运动控制系统课程设计

合集下载

《运动控制系统》课程设计任务书

《运动控制系统》课程设计任务书

理解运动控制系统的基本原理和组成 掌握运动控制系统的调试方法 掌握运动控制系统的优化方法
提高运动控制系统的性能和稳定性 提高运动控制系统的适应性和灵活性 提高运动控制系统的可靠性和安全性
确定运动控制系统的目标和需求
编写运动控制系统的软件代码
选择合适的运动控制算法和硬件设备
测试和调试运动控制系统
系统原理:阐述运动控制系统的基本原理和设计思路 硬件组成:详细描述运动控制系统的硬件组成和功能 软件编程:介绍运动控制系统的软件编程方法和实现过程 调试过程:描述运动控制系统的调试过程和注意事项
性能优化:优化运动控制系统 的性能,如提高响应速度、降 低能耗、提高稳定性等
基本功能:实现运动控制系统 的基本功能,如速度控制、位 置控制、力控制等
趋势
方案论证:对初步设计方案进 行论证,确保方案的可行性和
创新性
硬件选型:选择合适的传感器、控制器、执行器等硬件设备 硬件搭建:根据硬件选型结果,搭建运动控制系统的硬件平台 编写硬件电路原理图:根据硬件搭建结果,绘制硬件电路原理图 编写硬件PCB图:根据硬件电路原理图,绘制硬件PCB图,用于制作电路板
测试方法:模拟实际应用场 景进行测试
测试目的:验证系统功能是 否满足设计要求
测试内容:系统稳定性、准 确性、响应速度等
优化方法:根据测试结果进 行系统优化,提高系统性能
制定设计方案:根据设计题 目,制定初步设计方案
确定设计题目:根据课程要 求,选择合适的设计题目
文献调研:查阅相关文献,了 解相关领域的研究现状和发展
提高系统的响应速度 降低系统的误差 提高系统的稳定性
优化系统的控制算法 提高系统的抗干扰能力 优化系统的人机交互界面
软件设计:包括系统架构设 计、模块划分、接口设计等

运动控制系统的课程设计

运动控制系统的课程设计

运动控制系统的课程设计一、课程目标知识目标:1. 学生能理解运动控制系统的基本概念、组成和分类。

2. 学生能掌握运动控制系统中常见传感器的原理和应用。

3. 学生能描述运动控制系统的执行机构工作原理及其特点。

4. 学生了解运动控制算法的基本原理,如PID控制、模糊控制等。

技能目标:1. 学生具备运用所学知识分析和解决实际运动控制问题的能力。

2. 学生能设计简单的运动控制系统,并进行仿真实验。

3. 学生能熟练使用相关软件和工具进行运动控制系统的调试与优化。

情感态度价值观目标:1. 学生培养对运动控制系统相关技术的兴趣,激发学习热情。

2. 学生养成合作、探究的学习习惯,培养团队协作精神。

3. 学生认识到运动控制系统在工程实际中的应用价值,增强社会责任感。

课程性质:本课程为电子信息工程及相关专业高年级学生的专业课程,旨在帮助学生掌握运动控制系统的基本原理、设计方法和实际应用。

学生特点:学生已具备一定的电子、电气和控制系统基础,具有较强的学习能力和实践操作能力。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,强调学生的动手能力和创新能力培养。

通过本课程的学习,使学生具备运动控制系统设计、调试和应用的能力。

教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。

二、教学内容1. 运动控制系统概述- 运动控制系统的基本概念、组成和分类- 运动控制系统的发展及应用领域2. 运动控制系统传感器- 常见运动控制传感器的工作原理、特性及应用- 传感器的选型及接口技术3. 执行机构- 电动伺服电机、步进电机、液压气动执行机构的工作原理及特点- 执行机构的控制策略及性能分析4. 运动控制算法- PID控制算法原理及其在运动控制中的应用- 模糊控制、神经网络等其他先进控制算法介绍5. 运动控制系统设计- 系统建模、控制器设计及仿真- 硬件在环(HIL)仿真与实验- 运动控制系统调试与优化6. 运动控制系统实例分析- 分析典型运动控制系统的设计过程及解决方案- 案例教学,培养学生的实际操作能力教学内容安排与进度:- 第1周:运动控制系统概述- 第2-3周:运动控制系统传感器- 第4-5周:执行机构- 第6-7周:运动控制算法- 第8-9周:运动控制系统设计- 第10周:运动控制系统实例分析教材章节关联:本课程教学内容与教材中第3章“运动控制系统”相关内容相衔接,涵盖第3章中的3.1-3.5节。

