一般电介质的介电常数

合集下载

介电常数计算

介电常数计算

介电常数计算
介电常数是描述介质在电场中对电场影响的物理量。

它表示了介质相对于真空的电场响应能力,通常用ε或ε_r表示。

介电常数的计算方法因介质类型而异。

下面是几种常见介质的介电常数计算方法:
1.真空:真空的介电常数近似为常数,通常表示为ε_0或ε_r=1。

2.理想极化气体:理想极化气体的介电常数可以使用理想气体状态方程计算。

根据介电极化理论,当气体分子在电场中发生极化时,其极化率与气体分子的极化能力成正比。

介电常数可以表示为ε_r=1+χ_e,其中χ_e是电子极化率,可以通过分子的电极化能力和分子数密度计算得到。

3.理想极化固体:理想极化固体的介电常数可以通过电子极化和离子极化的贡献之和来计算。

电子极化的贡献可以通过分子的电极化能力和电子数密度计算得到,而离子极化的贡献可以通过离子极化能力和离子数密度计算得到。

介电常数可以表示为ε_r=1+χ_e+χ_i。

4.多元复合介质:对于多元复合介质,其介电常数通常是各组分介电常数的加权平均。

根据混合物的组分比例和各组分的介电常数,可以计算得到复合介质的介电常数。

需要注意的是,这些方法只是一些常见介质的介电常数计算方法,具体的计算方法还取决于介质的性质和模型。

在实际应用中,也可以通过实验手段测量介质的介电常数。

1/ 1。

电介质物理_徐卓、李盛涛_第十讲各类实际电介质的极化和介电常数

电介质物理_徐卓、李盛涛_第十讲各类实际电介质的极化和介电常数

场,故克—莫方程适用。
非极性液体和非极性固体电介质
其分子极化率
e ni ei
r 1 n 0 r 2 3 0
讨论介电常数随温度变化:
n0 dn0 r 1 1 dn0 d r 3 2 ( r 2) dT 3 0 n0 dT r 2 n0 dT
恒压下的介电温度系数
r 1 r n2 1 d r | P C r dT T T
非极性液体和非极性固体电介质
• 包括原子晶体(金刚石),不含极性基团的分子晶体 (硫)非极性高分子聚合物(聚乙烯等),这些非极 性液体和固体电介质,分子固有偶极矩为零,以电子 位移为主,由于分子在空间作无规则运动,每点的几 率是相等的,作用于每个分子的有效场是Lorentz有效
j1 (t ) j 2 (t )
复合电介质
尽管传导电流在界面上不连续,但全电流连续
dE1 dE2 j 1 E1 (t ) 0 1 2 E2 (t ) 0 2 dt dt
位移电流
直流电压:
u E1d1 E2 d 2
复合电介质
E1 (t )
2
d1 2 d 2 1
的堆积过程有关,需要很长弛豫时间
称弛豫极化 2 s 10 8 s ~ 10

介电常数
电介质的极化是一个弛豫过程,从施加电场到极 化平衡需要一定的时间,这个时间称弛豫时间;
在恒定电场作用下的介电常数称静态介电常数,以
εs或εr表示,在恒定电场作用下,弹性位移极化和
弛豫极化都来得及响应,εs总是大于或等于变化电 场作用下的介电常数,在没有说明电场频率时,εr 表静态介电常数εs
1 n0 g e 0 (1 e f )

电介质的介电常数

电介质的介电常数
物质
介电常数
物质
介电常数

81

17(25℃)
甲酸
58.5(16℃)
戊醇
16.0
甘油
56.2
苯甲醇
13.0
糠醛
41.9
吡啶
12.5
乙二醇
41.2
喹啉
9.0(25℃)
硝基甲烷
39.4
乙酸甲酯
7.3
乙腈
38.8
苯胺
7.2
硝基苯
36.4
乙酸乙酯
6.4
甲醇
33.7
乙胺
6.2
丙腈
27.7
溴苯
5.4
邻硝基甲苯
27.4
-溶剂
-氟里根/氟里昂
-棕榈油
3
1.9…2.5
-波特兰水泥
-石膏
-矿物油
-燃油
4
2.5…4
-谷物种籽
-碎头
-河砂
-苯,苯乙烯,甲苯
-呋喃
-萘
5
4…7
-天然潮湿的石头,矿石
-食盐
-氯苯,氯仿
-纤维素液体
-异氰酸盐、苯胺
6
> 7
-金属粉
-碳黑
-煤粉
-水溶液
-酒精
-氨水
一些溶剂的介电常数(摘自/u/4d224992010007tb)
氯仿
5.1
苯甲腈
265
乙醚
4.34
乙醇
25.8
丙酸
3.2
氯乙醇
25.8
二硫化碳
2.65
乙酰丙酮
23
乙苯
2.48
丙醇
22.2
甲苯
2.29

