测量加速度计和陀螺仪的输出信号经过信号处理后,可以计算出物体在空间中的姿态。
姿态测量是导航系统的基础,可以帮助确定物体的朝向和方向。
2.2 位置和速度测量根据加速度计测量的加速度和陀螺仪测量的角速度,可以利用运动学方程进行积分运算,从而得到物体的位置和速度信息。
2.3 系统校准惯性导航系统需要进行定期的校准,以确保其输出的数据准确可靠。
校准的主要目的是消除误差和漂移,并提高导航系统的精确度和稳定性。
三、惯性导航系统的应用领域3.1 轨道交通惯性导航系统在轨道交通领域的应用越来越广泛,如地铁列车、高铁等。
它能够提供高精度的位置和速度信息,帮助保证列车的安全性和准确性。
3.2 航空航天惯性导航系统是飞机和导弹等航空器的重要组成部分。
它可以在无GPS信号的情况下,仍然提供准确的导航信息,确保飞行器的航线精确和稳定。
3.3 海洋探测惯性导航系统在海洋探测中也有重要应用,如海洋调查船、潜艇等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
惯性导航系统一、惯性导航系统(Inertial Navigation System,INS)1、基本概念惯性导航系统(INS)是一种不依赖于外部信息、也不向外部辐射能量的自主式导航系统。
其工作环境不仅包括空中、地面,还可以在水下。
惯性导航系统目前已经发展出挠性惯导、光纤惯导、激光惯导、微固态惯性仪表等多种方式。
陀螺仪由传统的绕线陀螺发展到静电陀螺、激光陀螺、光纤陀螺、微机械陀螺等。
激光陀螺测量动态范围宽,线性度好,性能稳定,具有良好的温度稳定性和重复性,在高精度的应用领域中一直占据着主导位置。
由于科技进步,成本较低的光纤陀螺(FOG)和微机械陀螺(MEMS)精度越来越高,是未来陀螺技术发展的方向。
我国的惯导技术近年来已经取得了长足进步,液浮陀螺平台惯性导航系统、动力调谐陀螺四轴平台系统已相继应用于长征系列运载火箭。
其他各类小型化捷联惯导、光纤陀螺惯导、激光陀螺惯导以及匹配GPS修正的惯导装置等也已经大量应用于战术制导武器、飞机、舰艇、运载火箭、宇宙飞船等。
如漂移率0.01°-0.02°/h 的新型激光陀螺捷联系统在新型战机上试飞,漂移率0.05°/h 以下的光纤陀螺、捷联惯导在舰艇、潜艇上的应用,以及小型化挠性捷联惯导在各类导弹制导武器上的应用,都极大的改善了我军装备的性能。
惯性导航系统有如下主要优点:(1)由于它是不依赖于任何外部信息,也不向外部辐射能量的自主式系统,故隐蔽性好,也不受外界电磁干扰的影响;(2)可全天流全球、全时间地工作于空中、地球表面乃至水下;(3)能提供位置、速度、航向和姿态角数据,所产生的导航信息连续性好而且噪声低;(4)数据更新率高、短期精度和稳定性好。
其缺点是:(1)由于导航信息经过积分而产生,定位误差随时间而增大,长期精度差;(2)每次使用之前需要较长的初始对准时间;(3)设备的价格较昂贵;(4)不能给出时间信息。
但惯导有固定的漂移率,这样会造成物体运动的误差,因此射程远的武器通常会采用指令、GPS等对惯导进行定时修正,以获取持续准确的位置参数。
2、惯性导航原理目前,惯性导航分为两大类:平台式惯导和捷联式惯导。
它们的主要区别在于,前者有实体的物理平台,陀螺和加速度计置于由陀螺定的平台上,该平台跟踪导航坐标系,以实现速度和位置解算,姿态数据直接取自于平台的环架;在捷联式惯导中,陀螺和加速度计直接固连在载体上。
惯性平台的功能由计算机完成,故有时也称作“数学平台”,它的姿态数据时通过计算得到的。
惯导有固定的漂移率,这样会造成物体运动的误差,因此长射程的武器通常会采用指令、GPS 等对惯导进行定时修正,以获取持续准确的位置参数。
比如中距空空导弹中段采用捷联式惯导+指令修正,以获取持续准确的位置参数。
惯性导航的基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,且把它变换到导航坐标系中,就能够得到在导航坐标系中的速度、偏航角和位置等信息。