运动控制系统课程设计_双闭环直流调速系统

运动控制系统课程设计_双闭环直流调速系统

运动控制系统课程设计设计名称双闭环直流调速系统专业班级自动化10—3学号**********姓名王韶雨指导教师李铁鹰运动控制系统课程设计设计名称双闭环直流调速系统专业班级自动化10—3学号**********姓名张浩宇指导教师李铁鹰目录一、设计任务 (2)1、设计对象参数 (2)2、性能指标 (2)3、课程设计的主要内容和要求 (2)3.1电力拖动不可逆直流调速系统主电路的设计 (2)3.2控制电路的设计 (2)二、电力拖动不可逆直流调速系统主电路的设计 (3)1、整流电路和整流器件的选择 (3)2、整流变压器参数的计算 (3)3、整流器件的保护 (4)4、平波电抗器参数的计算 (4)5、触发电路的选择 (4)三、直流双闭环调速系统原理图设计 (5)1系统的组成 (5)2系统的电路原理图 (6)3直流双闭环调速系统调节器设计 (6)3.1获得系统设计对象 (8)3.2电流调节器的设计 (6)3.3转速调节器的设计 (11)四、系统起动过程分析 (16)一、设计任务1、设计对象参数(1)P nom=30KW (2)U nom=220V (3)I nom=136A(4)n nom=1460r/min (5)R a =0.2Ω(6)R Σ=0.6Ω(7)C e=0.2 v.min/r (8)RΣ=0.18Ω(9)K S=42(10)T oi=0.002 s (11)T0=0.01 s (12)λ=1.5(13)U*nm=8 V (14)U*im=8 V2、性能指标σi≤5% σn≤10% 3、课程设计的主要内容和要求3.1电力拖动不可逆直流调速系统主电路的设计(1)整流电路和整流器件的选择(2)整流变压器参数的计算(3)整流器件的保护(4)平波电抗器参数的计算(5)触发电路的选择3.2控制电路的设计(1)建立双闭环不可逆直流调速系统的动态数学模型(2)电流调节器的设计计算(3)转速调节器的设计计算二、电力拖动不可逆直流调速系统主电路的设计1、整流电路和整流器件的选择目前在各种整流电路中,应用最为广泛的是三相桥式全控整流电路,其原理图如图1所示,其中阴极连接在一起的三个晶体管(VT1,VT3,VT5)称为共阴极组;阳极连接在一起的三个晶体管(VT4,VT6,VT2)称为共阳极组。

运动控制系统课程设计-精选文档

运动控制系统课程设计-精选文档

2 查阅参考资料
(1)应去图书馆借阅相关参考资料。 (2)应上网查阅相关文献。 (3)参考文献主要包括:直流调速系统、交
流调速系统、电力电子技术、电子技术、半 导体功率器件等方面。
3 确定技术要求
根据所选控制系统的技术参数进一步细化技 术要求。首先确定控制系统方案,确定每一 级的具体技术指标(如放大倍数,输入输出 电阻,电源电压等)。
2. 转速电流双闭环的数字式可逆直流调速系 统的仿真与设计
3.基于稳态模型的数字式恒压频比控制的交 流调速系统的仿真与设计
三 设计参数 1.交直流电机实例
直流电机: (1)光驱 (2)按摩椅 (3)电钻 (4)榨汁机
交流电机: (1)自动化流水线 (2)自动门 (3)洗衣机 (4)数控机床
额定励磁电压220V 功率因数0.85
电枢电阻0.1欧姆 电枢回路电感100mH
电机机电时间常数1S 电枢允许过载系数1.5
额定转速1430rpm
环境条件: 电网额定电:380/220V; 电网电压波动:10%; 环境温度:-40~+40摄氏
度; 环境湿度:10~90%.
调速ห้องสมุดไป่ตู้围:D=20;
电网电压波动10%;
电流超调量小于等于
环境温度:-40~+40摄氏 5%;
度;
空载起动到额定转速时
环境相对湿度:10~90%. 的转速超调量小于等于
30%;
稳速精度:0.03.
四 设计步骤
1. 选题 (1)每个班选题的具体要求是: ①按学号尾数选择相应的题目,学号为1、4、7、0的选题1;
控制系统性能指标:

plc运动控制技术课程设计

plc运动控制技术课程设计

plc运动控制技术课程设计一、课程目标知识目标:1. 让学生掌握PLC(可编程逻辑控制器)的基本原理和运动控制技术的基础知识。

2. 使学生了解并能够解释PLC在工业运动控制中的应用场景和优势。

3. 让学生掌握PLC编程中与运动控制相关的基本指令和编程逻辑。

技能目标:1. 培养学生能够运用PLC进行简单的运动控制系统的设计、编程和调试能力。

2. 培养学生通过分析实际运动控制需求,设计出合理的PLC控制方案的能力。

3. 提高学生团队协作能力和实际问题解决能力,能在小组项目中有效沟通和协作。

情感态度价值观目标:1. 培养学生对PLC运动控制技术产生浓厚的兴趣,激发学生探究工业自动化领域的热情。

2. 培养学生具有创新意识和实践精神,敢于面对挑战,勇于尝试新的解决方案。

3. 培养学生严谨的科学态度和良好的工程伦理观,认识到技术在生产生活中的重要性和责任感。

课程性质:本课程为实践性较强的课程,以理论讲授和实验操作相结合的方式进行。

学生特点:学生具备一定的电气基础和编程知识,具有较强的动手能力和好奇心。

教学要求:注重理论与实践相结合,充分调动学生的主观能动性,培养学生的创新能力和实际操作技能。

在教学过程中,将课程目标分解为具体可衡量的学习成果,以便于教学设计和评估。

二、教学内容1. PLC基本原理与结构:介绍PLC的组成、工作原理、性能指标等,对应教材第一章内容。

2. PLC编程基础:讲解PLC编程语言、基本指令、编程逻辑,对应教材第二章内容。

3. 运动控制基础:介绍运动控制的基本概念、类型和常用的运动控制器件,对应教材第三章内容。

4. PLC在运动控制中的应用:分析实际应用案例,讲解PLC在运动控制中的接线方式、程序设计方法等,对应教材第四章内容。

5. 运动控制系统的设计与调试:学习运动控制系统的设计步骤、调试方法及故障排查技巧,对应教材第五章内容。

6. 实践操作:安排学生进行实验操作,包括PLC编程、运动控制系统的搭建和调试,结合教材附录中的实验指导书进行。

运动控制系统课程设计任务书

运动控制系统课程设计任务书

运动控制系统课程设计任务书河南城建学院班级专业课程名称指导教师电气与信息工程学院编写:陈国振审核:葛广军课程编码课程名称《运动控制系统》适用专业自动化学时考核方式考查学分1先修课程《电机拖动》《过程控设计时间制》、《计算机控制》《自动控制原理》、《运动控制系统》一、设计时间及地点1、设计时间:2、地点:2号系馆楼、图书馆、机房、实验室二、设计目的和要求1、设计目的2、设计要求完成所选题目的分析与设计,进行系统总体方案的设计、论证和选择;系统单元主电路和控制电路的设计、元器件的选择和参数计算;课程设计报告的整理工作。

三、设计题目和内容1、单闭环不可逆直流调速系统设计自拟控制系统性能指标的要求(调速范围、静差率、超调量、动态速降、调节时间等),设计系统原理图,完成元器件的选择,选择调节器并计算调节器参数,并进行仿真或实验验证系统合理性。

2、单闭环可逆直流调速系统设计自拟控制系统性能指标的要求(调速范围、静差率、超调量、动态速降、调节时间等),设计系统原理图,完成元器件的选择,选择调节器并计算调节器参数,并进行仿真或实验验证系统合理性。

3、V-M双闭环不可逆直流调速系统设计自拟控制系统性能指标的要求(调速范围、超调量、动态速降、调节时间、抗扰性能等),设计系统原理图,电流环的设计,转速环设计,完成元器件的选择,计算选择合理调节器参数,并进行仿真或实验验证系统合理性。

4、PWM直流调速系统设计自拟控制要求,完成系统设计方案的论证和选择,画出系统原理图,完成元器件的选择和相关参数的计算,系统动态结构图及其仿真分析或实验验证系统合理性。

5、三相桥式PWM逆变器仿真研究自拟负载,可选用电机或阻感负载等,画出系统主电路和控制电路的结构图,并进行仿真或实验验证系统的合理性。

6、直流电机数字控制系统设计自拟控制系统性能指标的要求,采用数字控制方法设计控制系统,对系统设计方案进行论证,画出系统原理图,进行元器件的选择和相关参数的计算,系统动态结构图及其仿真分析。

《运动控制系统》课程设计任务书.

《运动控制系统》课程设计任务书.

《运动控制系统》课程设计任务书一、设计目的与任务课程设计的主要目的是通过设计某直流电机调速系统或交流电机的调速系统或者应用交直流电机的调速的控制系统的设计实践,了解一般电力拖动与控制系统设计过程、设计要求、应完成的工作内容和具体设计方法。

通过设计也有助于复习、巩固以往所学的知识,达到灵活应用的目的。

电力拖动与控制系统设计必须满足生产设备和生产工艺的要求,因此,设计之前必须了解设备的用途、结构、操作要求和工艺过程,在此过程中培养从事设计工作的整体观念。

课程设计应强调能力培养为主,在独立完成设计任务的同时,还要注意其他几方面能力的培养与提高,如独立工作能力与创造力;综合运用专业及基础知识的能力,解决实际工程技术问题的能力;查阅图书资料、产品手册和各种工具书的能力;工程绘图的能力;书写技术报告和编制技术资料的能力。

二、教学内容及基本要求在接到设计任务书后,按原理设计和工艺设计两方面进行。

1.原理图设计的步骤1)根据要求拟定设计任务。

2)根据电力拖动与控制系统的设计要求设计主电路。

3)根据主电路的控制要求设计控制回路4)要考虑保护环节,如过电压、过电流等的保护。

5)总体检查、修改、补充及完善。

主要内容包括:6)进行必要的参数计算和设计必要的软件控制流程。

7)正确、合理地选择各电器元器件,按规定格式编制元件明细表。

2.工艺设计步骤1)根据电力拖动与控制系统的任务书的设计要求,或者根据运用电力拖动调速等的设计控制对象及工艺的要求,进行分析。

2)选择合适的设计方案,论证设计方案的合理性。

3)根据设计方案设计合适的电力拖动与控制系统的或运用电力拖动调速的控制系统的主电路和控制电路,并画出相应比较相尽得电路图。

4)进行相应的参数进算,包括电子元器件的参数的计算与选取。

5)软件设计至少要包含比较完整的软件设计流程图。

要求学生能独立完成课程设计内容。

达到本科毕业生应具有的基本设计能力。

三、课程教学的特色说明要求学生掌握一定的理论基础知识,同时具备一定的实践设计技能,并且能够电力拖动与控制系统课程中讲授的内容结合实际情况进行系统设计以及编程。

《运动控制系统课程设计》

《运动控制系统课程设计》

《运动控制系统课程设计》《运动控制系统》课程设计一、性质和目的自动化专业、电气工程及其自动化专业的专业课,在学完本课程理论部分之后,通过课程设计使学生巩固本课程所学的理论知识,提高学生的综合运用所学知识,获取工程设计技能的能力;综合计算及编写报告的能力。