不同材质的电介质参数

不同材质的电介质参数

不同材质的电介质参数
1. 空气:相对介电常数约为 1,介质损耗角正切很小,击穿场强约为 3kV/mm。

2. 纸:相对介电常数约为 2-4,介质损耗角正切较小,击穿场强约为 10kV/mm。

3. 聚氯乙烯 PVC):相对介电常数约为 3-4,介质损耗角正切较小,击穿场强约为 20kV/mm。

4. 聚酯薄膜:相对介电常数约为 3.1,介质损耗角正切较小,击穿场强约为 25kV/mm。

5. 云母:相对介电常数约为 5-8,介质损耗角正切很小,击穿场强约为 150kV/mm。

6. 氧化铝:相对介电常数约为 9-10,介质损耗角正切很小,击穿场强约为 150kV/mm。

这些参数会受到温度、频率等因素的影响。

在实际应用中,需要根据具体情况选择合适的电介质材料,并考虑其电介质参数对电路性能的影响。

介电常数

介电常数

介电常数一、介电常数的基本简介介质在外加电场时会产生感应电荷而削弱电场,在相同的原电场中真空中的电场与某一介质中的电场的比值即为相对介电常数(permittivity),又称相对电容率,以εr表示。

如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。

介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*e-12,F/m。

一个电容板中充入介电常数为ε的物质后电容变大ε倍。

电介质有使空间比起实际尺寸变得更大或更小的属性。

例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。

当电磁波穿过电介质,波的速度被减小,有更短的波长。

二、介电常熟的解释“介电常数”在工具书中的解释1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。

它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。

相对介电常数愈小绝缘性愈好。

空气和CS2的ε值分别为1.0006和2.6左右,而水的ε值特别大,10℃时为 83.83,与温度有关。

2.介电常数是物质相对于真空来说增加电容器电容能力的度量。

介电常数随分子偶极矩和可极化性的增大而增大。

在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。

介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。

介电常数用ε表示。

“介电常数”在学术文献中的解释1.介电常数是指物质保持电荷的能力,损耗因数是指由于物质的分散程度使能量损失的大小。

理想的物质的两项参数值较小。

k2.介质常数具有复数形式,实数部分称为介电常数,虚数部分称为损耗因子.通常用损耗正切值(损耗因子与介电常数之比)来表示材料与微波的耦合能力,损耗正切值越大,材料与微波的耦合能力就越强3.介电常数是指在同一电容器中用某一物质为电介质与该物质在真空中的电容的比值.在高频线路中信号传播速度的公式如下:V=K4.通常将相对介电常数均称为介电常数.反射脉冲信号的强度,与界面的波反射系数和透射波的衰减系数有关,主要取决于周围介质与反射体的电导率和介电常数。

介电常数

介电常数

介电常数介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中)的比值即为相对介电常数(permittivity,不规范称dielectric constant),又称诱电率,与频率相关。

介电常数是相对介电常数与真空中绝对介电常数乘积。

如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降,理想导体内部由于静电屏蔽场强总为零,故其介电常数为无穷。

介电常数(又称电容率),以ε表示,ε=εr*ε0,ε0为真空绝对介电常数,ε0=8.85*10^(-12)F/m。

需要强调的是,一种材料的介电常数值与测试的频率密切相关。

一个电容板中充入介电常数为ε的物质后电容变大εr倍。

电介质有使空间比起实际尺寸变得更大或更小的属性。

例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。

当电磁波穿过电介质,波的速度被减小,有更短的波长。

根据物质的介电常数可以判别高分子材料的极性大小。

通常,介电常数大于3.6的物质为极性物质;介电常数在2.8~3.6范围内的物质为弱极性物质;介电常数小于2.8为非极性物质。

测量方法相对介电常数εr可以用静电场用如下方式测量:首先在两块极板之间为真空的时候测试电容器的电容C0。

然后,用同样的电容极板间距离但在极板间加入电介质后测得电容Cx。

然后相对介电常数可以用下式计算εr=Cx/C0在标准大气压下,不含二氧化碳的干燥空气的相对电容率εr=1.00053.因此,用这种电极构形在空气中的电容Ca来代替C0来测量相对电容率εr时,也有足够的准确度。

