浙江省义乌市绣湖中学2017-2018学年八年级上学期期中考试数学试题

合集下载

每日一学:浙江省金华市义乌市绣湖中学2017-2018学年八年级上学期数学期中考试试卷_压轴题解答

每日一学:浙江省金华市义乌市绣湖中学2017-2018学年八年级上学期数学期中考试试卷_压轴题解答

每日一学:浙江省金华市义乌市绣湖中学2017-2018学年八年级上学期数学期中考试试卷_压轴题解答答案浙江省金华市义乌市绣湖中学2017-2018学年八年级上学期数学期中考试试卷_压轴题~~ 第1题 ~~(2018义乌.八上期中) 定义:四条边都相等且四个角都是直角的四边形叫做正方形。

我校“快乐走班”数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB=6,将三角板放在正方形ABCD 上,使三角板的直角顶点与D 点重合.三角板的一边交AB 于点P ,另一边交BC 的延长线于点Q .(1) 求证:DP=DQ ;(2) 如图②,小明在图1的基础上作∠PDQ 的平分线DE 交BC 于点E ,连接PE ,他发现PE 和QE 存在一定的数量关系,请猜测他的结论并予以证明;(3) 如图③,固定三角板直角顶点在D 点不动,转动三角板,使三角板的一边交AB 的延长线于点P ,另一边交BC 的延长线于点Q ,仍作∠PDQ 的平分线DE 交BC 延长线于点E ,连接PE ,若AB :AP=3:4,请帮小明算出△DEP 的面积.考点: 全等三角形的判定与性质;正方形的性质;~~ 第2题 ~~(2018义乌.八上期中)我国三国时期数学家赵爽为了证明勾股定理,创造了一副“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形 的边长为14,正方形 的边长为2,且 ,则正方形 的边长为________.~~ 第3题 ~~(2018义乌.八上期中) 动手操作:在长方形形纸片ABCD 中,AB=6,AD=10.如图所示,折叠纸片,使点A 落在BC边上的A′处,折痕为PQ ,当点A′在BC 边上移动时,折痕的端点P 、Q 也随之移动.若限定点P ,Q 分别在AB 、AD 边上移动,则点A′在BC 边上可移动的最大距离为( )A . 4cmB . 6cmC . 8cmD . 10cm浙江省金华市义乌市绣湖中学2017-2018学年八年级上学期数学期中考试试卷_压轴题解答~~ 第1题 ~~答案:解析:~~ 第2题 ~~答案:解析:~~ 第3题 ~~答案:A解析:。

浙江省金华市义乌市绣湖中学2024-2025学年八年级上学期期中数学试题(含答案)

浙江省金华市义乌市绣湖中学2024-2025学年八年级上学期期中数学试题(含答案)

绣湖中学八年级数学期中教学质量检测卷2024.11一、选择题(本大题有10小题,每小题3分,共30分)1.在平面直角坐标系中,点在( )A.第一象限 B.第二象限C.第三象限D.第四象限2.在中,,,则等于( )A.25° B.50°C.65°D.115°3.如图,在中,,点D 在线段上,,垂足为E ,则的边上的高是( )A. B. C. D.4.为估计池塘两岸A 、B 间的距离,如图,小明在池塘一侧选取了一点O ,测得,,那么的距离不可能是( )A. B. C. D.5.对于命题“如果,那么.”能说明它是假命题的反例是( )A. B.,C., D.,6.尺规作图中蕴含着丰富的数学知识和思想方法.如图,为了得到,在用直尺和圆规作图的过程中,得到的依据是( )A. B. C. D.7.若不等式组无解,则m 的值可能( )A.7B.6C.5D.3()3,2P -ABC △AB AC =65B ∠=︒A ∠ABC △90C ∠=︒BC DE AB ⊥ABD △BD AD DE AC BE16m OA =12m OB =AB 5m15m 20m 30m1290∠+∠=︒12∠≠∠1245∠=∠=︒140∠=︒250∠=︒150∠=︒250∠=︒140∠=︒240∠=︒MBN PAQ ∠=∠ACD BEF ≌△△SAS SSS ASA AAS202x x m -≥<⎧⎨⎩8.如图,已知的面积为36,点D ,E 分别在边,上,且,,与相交于点F ,若的面积为3,则图中阴影部分的面积为( )A.7B.8C.9D.109.如图,在平面直角坐标系中一动点从原点O 出发,沿着箭头所示方向,每次移动1个单位,依次得到点,,,,,…则点的坐标是( )A. B. C. D.10.如图,在中,,P 是上一点,且,过上一点P ,作于E ,于F ,已知:,的长是( )A. B.6C. D.二、填空题(本大题有6小题,每小题3分,共18分)11.根据数量关系“a 是正数”,可列出不等式:______.12.如果等腰三角形有两条边长分别为2和5,那么它的周长为______.13.已知点A 的坐标是,将其向下平移1个单位后的坐标是,则a 的值是______.14.如图,在四边形中,,,,对角线平分,则的面积______.ABC △BC AC BD CD =2CE AE =AD BE AEF △()10,1P ()21,1P ()31,0P ()41,1P -()52,1P -()62,0P 2024P ()675,1-()675,1()337,1-()337,1ABC △90A ∠=︒BC DB DC =BC PE AB ⊥PF DC ⊥:1:3AD DB =BC =PE PF +()2,a ()2,2ABCD 90A ∠=︒2AD =5BC =BD ABC ∠BCD △15.当三角形中一个内角是另一个内角的时,我们称此三角形为“希望二角形”,其中角称为“希望角”.如果一个“希望三角形”中有一个内角为54°,那么这个“希望三角形”的“希望角”度数为______.16.如图,在中,,点D 在内,平分,连接,把沿折叠,落在处,交于F ,恰有.若,,则______.三、解答题(本大题有8小题,第17~21题每题8分,第22,23题每题10分,第24题12分,共72分)17.解不等式组,并将解集表示在数轴上.18.如图,平面直角坐标系中,,,,过点作x 轴的垂线l .(1)作出关于直线l 的轴对称图形;(2)直接写出(______,______),(______,______),(______,______)(3)在内有一点,则点P 关于直线l 的对称点的坐标为(______,______)(结果用含βα12αABC △AB AC =ABC △AD BAC ∠CD ADC △CD AC CE AB CE AB ⊥14BC =17AD =EF =27442x x xx +>-+<⎧⎪⎨⎪⎩()2,1A -()3,4B -()1,3C -()1,0ABC △111A B C △1A 1B 1C ABC △(),P m n 1Pm ,n 的式子表示).19.如图,已知点B ,E ,C ,F 在一条直线上,,,.(1)求证:;(2)若,,求的长.20.如图,在中,,,,动点P 从点B 出发,以秒的速度沿移动至点C ,设运动时间为t 秒.(1)求的长;(2)在点P 的运动过程中,是否存在某个时刻t ,使得点P 到边的距离与点P 到点C 的距离相等?若存在,求出t 的值:若不存在,请说明理由.21.森林火灾是一种常见的自然灾害,危害很大,随着中国科技、经济的不断发展,开始应用飞机酒水的方式扑灭火源.如图,有一台救火飞机沿东西方向,由点A 飞向点B ,已知点C 为其中一个着火点,且点C 与直线上两点A ,B 的距离分别为和,,飞机中心周围以内可以受到洒水影响.(1)着火点C 受洒水影响吗?为什么?(2)若飞机的速度为,要想扑灭着火点C 估计需要13秒,请你通过计算判断着火点C 能否被扑灭?22.红糖是义乌特产,为促进销量,某批发商销售A 、B 两种包装的红糖,若购买9箱A 种包装和6箱B 种包装共需390元;若购买5箱A 包装和8箱B 包装需310元.(1)A 种包装、B 种包装每箱价格分别是多少元?(2)若某公司购买A 、B 两种包装共30箱,且A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,怎样购买才能使总费用最少?并求出最少费用.23.在中,,点P 是所在直线上一个动点,过P 点作、,垂足分AC DE ∥A D ∠=∠AB DF =D ABC EF ≌△△13BF =7EC =BC Rt ABC △90C ∠=︒10cm AB =6cm AC =2cm /BC BC AB AB AB 300m 400m 500m AB =260m 10m /s ABC △AB AC =BC PD AB ⊥PE AC ⊥别为D 、E ;图1图2图3(1)如图1,若点P 是的中点时,求证:;(2)如图2,为腰上的高,当点P 在边上时,试探究、、之间的关系,并说明理由.(3)如图3,当点P 运动到的延长线上时,若,,求的长度.24.如图,在中,,.点D 在边上,,且,交边于点F ,连接.图1图2(1)若,求线段的长;(2)若,求的度数;(3)求线段,,之间的数量关系,并说明理由.BC PD PE =BF AC BC BF PD PE BC 30BAC ∠=︒2PD PE -=AB ABC △90ACB ∠=︒AC BC =AB DE CD ⊥DE CD =CE AB BE AC =10CD =AD CD CF =ABE ∠AC CD BE绣湖中学八年级数学期中教学质量检测卷参考答案一、选择题(本大题有10小题,每小题3分,共30分)12345678910DBCDABDCBA二、填空题(本大题有6小题,每小题3分,共18分)11.12.1213.314.515.54°或84°或108°16.三、解答题(本大题有8小题,第17~21题每题8分,第22,23题每题10分,第24题12分,共72分)17.(8分)解:解不等式,得:,解不等式,得:,则不等式组的解集为,在数轴上表示如图所示:18.(8分)解:解:(1)如图,为所作:(2),,;(3)点P 关于直线l 的对称点的坐标为故答案为4,1;5,4;3,3;,n .19.(1)证明:∵,∴,在和中,0a >28925274x x +>-1x >42xx +<4x <14x <<111A B C △()14,1A ()15,4B ()13,3C 1P ()2,m n -2m -+AC DF ∥ACB DFE ∠=∠ABC △DEF △,∴,(4分)(2)∵,∴,即,∴,∵,,∴,∴,∴.(4分)20.解:(1)在中,由勾股定理得:;(3分)(2)存在,理由如下:如图,当点P 恰好运动到平分线上时,点P 到直线的距离与点P 到点C 的距离相等,由已知可得:,,连接,过点P 作于E ,如图所示:则,在与中,,∴,∴,∴,在中,由勾股定理得:,即,B E ACB DFE AB DE ∠=∠∠=∠=⎧⎪⎨⎪⎩()AAS D ABC EF ≌△△D ABC EF ≌△△BC EF =BE EC EC CF +=+BF CF =13BF =7EC =6BE CF BF EC +=-=3BE CF ==3710BC BE EC =+=+=Rt ABC△()8cm BC ===BAC ∠AB 2cm BP t =()82cm PC BC BP t =-=-AP PE AB ⊥()82cm PE PC t ==-AEP △ACP △90PAE PAC AEP C AP AP ∠=∠∠=∠=︒=⎧⎪⎨⎪⎩()AAS AEP ACP ≌△△6cm AE AC ==()1064cm BE AB AE =-=-=Rt BEP △222BP BE PE =+()()2222482t t =+-解得:,即当t的值为时,点P 到边的距离与点P 到点C 的距离相等.(7分)21.解:(1)着火点C 受洒水影响,理由如下:如图1,过点C 作,垂足为D ,图1∵,,,∴,,∴,∴是直角三角形,∴,所以,∵,∴着火点C 受洒水影响.(4分)(2)着火点C 能被扑灭:理由如下:如图2,以点C 为圆心,为半径作圆,交于点E ,F .图2则,∵,∴,在中,52t =52AB CD AB ⊥300m AC =400m BC =500m AB =222500AC BC +=22500AB =222AC BC AB +=ABC △1212AC BC AB CD ⨯⨯=⨯()300400240m 500AC BC CD AB ⋅⨯===240260<260m AB 260CE CF ==CD AB ⊥12ED DF EF ==Rt CDE △,∴,∴,∵,∴着火点C 能被扑灭.(4分)21.解:(1)设A 种包装每箱价格是m 元,B 种包装每箱价格是n 元,根据题意得:,解得:,∴A 种包装每箱价格是30元,B 种包装每箱价格是20元:(4分)(2)设购买A 种包装x 箱,总费用为y 元,则购买B 种包装箱,∵A 种的数量至少比B 种的数量多5箱,又不超过B 种的2倍,∴,解得,∵x 为整数,∴当,19或20∴当时,此时,费用为(元):当时,此时,费用为(元);当时,此时,费用为(元):∵∴购买A 种包装18箱,购买B 种包装12箱,才能使总费用最少,最少费用为780元.(6分)23.(1)证明:如图1所示,连接,图1∵,点P 是的中点,、,∴,()100m ED ===2200m EF ED ==()2001020m ÷=2013>9639058310m n m n +=+=⎧⎨⎩3020m n ==⎧⎨⎩()30x -()()305230x x x x --≥≤-⎧⎪⎨⎪⎩17.520x ≤≤18x =18x =30301812x -=-=30182012780⨯+⨯=19x =30301911x -=-=30192011790⨯+⨯=20x =30302010x -=-=30202010800⨯+⨯=780790800<<AP AB AC =BC PD AB ⊥PE AC ⊥ABP APC S S =△△即,∴;(3分)(2)解:,理由如下,如图2所示,连接,图2∵,、,为腰上的高,∴,∴,∴,(4分)(3)解:如图3所示,过点B 作于点F ,连接,图3∵,、,,∴,,∴,若,则.(3分)24.(1)解:过点C 作于M ,如图1,1122AB DP AC PE ⋅=⋅PD PE =PD PE BF +=AP AB AC =PD AB ⊥PE AC ⊥BF AC ABP APC ABC S S S +=△△△111222AB DP AC PE AC BF ⋅=⋅=⋅PD PE BF +=BF AC ⊥AP AB AC =PD AB ⊥PE AC ⊥BF AC ⊥ABC ABP APC S S S =-△△△111222AC BF AB PD AC PE ⋅=⋅-⋅2BF PD PE =-=30BAC ∠=︒24AB BF ==CM AB ⊥∵,,,∴,∵,∴,∴,∴;(4分)(2)证明:过点C 作于M ,过E 作于N ,如图2,则,∴,∵,∴,∴,又∵,∴,∴,,∴,∵,∴,由(1)知,,∴,∴,∴是等腰直角三角形,∴;(4分)(3)解:,理由如下:过点C 作于M ,过E 作于N ,如图3,由(2)可知:,,∴,在中,,,90ACB ∠=︒AC BC=AC=16AB ==CM AB ⊥182CM AM BM AB ====6DM ===862AD AM DM =-=-=CM AB ⊥EN AB ⊥90CMD DNE ∠=∠=︒90MCD MDC ∠+∠=︒DE CD ⊥90MDC NDE ∠+∠=︒MCD NDE ∠=∠CD DE =()AAS CDM DEN ≌△△CM DN =DM EN =DM MN CM +=90ACB ∠=︒AC BC=45ABC ∠=︒12CM AM BM AB ===BM MN BN CM DM MN =+==+DM BN EN ==BNE △45ABE ∠=︒2222AC BE CD +=CM AB ⊥EN AB ⊥EN BN DM ==2222222BE EN BN EN DM =+==2212DM BE =Rt ACM △CM AM =222AC CM AM =+在中,,,∴,∴.(4分)图1 图2 图3Rt CDM △CM AM =222CD CM DM =+2221122CD AC BE =+2222AC BE CD +=。