二、设计内容1.根据指导教师所下达的《课程设计任务书》课程设计。

2.主要设计内容包括:(1)根据任务书要求确定总体设计方案(2)主电路设计:主电路结构设计(结构选择、器件选型、考虑器件的保护)、变压器的选型设计;(3)控制电路设计:控制方案的选择、控制器设计(4)保护电路的选择和设计(5)调速系统的设计原理图,调速性能分析、调速特点 3.编写详细的课程设计说明书一份,并画出调速系统的原理图。

三、设计目的1.熟练掌握主电路结构选择方法、主电路元器件的选型计算方法。

2.熟练掌握保护方式的配置及其整定计算。

3.掌握触发控制电路的设计选型方法。

4.掌握速度调节器、电流调节器的典型设计方法。

5.掌握绘制系统电路图绘制方法。

6.掌握说明书的书写方法。

四、对设计成品的要求1.图纸的要求:1)图纸要符合国家电气工程制图标准; 2)图纸大小规范化; 3)布局合理、美观。

2.对设计说明书的要求 1)说明书中应包括如下内容①目录②课题设计任务书;③调速方案的论证分析(从经济性能和技术性能方面进行分析论证)和选择;④所要完成的设计内容⑤变压器的接线方式确定和选型;⑥ 主电路元器件的选型计算过程及结果;⑦控制电路、保护电路的选型和设计;⑧调速系统的总结线图系统电路设计及结果。

2)说明书的书写要求①文字简明扼要,理论正确,程序功能完备,框图清楚明了。

②字迹工整;书写整齐,参照教务系统中的毕业论文的格式要求。

直流电机调速系统设计任务书1组:直流他励电动机:功率PN=1.1kW,额定电压UN=220V,额定电流IN=6.7A,磁极对数P=1,nN=1500r/min,励磁电压220V,电枢绕组电阻Ra=2.34Ω,主电路总电阻R=7Ω,L∑=246.25mH(电枢电感、平波电感和变压器电感之和),Ks=58.4,机电时间常数Tm=116.2ms,滤波时间常数Ton=Toi=0.00235s,过载倍数λ=1.5,电流给定最大值Uim*=10V,速度给定最大值Un*=10V。

运动控制系统课程设计算

运动控制系统课程设计算

运动控制系统课程设计算一、教学目标本课程的教学目标是使学生掌握运动控制系统的基本原理、方法和应用。

具体包括:1.知识目标:学生能够理解运动控制系统的概念、组成、工作原理和分类,掌握常用的运动控制算法和策略,了解运动控制系统在工程中的应用。

2.技能目标:学生能够运用运动控制系统的基本原理和方法解决实际问题,具备分析和设计运动控制系统的的能力。

3.情感态度价值观目标:学生能够认识运动控制系统在现代工业和日常生活中的重要性,培养对运动控制技术的兴趣和热情,提高创新意识和团队合作能力。

二、教学内容本课程的教学内容主要包括:1.运动控制系统的基本概念、组成和分类。

2.运动控制系统的数学模型和分析方法。

3.常用的运动控制算法和策略,如PID控制、模糊控制、神经网络控制等。

4.运动控制系统的仿真和实验,包括硬件设备和软件工具的使用。

5.运动控制系统在工程中的应用案例。

三、教学方法为了达到本课程的教学目标,将采用以下教学方法:1.讲授法:通过教师的讲解,使学生掌握运动控制系统的基本概念、原理和算法。

2.案例分析法:通过分析实际应用案例,使学生了解运动控制系统在工程中的应用和设计方法。

3.实验法:通过实验操作,使学生熟悉运动控制系统的硬件设备和软件工具,培养学生的动手能力。

4.讨论法:通过分组讨论和课堂讨论,激发学生的思考和创造力,提高团队合作能力。

四、教学资源为了支持本课程的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用《运动控制系统》作为主教材,提供系统的理论知识。

2.参考书:推荐《运动控制工程》等参考书籍,为学生提供更多的学习资料。

3.多媒体资料:制作课件和教学视频,以图文并茂的形式展示运动控制系统的原理和应用。

4.实验设备:准备运动控制实验平台和相关设备,为学生提供实践操作的机会。

五、教学评估本课程的教学评估将采用多种方式,以全面、客观地评价学生的学习成果。

具体包括:1.平时表现:通过课堂参与、提问、小组讨论等形式的评估,考察学生的学习态度和课堂表现。

运动控制系统综合课程设计

运动控制系统综合课程设计

运动控制系统综合课程设计一、设计目标本次综合课程设计的目标是通过设计一个运动控制系统,提高学生的软件开发能力和物理仿真能力,让学生能够熟练掌握运动控制系统的原理和工作方式,并能够独立设计和开发控制系统。