(参考GB/T 1409-2006)对于时变电磁场,物质的介电常数和频率相关,通常称为介电系数。

"介电常数" 在工具书中的解释:1.又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。

它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。

介电常数

介电常数

介电常数介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为介电常数(permittivity),又称诱电率,与频率相关。

如果有高介电常数的材料放在电场中,场的强度会在电介质内有可观的下降。

电介质经常是绝缘体。

其例子包括瓷器(陶器),云母,玻璃,塑料,和各种金属氧化物。

有些液体和气体可以作为好的电介质材料。

干空气是良好的电介质,并被用在可变电容器以及某些类型的传输线。

蒸馏水如果保持没有杂质的话是好的电介质,其相对介电常数约为80。

介电常数是相对介电常数与真空中绝对介电常数乘积。

如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降,理想导体内部由于静电屏蔽场强总为零,故其介电常数为无穷。

一个电容板中充入介电常数为ε的物质后电容变大ε倍。

电介质有使空间比起实际尺寸变得更大或更小的属性。

例如,当一个电介质材料放在两个电荷之间,它会减少作用在它们之间的力,就像它们被移远了一样。

当电磁波穿过电介质,波的速度被减小,有更短的波长。

相对介电常数εr可以用静电场用如下方式测量:首先在其两块极板之间为空气的时候测试电容器的电容C0。

然后,用同样的电容极板间距离但在极板间加入电介质后侧得电容Cx。

然后相对介电常数可以用下式计算εr=Cx/C0。

真空介电常数:ε0=8.854187817×10-12F/m。

ε0和真空磁导率μ0以及电磁波在真空传播速率c之间的关系为。

真空平行板电容器的电容为,若取S为单位面积,d为单位距离,则C=ε0,真空电容率的名称即源于此。

介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米。

需要强调的是,一种材料的介电常数值与测试的频率密切相关。

介电常数愈小,说明此介质产生的感应电荷削弱原外加电场的能力愈小(有可能此介质在外加电场时产生的感应电荷少),即原外加电场减少的愈少,原外加电场与削弱后的原外加电场的比值愈小,此介质的绝缘性愈好,导电性愈弱。

