金融经济学整理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金融经济学
名词解释
自然状态:特定的会影响个体行为的所有外部环境因素。
自然状态的信念:个体会对每一种状态的出现赋予一个主观的判断,即某一特定状态s出现的概率P。
期望效用原则:人们在投资决策时不是用“钱的数学期望”来作为决策准则,而是用“道德期望”来行动的。而道德期望并不与得利多少成正比,而与初始财富有关。即人们关心的是最终财富的效用,而不是财富的价值量,而且,财富增加所带来的边际效用(货币的边际效用)是递减的。
效用函数的定义:不确定性下的选择问题是其效用最大化的决定不仅对自己行动的选择,也取决于自然状态本身的选择或随机变化。
公平博彩:指不改变个体当前期望收益的赌局,如一个博彩的随机收益为ε,期望收益为E(ε)=0,我们就称其为公平博彩。
效用函数的凸凹性的局部性质:经济行为主体效用函数的凸凹性实际上是一种局部性质。即一个经济主体可以在某些情况下是风险厌恶者,在另一种情况下是风险偏好者。效用函数是几个不同的部分组成。在人们财富较少时,部分投资者是风险厌恶的;随着财富的增加,投资者对风险有些漠不关心;而在较高财富水平阶段,投资者则显示出风险偏好。
确定性等价值:是指经济行为主体对于某一博彩行为的支付意愿。即与某一博彩行为的期望效用所对应的数学期望值(财富价值)。
风险溢价:是指风险厌恶者为避免承担风险而愿意放弃的投资收益。或让一个风险厌恶的投资者参与一项博彩所必需获得的风险补偿。
阿罗-普拉特定理:对于递减绝对风险厌恶的经济主体,随着初始财富的增加,其对风险资产的投资逐渐增加,即他视风险资产为正常品;对于递增绝对风险厌恶的经济主体,随着初始财富的增加,他对风险资产的投资减少,即他视风险资产为劣等品;对于常数绝对风险厌恶的经济行为主体,他对风险资产的需求与其初始财富的变化无关。
相对风险厌恶的性质定理:对于递增相对风险厌恶的经济主体,其风险资产的财富需求弹性小于1(即随着财富的增加,投资于风险资产的财富相对于总财富增加的比例下降);对于递减相对风险厌恶的经济行为主体,风险资产的财富需求弹性大于1;对于常数风险厌恶的经济行为主体,风险资产的需求弹性等于1。
(均值-方差)无差异曲线:对一个特定的投资者而言,任意给定一个证券组合,根据他对期望收益率和风险的偏好态度,按照期望收益率对风险补偿的要求,可以得到一系列满意程度相同的(无差异)证券组合。所有这些组合在均值方差(或标准差)坐标系中形成一条曲线,这条曲线就称为该投资者的均值-方差无差异曲线。
有效集,有效前沿(边界):同时满足在各种风险水平下,提供最大预期收益和在各种预期收益下能提供最小风险这两个条件就称为有效边界。
分离定理:在存在无风险资产与多个风险资产的情况下,投资者在有关多个风险资产构成的资产组合的决策(投资决策)与无风险资产与风险资产构成的资产组合比例的决策(金融决策)是分离的。
有效组合前沿:期望收益率严格高于最小方差组合期望收益率的前沿边界称为有效组合前沿。
两基金分离定理:在所有风险资产组合的有效组合边界上,任意两个分离的点都代表两个分离的有效投资组合,而有效组合边界上任意其它的点所代表的有效投资组合,都可以由这两个分离的点所代表的有效组合的线性组合生成。
零βCAPM :两基金分离定理在不存在无风险资产的情况下,同样在有效边界上成立。这时总可以找到与市场资产组合对应的正交资产组合—“零β资产组合”,从而获得零β资产定价模型。
或有权益证券:就是一种契约或承诺,它保证在某一自然状态发生时,该证券的发行者向其购买者交割一单位的某种商品;如果该状态不发生,则该权益实效,其所有者什么也得不到。 阿罗证券:一种状态-收益支付结构类似或有权益证券的契约。该种证券承诺在某一特定自 然状态发生的条件下,支付一单位的购买力;如果该状态没有发生,则该证券的持有者什么也得不到。因此,阿罗证券的标的是一单位的计价商品(货币)或购买力。
完备市场:如果K=S ,即阿罗证券的种类与自然状态的种类一样多,则称这一由阿罗证券构成的市场是完备的;如果阿罗证券的种类比自然状态的种类少,则称该市场为不完备市场。 套利:套利是一种0投资或负投资,又能带来非负的消费过程的交易策略。
状态价格:是指在状态s 发生情况下,增加一单位消费的边际成本。
简答题
均值-方差分析的两个主要前提的局限性是什么?
1.二次效用函数的局限性
二次效用函数具有递增的绝对风险厌恶和满足性两个性质。满足性意味着在满足点以上,财富的增加使效用减少,递增的绝对风险厌恶意味着风险资产是劣质品。这与那些偏好更多的财富和将风险视为正常商品的投资者不符。所以在二次效用函数中,我们需要对参数b 的取值范围加以限制。
2.收益正态分布的局限性
(1)资产收益的正态分布假设与现实中资产收益往往偏向正值相矛盾。收益的正态分布意味着资产收益率可取负值,但这与有限责任的经济原则相悖。
(2)对于密度函数的分布而言,均值-方差分析没有考虑其偏斜度。概率论中用三阶矩表示偏斜度,它描述分布的对称性和相对于均值而言随机变量落在其左或其右的大致趋势。显然,正态分布下的均值-方差分析不能做到这一点。
(3)用均值-方差无法刻画函数分布中的峭度。概率论中用四阶矩表示峭度。但这一点在正态分布中不能表达。实际的经验统计表明,资产回报往往具有“尖峰”“胖尾”的特征。这显然不符合正态分布。
什么是风险厌恶?简述风险厌恶的两种度量方法 u 是经济主体的VNM 效用函数,W 为个体的初始禀赋,如果对于任何满足 的随机变量 ,有 ,则称个体是(严格)风险厌恶。
马科维茨均值-方差组合理论的假设条件:
(1)单期投资。单期投资是指投资者在期初投资,在期末获得回报。 (2)投资者事先知道资产收益率的概率分布,并且收益率满足正态分布的条件。 (3)经济主体的效用函数是二次的,即 。
(4)经济主体以期望收益率(亦称收益率均值)来衡量未来实际收益率的总体水平,以收益率的方差(或标准差)来衡量收益率的不确定性(风险),因而经济主体在决策中只关心资产的期望收益率和方差。
(5)经济主体都是非饱和的和厌恶风险的,遵循占优原则,即:在同一风险水平下,选择收益率较高的证券;在同一收益率水平下,选择风险较低的证券。
()0E ε-
=()0Var ε
->ε-()[()]u W E u W ε->+2()2b u W W W =-