二、设计内容本次综合课程设计的主要内容包括物理仿真实验和软件开发实验。

1. 物理仿真实验本次物理仿真实验的目的是让学生了解运动控制系统的工作原理和调试方法。

学生需要完成以下实验内容:•使用实物模型,模拟电机控制系统的工作过程。

•修改电路参数,改变电机的运动轨迹和速度。

•调试控制系统,优化零点转换参数,提高系统控制精度。

2. 软件开发实验本次软件开发实验的目的是让学生熟练掌握运动控制系统的软件开发技术,掌握面向对象编程和硬件控制技术。

学生需要完成以下实验内容:•设计控制系统的软件结构和模块划分,并编写控制系统的控制程序。

•使用硬件和软件辅助工具(如逻辑分析仪和仿真器等),调试控制程序。

•集成控制程序和物理仿真系统,测试整个控制系统的工作情况。

三、设计流程本次综合课程设计的流程如下:1.确定运动控制系统的需求和规格,包括控制目标、运动参数和控制精度等。

2.设计控制系统的软件结构,划分系统模块和设计程序框架。

3.设计控制系统的硬件结构,包括模拟电路、数字电路和传感器等。

4.编写控制系统的控制程序,实现运动控制以及数据读写功能。

5.使用辅助工具(逻辑分析仪、仿真器等)进行调试,优化控制程序。

6.集成控制程序和物理仿真系统,测试整个控制系统。

四、设计工具和材料1. 设计工具•编程语言:C/C++、Python、Java等。

•操作系统:Windows、Linux等。

•集成开发环境(IDE):Visual Studio、Eclipse、CodeBlocks等。

•仿真软件:Proteus、LTSpice等。

2. 设计材料•电机模型•微控制器•电路元器件(电阻、电容、二极管、晶体管等)•传感器(光电传感器、旋转编码器等)五、设计注意事项•在设计过程中,需要遵循坚持理论与实践相结合的原则,同时注意掌握好时间和资源的分配。

运动控制系统课程设计

运动控制系统课程设计

前言一、 性能指标σi ≤5% σi ≤10%二、 设计对象参数P nom =550kW U nom =750V I nom =780A n nom =375r/min T i =0.03sT m =0.084s C e =1.92V •min/r R ∑=0.1Ω K s =75 T oi =0.002sT o =0.01s λ=1.5 U *nm =12V U *im =12V一、整流电路和整流器件的选择1.整流电路:三相全控桥式整流电路(1)三相全控桥式整流电路(电阻性负载)1)电路结构三相半波整流的变压器存在直流磁化问题,三相全控桥式整流电路可看作是三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT4,VT6,VT2)的串联组合。

2)工作原理(α=0º时)一个周期内,晶闸管的导通顺序T1→VT2→VT3→VT4 →VT5→VT6。

将一周期相电压分为六个区间:①在ωt1~ωt2区间:u 相电压最高,VT1触发导通,v 相电压最低,VT6触发导通,负载输出电压ud =uuv 。

②在ωt2~ωt3区间:u 相电压最高,VT1触发导通,w 相电压最低,VT2触发导通,负载输出电压ud =uuw 。

③在ωt3~ωt4区间:v 相电压最高,VT3触发导通,w 相电压最低,VT2触发导通,负载输出电压ud =uvw 。

④在ωt4~ωt5区间:v 相电压最高,VT3触发导通,u 相电压最低,VT4触发导通,负载输出电压ud = uvu 。

⑤在ωt5~ωt6区间:w 相电压最高,VT5触发导通,u 相电压最低,VT4触发导通,负载输出电压ud = uwu 。

⑥在ωt6~ωt7区间:w 相电压最高,VT5触发导通,v 相电压最低,VT6触发导通,负载输出电压ud = uwv 。

三相桥式全控整流电路带电阻负载α =60度时的波形三相桥式全控整流电路带电阻负载α =90度时的波形3)三相全控桥式整流电路的工作特点:①任何时候共阴、共阳极组各有一只元件同时导通才能形成电流通路。

洛阳理工学院运动控制系统课程设计MT法测速

洛阳理工学院运动控制系统课程设计MT法测速

运动控制系统课程设计学号:姓名:日期:2016/6/30M法、T法、M/T法测速单片机程序设计摘要数字测速具有测速精度高、分辨能力强、受器件影响小等优点,被广泛应用于调速高,调速范围大的调速系统和伺服系统。

本设计的数字转速测量是以单片机AT89C52为控制芯片,利用单片机三个定时器的特点,可以使用按键输入来调等参数以及测速方法的选择,以此来增强本设计的适整M法、T法测速法中Z、TC应性,运用转速测量M法、T法、M/T法,通过对光电编码盘输出的脉冲信号测量,获得电动机转速测量,有精度高,范围宽等特点。

测量结果将会显示在LCD1602液晶显示屏上。

关键词:数字测速,单片机,LCD1602,转速,测速法目录第1章绪论 (5)1.1 数字测速方法的原理与应用 (5)1.1.1 M法测速 (5)1.1.2 T法测速 (6)1.1.3 M/T法测速 (6)第2章系统总体设计 (8)第3章硬件设计 (9)3.1 硬件选型 (9)3.1.1 CPU主控模块的选型 (9)3.1.2显示器的选型 (10)3.2 硬件电路设计 (10)3.2.1时钟电路的设计 (10)3.2.2显示电路 (10)3.2.3速度检测电路 (11)3.2.4按键输入电路 (11)3.2.5复位电路 (12)第4章软件设计 (13)4.1 系统流程 (13)4.1.1 主程序流程设计 (13)4.1.2 M法测速程序设计 (14)4.1.3 T法测速程序设计 (15)4.1.4 M/T法测速程序设计 (15)第5章仿真结果 (17)5.1 测速功能仿真测试 (17)5.1.1 建立仿真文件 (17)5.1.2 测速功能测试 (18)5.2 仿真结果分析 (19)结论 (20)参考文献 (21)附录 (22)第1章 绪论1.1 数字测速方法的原理与应用1.1.1 M 法测速在一定时间T C 内测取旋转编码器输出的脉冲个数M 1用以计算这段时间内的转速,称作M 法测速。