电介质的相对介电常数

电介质的相对介电常数

电介质的相对介电常数电介质的相对介电常数这个话题,听起来有点复杂,但其实没那么可怕。

说白了,相对介电常数就像是电介质对电场的“反应能力”。

想象一下,你在聚会上看到一个人,他穿着一件非常显眼的外套。

他在喧闹的环境中,声音特别大,吸引了所有人的注意。

这个外套就像是电介质的介电常数,它决定了这个人对周围环境的“影响力”。

在电场中,不同材料的反应就像这些聚会上的人,有的比较安静,有的则活跃得不得了。

咱们再深入聊聊。

电介质其实是一些不导电的材料,比如塑料、玻璃之类的。

当电场施加在它们身上时,它们会发生极化。

简单说,就是电介质的内部小分子会有点“扭动”,形成一个微小的电场。

就好比你在电影院里看一部感人的电影,情绪跟着剧情起伏,心里各种波动。

这样的极化会影响电场的强度,导致它们看起来变得“温柔”了很多。

这就是为什么我们需要相对介电常数,它告诉我们这些材料的“温柔程度”。

还有一点,介电常数的大小和材料的性质有很大关系。

比方说,水的介电常数可高达80,简直就是个“电场的宠儿”,它能有效地屏蔽电场的作用。

想想看,水就像是聚会中的那个热情的朋友,总是想方设法把气氛搞得更好。

而空气的介电常数就小得多,只有1左右,就像是一个比较冷淡的朋友,在聚会上不太发声。

不同的电介质对电场的“吸引力”也各有千秋。

比如某些材料在高频电场中表现得很差,但在低频电场下却能大展身手。

就像有些人喜欢喧闹的派对,有些人却偏爱安静的书房。

使用这些材料时,要根据实际情况来选,比如要是你要做一些高频的电子设备,可能就要考虑用一些“活跃”的材料了。

说到这里,大家可能会问,怎么测量这些介电常数呢?其实很简单,实验室里有专门的设备,能通过施加电场并测量电流来算出介电常数的数值。

就像考数学题,方法对了,答案自然出来。

科学家们通过这些实验,逐渐积累了许多数据,让我们能够了解各种材料的特性。

所以,电介质的相对介电常数在电子设备中可重要了。

它们决定了材料在电场中表现得多好,反映了材料的特性。

常见介质介电常数

常见介质介电常数

【正文】:@@1.判别乳状液的类型和稳定性常规测定乳状液类型的方法主要有染料法,冲淡法,电导法,荧光法和润湿滤纸法,这些方法均简单易行其实利用介电常数测试法也可以判别乳状液的类型,其道理同电导法类似电导法所依据的原理是水和油电导率的差异,当乳状液为WO型时,由于外相是油,乳状液的电导率很小,当乳状液为O W型时,由于外相是水,乳状液的电导率很大水和油不仅在电导率方面有差异,在介电常数方面也有很大区别一般纯净原油的相对介电常数接近2,纯净水的相对介电常数接近80,所以原油乳状液的相对介电常数基本介于2和80之间当原油乳状液的外相为油时,乳状液的介电性质同油的性质类似,所以测得的介电常数偏小当乳状液的外相为水时,乳状液的介电性质同水的性质类似,所以介电常数偏大,因此,根据被测乳状液介电常数的大小,可判断乳状液的类型曾测试两种原油乳状液的相对介电常数分别是6.8和75.4,初步判断前一种是WO型,后一种是OW型,当用染料法和润湿滤纸法进行验证后,确认判断结果是正确的,这说明用介电常数测试法判别乳状液的类型是可行的。

介电常数 3.9

介电常数 3.9

介电常数 3.9?
答:介电常数是衡量电介质在电场中储存电能能力的物理量。

当介电常数为3.9时,通常指的是该电介质在电场中的介电性能与真空的介电性能相比,其相对介电常数为3.9。

二氧化硅(SiO2)的介电常数就是3.9。

介电常数越大,电介质在电场中储存电能的能力就越强。

因此,具有高介电常数的材料通常被用于制造电容器等电子元件。

在实际应用中,介电常数还会受到温度、频率、湿度等环境因素的影响而发生变化。

因此,在选择电子元件材料时,需要考虑其在实际工作环境中的稳定性和可靠性。

一般电介质的介电常数

一般电介质的介电常数
物质
介电常数
物质
介电常数

81

17(25℃)
甲酸
58.5(16℃)
戊醇
16.0
甘油
56.2
苯甲醇
13.0
糠醛
41.9
吡啶
12.5
乙二醇
41.2
喹啉
9.0(25℃)
硝基甲烷
39.4
乙酸甲酯
7.3
乙腈
38.8
苯胺
7.2
硝基苯
36.4
乙酸乙酯
6.4
甲醇
33.7
乙胺
6.2
丙腈
27.7
溴苯
5.4
邻硝基甲苯
27.4
琥珀
2.8
乙醇
16.3
25.7

2.8

14
81.5
虫胶
3~4
液态氨
-270.8
16.2
赛璐璐
3.3
液态氦
-253
1.058
玻璃
4~11
液态氢
-182
1.22
黄磷
4.1
液态氧
-185
1.465

4.2
液态氮
2.28
碳(金刚石)
5.5~16.5
液态氯
20
1.9
云母
6~8
煤油
20
2~4
花岗石
7~9
松节油
6~6.5
氮(气态)
0
1.00058
超高频瓷
7~8.5
氩(气态)
0
1.00056
二氧化钡
106
气态汞
400
1.00074