浙江省杭州市2017-2018学年八年级上学期期中考试数学试题(含解析)

浙江省杭州市2017-2018学年八年级上学期期中考试数学试题(含解析)

2.下列判断正确的是(
) . B.斜边相等的两个等腰直角三角形全等 D.两个锐角对应相等的两个直角三角形全等
A.有一直角边相等的两个直角三角形全等 C.腰相等的两个等腰三角形全等 【答案】 B
【解析】 A 选项应为一直角边和斜边相等的直角三角形全等;
C 选项应有一角相等才能使两个三角形全等;
D 选项还缺少边的对应关系才能使三个三角形全等.
10.已知 △ ABC 中, AC BC , C 90 ,如图,将 △ ABC 进行折叠,使点 A 落在线段 BC 上, (包括点 B 和点 C ) ,设点 A 的落点为 D ,折痕为 EF ,当 △DEF 是等腰三角形时,点 D 可能的位 置共有( ) .
A F E C
A. 2 种 【答案】B 【解析】依题意将 ∥ ABC 折叠,使 A 落在 BC 上,落点为 D ,使 ∥ DEF 为等腰三角形, 点 D 可能的位置共有: ①点 A 与 D 点重合时, ∵ AC BC , AE DE , ∴ EF DE .
C.
5 x5 2
5 D. ≤ x ≤ 5 2
10 5, 2
又∵三角两边之和大于第三边, 有 2 x 10 2 x , ∴x ∴
10 5 , 4 2
5 x5. 2
x 1 8.已知不等式组 只有一个整数解,则 a 的取值范围一定只能为( x a
) . D. 0 a 1
故选 B .
3.已知 △ ABC 中, A A. 1:1: 2 【答案】B
1 1 B C ,则它的三条边之比为( 2 3
B. 1: 3 : 2 C. 1: 2 : 3
) . D. 1: 4 :1
1 1 【解析】已知 A B C , 2 3