张友斌运动控制系统课程设计

张友斌运动控制系统课程设计

运动控制系统课程设计题目:三相同步电动机FOC控制的仿真设计学院:计算机与电子信息学院专业:电气工程及其自动化班级:电气12-姓名:学号:指导老师:张友斌Contents一Abstract (1)1.1The significance and background (1)1.2The details of design (2)二The principles (3)2.1 基于FOC技术的三相同步电机建模 (3)2.2 同步电动机的磁场定向控制 (4)2.2.1 结构、原理及基本假设 (4)2.2.2 矢量控制的基本原理 (5)2.2.3 气隙磁场定向控制系统的基本结构 (8)2.3 同步电动机的数学模型 (10)2.3.1 同步电机的基本关系式 (10)2.3.2 dq 旋转坐标系下的数学模型 (13)三仿真系统设计 (15)3.1磁场定向控制仿真设计 (15)3.2 矢量控制坐标变换的Simulink实现 (16)3.3 SVPWM算法的Simulink实现 (17)3.4 磁场定向控制系统仿真模型建立 (19)四仿真 (23)4.1基于 MATLAB 的 PMSM 伺服系统仿真模型 (23)4.1.1仿真结果一 (23)4.1.2仿真结果二 (24)五心得体会 (27)一Abstract1.1The significance and background同步电动机是属于交流电机,定子绕组与异步电动机相同。

它的转子旋转速度与定子绕组所产生的旋转磁场的速度是一样的,所以称为同步电动机。

正由于这样,同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。

为此,在很多时候,同步电动机是用以改进供电系统的功率因数的。

交流调速系统是指由交流电动机和变频调速装置组成的电力传动系统。

与直流电动机相比,交流电动机具有结构简单、维修方便、转动惯量小、制造成本低的优点,并且适用于恶劣的工作环境,易于向高电压、高速、大容量的方向发展。

运动控制系统课程设计

运动控制系统课程设计

电机控制技术
详细介绍直流电机、交流电机以 及步进电机等不同类型的电机控 制方法,包括速度控制、位置控 制以及力矩控制等。
传感器与检测技术
阐述运动控制系统中常用的传感 器类型,如编码器、陀螺仪等, 以及它们在系统中的作用和应用 。
学生作品展示与评价
01
作品一
基于PID控制的直流电机调速系统。该系统实现了对直流电机的精确速
智能化发展
随着人工智能技术的不断发展,未来的运 动控制系统将更加智能化,能够实现自适
应控制、自主学习等功能。
多轴协同控制
未来的运动控制系统将实现多轴协同控制 ,能够同时控制多个电机或执行器,提高
系统的整体性能。
高精度控制
随着传感器技术和控制算法的不断进步, 未来的运动控制系统将实现更高精度的控 制,满足高端装备制造等领域的需求。
04
传感器与执行器技术及应用
传感器与执行器概述
传感器定义
01
将非电量转换为电量输出的装置,用于测量和控制系统。
执行器定义
02
将控制信号转换为机械运动的装置,用于实现系统控制目标。
传感器与执行器在控制系统中的作用
03
提供反馈信号和执行控制指令,保证系统稳定性和性能。
常见传感器类型及工作原理
温度传感器
典型运动控制系统分析
直流电机运动控制系统
通过控制直流电机的电枢电压或电枢电流,实现对电机转 速和转向的控制。具有调速范围广、控制精度高等优点, 但存在换向火花等问题。
步进电机运动控制系统
通过控制步进电机的脉冲信号,实现对电机转角和转速的 控制。具有定位精度高、控制灵活等优点,但存在失步等 问题。
交流电机运动控制系统
直流电机驱动技术

运动控制课程设计任务书

运动控制课程设计任务书

运动控制系统课程设计任务书一、基本情况学时:1周学分:1学分适应班级:自动化1301二、进度安排本设计共安排1周,合计30学时,具体分配如下:实习动员及准备工作:2学时总体方案设计:4学时硬件设计:12学时撰写设计报告:8 学时答辩:4学时教师辅导:随时三、基本要求1、课程设计的基本要求运动控制系统课程设计的主要内容包括:理论设计与撰写设计报告等。

其中理论设计又包括总体方案选择,硬件系统设计、硬件设计包括单元电路,选择元器件及计算参数等;课程设计的最后要求是写出设计总结报告,把设计内容进行全面的总结,若有实践条件,把实践内容上升到理论高度。