介电常数4.4

介电常数4.4

介电常数4.4
介电常数(又称电容率)是电介质的一种特性,用于描述电介质储存电能的能力。

介电常数的值通常是在特定频率下的实数,常用符号ε表示。

对于介电常数4.4,它表示该电介质的电容率在特定频率下约为4.4。

这个值的大小可以用来评估电介质在特定应用中的性能表现。

例如,在电子设备中,介电常数较高的材料通常具有较高的储能能力,而介电常数较低的材料则更适合用于高频信号的传输。

需要注意的是,介电常数的值可能会因为电介质的种类、频率、温度等因素的变化而有所不同。

因此,在实际应用中,需要根据具体需求和条件来选择适合的电介质材料。

常见介质介电常数

常见介质介电常数

【正文】:@@1.判别乳状液的类型和稳定性常规测定乳状液类型的方法主要有染料法,冲淡法,电导法,荧光法和润湿滤纸法,这些方法均简单易行其实利用介电常数测试法也可以判别乳状液的类型,其道理同电导法类似电导法所依据的原理是水和油电导率的差异,当乳状液为WO型时,由于外相是油,乳状液的电导率很小,当乳状液为O W型时,由于外相是水,乳状液的电导率很大水和油不仅在电导率方面有差异,在介电常数方面也有很大区别一般纯净原油的相对介电常数接近2,纯净水的相对介电常数接近80,所以原油乳状液的相对介电常数基本介于2和80之间当原油乳状液的外相为油时,乳状液的介电性质同油的性质类似,所以测得的介电常数偏小当乳状液的外相为水时,乳状液的介电性质同水的性质类似,所以介电常数偏大,因此,根据被测乳状液介电常数的大小,可判断乳状液的类型曾测试两种原油乳状液的相对介电常数分别是6.8和75.4,初步判断前一种是WO型,后一种是OW型,当用染料法和润湿滤纸法进行验证后,确认判断结果是正确的,这说明用介电常数测试法判别乳状液的类型是可行的。

介电常数

介电常数

介电常数又叫介质常数,介电系数或电容率,它是表示绝缘能力特性的一个系数,以字母ε表示,单位为法/米(F/m)
定义为电位移D和电场强度E之比,ε=D/Ε。

电位移D的单位是库/二次方米(C/m^2)。

某种电介质的介电常数ε与真空介电常数ε0之比称为该电介质的相对介电常数εr ,εr=ε/ε0是无量纲的纯数
真空介电常数:ε0= 8.854187817×10^-12 F/m
介质在外加电场时会产生感应电荷而削弱电场,原外加电场(真空中)与最终介质中电场比值即为相对介电常数(permittivity),
介质在外加电场时会产生感应电荷而削弱电场,介质中的电场减小与原外加电场(真空中)的比值即为相对介电常数(relative permittivity或dielectric constant),又称诱电率,与频率相关。

介电常数是相对介电常数与真空中绝对介电常数乘积。

如果有高介电常数的材料放在电场中,电场的强度会在电介质内有可观的下降。

理想导体的相对介电常数为无穷大。

EMC,电磁兼容性,是指电子设备或系统在规定的电磁环境电平下不因电磁干扰而降低性能指标,同时它们本身产生的电磁辐射不大于规定的极限电平,不影响其它电子设备或系统的正常运行,并达到设备与设备、系统与系统之间互不干扰、共同可靠地工作的目的。