惯性导航系统属于一种推算导航方式.即从一已知点的位置根据连续测得的运载体航向角和速度推算出其下一点的位置.因而可连续测出运动体的当前位置。
惯性导航系统中的陀螺仪用来形成一个导航坐标系使加速度计的测量轴稳定在该坐标系中并给出航向和姿态角;加速度计用来测量运动体的加速度经过对时间的一次和分得到速度,速度再经过对时间的一次积分即可得到距离。
二、惯性导航的发展概况由于陀螺仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的先后、理论的建立和新型传感器制造技术的出现,将惯性技术的发展划分为四代,但是惯性技术发展的各阶段之间并无明显界线。
第一代惯性技术指1930年以前的惯性技术。
自1687年牛顿三大定律的建立,并成为惯性导航的理论基础;到l852年,傅科(Leon Foucault)提出陀螺的定义、原理及应用设想;再到1908年由安修茨(Hermann Anschütz—Kaempfe)研制出世界上第一台摆式陀螺罗经,以及1910年的舒勒(Max Schuler)调谐原理;第一代惯性技术奠定了整个惯性导航发展的基础。
第二代惯性技术开始于上世纪40年代火箭发展的初期,其研究内容从惯性仪表技术发展扩大到惯性导航系统的应用。
首先是惯性技术在德国V-II火箭上的第一次成功应用。
到50年代中后期,0.5n mile/h的单自由度液浮陀螺平台惯导系统研制并应用成功。
1968年,漂移约为0.005°/h的G6B4型动压陀螺研制成功。
这一时期,还出现了另一种惯性传感器-加速度计。
在技术理论研究方面,为减少陀螺仪表支承的摩擦与干扰,挠性、液浮、气浮、磁悬浮和静电等支承悬浮技术被逐步采用;1960年激光技术的出现为今后激光陀螺(RLG)的发展提供了理论支持;捷联惯性导航(SINS)理论研究趋于完善。
70年代初期,第三代惯性技术发展阶段出现了一些新型陀螺、加速度计和相应的惯性导航系统(INS),其研究目标是进一步提高INS的性能,并通过多种技术途径来推广和应用惯性技术。
这一阶段的主要陀螺包括:静电陀螺(ESG)、动力调谐陀螺(DTG)、环形激光陀螺(RLG)、干涉式光纤陀螺IFOG等。
ESG的漂移可达10-4°/h;DTG的体积小、结构简单,随机漂移可达0.01°/h量级;基于Sagnac干涉效应的RLG和捷联式激光陀螺惯导系统(SINS)在民航方面得到应用,导航精度可达0.1n mile/h。
除此之外,超导体陀螺、粒子陀螺、音叉振动陀螺、流体转子陀螺及固态陀螺等基于不同物体原理的陀螺仪表相继设计成功。
80年代,伴随着半导体工艺的成熟和完善,采用微机械结构和控制电路工艺制造的微机电系统(MEMS)开始出现。
图l中ε为陀螺误差。
第三、四阶段折线下方到虚线上方为应用新技术制造的新型惯性传感器。
当前,惯性技术正处于第四代发展阶段,其目标是实现高精度、高可靠性、低成本、小型化、数字化、应用领域更加广泛的导航系统。
一方面,陀螺的精度不断提高,漂移量可达10-6°/h ;另一方面,随着RLG、FOG、MEMS等新型固态陀螺仪的逐渐成熟,以及高速大容量的数字计算机技术的进步,SINS在低成本、短期中精度惯性导航中呈现出取代平台式系统的趋势。
在惯性技术发展的历史过程中,Draper验室、Sperry、原Litton、Delco、Honeywell、Kearfott、Rockwell、GE(General Electric)以及其它一些公司和研究机构,对惯性技术的成熟和广泛应用做出了卓越贡献。
三、惯性导航的主要元部件惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。
惯性测量装置包括加速度计和陀螺仪。
三个陀螺仪用了测量载体的三个转动运动;三个加速度计用了测量载体的三个平移运动的加速度。