2、课程设计的教学要求运动控制系统课程设计课程设计的教学采用相对集中的方式进行,以班为单位全班学生集中到设计室进行。

做到实训教学课堂化,严格考勤制度,在实训期间累计旷课达到2节以上,或者迟到、早退累计达到4次以上的学生,该课程考核按不及格处理。

在实训期间需要外出查找资料,必须在指定的时间内方可外出。

课程设计的任务相对分散,每5-6名学生组成一个小组,完成一个课题的设计。

小组成员既有分工、又要协作,同一小组的成员之间可以相互探讨、协商,可以互相借鉴或参考别人的设计方法和经验。

但每个学生必须单独完成设计任务,要有完整的设计资料,独立撰写设计报告,设计报告雷同率超过60%的课程设计考核按不及格处理。

四、设计题目及控制要求题目:题目四 PWM 控制的双闭环可逆调速系统的设计设计参数::(1)直流电机:12V 20W、U P N N ==、 1.5A I N =、300r/min n N =、电枢电阻 4.5ΩR a =、电枢电感22a 15.68N.cm 6.76mH、GD L ==、30ms T m =(2)双闭环直流调速系统:N dm im *n 1.5I 5V、I 5V、U U ===、5%σi ≤设计要求:(1)、根据题目的技术要求,分析并确定主电路的结构形式和闭环调速系统的组成,画出系统组成的原理框图。

运动控制课程设计心得总结

运动控制课程设计心得总结

运动控制课程设计心得总结一、课程目标知识目标:使学生掌握运动控制的基本原理,理解运动控制系统中各组成部分的作用及其相互关系;掌握基本的运动控制算法,并能运用到实际问题的解决中。

技能目标:培养学生运用所学知识,设计简单的运动控制系统,提高学生的动手实践能力和问题解决能力;通过课程学习,使学生具备对运动控制系统进行分析、调试和优化的能力。

情感态度价值观目标:激发学生对运动控制技术的兴趣,培养学生主动探究、积极思考的学习态度;强调团队协作,提高学生的沟通与协作能力;通过课程学习,使学生认识到运动控制技术在工业生产和国防建设中的重要性,增强学生的社会责任感和使命感。

课程性质分析:本课程属于工程技术类课程,注重理论与实践相结合,强调学生的动手实践能力。

学生特点分析:根据学生所在年级的特点,他们在前期的学习中已具备一定的物理、数学和工程基础,对运动控制有一定了解,但尚未深入掌握运动控制系统的设计与实践。

教学要求:结合课程性质和学生特点,将课程目标分解为具体的学习成果,使学生在理解基本原理的基础上,能够运用所学知识解决实际问题,注重培养学生的实践操作能力和团队协作精神。

后续教学设计和评估将以此为基础,确保课程目标的实现。

二、教学内容根据课程目标,教学内容主要包括以下几部分:1. 运动控制基本原理:涵盖运动控制系统的组成、类型和性能指标,介绍运动控制的基本算法,如PID控制、模糊控制等。

2. 运动控制系统设计:包括控制系统建模、控制器设计、执行器设计等,结合实际案例,使学生掌握运动控制系统设计的方法和步骤。

3. 运动控制系统实践:组织学生进行运动控制实验,提高学生的动手实践能力,包括实验原理、实验设备、实验步骤和实验结果分析。

4. 运动控制系统应用案例分析:分析典型运动控制系统的应用案例,使学生了解运动控制在工业生产、机器人、航空航天等领域的实际应用。

教学大纲安排如下:1. 第一章:运动控制基本原理(2课时)- 1.1 运动控制系统的组成与类型- 1.2 运动控制系统的性能指标- 1.3 常见运动控制算法介绍2. 第二章:运动控制系统设计(4课时)- 2.1 控制系统建模方法- 2.2 控制器设计原理- 2.3 执行器设计方法- 2.4 运动控制系统设计实例分析3. 第三章:运动控制系统实践(4课时)- 3.1 运动控制实验原理- 3.2 实验设备与实验步骤- 3.3 实验结果分析与应用4. 第四章:运动控制系统应用案例分析(2课时)- 4.1 工业生产中的应用案例- 4.2 机器人领域的应用案例- 4.3 航空航天领域的应用案例教学内容注重科学性和系统性,结合教材章节和实际案例,使学生能够系统地掌握运动控制相关知识,为后续学习和实践打下坚实基础。

运动控制系统综合课程设计

运动控制系统综合课程设计

运动控制系统综合课程设计姓名:学号:班级:日期:一、项目《转速、电流双闭环调速系统的工程设计》二、设计内容1、确定系统的性能指标,设计系统方案;2、设计运动控制系统的主电路和控制电路;3、在MATLAB上建立运动控制系统的数学模型,对控制系统进行性能仿真研究,分析系统参数对系统性能的影响。

三、系统设计参数及指标要求直流电动机基本数据:输出功率为 5.5kW功率因数0.85电枢额定电压220V电枢电阻0.2Ω电枢额定电流30A电枢回路电感100mH额定励磁电流1A电机机电时间常数1S额定励磁电压110V电枢允许过载系数=1.5额定转速970rpm指标要求:1、电动机能够实现可逆运行。

(1) 稳态指标: 无静差(2) 动态指标: 电流超调量小于等于5%2、空载起动到额定转速时的转速超调量小于等于30%;3、调速范围D=20;4、静差率小于等于0.03。