电介质材料的介电常数及损耗的温度特性

电介质材料的介电常数及损耗的温度特性

如不考虑边缘效应,平板试样的电容量可用下式表示:
C
0电极的面积,米2;d —— 介质的厚度,米;εr— — 介质材料的相对介电常数。 将ε0的值代入上式,得到:
100 r s C ( pF ) 3.6 d
由此得
3.6 dC r 100s
如果电极呈圆形,当其直径为D米时,介电常数的计算公 式如下:
电介质材料的介电常数及损耗 的温度特性
〈一〉实验目的
〈二〉实验仪器
〈三〉实验原理
〈四〉操作步骤
〈五〉数据处理
〈一〉实验目的
1.熟练掌握MODEL TH2816型宽频LCR数字电桥的使用; 2.测量几种介质材料的介电常数 和介质损耗角正切 (tan)与温度的关系,从而了解它们的 、tan 的温 度特性。
〈五〉数据处理
1.
2.
由测量数据,进行转换:C→ε';
用origin软件绘图,绘出 ε‘~ T和 tg δ ~ T关系曲 线;
3.
对所得曲线进行分析:分析,tan随T变化的原 因,并分析产生误差的可能性;
〈二〉实验仪器
TH2816型宽频LCR数字电桥、 加温炉(带数字温度显示器)、 样品
〈三〉实验原理
一般中性电介质材料的介电常数ε随温度变化不大,但 具有松弛式极化的材料其ε则随温度变化非常激烈,一般呈 非线性关系,并出现峰值。对于一般介质来说,当温度开始 上升时,tgδ都有不同程度的增加。对有松弛式极化的介质 ,在温度较低时,tgδ随T上升将出现极大值。当温度上升到 一定值时,漏导损耗将占主要地位时,tgδ又将上升。
dC r 14.4 2 100 D
其所用单位d ——米, C
— pF ,
D ——米。
〈四〉操作步骤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-溶剂
-氟里根/氟里昂
-棕榈油
3
1.9…2.5
-波特兰水泥
-石膏
-矿物油
-燃油
4
2.5…4
-谷物种籽
-碎头
-河砂
-苯,苯乙烯,甲苯
-呋喃
-萘
5
4…7
-天然潮湿的石头,矿石
-食盐
-氯苯,氯仿
-纤维素液体
-异氰酸盐、苯胺
6
> 7
-金属粉
-碳黑
-煤粉
-水溶液
-酒精
-氨水
一些溶剂的介电常数(摘自)
物质
介电常数
电介质的介电常数
介质
温度(C)
相对介电常数
介质
温度(C)
相对介电常数
水蒸汽
140~150
1.00785
固体氨
-90
4.01
气态溴
180
1.0128
固体醋酸
2
4.1
氦(气态)
0
1.000074
石腊
-5
2.0~2.1
氢(气态)
0
1.00026
聚苯乙烯
20
2.4~2.6
氧(气态)
0
1.00051
无线电瓷
16
苯甲腈
265
乙醚
4.34
乙醇
25.8
丙酸
3.2
氯乙醇
25.8
二硫化碳
2.65
乙酰丙酮
23
乙苯
2.48
丙醇
22.2
甲苯
2.29
丙酮
21.45
四氯化碳
2.23
氯乙酸
20~21

2.23
乙酐
20.5
环已烷
2.05
苯乙酮
18.3
二氧六环
2
苯甲醛
18.0
正已烷
1.89
丁酮
18
零散收集
物质
介电常数
物质
介电常数
聚酰亚胺
6~6.5
氮(气态)
0
1.00058
超高频瓷
7~8.5
氩(气态)
0
1.00056
二氧化钡
106
气态汞
400
1.00074
橡胶
2~3
空气
0
1.000585
硬橡胶
4.3
硫化氢(气态)
0
1.004

2.5
真空
20
1
干砂
2.5
乙醚
0
4.335
15%水湿砂
约9
液态二氧化碳
20
1.585
木头
2~8
甲醇
20
33.7
3.4
超临界水(600℃,a)
1.2
2.2
大理石
8.3

2.283
食盐
6.2
油漆
3.5
氧化铍
7.5
甘油
45.8
电介质的介电常数
(摘自E+H公司“Levelflex M FMP40导波雷达智能物位变送器”产品说明书)
介质组
εr
典型散装固体
典型液体
1
1.4…1.6
-冷凝气体,如N2, CO2
2
1.6…1.9
-塑料粒
-白石灰
-特殊水泥
-糖
-液化气,如丙烷
物质
介电常数

81

17(25℃)
甲酸
58.5(16℃)
戊醇
16.0
甘油
56.2
苯甲醇
13.0
糠醛
41.9
吡啶
12.5
乙二醇
41.2
喹啉
9.0(25℃)
硝基甲烷
39.4
乙酸甲酯
7.3
乙腈
38.8
苯胺
7.2
硝基苯
36.4
乙酸乙酯
6.4
甲醇
33.7
乙胺
6.2
丙腈
27.7
溴苯
5.4
邻硝基甲苯
27.4
氯仿
5.1
琥珀
2.8
乙醇
16.3
25.7

2.8

14
81.5
虫胶
3~4
液态氨
-270.8
16.2
赛璐璐
3.3
液态氦
-253
1.058
玻璃
4~11
液态氢
-182
1.22
黄磷
4.1
液态氧
-185
1.465

4.2
液态氮
2.28
碳(金刚石)
5.5~16.5
液态氯
20
1.9
云母
6~8
煤油
20
2~4
花岗石
7~9
松节油
相关文档
最新文档