计算机根据测得的加速度信号计算出载体的速度和位置数据。
控制显示器显示出各种导航参数。
1、陀螺仪传统意义上上的陀螺仪是安装在框架中绕回转体的对轴高速旋转的物体。
陀螺仪具有稳定性和进动性,利用这些特性制成了敏感角速度的速率陀螺和敏感角偏差的位置陀螺。
由于光学、MEMS等技术被引入陀螺仪的研制,现在习惯上把能够完成陀螺功能的装置称为陀螺。
陀螺仪种类多种多样,按陀螺转子主轴所具有的进动自由度数目可分为二自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高速旋转体物理特性工作的转子式陀螺,和利用其他物理原理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光纤陀螺等。
陀螺仪有很广泛的应用,其使用目的有两个,一个是用陀螺仪来建立一个参考坐标系,另一个目的是用它来测量运动物体的角速度。
与此对应,在惯性导航系统的应用中,陀螺仪分别被用做平台式惯导系统和捷联式惯导系统的敏感元件。
在平台式惯导系统中,用陀螺来稳定装有加速度计的平台,而产生平台漂移的主要因素是陀螺漂移,因此,对陀螺漂移值的大小提出一定的限制。
对于捷联式惯性导航系统,除了上述的要求之外,还必须对陀螺仪提出速率范围,标度系数的精度、带宽等特殊要求。
由于陀螺仪是应用在各种不同场合,因此对其漂移速度的要求也不尽相同。
这与应用的情况,系统的精度要求,使用时间的长短等因素有关。
在同一个系统的应用中,采取了不同的总体设计方案时,亦会对陀螺的精度提出不同的要求。
一般说来,惯导系统所用陀螺的漂移速度都小于0.1度/h。
就使用对象来划分,战术弹和火力控制用陀螺仪,漂移速度大于0.1度/h,巡航弹用陀螺仪,漂移速度约在0.01度/h至0.001度/h,弹道导弹用陀螺仪,约在0.001度/h左右。
此外,对用于半解析式惯导系统中的陀螺仪,由于需要对陀螺进行精确控制,因此,对陀螺中的力矩发生器的线性度提出了严格的要求。
2、加速度计加速度计是惯性导航系统的核心元件之—。
依靠它对比力的测量,完成惯导系统确定载体的伙置、速度以及产生跟踪信号的任务。
载体加速度的测量必须十分准确地进行,而且是在由陀螺稳定的参考坐标系中进行。
在不需要进行高度控制的惯导系统中,只要两个加应度计就可以完成上述任务,否则是应该有三个加速度计。
加速度计的基本工作原理为牛顿第二定律。
加速度计的分类:按照输入与输出的关系可分为普通型、积分性和二次积分型;按物理原理可分为摆式和非摆式,摆式加速度计包括摆式积分加速度计、液浮摆式加速度计和挠性摆式加速度计,非摆式加速度计包括振梁加速度计和静电加速度计;按测量的自由度可分为单轴、双轴、三轴;按测量精度可分为高精度(优于10-4 m /s 2)、中精度(10-2/s 2--10-3m /s 2 )和低精度(低于0.1m /s 2 )三类。
此外,MEMS 技术的发展促使微加速度计制作技术越来越成熟,国内外都将微加速度计开发作为MEMS 技术产品化的优先项目。
与通常的加速度计相比,微加速度计具有体积小、重量轻、成本低、功耗低、可靠性高等优点,因此可被广泛运用于航空航天、汽车工业、工业自动化及机器人等领域,也给微加速度计的发展带来了新的机遇。
常见的微加速度计按敏感原理的不同可分为:压阻式、压电式、隧道效应式、电容式以及热敏式等;按照工艺方法又可分为体硅工艺微加速度计和表面工艺微加速度计。
自1977年美国斯坦福大学首先利用MEMS 技术制作了一种开环微加速度计以来,国内外已开发出了各种结构和原理的微加速度计。
国外一些公司已经实现了部分类型微加速度计的产品化,例如美国AD 公司1993年就开始批量化生产基于平面工艺的电容式微加速度计。
3、惯导平台惯导平台式惯性导航系统的核心部件,它的作用是为整个惯性系统提供载体比力的大小和方向,或者说,把载体的比力安希望的坐标系分解为相应的比力分量,如图所示:为了做到这一点,有两种方案可行。