最新2017-2018年八年级上期中数学试卷含解析

最新2017-2018年八年级上期中数学试卷含解析

八年级(上)期中数学试卷一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.82.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a44.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x35.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的长度为y(cm)与燃烧时间x(小时)的函数关系用图象表示为下图中的()A.B.C.D.二、仔细填一填(每小题2分,共20分)6.两个单项式a5b2m与﹣a n b4是同类项,则m=,n=.7.2a+3(b﹣c)=,a3•a4÷a5=.8.﹣(2x2y3)2=;4x2﹣(﹣2xy)=.9.因式分解:a2﹣3a=.10.计算﹣6x(x﹣3y)=;(x﹣1)(x+1)﹣x2=.11.函数的自变量x的取值范围是.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为.当载重2kg时,弹簧长度为cm.13.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来.三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了分钟(2)乌龟在这次赛跑中的平均速度为米/分.(3)比先达到终点,你有何感想.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=;②x2﹣2y﹣8=.八年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共15分)1.(﹣2)3的值为()A.﹣6 B.6 C.﹣8 D.8【考点】有理数的乘方.【分析】根据有理数乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.【解答】解:(﹣2)3=﹣8,故选C.2.单项式﹣4πr2的系数是()A.4 B.﹣4 C.4πD.﹣4π【考点】单项式.【分析】根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.【解答】解:由单项式系数的定义,单项式﹣4πr2的系数是﹣4π.故选D.3.下列运算正确的是()A.a4•a5=a20B.x8÷x2=x4C.(a3)2=a9D.(3a2)2=9a4【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接利用同底数幂的乘除法运算法则以及结合积的乘方运算法则计算得出答案.【解答】解:A、a4•a5=a9,故此选项计算错误,不合题意;B、x8÷x2=x6,故此选项计算错误,不合题意;C、(a3)2=a6,故此选项计算错误,不合题意;D、(3a2)2=9a4,正确,符合题意.故选:D.4.下列运算中结果正确的是()A.3a+2b=5ab B.﹣4xy+2xy=﹣2xyC.3y2﹣2y2=1 D.3x2+2x=5x3【考点】合并同类项.【分析】直接利用合并同类项法则分别判断得出答案.【解答】解:A、3a+2b,无法合并,故此选项错误;B、﹣4xy+2xy=﹣2xy,正确;C 、3y 2﹣2y 2=y 2,故此选项错误;D 、3x 2+2x ,无法合并,故此选项错误;故选:B .5.一根蜡烛长20cm ,点燃后每小时燃烧5cm ,燃烧时剩下的长度为y (cm )与燃烧时间x (小时)的函数关系用图象表示为下图中的( )A .B .C .D .【考点】一次函数的应用;一次函数的图象.【分析】根据实际情况即可解答.【解答】解:蜡烛剩下的长度随时间增长而缩短,根据实际意义不可能是D ,更不可能是A 、C .故选B .二、仔细填一填(每小题2分,共20分)6.两个单项式a 5b 2m 与﹣a n b 4是同类项,则m= 2 ,n= 5 .【考点】同类项.【分析】根据同类项的定义直接可得到m、n的值.【解答】解:∵单项式a5b2m与﹣a n b4是同类项,∴2m=4,n=5.即m=2,n=5.故答案为:2;5.7.2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a7.【考点】同底数幂的除法;同底数幂的乘法.【分析】直接利用同底数幂的乘除法运算法则以及结合去括号法则计算得出答案.【解答】解:2a+3(b﹣c)=2a+3b﹣3c,a3•a4÷a5=a12÷a5=a7.故答案为:2a+3b﹣3c,a7.8.﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.【考点】幂的乘方与积的乘方.【分析】直接利用积的乘方运算法则求出答案.【解答】解:﹣(2x2y3)2=﹣4x4y6;4x2﹣(﹣2xy)=4x2+2xy.故答案为:﹣4x4y6;4x2+2xy.9.因式分解:a2﹣3a=a(a﹣3).【考点】因式分解﹣提公因式法.【分析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).10.计算﹣6x(x﹣3y)=﹣6x2+18xy;(x﹣1)(x+1)﹣x2=﹣1.【考点】平方差公式;单项式乘多项式.【分析】根据单项式乘以多项式法则求出即可;根据平方差公式展开,再合并同类项即可.【解答】解:﹣6x(x﹣3y)=﹣6x2+18xy,(x﹣1)(x+1)﹣x2=x2﹣1﹣x2=﹣1,故答案为:﹣6x2+18xy,﹣1.11.函数的自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.弹簧原长3cm,每加重1kg弹簧伸长0.5cm,写出弹簧长度L(m)与载重m (kg)的函数关系式为L=3+0.5m.当载重2kg时,弹簧长度为4cm.【考点】函数关系式.【分析】根据题意列出函数关系式,然后将m=2代入函数关系式即可求出弹簧长度.【解答】解:由题意可知:L=3+0.5m当m=2时,L=4,故答案为:L=3+0.5m;413.如果正比例函数的图象经过点(1,2),那么这个正比例函数的解析式为y=2x.【考点】待定系数法求正比例函数解析式.【分析】运用待定系数法求解析式.【解答】解:设此直线的解析式是y=kx,把(1,2)代入得:k=2,即直线的解析式是:y=2x.14.如图,直线y=5x+10与x轴、y轴交于点A,B,则△AOB的面积为10.【考点】一次函数图象上点的坐标特征.【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,从而求得OA、OB 的长,然后根据三角形面积公式即可求得△AOB的面积.【解答】解:∵直线y=5x+10交x轴于点A,交y轴于点B,∴令y=0,则x=﹣2;令x=0,则y=10;∴A(﹣2,0),B(0,10),∴OA=2,OB=10,∴△AOB的面积=×2×10=10.故答案为10.15.观察下列各式1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…把你猜想到的规律用只含一个字母的等式表示出来(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).【考点】规律型:数字的变化类.【分析】根据给出的格式可得出:两个相邻的奇数相乘等于这两个奇数中间的偶数的平方减去1,根据此列出等式表示即可.【解答】解:∵1×3=3=22﹣1,3×5=15=42﹣1,5×7=35=62﹣1,11×13=143=122﹣1…,∴规律为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).故答案为:(n﹣1)(n+1)=n2﹣1(n≥2,且是正整数).三、耐心算一算.16.计算下列各题(1)2(x﹣3x2+1)﹣3(2x2﹣2)(2)(﹣a2)3+(﹣a3)2﹣a2•a4(3)(x+3)2﹣(x+2)(x﹣1)(4)(﹣8x3y2+12x2y﹣4x2)÷(﹣2x)2(5)用简便方法计算:2008×2006﹣20072.【考点】整式的混合运算.【分析】(1)原式去括号合并即可得到结果;(2)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(3)原式利用完全平方公式,以及多项式乘以多项式法则计算,去括号合并即可得到结果;(4)原式利用积的乘方运算法则变形,再利用多项式除以单项式法则计算即可得到结果;(5)原式变形后,利用平方差公式计算即可得到结果.【解答】解:(1)原式=2x﹣6x2+2﹣6x2+6=﹣12x2+2x+8;(2)原式=﹣a6+a6﹣a6=﹣a6;(3)原式=x2+6x+9﹣x2﹣x+2=5x+11;(4)原式=(﹣8x3y2+12x2y﹣4x2)÷4x2=﹣2xy2+3y﹣1;(5)原式=×﹣20072=20072﹣1﹣20072=﹣1.17.分解因式(1)25m2﹣n2(2)ax2﹣2axy+ay2(3)x3﹣9x.【考点】提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=(5m+n)(5m﹣n);(2)原式=a(x2﹣2xy+y2)=a(x﹣y)2;(3)原式=x(x2﹣9)=x(x+3)(x﹣3).18.先化简(2x﹣1)2﹣(3x+1)(3x﹣1)+5(x﹣1),再选取一个你喜欢的数代入求值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式计算,去括号合并得到最简结果,把x=0代入计算即可求出值.【解答】解:原式=4x2﹣4x+1﹣9x2+1+5x﹣5=﹣5x2+x﹣3,当x=0时,原式=﹣3.四、函数图象的认识.(1小题6分,2小题8分,共14分)19.“龟兔赛跑”是同学们熟悉的寓言故事,图中表示路程S(米)与时间t(分)之间的关系,那么可以知道:(1)赛跑中,免子共睡了40分钟(2)乌龟在这次赛跑中的平均速度为10米/分.(3)乌龟比免子先达到终点,你有何感想做事不能骄傲.【考点】函数的图象.【分析】(1)时间在增多,路程没有变化时,说明兔子在睡觉,时间为50﹣10;(2)平均速度=总路程÷总时间;(3)根据图象即可得到结论.【解答】解:(1)50﹣10=40分钟;故答案为:40;(2)500÷50=10米/分钟.故答案为:10.(3)乌龟比免子先达到终点,你有何感想:做事不能骄傲.故答案为:乌龟,免子,做事不能骄傲.20.如图所示的图象反映的过程是:小强星期天从家跑步去体育场,在那里锻炼了一会儿后又走到文具店去买笔,然后步行回家,其中x表示时间,y表示小强离家的距离,根据图象回答下列问题.(1)体育场离小强家有多远?小强从家到体育场用了多长时间?(2)体育场距文具店多远?(3)小强在文具店逗留了多长时间?(4)小强从文具店回家的平均速度是多少?【考点】函数的图象.【分析】(1)根据观察函数图象的纵坐标,可得距离,观察函数图象的横坐标,可得时间;(2)根据观察函数图象的横坐标,可得体育场与文具店的距离;(3)观察函数图象的横坐标,可得在文具店停留的时间;【解答】解:(1)由纵坐标看出体育场离陈欢家2.5千米,由横坐标看出小刚在体育场锻炼了15分钟;(2)由纵坐标看出体育场离文具店3.5﹣2.5=1(千米);(3)由横坐标看出小刚在文具店停留55﹣35=20(分);(4)小强从文具店回家的平均速度是3.5÷=(千米/分).五、(共10分)21.当m为何值时函数y=(m+2)是正比例函数.【考点】正比例函数的定义.【分析】直接利用正比例函数的定义分析得出即可.【解答】解:根据题意,得:,由①,得:m=2或m=﹣2,由②,得:m≠﹣2,∴m=2,即当m=2时函数y=(m+2)是正比例函数.22.已知直线y=(3m﹣1)x+m﹣1,当m为何值时(1)与y轴相交于(0,3)(2)与x轴相交于(2,0)(3)图象经过一、三、四象限?【考点】一次函数图象与系数的关系.【分析】(1)把(0,3)代入直线解析式,求出m的值即可;(2)(2,0)代入直线解析式,求出m的值即可;(3)根据函数的图象的位置列出关于m的不等式,求出m的取值范围即可.【解答】解:(1)∵直线与y轴相交于点(0,3),∴m﹣1=3,解得m=4;(2)∵直线x轴相交于点(2,0),∴2(3m﹣1)+m﹣1=0,解得m=;(3)∵直线y=(3m﹣1)x+m﹣1图象经过一、三、四象限,∴,解得:<m<1.六、解答题(共1小题,满分6分)23.一汽车的速度是每小时60千米,一次加满油可加40升,每小时耗油5升,t小时后行程S千米.(1)写出一次加满油后所行路程S与时间t的函数关系式.(2)求出自变量的取值范围.(3)画出这个函数的图象.【考点】一次函数的应用.【分析】(1)根据题意可以得到一次加满油后所行路程S与时间t的函数关系式;(2)根据一次加满油可加40升,每小时耗油5升,可以得到t的取值范围;(3)根据(1)中的函数解析式和(2)中自变量的取值范围,可以画出相应的函数图象.【解答】解:(1)由题意可得,路程S与时间t的函数关系式为:S=60t;(2)∵一次加满油可加40升,每小时耗油5升,∴5t≤40,得t≤8,∴自变量的取值范围是:0≤t≤8;(3)当t=0时,S=0;当t=1时,S=60,故这个函数的图象如右图所示.七、(1小题4分,2小题7分,共11分)24.已知直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),则点P(﹣2,4)是否在直线y=kx﹣6上?【考点】两条直线相交或平行问题.【分析】直接利用图象上点的坐标性质得出m的值,进而得出k的值,进而判断点P(﹣2,4)是否在直线y=kx﹣6上.【解答】解:∵直线y=kx﹣6与直线y=﹣2x都经过点(m,﹣4),∴﹣4=﹣2m,解得:m=2,故﹣4=2k﹣6,解得:k=1,故y=x﹣6,当x=﹣2时,y=﹣2﹣6=﹣8,故点P(﹣2,4)不在直线y=kx﹣6上.25.一次函数的图象经过点A(﹣6,4)B(3,0)(1)求这个函数的解析式.(2)画出这个函数的图象.(3)若该直线经过点(9,m),求m的值.(4)求△AOB的面积.【考点】待定系数法求一次函数解析式;一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)利用待定系数法把点A(﹣6,4)B(3,0)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(2)根据题意作出图象即可;(3)把(9,m)代入y=2x﹣2,即可求得m的值;(4)根据三角形的面积公式即可得到结论.【解答】解:(1)设一次函数为:y=kx+b,∵一次函数的图象经过点A(﹣6,4)B(3,0),∴,解得:∴这个一次函数的表达式为y=﹣x+;(2)图象如图所示,(3)把(9,m)代入y=﹣x+,得m=﹣;=×3×4=6.(4)S△AOB八、阅读下面材料再填空.26.x2+(p+q)x+pq型式子的因式分解∵x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)(加法结合律)=x(x+p)+q(x+p)=(x+p)(x+q)∴我们得到x2+(p+q)x+pq=(x+p)(x+q)①利用①式可以将某些二次项系数为1的二次三项式分解因式.例把x2+3x+2分解因式分析:x2+3x+2中的二次项系数为1,常数项2=1×2,一次项系数3=1+2,这是一个x2+(p+q)x+pq型式子.∴解:x2+3x+2=(x+1)(x+2)请仿照上面的方法将下列多项式分解因式:①x2+7x+10=(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2).【考点】因式分解﹣十字相乘法等.【分析】根据x2+(p+q)x+pq=(x+p)(x+q)容易得出答案.【解答】解:①x2+7x+10=(x+2)(x+5);故答案为:(x+2)(x+5);②x2﹣2y﹣8=(y﹣4)(y+2);故答案为:(y﹣4)(y+2).2017年5月13日。

浙江省义乌市绣湖中学2017-2018学年七年级数学上学期期中试题

浙江省义乌市绣湖中学2017-2018学年七年级数学上学期期中试题

绣湖中学七年级数学期中教学质量检测卷(亲爱的同学,你好!升入初中已经大半学期了,经过半学期的学习,感受到数学的魅力了吗?这份试卷满分100分,请将所有答案写在答题卷上,它将会记录你的自信、沉着、智慧和收获,相信你一定行!) 一、精心选一选(每题3分,共30分)可减排二氧化碳3120000 吨,把数3120000用科学记数法表示为 ( ) A 、3.12×106B 、3.12×l05 C、31.2×104 D 、0.312×1073.在3.14,,π,2270.2020020002……(每两个2之间依次多一个0),这些数中,无理数的个数为( ) A .1个 B .2个 C .3个 D .4个4. 下列说法错误的是( )A .81的平方根是3±B . 两个无理数的和一定是无理数C .(-1)2010是最小的正整数D .实数与数轴上的点一一对应 5.若2x 2m y 3与-5xy 2n 是同类项,则|m -n |的值是( )A .0B .1C .7D .-1 6.下列说法中正确的个数是( ) ①1是单项式; ②单项式2ab-的系数是﹣1,次数是2; ③多项式12-+x x 的常数项是1; ④多项式222y xy x ++的次数是2.A .1个B .2个C .3个D .4个7. 已知 |a|=-a , 且a < ,若数轴上的四点M ,N ,P ,Q 中的一个能表示数a ,(如图),则这个点是 ( )A .MB .NC .PD .Q8.已知甲、乙为两把不同刻度的直尺,且同一把直尺上的刻度之间距离相等,耀轩将此两把直尺紧贴,并将两直尺上的刻度0彼此对准后,发现甲尺的刻度36会对准乙尺的刻度48,如图1所示.若今将甲尺向右平移且平移过程中两把直尺维持紧贴,使得甲尺的刻度0会对准乙尺的刻度4,如图2所示,则此时甲尺的刻度21会对准乙尺的哪一个刻度?( )a1A.24B.28C.31D.329. 用10米长的铝合金做成一个长方形的窗框(如图),设长方形窗框的横条长度为x 米,则长方形窗框的面积为( )A .)10(x x -平方米B .)310(x x -平方米C .)2310(x x -平方米 D . )235(x x -平方米 10.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利 润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯 利润为( )A .562.5元B .875元C .550元D .750元二、细心填一填(每小题3分,共18分) 11.9 = .12. 多项式3x 2+x+25的次数是 .13.若代数式4y 2-2y+5的值是7,则2y 2-y+1的值是 14.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿 正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针 方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相 遇在边 上.15. 材料:一般地,n 个相同因数a 相乘:记为n a .如823=,此时,3叫做以2为底的8 的对数,记为8log 2(即38log 2=).那么, =+81log 31)16(log 322 .16.已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到 图①、图②,那么,图①中阴影部分的周长与图②中阴影部分的周长的差是_______(用 含a 的代数式表示). 三、认真答一答(共52分) 17. 解方程(每小题3分,共6分)(1)4122--=x x(2)133222x x -=+18.先化简,再求值(本题6分)4x 2y-3xy 2+3(xy-2x 2y)-2(3xy-3xy 2)其中x=43,y= -119.(本题6分)/m 3).(1)某用户用水10立方米,共交水费23元,求a 的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?20. (本题6分)我们自从有了用字母表示数,发现表达有关的数和数量关系更加的简洁明了,从而更助于我们发现更多有趣的结论,请你按要求试一试: (1)用代数式表示: ①a 与b 的差的平方;②a 与b 两数平方和与a ,b 两数积的2倍的差. (2)当3,2a b ==-时,求第(1)题中①②所列的代数式的值. (3)由第(2)题的结果,你发现了什么等式?(4)利用你发现的结论,求:20142-4028×2013+20132的值.21.(本题8分)做大小两个长方体纸盒,尺寸如图(单位:cm )(1)用a 、b 、c 的代数式表示做这两个纸盒共需用料多少cm 2。