四、电路原理图在设计双闭环调速系统时,一般是先内环后外环,调节器的结构和参数取决于稳态精度和动态校正的要求,双闭环调速系统动态校正的设计与调试都是按先内环后外环的顺序进行,在动态过程中可以认为外环对内环几乎无影响,而内环则是外环的一个组成环节。

工程设计的步骤如下:(1)对已知系统的固有特性做恰当的变换和近似处理,以简化调节器结构。

(2)根据具体情况选定预期特性,即典型Ⅰ系统或典型Ⅱ系统,并按照零极点相消的原则,确定串联调节器的类型。

(3)根据要求的性能指标,确定调节器的有关P、I、D参数。

(4)对系统进行校正。

五、参数计算1、电流环设计确定时间常数(1)整流装置滞后时间常数Ts。

三相桥式电路的平均失控时间为Ts=0.0017s;(2)电流滤波时间常数Toi。

三相桥式电路每个波头的时间是3.33ms,为了基本滤平波头,应有(1~2) Toi=3.33ms,因此取Toi=2ms=0.002s;(3)电流环小时间常数T∑i。

按小时间常数近似处理,取T∑i=Ts+Toi=0.0037s。

plc运动控制系统课程设计

plc运动控制系统课程设计

plc运动控制系统课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理,掌握其运动控制系统的组成及功能。

2. 学生能描述常见的运动控制环节,如启动、停止、正反转、速度调节等,并了解其在PLC中的应用。

3. 学生能解释运动控制系统中涉及的传感器、执行器的工作原理及其在PLC 系统中的作用。

技能目标:1. 学生能运用PLC编程软件,设计简单的运动控制程序,实现基本运动控制功能。

2. 学生能对运动控制系统进行调试,诊断并解决简单的故障。

3. 学生能通过小组合作,完成一个综合性的PLC运动控制系统的设计与实施。

情感态度价值观目标:1. 学生培养对自动化技术及PLC运动控制系统的兴趣,提高对工程技术学科的认识和热情。

2. 学生在实践过程中,培养团队合作意识,学会相互尊重、沟通与协作。

3. 学生通过课程学习,认识到自动化技术在实际生产中的应用价值,增强学以致用的意识。

课程性质分析:本课程为专业实践课程,旨在帮助学生将理论知识与实际应用相结合,提高学生的动手能力和创新能力。

学生特点分析:学生为高年级本科生,已具备一定的电气工程及自动化基础知识,具有较强的学习能力和探索精神。

教学要求:结合课程性质和学生特点,注重实践操作,以学生为中心,采用项目驱动的教学方法,促使学生主动参与,提高综合运用知识的能力。

通过分解课程目标,确保教学设计和评估的有效性。

二、教学内容1. PLC基本原理与结构:介绍PLC的组成、工作原理、编程语言及通信方式,对应教材第1章内容。

2. 运动控制系统的组成:讲解运动控制系统的基本构成,包括控制器、执行器、传感器等,对应教材第2章内容。

3. 常见运动控制环节:分析启动、停止、正反转、速度调节等环节的实现方法,对应教材第3章内容。

4. PLC编程软件的使用:教授PLC编程软件的操作方法,包括程序编写、下载、调试等,对应教材第4章内容。

5. 运动控制程序设计:指导学生设计简单的运动控制程序,实现基本运动控制功能,对应教材第5章内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运动控制系统课程设计的仿真内容及评分
标准(第3-4周)
一、仿真参数
设计一个双闭环直流调速系统,电机的额定转速为1000rpm ,晶闸管放大系数为20=S K ,电枢回路总电阻R=1欧姆,电流滤波时间常数s T oi 002.0=,电枢回路的电磁时间常数s T l 03.0=,机电时间常数s T m 18.0=,电动势系数132.0=e C ,额定电流为20A ,电流反馈系数为5.0=β,转速反馈系数005.0=α。

二、仿真设计任务
任务1:按典型I 型系统设计电流环,超调量%5<σ。

任务2:按典型II 型系统设计转速环,%40<σ;
三、仿真要求及评价标准
3.1基本要求:(30分)
1. 写出设计过程,即参数计算过程;
2. 对近似条件进行校验。

3. 利用MATLAB 传递函数仿真;
4. 给出系统的阶越响应曲线,并结合仿真结果给出设计得到电流环和转速环的各项性能指标(上升时间、稳定时间、超调量)。

3.2提高要求(要求1+2+4,1+3+4):(30分)
1. 额定负载对应的转速降落为100rpm ,求出额定电流和额定转矩?
2. 转速调节器输出限幅2倍的额定电流,电流调节器的输出限幅为220V ,利用MATLAB 的PWM 模块进行仿真(加分).
3. 转速调节器输出限幅2倍的额定电流,电流调节器的输出限幅为220V ,利用MATLAB 的传递函数模块进行仿真;
4. 算出突加额定负载时的转速降落,包括计算过程,对计算结果和仿真结果进行比较。

使用带有微分负反馈的PI 控制器,使得速度阶越响应的超调量为0,给出设计过程。

3.3仿真报告(40分)
(1) 内容全面,条理清晰,图表规范,术语正确。

(2) 报告中给出程序框图和所有设计过程。

(3) 提交报告时,避免雷同,而且提问测试,根据回答情况评价分数。

错误的图
正确的图
t/
s
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档