2017-2018学年度第一学期期中八年级数学试卷及答案

2017-2018学年度第一学期期中八年级数学试卷及答案

2017-2018学年度第一学期八年级期中考试数学试题参考答案(人教版)1-6 A A B B C D 7-12 C D B A C B 13-14 A B15.(2,4)16.30. 17.SSS 18.140°;719.解:∵∠2是△ADB的一个外角,∴∠2=∠1+∠B,∵∠1=∠B,∴∠2=2∠1,∵∠2=∠C,∴∠C=2∠1,∴∠BAC=180°-3∠1∵∠BAC=63°,∴∠1=39°,∴∠CAD=24°.20.解:(1)点A1(-2,1.5)变换为(5,1.5),A1(-2,1.5)不是不动点;A2(1.5,0)变换为(1.5,0),A2(1.5,0)是不动点;(2)A1(a,-3)变换为(3-a,-3),由不动点,得a=3-a.解得a=1.5.21.解:上面证明过程不正确;错在第一步.正确过程如下:在△BEC中,∵BE=CE∴∠EBC=∠ECB又∵∠ABE=∠ACE∴∠ABC=∠ACB∴AB=AC.在△AEB和△AEC中,AE=AE,BE=CE,AB=AC,∴△AEB≌△AEC(SSS)∴∠BAE=∠CAE.22.解:设这个外角的度数是x°,则(5-2)×180-(180-x)+x=600,解得x=120.故这个外角的度数是120°.23.解:如图1所示:从A到B的路径AMNB最短;【思考】如图2所示:从A到B的路径AMENFB最短;【进一步的思考】如图3所示:从A到B的路径AMNGHFEB最短;【拓展】如图3所示:从A到B的路径AMNEFB最短.24.(1)证明:如图1中,在l上截取F A=DB,连接CD、CF.∵△ABC为等腰直角三角形,∠ACB=90°,BD⊥l,∴AC=BC,∠BDA=90°,∴∠CBD+∠CAD=360°-∠BDA-∠ACB=180°,∵∠CAF+∠CAD=180°,∴∠CBD=∠CAF,∴△CBD≌△CAF(SAS),∴CD=CF,∵CE⊥l,∴DE=EF=12DF=12(DA+F A)=12(DA+DB),∴DA+DB=2DE,图2中有结论:DA-DB=2DE,图3中有结论:DB-DA=2DE.25. 解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB-BN=12-2t,∵三角形△AMN是等边三角形,∴t=12-2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∵CM=y-12,NB=36-2y,∴y-12=36-2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.。

浙江省金华市义乌市绣湖中学教育集团2022-2023学年九年级上学期期中数学试题

浙江省金华市义乌市绣湖中学教育集团2022-2023学年九年级上学期期中数学试题

浙江省金华市义乌市绣湖中学教育集团2022-2023学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________43OG333917.已知二次函数224y x x m =-+的图象经过点(3,0)A . (1)求m 的值:(2)自变量x 在什么范围内时,y 随x 的增大而增大?18.如图,AB BC 、是O e 的两条弦,且AB BC ⊥,OD AB ⊥,OE BC ⊥,垂足分别为D 、E ,AB BC =.(1)求证:四边形DBEO 是正方形; (2)若2AB =,求O e 的半径.19.“勤拼好学、刚正勇为、诚信包容”的义乌精神由世世代代义乌人民在生产生活之中凝练而成.现将质地大小完全相同,上面依次标有“义”“乌”“精”“神”字样的四个彩球放入同一个不透明的袋子.(1)小伊在袋子中随机摸出一个彩球,摸中“义”这个彩球的概率为 ;(2)若小伊在袋子中随机摸出一个彩球不放回,再摸出一个彩球.请用树状图或者列表法分析可能出现的结果,并求出两次摸球能拼出“义乌”的概率是多少?20.如图在6×5的正方形网格中,每一个正方形的顶点都称为格点,ABC V 的三个顶点都是格点.请按要求完成下列作图.(1)在图1网格中作格点三角形DEF ,使DEF V 与ABC V 相似,且相似比不等于1; (2)如图2,将ABC V 绕点B 逆时针旋转90︒得到ABC '△()B B '点对应点,画出A BC ''△. 21.某商店购进了600个冬奥纪念品,进价每个6元,原计划以每个10元的价格每天销售200个,三天可以售完.实际销售中,销售价格与销售数量都有变化,市场调研显示,该产品每降低1元,可多售出50个,设第二天的销售单价降低x 元(04x <<),这批旅游纪念品三天的销售总利润为y 元,三天的销售情况如表:请解决以下问题:。

浙江省金华市义乌市绣湖中学2019-2020学年八年级上学期期中数学试卷 (有解析)

浙江省金华市义乌市绣湖中学2019-2020学年八年级上学期期中数学试卷 (有解析)

浙江省金华市义乌市绣湖中学2019-2020学年八年级上学期期中数学试卷一、选择题(本大题共10小题,共40.0分)1.在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.2.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A. 1B. 2C. 3D. 83.已知在某超市内购物总金额超过190元时,购物总金额有打八折的优惠,小李带200元到该超市买棒棒糖.若棒棒糖每根9元,则他最多可以买棒棒糖()A. 22根B. 23根C. 27根D. 28根4.不等式组{2x+13−3x+22>1,3−x≥2的解集在数轴上表示正确的是().A. B.C. D.5.数学活动课上,小明将一副三角板按图中方式叠放,则∠α等于()A. 30°B. 45°C. 60°D. 75°6.等腰三角形一腰上的高于另一腰的夹角为50°,那么这个三角形的顶角为()A. 40°B. 100°C. 140°D.40°或140°7.如图,在△ABC中,E、F分别是AD、CE边的中点,且S△BEF=3cm2,则S△ABC为()A. 6cm2B. 8cm2C. 10cm2D. 12cm28.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A. 有一个锐角小于45°B. 每一个锐角都小于45°C. 有一个锐角大于45°D. 每一个锐角都大于45°9.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,图中的等腰三角形有()。

A. 1个B. 2个C. 3个D. 4个10.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=8,BE=2.则AB2−AC2的值为()A. 4B. 6C. 10D. 16二、填空题(本大题共6小题,共30.0分)11.在数学课上,老师要求同学们利用一副三角板画出两条平行线.小明的画法如下:步骤一:运用三角板一边任意画一条直线l;步骤二:按如图方式摆放三角板;步骤三:沿三角板的直角边画出直线AB、CD;这样,得到AB//CD.小明这样画图的依据是______.12.“x的2倍与3的差不大于8”列出的不等式是:________________.≤x< 13.15.对非负实数x“四舍五入”到个位的值记为<x>,即已知n为正整数,如果n−12n+1,那么<x>=n.例如:<0>=<0.48>=0,<0.64>=< 1.493>=1,2x+1.6的非负实数x的<2>=2,< 3.5>=< 4.12>=4,…则满足方程<x>=12值为____.14.若等腰三角形的两个内角的和是100°,则顶角的度数是________________.15.如图,由四个直角边分别为3和4全等的直角三角形拼成“赵爽弦图”,其中阴影部分面积为_______.16.如图,Rt△ABC中,BC=AC=2,D是斜边AB上一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D平行于Rt△ABC的直角边时,AD的长为___________。

浙江省义乌市2017-2018学年八年级数学上学期期中试题 新人教版

浙江省义乌市2017-2018学年八年级数学上学期期中试题 新人教版

八年级数学学科期中教学质量检测卷一.选择题(每小题4分共40分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是(▲)A. B. C. D.2.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是(▲)A.4 B.5 C.6 D.93.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000 元.若每个篮球80元,每个足球50元,则篮球最多可购买(▲)A.16个 B.17个 C.33个 D.34个4.不等式组的解集表示在数轴上正确的是(▲)A. B. C. D.5.一副三角板按如图所示叠放在一起,则图中∠α的度数是(▲)A.60° B.75°C.90° D.105°6.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为(▲)A.50° B.130° C.50°或130° D.55°或130°7.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=8cm2,则S阴影面积等于(▲) A.4cm2 B.3cm2 C.2cm2 D.1cm28、用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中(▲)A.有一个内角大于60° B.有一个内角小于60°C.每一个内角都大于60° D.每一个内角都小于60°9.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为(▲)A.4 B.5 C.6 D.710.动手操作:在长方形形纸片ABCD中,AB=6,AD=10.如图所示,折叠纸片,使点A之移动.若限定点P ,Q 分别在AB 、AD 边上移动,则点A′在BC 边上可移动的最大 距离为( ▲ )第5题 第7题 第9题 第10题A .4cmB .6cmC .8cmD .10cm二.填空题(每小题5分共30分)11.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是 ▲ .12、某公司打算最多用1 200元印刷广告单,已知制版费50元,每印一张广告单还需支付0、3元的印刷费,则该公司可印制的广告单数量x 张满足的不等式为 ▲ .13.运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x 的取值范围是 ▲ .14、我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的“内角正度值”为45°,那么该等腰三角形的顶角等于 ▲ .15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD 的边长为14,正方形IJKL 的边长为2,且IJ ∥AB ,则正方形EFGH 的边长为 ▲ . 16.如图,在Rt △ABC 中,∠A=90°,AB=AC ,BC=+1,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠∠B ,使点B 的对应点B′始终落在边AC 上,若△MB ′C 为直角三角形,则BM 的长为 ▲ .第11题第15题 第16题三.解答题(17-20每题8分,21题10分,22-23每题12分,24题14分,共80分)17.(1)解不等式3x +1<-2 (2)解不等式组:⎪⎩⎪⎨⎧<----≥+133425)2(563x x x x18.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.19.(1)等腰三角形一腰上的中线将这个等腰三角形的周长分成15cm和6cm两部分.求等腰三角形的底边长.(2)已知等腰三角形中,有一个角比另一个角的2倍少20°,求顶角的度数.20.我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.21.我校快乐走班数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:.(填“能“或“不能”)(2)设AA1=A1A2=A2A3=1.则θ= 度;活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(3)若只能摆放5根小棒,求θ的范围.22.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.23.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P 与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP= °;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.24.定义:四条边都相等且四个角都是直角的四边形叫做正方形。

【最新】2017-2018学年浙教版八年级数学写期中测试卷及答案

【最新】2017-2018学年浙教版八年级数学写期中测试卷及答案

2017-2018学年八年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.化简的结果是()A.B.±C.2 D.±22.下列三条线段能构成直角三角形的是()A.4,5,6 B.1,2,3 C.3,6,9 D.6,8,103.下列关于正比例函数y=3x的说法中,正确的是()A.当x=3时,y=1B.它的图象是一条过原点的直线C.y随x的增大而减小D.它的图象经过第二、四象限4.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分对角5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A.B.C.D.7.在?ABCD中,BC边上的高为AE=4,AB=5,EC=2,则?ABCD的周长等于()A.12 B.16 C.16或24 D.208.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x﹣2 C.y=2(x﹣2)D.y=2(x+2)9.如图是用火柴棍摆成的边长分别是1、2、3根火柴棍时的正方形,当边长为6根火柴棍时,摆出的正方形所用的火柴棍的根数为()A.60 B.84 C.96 D.11210.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100二、填空题(每小题4分,共24分)11.当x<1时,=.12.顺次连接矩形四条边的中点,所得到的四边形一定是形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是度.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是.15.如图所示,函数y1=|x|和y2=kx+b的图象相交于(﹣1,1),(2,2)两点.当y1>y2时,x的取值范围是.16.如图,直线AB的解析式为y=2x+5,与y轴交于点A,与x轴交于点B,点P 为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.三、解答题(七大题,共66分)17.计算:(1)(2)()()﹣.18.若a,b 为实数,a=+3,求.19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.20.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)152025…y (件)252015…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.21.如图,在△ABC中,D为BC上一点,且AB=5,BD=3,AD=4,且△ABC的周长为18,求AC的长和△ABC的面积.22.在矩形ABCD中,点E,点F为对角线BD上两点,DE=EF=FB.(1)求证:四边形AFCE是平行四边形;(2)若AE⊥BD,AF=2,AB=4,求BF的长度.23.已知在平面直角坐标系中,A(a、o)、B(o、b)满足+|a﹣3|=0,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.(1)求a、b的值.(2)当P点运动时,PE的值是否发生变化?若变化,说明理由;若不变,请求PE的值.(3)若∠OPD=45°,求点D的坐标.24.小夏是个数学谜,他不仅被书中的数学知识所吸引,而且爱探究为什么有这些数学知识,在这种“研究为什么”的精神支配下,他对数学思想中的“证明”饶有兴趣!最近,他证明了平行线间距离处处相等,并用这个定理证明了直角三角形中,两条直角边的平方和等于斜边的平方!(先以直角三角形的三边向外构造正方形,这样每边的平方可看作正方形的面积,最后用了平行线间距离处处相等定理得以解决.)请大家也来试一试1)如图1,直线a∥b,A、B为a上任意两点,AC⊥b于C,BD⊥b于D,求证:AC=BD2)如图2,△ABC中,∠BAC=90°,四边形ABED、ACGF、BCIH均为正方形(四边相等,四个角都是直角),AM⊥HI交BC于N,连结AH、CE求证:①△EBC≌△ABH②正方形ABED的面积=四边形BNMH的面积③AB2+AC2=BC2.参考答案与试题解析一、选择题(每小题3分,共30分)1.化简的结果是()A.B.±C.2 D.±2【考点】73:二次根式的性质与化简.【分析】根据二次根式的性质化简,即可解答.【解答】解:=2,故选:C.2.下列三条线段能构成直角三角形的是()A.4,5,6 B.1,2,3 C.3,6,9 D.6,8,10【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.【解答】解:A、52+42≠62,故不是直角三角形,故此选项错误;B、12+22≠32,故不是直角三角形,故此选项错误;C、62+32=≠92,故不是直角三角形,故此选项错误;D、62+82=102,故是直角三角形,故此选项正确.故选D.3.下列关于正比例函数y=3x的说法中,正确的是()A.当x=3时,y=1B.它的图象是一条过原点的直线C.y随x的增大而减小D.它的图象经过第二、四象限【考点】F6:正比例函数的性质.【分析】根据正比例函数的性质对各选项进行逐一分析即可.【解答】解:A、当x=3时,y=9,故本选项错误;B、∵直线y=3x是正比例函数,∴它的图象是一条过原点的直线,故本选项正确;C、∵k=3>0,∴y随x的增大而增大,故本选项错误;D、∵直线y=3x是正比例函数,k=3>0,∴此函数的图象经过一三象限,故本选项错误.故选B.4.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直 D.对角线平分对角【考点】L1:多边形.【分析】利用特殊四边形的性质进而得出符合题意的答案.【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间【考点】2B:估算无理数的大小.【分析】先估算的范围,再进一步估算,即可解答.【解答】解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6,=0.65,∴0.6<<0.65.所以介于0.6与0.7之间.故选:C.6.直线y=ax+b经过第一、二、四象限,则直线y=bx﹣a的图象只能是图中的()A.B.C.D.【考点】F7:一次函数图象与系数的关系.【分析】根据直线y=ax+b经过第一、二、四象限确定a、b的符号,然后根据b、﹣a的符号来确定直线y=bx﹣a的图象所经过的象限,从而作出选择.【解答】解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴﹣a>0,∴直线y=bx﹣a的图象经过第一、二、三象限,故选B.7.在?ABCD中,BC边上的高为AE=4,AB=5,EC=2,则?ABCD的周长等于()A.12 B.16 C.16或24 D.20【考点】L5:平行四边形的性质.【分析】分∠BAC为锐角和钝角两种情况讨论,根据勾股定理计算得到BC的长即可.【解答】解:如图1,在直角△ABE中,AB=5,AE=4,由勾股定理得,BE=3,又EC=2,∴BC=5,∴?ABCD的周长等于20;如图2,在直角△ABE中,AB=5,AE=4,由勾股定理得,BE=3,又EC=2,不符合图形.故选:D.8.将直线y=2x向右平移2个单位所得的直线的解析式是()A.y=2x+2 B.y=2x﹣2 C.y=2(x﹣2)D.y=2(x+2)【考点】F9:一次函数图象与几何变换;F6:正比例函数的性质.【分析】根据平移性质可由已知的解析式写出新的解析式.【解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=2(x﹣2).故选C.9.如图是用火柴棍摆成的边长分别是1、2、3根火柴棍时的正方形,当边长为6根火柴棍时,摆出的正方形所用的火柴棍的根数为()A.60 B.84 C.96 D.112【考点】38:规律型:图形的变化类.【分析】通过图形中火柴棍的根数与序数n的对应关系,找到规律即可解决.【解答】解:当边长为1根火柴棍时,设摆出的正方形所用的火柴棍的根数为4=2×1×(1+1);当边长为2根火柴棍时,设摆出的正方形所用的火柴棍的根数为12=2×2×(2+1);当边长为3根火柴棍时,设摆出的正方形所用的火柴棍的根数为24=2×3×(3+1);…;故当边长为n根火柴棍时,设摆出的正方形所用的火柴棍的根数为2n(n+1).当摆成的边长为6的正方形图案,需要火柴2×6×(6+1)=84.故选:B.10.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=10,点A、B的坐标分别为(2,0)、(8,0),将△ABC沿x轴向右平移,当点C落在直线y=x ﹣5上时,线段BC扫过的面积为()A.80 B.88 C.96 D.100【考点】F9:一次函数图象与几何变换.【分析】根据题意结合勾股定理得出CA的长,进而得出平移后C点的横坐标,求出BC平移的距离,进而得出线段BC扫过的面积.【解答】解:∵点A、B的坐标分别为(2,0)、(8,0),∴AB=6,∵∠CAB=90°,BC=10,∴CA==8,∴C点纵坐标为:8,∵将△ABC沿x轴向右平移,当点C落在直线y=x﹣5上时,∴y=8时,8=x﹣5,解得:x=13,即A点向右平移13﹣2=11个单位,∴线段BC扫过的面积为:11×8=88.故选:B.二、填空题(每小题4分,共24分)11.当x<1时,=1﹣x.【考点】73:二次根式的性质与化简.【分析】利用二次根式的性质化简求出即可.【解答】解:∵x<1,∴=1﹣x.故答案为:1﹣x.12.顺次连接矩形四条边的中点,所得到的四边形一定是菱形.【考点】L9:菱形的判定;KX:三角形中位线定理;LB:矩形的性质.【分析】连接矩形对角线.利用矩形对角线相等、三角形中位线定理证得四边形EFGH是平行四边形,且EF=EH=HG=FG;然后由四条边相等的平行四边形是菱形推知四边形EFGH是菱形.【解答】解:如图E、F、G、H是矩形ABCD各边的中点.连接AC、BD.∵AC=BD(矩形的对角线相等),EF AC,HG AC,∴EF∥HG,且EF=HG=AC;同理HE∥GF,且HE=GF=BD,∴四边形EFGH是平行四边形,且EF=EH=HG=FG,∴四边形EFGH是菱形.故答案是:菱形.13.若将4根木条钉成的矩形木框变形为平行四边形形状,并使面积为矩形面积的一半,则这个平行四边形的一个最小内角是30度.【考点】L5:平行四边形的性质.平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)平行四边形ABCD的高等于矩形高的一半.构造直角三角形,过点C作AB的垂线垂足是E,依此求解即可.【解答】解:过点C作AB的垂线垂足是E,∵将四根木条钉成的矩形木框变形为平行四边形木框ABCD的形状,并使其面积为矩形木框的一半,∴只有BC=2CE才符合要求,∵sin∠CBE==,∴∠CBE=∠A=30°.故答案为:30.14.如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD沿BD折叠,使点C落在AB边的C′点,那么△ADC′的面积是6cm2.【考点】PB:翻折变换(折叠问题);KQ:勾股定理.【分析】先根据勾股定理得到AB=10cm,再根据折叠的性质得到DC=DC′,BC=BC′=6cm,则AC′=4cm,在Rt△ADC′中利用勾股定理得(8﹣x)2=x2+42,解得x=3,然后根据三角形的面积公式计算即可.【解答】解:∵∠C=90°,BC=6cm,AC=8cm,∴AB=10cm,∵将△BCD沿BD折叠,使点C落在AB边的C′点,∴△BCD≌△BC′D,,DC=DC′,BC=BC′=6cm,∴∠C=∠BC′D=90°∴AC′=AB﹣BC′=4cm,第12页(共24页)。

浙江省义乌市四校2017_2018学年八年级数学上学期第三次作业检测(1月)试题

浙江省义乌市四校2017_2018学年八年级数学上学期第三次作业检测(1月)试题

浙江省义乌市四校2017-2018学年八年级数学上学期第三次作业检测(1月)试题一、选择题(每小题3分,共30分)1.在下列长度的四根木棒中,能与4cm 、9cm 长的两根木棒钉成一个三角形的是( ) A .4cm B .5cmC .9cmD .13cm2.如图,笑脸盖住的点的坐标可能为( ) A .(-2,3) B .(3,-4) C .(-4,-6) D .(5,2)第5题图 第6题图 第7题图 6.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A .0B .1C .2D .37.如图,AB=DB ,∠1=∠2,请问添加下面哪个条件不能判断△ABC ≌△DBE 的是( ) A .AC=DEB .BC=BEC .∠A=∠D D .∠ACB=∠DEB8.已知等腰三角形的周长是10,底边长y 是腰长x 的函数,则下列图象中,能正确反映y 与x 之间函数关系的图象是( )A .B .C .D . BP 的最小值为( ) A .B .5C .4D .4.8是腰长为的等腰直角三角形DEF 的费马点,则PD+PE+PF=( )A. B.1 C.6 D.二、填空题(本题有6小题,每小题3分,共18分)第2题图11.函数y=中自变量x 的取值范围是 .12.点P (4,-3)关于x 轴对称的点P ′的坐标为13. 如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=x 上,则点B 与其对应点B14.在一次函数y=﹣3x+1中,当﹣1<x <2时,对应y 的取值范围是 . 15.在△ABC 中,AB=13,AC=20,BC 边上的高为12,则△ABC 的面积为 .16.如图,已知平行于y 轴的动直线a 的表达式为x=t ,直线b 的表达式为y=x ,直线c 的表达式为y=﹣x+2,且动直线a 分别交直线b 、c 于点D 、E (E 在D 的上方),P 是y 轴上一个动点,且满足△PDE 是等腰直角三角形,则点P 的坐标是 .三、解答题(本大题有8小题,17-22每题6分,23.24题每题8分) 17. (本题6分) 解不等式组,并把它的解集在数轴上表示出来.18. (本题6分)如图,AB ∥CD ,CE 平分∠ACD 交AB 于E 点. (1)求证:△ACE 是等腰三角形;(2)若AC=13cm ,CE=24cm ,求△ACE 的面积.19. (本题6分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形△A 1B 1C 1;(2)在x 轴上存在一点P ,使PA+PB 的值最小,请直接写出点P的坐标,并求出此时PA+PB 的值。

2017-2018学年八年级上数学期中试卷及答案(浙教版)

2017-2018学年八年级上数学期中试卷及答案(浙教版)

2017-2018学年第一学期期中检测八年级数学一、选择题(每小题2分,共20分) 1.下列语句是命题的是( ) A .作直线AB 的垂线 B .在线段AB 上取点CC .同旁内角互补D .垂线段最短吗?2.下列轴对称图形中,只有两条对称轴的图形是( )3. 根据下列条件判断,以a,b,c 为边的三角形不是直角三角形的是 ( )A. a=32, b=42, c=52B. a=30, b=40, c=45C. a=1, b=2, c=3D. a :b :c=5:12:134.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm5.用直尺和圆规作一个角等于已知角的示意图如下,则要说明∠C OD '''=∠DOC ,需要证明△C O D '''≌△DOC,则这两个三角形全等班级 ____________ 姓名 ___________ 学号 ___________┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆密┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆封┆┆┆┆┆┆┆┆┆┆┆┆┆┆线┆┆┆┆┆┆┆┆┆的依据是()A.SSS B.SAS C.AAS D.ASA6.等腰三角形一腰上的高与另一腰的夹角为30o,则顶角的度数为()(A)60o.(B)120o.(C)60o或150o.(D)60o或120o.7. △ABC的两边AB和AC的垂直平分线分别交BC于D,E,若边BC长为8cm,则△ADE的周长是()A.8cm B. 16cm C. 4cm D. 不能确定8. 如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .120°C .160°D .180° 9. 如图,把纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则与之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ) A. B.C.D. 10.如图,在△ABC 中,∠A=52°,∠ABC 与∠ACB 的角平分线交于D1, ∠ABD1与∠ACD1的角平分线交于点D2,依次类推,∠ABD4与∠ACD4 的角平分线交于点D5,则∠BD5C 的度数是( )A .56° B. 60° C. 68 D.二、填空题(每小题3分,共30分)11.写出定理“线段垂直平分线上的点到线段两端的距离相等”的逆定理__________________.第9题第8题第16题第17题DCOBA12.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是 __________________.13.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 __________14.如图,若//AB CD ,EF 与AB CD 、分别相交于点E F 、,EP 与EFD ∠的平分线相交于点P ,且60EFD ∠=,EP FP BEP ⊥∠=,则 度.15.已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为16、如图,已知AB 是Rt △ABC 和Rt △ABD 的斜边,O 是AB 的中点,其中OC 是2cm ,则OD=_____________。

浙江金华义乌绣湖中学2020-2021学年八年级上学期期中数学试题

浙江金华义乌绣湖中学2020-2021学年八年级上学期期中数学试题
三、解答题
17.解下列不等式(组)
(1)
(2)
18.如图,在平面直角坐标系中, 的三个顶点都在格点上,点 坐标为 .
(1)画出 关于 轴对称的 .
(2)若把 向左平移2个单位后的三角形为 ,求 的顶点坐标.
19.已知点 的坐标满足方程组 且点 在第四象限.
(1)请用含 的代数式表示 ;
(2)请求出 的取值范围.
∴BM=BO=1,
∴Rt ABM中,AM= = ;
如图2,当∠ABM=90°时,
∵∠BOM=∠AOC=60°,
∴∠BMO=30°,
∴MO=2BO=AB=2,
∴Rt BOM中,BM= = ,
∴Rt ABM中,AM= = ,
综上所述,当 ABM为直角三角形时,AM的长为 或 .
故答案为: 或 .
【点睛】
16. 或
【分析】
分两种情况讨论:①当∠AMB=90°时,②当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.
【详解】
解:如图1,当∠AMB=90°时,
∵O是AB的中点,AB=2,
∴OM=OB=1,
又∵∠AOC=∠BOM=60°,
∴ BOM是等边三角形,
14.在螳螂的示意图中, , 是等腰三角形, , ,则 ______.
15.等边 内有一点 ,连结 , ,分别以 , 为边向外作等边三角形, 与 交于点 , 与 交于点 ,记 ,四边形 , , 的面积分别为 , , , ,若 , , ,则 的长度为______.
16.如图,在 中, , ,点 是线段 延长线上的一个动点, ,则当 为直角三角形时, 的长为______.
20.小聪同学沿一段笔直的人行道行走,在由 步行到达 处的过程中,通过隔离带的空隙 ,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息汇集如下:如图, ,相邻两平行线间的距离相等, , 相交于 , .垂足为 ,已知 米,请根据上述信息:

浙江省义乌市绣湖中学2024-2025学年九年级上学期数学期中试卷

浙江省义乌市绣湖中学2024-2025学年九年级上学期数学期中试卷

浙江省义乌市绣湖中学2024-2025学年九年级上学期数学期中试卷一、单选题1.()25--的值是()A .3B .3-C .7-D .72.下列事件中,是必然事件的是()A .水中捞月B .水涨船高C .守株待兔D .百步穿杨3.将抛物线23y x =向上平移5个单位长度,得到的抛物线的解析式为()A .()235y x =+B .()235y x =-C .235y x =+D .235y x =-4.如图是由一个弯月绕某点旋转若干次而生成的,每次旋转的度数是()A .30︒B .60︒C .80︒D .90︒5.一个不透明的盒子中装有1个黄球,2个黑球,3个白球,4个红球,它们除颜色外都相同.若从中任意摸出一个球,则摸到球的颜色可能性最大的是()A .黄色B .黑色C .白色D .红色6.若抛物线()223y x =-与直线16y =交于A ,B 两点,则线段AB 的长为()A .B .C .D .87.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理,如图1.筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2.已知圆心O 在水面上方,且O 被水面截得的弦AB 长为8米,O 半径长为5米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是()A .1米B .2米C .3米D .4米8.大约在两千四五百年前,墨子和他的学生做了世界上第1个小孔成倒像的实验.并在《墨经》中有这样的精彩记录:“景到,在午有端,与景长,说在端”.如图所示的小孔成像实验中,若物距为10cm ,像距为15cm ,蜡烛火焰倒立的像的高度是8cm ,则蜡烛火焰的高度是()A .92B .6C .163D .89.在测浮力的实验中,将一长方体石块由玻璃器皿的上方,向下缓慢移动浸入水里的过程中,弹簧测力计的示数()F N 拉力与石块下降的高度()cm x 之间的关系如图所示(温馨提示:当石块位于水面上方时,F G =拉力重力,当石块入水后,F G F =-拉力重力浮力).则以下说法不正确的是()A .当610x <<时,()F N 拉力与()cm x 之间的函数表达式为32584F x =-+拉力B .石块的高度为4cmC .石块下降高度8cm 时,此时石块所受浮力是13N 4D .当弹簧测力计的示数为3N 时,此时石块距离水底22cm 310.如图,在矩形ABCD 中,将ABC ∠绕点A 按逆时针方向旋转一定角度后,BC 的对应边B C ''交CD 边于点G .连接BB '、CC '.若7AD =,CG 4=,AB B G ''=,则CC BB '='()A .74B C D 二、填空题11.因式分解:2a 2﹣8=.12.从1,2,3,4,5,6这六个数中任意选取一个数,取到的数恰好是3的整数倍的概率是.13.若34a b =,则a b a-=.14.小明对实心球投掷训练录像进行了分析,发现实心球在行进过程中高度()m y 与水平距离()m x 之间的函数图象如图所示(P 为抛物线顶点),由此可知此次投掷的成绩是m.15.已知关于x 的二次函数22y x mx n =-++(m ,n 为常数).若()10m x m k k -≤≤+>时,函数的最大值为p ,最小值为q ,且3p q k -=,则k 的值为.16.小明为了充分利用房子的空间,他计划在过道上放置一张折叠的桌子(如图1).如图2所示为小明初步的设计方案,已知厨房和过道的宽度分别为70cm 和90cm ,其中96cm 24cm ⨯的矩形为固定餐桌,左侧紧靠墙壁,右侧是宽为x 厘米的可翻折矩形,边缘是拱高为16cm 的圆弧形,点O 为圆弧所在圆的圆心,点D 对准厨房门口的中央(图中C 为厨房门框点,B 为门口中央,A 、D 为桌边中央两点).(1)圆弧所在圆的半径为cm .(2)为了保证餐桌在展开时,一个人还能挤得过去,使得过道右侧墙壁与桌子的距离CE 不少于45cm ,试问图中的x 最多为cm .三、解答题17.计算:()020241243π-+-+-18.如图,ABC V 三个顶点的坐标分别为(1,1),(4,2),(3,4)A B C (1)请画出ABC V 绕点O 旋转180︒的图形111A B C △;(2)在x 轴上找一点P ,使PA PB +的值最小,请直接写出点P 的坐标.19.小亮、小明两人都握有分别标记为A 、B 、C 、D 的四张牌,两人做游戏,游戏规则是:每人每次各出一张牌,规定A 胜B ,B 胜C ,C 胜D ,D 胜A ,其他情况均无法分出胜负.(1)若小亮出“A ”牌,则小亮获胜的概率为;(2)求小亮、小明各出一次牌就能分出胜负的概率.20.“圆”是中国文化的一个重要精神元素,在中式建筑中有着广泛的应用,例如古典园林中的门洞,如图,某地园林中的一个圆弧形门洞的高为2.7m ,地面入口宽为1.8m ,求该门洞的半径.21.如图,在ABC V 中,点D 、E 分别在AB 、BC 上,CD 与AE 交于点F ,点G 在边BC 上,DG AE ∥,1CE =,3BE =,2BD =,4=AD .(1)求GE 的长;(2)求EFFA的值.22.如图,平面直角坐标系中,四边形AOBC 为平行四边形,11y k x b =+与双曲线22(0)k y x x=>交于点()1,3A 和点()3,E m .(1)求1k ,2k 和b 的值;(2)直接写出120y y -<时x 的取值范围;(3)如果平行四边形AOBC 的对角线OC 交双曲线于点P ,求点P 的坐标.23.已知二次函数2y x bx c =-++(1)若点()2,c 在抛物线上①求抛物线的对称轴;②若该二次函数与坐标轴有三个交点,则c 的取值范围;(2)已知点(),1A b c -,(),4B b b c -+,若抛物线与线段AB 只有一个公共点,结合函数图像,求b 的取值范围.24.【问题呈现】(1)如图1,ABC V 和ADE V 都是等边三角形,连接BD ,CE .求证:BD CE =.(2)【类比探究】如图2,ABC V 和ADE V 都是等腰直角三角形,90ABC ADE ∠=∠= .连接BD ,CE .则BDCE=________.(3)【拓展提升】如图3,ABC V 和ADE V 都是直角三角形,90ABC ADE ∠=∠= ,且34AB AD BC DE ==.连接BD ,CE .①求BDCE的值;②延长CE 交BD 于点F ,交AB 于点G .若14BG CG =,6AB =,求FG 的长.。

八年级上册义乌数学全册全套试卷测试卷(含答案解析)

八年级上册义乌数学全册全套试卷测试卷(含答案解析)

八年级上册义乌数学全册全套试卷测试卷(含答案解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.【答案】(1)证明见解析(2)证明见解析【解析】试题分析:(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论.试题解析:(1)证明:如图,作DF∥BC交AC于F,则△ADF为等边三角形∴AD=DF,又∵∠DEC=∠DCB,∠DEC+∠EDB=60°,∠DCB+∠DCF=60°,∴∠EDB=∠DCA ,DE=CD,在△DEB和△CDF中,120EBD DFCEDB DCFDE CD,,∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△DEB≌△CDF,∴BD=DF,∴BE=AD .(2).EB=AD成立;理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,又∵∠DBE=∠DFC=60°,∴△DBE ≌△CFD (AAS ),∴EB=DF ,∴EB=AD.点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.2.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__________;②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,22CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)【解析】【分析】(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.【详解】(1)①正方形ADEF 中,AD AF =∵90BAC DAF ==︒∠∠∴BAD CAF ∠=∠在△DAB 与△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴()DAB FAC SAS △≌△∴B ACF ∠=∠∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;②∵DAB FAC △≌△∴=CF BD∵BC BD CD =+∴BC CF CD =+(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC证明:∵△ABC 和△ADF 都是等腰直角三角形∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∴∠BAD =∠CAF在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△FAC (SAS )∴∠ABD =∠ACF ,DB =CF∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°∴∠ABD =180°-45°=135°∴∠ACF =∠ABD =135°∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC∵CD =DB +BC ,DB =CF∴DC =CF +BC(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,∵90BAC ∠=︒ ,22AB AV ==∴12422BC AB AH BH CH BC ======, ∴114CD BC == ∴3DH CH CD =+=∵四边形ADEF 是正方形∴90AD DE ADE ==︒,∠∵BC CF EM BD EN CF ⊥⊥⊥,,∴四边形CMEN 是矩形∴NE CM EM CN ==,∵90AHD ADC EMD ===︒∠∠∠∴90ADH EDM EDM DEM +=+=︒∠∠∠∠∴ADH DEM =∠∠在△ADH 和△DEM 中ADH DEM AHD DME AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADH DEM △≌△∴32EM DH DM AH ====,∴3CM EM ==∴2232CE EM CM =-=【点睛】本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.3.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.(1)如图1,求证:OA是第一象限的角平分线;(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求2HK+EF的值.【答案】(1)证明见解析(2)答案见解析(3)8【解析】【分析】(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,根据非负数的性质求出a、b的值即可得结论;(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得OE+OF=2OP=8,等量代换即可得2HK+EF的值.【详解】解:(1)∵|a﹣b|+b2﹣8b+16=0∴|a﹣b|+(b﹣4)2=0∵|a﹣b|≥0,(b﹣4)2≥0∴|a﹣b|=0,(b﹣4)2=0∴a=b=4过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM∴OA平分∠MON即OA是第一象限的角平分线(2)过A作AH平分∠OAB,交BM于点H∴∠OAH=∠HAB=45°∵BM⊥AE∴∠ABH =∠OAE在△AOE 与△BAH 中OAE ABH OA ABAOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩, ∴△AOE ≌△BAH (ASA )∴AH =OE在△ONE 和△AMH 中OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩=, ∴△ONE ≌△AMH (SAS )∴∠AMH =∠ONE设BM 与NE 交于K∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA∴2∠ONE ﹣∠NEA =90°(3)过H 作HM ⊥OF ,HN ⊥EF 于M 、N可证:△FMH ≌△FNH (SAS )∴FM =FN同理:NE =EK∴OE+OF ﹣EF =2HK过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q可证:△APF ≌△AQE (SAS )∴PF =EQ∴OE+OF =2OP =8∴2HK+EF =OE+OF =8【点睛】本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.4.如图,在ABC ∆中,903, 7C AC BC ∠=︒==,,点D 是BC 边上的动点,连接AD ,以AD 为斜边在AD 的下方作等腰直角三角形ADE .(1)填空:ABC ∆的面积等于 ;(2)连接CE ,求证:CE 是ACB ∠的平分线;(3)点O 在BC 边上,且1CO =, 当D 从点O 出发运动至点B 停止时,求点E 相应的运动路程.【答案】(1)212;(2)证明见解析;(3)32【解析】【分析】 (1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM ≌△DEN (AAS ),得到ME=NE ,即可利用角平分线的判定证明;(3)由(2)可知点E 在∠ACB 的平分线上,当点D 向点B 运动时,点E 的路径为一条直线,再根据全等三角形的性质得出CN=1()2AC CD +,根据CD 的长度计算出CE 的长度即可.【详解】解:(1)903, 7C AC BC ∠=︒==, ∴112137222ABC S AC BC =⨯=⨯⨯=, 故答案为:212 (2)连接CE ,过点E 作EM ⊥AC 于点M ,作EN ⊥BC 于点N ,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE 是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM 与△DEN 中,∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE∴△AEM≌△DEN(AAS)∴ME=NE∴点E在∠ACB的平分线上,即CE是ACB∠的平分线(3)由(2)可知,点E在∠ACB的平分线上,∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN∴AM=DN,即AC-CM=CN-CD在Rt△CME与Rt△CNE中,CE=CE,ME=NE,∴Rt△CME≌Rt△CNE(HL)∴CM=CN∴CN=1() 2AC CD+,又∵∠MCE=∠NCE=45°,∠CME=90°,∴CE=22()2CN AC CD=+,当AC=3,CD=CO=1时,CE=2(31)22 2+=当AC=3,CD=CB=7时,CE=2(37)52 2+=∴点E的运动路程为:522232-=,【点睛】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA′B的度数不变,∠OA′B=45 ,理由见解析;(3)点M的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA=PA'=PB,由∠PAB+∠PBA=90°,结合三角形内角和定理即可求得∠OA'B=45°;(3)分类讨论:分别讨论当△ABP≌△MBP、△ABP≌△MPB、△ABP≌△MPB时,点M的坐标的情况;过点M作x轴的垂线、过点B作y轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M的坐标即可.【详解】(1)∵AB∥x轴,△APB为等腰直角三角形,∴∠PAB=∠PBA=∠APO=45°,∴△AOP为等腰直角三角形,∴OA=OP=4.∴t=4÷1=4(秒),故t的值为4.(2)如图2,∠OA′B的度数不变,∠OA′B=45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等, ①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学 轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A (2,3),点B (﹣2,1).(1)请运用所学数学知识构造图形求出AB 的长;(2)若Rt △ABC 中,点C 在坐标轴上,请在备用图1中画出图形,找出所有的点C 后不用计算写出你能写出的点C 的坐标;(3)在x 轴上是否存在点P ,使PA =PB 且PA +PB 最小?若存在,就求出点P 的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB,作B关于y轴的对称点D,由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=5(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).(3)不存在这样的点P.作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,由图可以看出两线交于第一象限.∴不存在这样的点P.【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.如图,在平面直角坐标系中,A(﹣3,0),点 B是 y轴正半轴上一动点,点C、D在 x 正半轴上.(1)如图,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的两条角平分线,且BD、CE交于点F,直接写出CF的长_____.(2)如图,△ABD是等边三角形,以线段BC为边在第一象限内作等边△BCQ,连接 QD并延长,交 y轴于点 P,当点 C运动到什么位置时,满足 PD=23DC?请求出点C的坐标;(3)如图,以AB为边在AB的下方作等边△ABP,点B在 y轴上运动时,求OP的最小值.【答案】(1)6;(2)C 的坐标为(12,0);(3)32. 【解析】【分析】 (1)作∠DCH =10°,CH 交 BD 的延长线于 H ,分别证明△OBD ≌△HCD 和△AOB ≌△FHC ,根据全等三角形的对应边相等解答;(2)证明△CBA ≌△QBD ,根据全等三角形的性质得到∠BDQ =∠BAC =60°,求出 CD ,得到答案;(3)以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点 F .证明点 P 在直线 EF 上运动,根据垂线段最短解答.【详解】解:(1)作∠DCH =10°,CH 交 BD 的延长线于 H ,∵∠BAO =60°,∴∠ABO =30°,∴AB =2OA =6,∵∠BAO =60°,∠BCO =40°,∴∠ABC =180°﹣60°﹣40°=80°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =40°,∴∠CBD =∠DCB ,∠OBD =40°﹣30°=10°,∴DB =DC ,在△OBD 和△HCD 中,==OBD HCD DB DC ODC HDC ∠∠⎧⎪=⎨⎪∠∠⎩∴△OBD ≌△HCD (ASA ),∴OB =HC ,在△AOB 和△FHC 中,==ABO FCH OB HC AOB FHC ∠∠⎧⎪=⎨⎪∠∠⎩∴△AOB ≌△FHC (ASA ),∴CF=AB=6,故答案为6;(2)∵△ABD 和△BCQ 是等边三角形,∴∠ABD =∠CBQ =60°,∴∠ABC =∠DBQ ,在△CBA 和△QBD 中,BA BD ABC DBQ BC BQ =⎧⎪∠=∠⎨⎪=⎩∴△CBA ≌△QBD (SAS ),∴∠BDQ =∠BAC =60°,∴∠PDO =60°,∴PD =2DO =6,∵PD =23DC , ∴DC =9,即 OC =OD+CD =12,∴点 C 的坐标为(12,0);(3)如图3,以 OA 为对称轴作等边△ADE ,连接 EP ,并延长 EP 交 x 轴于点F .由(2)得,△AEP ≌△ADB ,∴∠AEP =∠ADB =120°,∴∠OEF =60°,∴OF =OA =3,∴点P 在直线 EF 上运动,当 OP ⊥EF 时,OP 最小,∴OP =12OF =32则OP 的最小值为32.【点睛】本题考查的是等边三角形的性质,全等三角形的判定和性质,垂线段最短,掌握全等三角形的判定定理和性质定理是解题的关键.8.已知△ABC .(1)在图①中用直尺和圆规作出B 的平分线和BC 边的垂直平分线交于点O (保留作图痕迹,不写作法).(2)在(1)的条件下,若点D 、E 分别是边BC 和AB 上的点,且CD BE =,连接OD OE 、求证:OD OE =;(3)如图②,在(1)的条件下,点E 、F 分别是AB 、BC 边上的点,且△BEF 的周长等于BC 边的长,试探究ABC ∠与EOF ∠的数量关系,并说明理由.【答案】(1)见解析;(2)见解析;(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由见解析.【解析】【分析】(1)利用基本作图作∠ABC 的平分线;利用基本作图作BC 的垂直平分线,即可完成; (2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,用角平分线的性质证明OH=OG ,BH=BG ,继而证明EH =DG ,然后可证明OEH ODG ∆≅∆,于是可得到OE=OD ;(3)作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,利用(2)得到 CD=BE ,OEH ODG ∆≅∆,OE=OD ,EOH DOG ∠=∠,180ABC HOG ∠+∠=,可证明EOD HOG ∠=∠,故有180ABC EOD ∠+∠=,由△BEF 的周长=BC 可得到DF=EF,于是可证明OEF OGF ∆≅∆,所以有EOF DOF ∠=∠,然后可得到ABC ∠与EOF ∠的数量关系.【详解】解:(1)如图,就是所要求作的图形;(2)如图,设BC 的垂直平分线交BC 于G ,作OH ⊥AB 于H ,∵BO 平分∠ABC ,OH ⊥AB ,OG 垂直平分BC ,∴OH=OG ,CG=BG ,∵OB=OB,∴OBH OBG ∆≅∆,∴BH=BG ,∵BE=CD ,∴EH=BH-BE=BG-CD=CG-CD=DG ,在OEH ∆和ODG ∆中,90OH OG OHE OGD EH DG =⎧⎪∠=∠=⎨⎪=⎩, ∴OEH ODG ∆≅∆,∴OE=OD .(3)ABC ∠与EOF ∠的数量关系是2180ABC EOF ∠+∠=,理由如下;如图 ,作OH ⊥AB 于H ,OG ⊥CB 于G ,在CB 上取CD=BE ,由(2)可知,因为 CD=BE ,所以OEH ODG ∆≅∆且OE=OD ,∴EOH DOG∠=∠,180ABC HOG∠+∠=,∴EOD EOG DOG EOG EOH HOG∠=∠+∠=∠+∠=∠,∴180ABC EOD∠+∠=,∵△BEF的周长=BE+BF+EF=CD+BF+EF=BC∴DF=EF,在△OEF和△OGF中,OE ODEF FDOF OF=⎧⎪=⎨⎪=⎩,∴OEF OGF∆≅∆,∴EOF DOF∠=∠,∴2EOD EOF∠=∠,∴2180ABC EOF∠+∠=.【点睛】本题考查了角平分线的性质、垂直平分线的性质及全等三角形的判定与性质,还考查了基本作图.熟练掌握相关性质作出辅助线是解题关键,属综合性较强的题目,有一定的难度,需要有较强的解题能力.9.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC是等腰三角形,90BAC∠=︒,D是BC的中点,以AD为腰作等腰ADE,且满足90DAE∠=︒,连接CE并延长交BA的延长线于点F,试探究BC与CF之间的数量关系.图1发现:(1)BC与CF之间的数量关系为 .探究:(2)如图2,当点D是线段BC上任意一点(除B、C外)时,其他条件不变,试猜想BC与CF之间的数量关系,并证明你的结论.图2拓展:(3)当点D在线段BC的延长线上时,在备用图中补全图形,并直接写出BCF的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒. 90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒. 45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒. 90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒, 90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠,BCF ∴是等腰三角形,90BCF ∠=︒,BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.10.如图,在 ABC 中,已知 AB AC =,AD 是 BC 边上的中线,点 E 是 AB 边上一动点,点 P 是 AD 上的一个动点.(1)若 37BAD ∠=,求 ACB ∠ 的度数;(2)若 6BC =,4AD =,5AB =,且 CE AB ⊥ 时,求 CE 的长;(3)在(2)的条件下,请直接写出 BP EP + 的最小值.【答案】(1)53ACB ∠=.(2)245CE =.(3) 245. 【解析】【分析】(1)由已知得出三角形ABC 是等腰三角形,ACB ABC ∠∠=,AD 是BC 边的中线,有AD BC ⊥,求出ABC ∠的度数,即可得出ACB ∠的度数.(2)根据三角形ABC 的面积可得出CE 的长 (3)连接CP ,有BP=CP ,BP+EP=EP+CP ,当点E ,P ,C 在同一条直线上时BP+EP 有最小值,即CE 的长度.【详解】解:(1)AB AC =,ACB ABC ∴∠=∠,AD 是 BC 边上的中线, 90ADB ∴∠=,37BAD ∠=,903753ABC ∴∠=-=,53ACB ∴∠=.(2)CE AB ⊥,1122ABC S BC AD AB CE ∴=⋅=⋅, 6BC =,4=AD ,5AB =,245CE ∴=. (3) 245【点睛】本题考查的知识点主要有等腰三角形的“三线合一”,三角形的面积公式等,充分利用等腰三角形的“三线合一”是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.12.阅读下列因式分解的过程,再回答所提出的问题:()()()()()()()223111111111x x x x x x x x x x x x +++++=++++=++=⎤⎣+⎡⎦. (1)上述分解因式的方法是______________法.(2)分解220191(1)(1)(1)x x x x x x x ++++++++的结果应为___________.(3)分解因式:21(1)(1)(1)n x x x x x x x ++++++++.【答案】(1)提公因式 ; (2)()20201x + ;(3)()11n x ++【解析】【分析】(1)用的是提公因式法; (2)按照(1)中的方法再分解几个,找了其中的规律,即可推测出结果;.(3)由(2)中得到的规律即可推广到一般情况.【详解】解:(1)上述分解因式的方法是提公因式法.(2)()()()()()2333111111x x x x x x x x x x +++++++=+++=()41x +()()()()()()234441111111x x x x x x x x x x x x +++++++++=+++=()51x + ……由此可知()2201911(1)(1)x x x x x x x ++++++++=()20201x +(3)原式=(1+x )[1+x+x (x+1)]+x (x+1)3+…+x (x+1)n ,=(1+x )2(1+x )+x (x+1)3+…+x (x+1)n ,=(1+x )3+x (1+x )3+…+x (1+x )n ,=(1+x )n +x (x+1)n ,=(1+x )n+1.【点睛】本题考查了提公因式法分解因式,找出整式的结构规律是关键,体现了由特殊到一般的数学思想.13.观察下列等式:22()()a b a b a b -=-+3322()()a b a b a ab b -=-++443223()()a b a b a a b ab b -=-+++55432234()()a b a b a a b a b ab b -=-++++完成下列问题:(1)n n a b -=___________(2)636261322222221+++⋯⋯++++= (结果用幂表示).(3)已知4,1a b ab -==,求33a b -.【答案】(1)(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)264-1;(3)76.【解析】【分析】(1)根据规律可得结果(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)利用(1)得出的规律先计算(2-1)63626132(2222221+++⋯⋯++++)即可得出结果;(3)利用(1)得出的规律变形,再用完全平方公式进行变形,变成只含a-b 及ab 的形式,整体代入计算即可得到结果.【详解】解:(1)()()22a b a b a b -=-+,()()3322a b a b a ab b -=-++,()()443223a b a b a a b ab b -=-+++, ()()55432234a b a b a a b a b ab b -=-++++, 由此规律可得:a n -b n =(a-b )(a n-1+a n-2b+…+ab n-2+b n-1),故答案是:(a-b )(a n-1+a n-2b+…+ab n-2+b n-1);(2)由(1)的规律可得(2-1)()636261322222221+++⋯⋯++++=264-1, ∴636261322222221+++⋯⋯++++=264-1.故答案是:264-1.(3)已知4,1a b ab -==,求33a b -.()()3322a b a b a ab b -=-++=()() [a b a b --2+3 a b ]∴33a b -=24431⨯+⨯()=76. 故答案是:76.【点睛】此题考查了多项式乘以多项式,弄清题中的规律是解本题的关键.14.阅读理解题:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位.那么形如a+bi (a ,b 为实数)的数就叫做复数,a 叫这个复数的实部,b 叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i )+(3﹣4i )=5﹣3i .(1)填空:i 3= ,2i 4= ;(2)计算:①(2+i )(2﹣i );②(2+i )2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y )+3i=(1﹣x )﹣yi ,(x ,y 为实数),求x ,y 的值.(4)试一试:请你参照i 2=﹣1这一知识点,将m 2+25(m 为实数)因式分解成两个复数的积.【答案】(1)i ;2(2)①5②3+4i (3)x=5,y=﹣3(4)m 2+25=(m+5i )(m ﹣5i )【解析】【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。

2017-2018学年八年级(上)期中数学试卷(含解析)

2017-2018学年八年级(上)期中数学试卷(含解析)

2017-2018学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣28.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是,到y轴距离是.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.18.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,下列说法:①出发m h内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,正确的有(把正确结论的序号填在横线上).三、解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.(8分)如图,一只甲虫在5×5的方格如图,直线l1在平面直角坐标系中与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.21.(10分)如图,已知在△ABC中,∠B>∠C,AD是BC边上的高,AE是∠BAC的平分线,求证:∠DAE=(∠B﹣∠C).22.(12分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?23.(12分)阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点.①若点B(0,3),则点A与点B的“非常距离”为;②若点A与点B的“非常距离”为2,则点B的坐标为;③直接写出点A与点B的“非常距离”的最小值;(2)已知点D(0,1),点C是直线y=x+3上的一个动点,如图2,求点C与点D“非常距离”的最小值及相应的点C的坐标.24.(14分)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200 170乙连锁店160 150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?2016-2017学年安徽省蚌埠市三校八年级(上)期中数学试卷参考答案与试题解析一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】坐标确定位置.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB【考点】命题与定理.【分析】根据命题的定义可以判断选项中的各个语句是否为命题,本题得以解决.【解答】解:直角都等于90°是一个真命题,对顶角相等是一个真命题,互补的两个角不相等是一个假命题,作线段AB不是命题,故选D.【点评】本题考查命题与定理,解题的关键是明确命题的定义.3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:1【考点】三角形的外角性质.【分析】设三角形的三个外角的度数分别为3x、4x、5x,根据三角形的外角和等于360°列出方程,解方程得到答案.【解答】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,3x=90°,4x=120°,5x=150°,相应的外角分别为90°,60°,30°,则这个三角形内角之比为:90°:60°:30°=3:2:1,故选:C.【点评】本题考查的是三角形外角和定理,掌握三角形的外角和等于360°是解题的关键.4.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)【考点】坐标确定位置.【分析】根据已知两点位置,建立符合条件的坐标系,从而确定其它点的位置.【解答】解:如图所示:∵“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,∴“炮”的坐标是:(﹣2,1).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.6.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【考点】三角形内角和定理.【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①、∵∠A+∠B=∠C=90°,∴△ABC是直角三角形,故小题正确;②、∵∠A:∠B:∠C=1:2:3,∴∠A=30°,∠B=60°,∠C=90°,△ABC是直角三角形,故本小题正确;③、设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC是直角三角形,故本小题正确;④∵设∠C=x,则∠A=∠B=2x,∴2x+2x+x=180°,解得x=36°,∴2x=72°,故本小题错误;⑤∠A=2∠B=3∠C,∴∠A+∠B+∠C=∠A+∠A+A=180°,∴∠A=°,故本小题错误.综上所述,是直角三角形的是①②③共3个.故选B.【点评】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣2【考点】一次函数与一元一次不等式.【分析】y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的交点是(1,﹣2),根据图象得到x<1时不等式k1x+b<k2x+c成立.【解答】解:由图可得:l1与直线l2在同一平面直角坐标系中的交点是(1,﹣2),且x<1时,直线l1的图象在直线l2的图象下方,故不等式k1x+b<k2x+c的解集为:x<1.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.8.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.【考点】动点问题的函数图象.【分析】运用动点函数进行分段分析,当P在BC上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.【点评】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线定义得出∠ACB=2∠DCB,∠MBC=2∠CBE,根据三角形外角性质得出2∠D+∠ACB=∠A+∠ACB,求出∠A=2∠D,即可求出答案.【解答】解:∵CD平分∠ACB,BE平分∠MBC,∴∠ACB=2∠DCB,∠MBC=2∠CBE,∵∠MBC=2∠CBE=∠A+∠ACB,∠CBE=∠D+∠DCB,∴2∠CBE=∠D+∠DCB,∴∠MBC=2∠D+∠ACB,∴2∠D+∠ACB=∠A+∠ACB,∴∠A=2∠D,∵∠A=100°,∴∠D=50°.故选:B.【点评】本题考查了三角形外角性质和角平分线定义的应用,关键是求出∠A=2∠D.10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16【考点】一次函数综合题.【分析】根据题意画出相应的图形,由平移的性质得到△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,根据C坐标得出CA的长,即为FD的长,将C纵坐标代入直线y=2x﹣6中求出x的值,确定出OD的长,由OD﹣OA求出AD,即为CF的长,平行四边形BCFE的面积由底CF,高FD,利用面积公式求出即可.【解答】解:如图所示,当△ABC向右平移到△DEF位置时,四边形BCFE为平行四边形,C点与F点重合,此时C在直线y=2x﹣6上,∵C(1,4),∴FD=CA=4,将y=4代入y=2x﹣6中得:x=5,即OD=5,∵A(1,0),即OA=1,∴AD=CF=OD﹣OA=5﹣1=4,=CF•FD=16.则线段BC扫过的面积S=S平行四边形BCFE故选D.【点评】此题考查了一次函数综合题,涉及的知识有:坐标与图形性质,平移的性质,以及平行四边形面积求法,做出相应的图形是解本题的关键.二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是1,到y轴距离是3.【考点】点的坐标.【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:M(3,﹣1)到x轴距离是1,到y轴距离是3,故答案为:1,3.【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值是解题关键.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=15°.【考点】三角形的外角性质.【分析】根据常用的三角板的特点求出∠EAD和∠BFD的度数,根据三角形的外角的性质计算即可.【解答】解:由一副常用的三角板的特点可知,∠EAD=45°,∠BFD=30°,∴∠ABF=∠EAD﹣∠BFD=15°,故答案为:15°.【点评】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=6.【考点】两条直线相交或平行问题.【分析】根据两直线平行的问题得到k=2,然后把(﹣2,2)代入y=2x+b可计算出b的值.【解答】解:∵直线y=kx+b与直线y=2x+1平行,∴k=2,把(﹣2,2)代入y=2x+b得2×(﹣2)+b=2,解得b=6.故答案为6;【点评】本题考查了两条直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1<y2.(填“>”、“=”或“<”)【考点】一次函数图象上点的坐标特征.【分析】由k=﹣2<0根据一次函数的性质可得出该一次函数单调递减,再根据x1>x2,即可得出结论.【解答】解:∵一次函数y=﹣2x+5中k=﹣2<0,∴该一次函数y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点评】本题考查了一次函数的性质,解题的关键是根据k=﹣2<0得出该一次函数单调递减.本题属于基础题,难度不大,解决该题型题目时,根据一次项系数的正负得出该函数的增减性是关键.15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是x=2.【考点】一次函数与一元一次方程.【分析】函数图象的交点坐标的横坐标即是方程的解.【解答】解:∵已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),∴关于x的方程kx+3=﹣x+b的解是x=2,故答案为:x=2.【点评】考查了一次函数与一元一次方程的知识,解题的关键是了解函数的图象的交点与方程的解的关系,难度不大.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为125°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,由三角形内角和定理即可求出∠BPC的度数.【解答】解:∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,∴∠P=180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.【点评】本题考查的是三角形内角和定理及角平分线的定义,熟知三角形的内角和定理是解答此题的关键.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【考点】一次函数的应用.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×150=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.18.在一次自行车越野赛中,出发mh后,小明骑行了25km,小刚骑行了18km,此后两人分别以a km/h,b km/h匀速骑行,他们骑行的时间t(单位:h)与骑行的路程s(单位:km)之间的函数关系如图所示,观察图象,下列说法:①出发m h内小明的速度比小刚快;②a=26;③小刚追上小明时离起点43km;④此次越野赛的全程为90km,正确的有①②④(把正确结论的序号填在横线上).【考点】一次函数的应用.【分析】①根据函数图象可以判断出发mh内小明的速度比小刚快是否正确;②根据图象可以得到关于a、b、m的三元一次方程组,从而可以求得a、b、m的值,从而可以解答本题;③根据②中的b、m的值可以求得小刚追上小明时离起点的路程,本题得以解决;④根据②中的数据可以求得此次越野赛的全程.【解答】解:由图象可知,出发mh内小明的速度比小刚快,故①正确;由图象可得,,解得,,故②正确;小刚追上小明走过的路程是:36×(0.5+0.7)=36×1.2=43.2km>43km,故③错误;此次越野赛的全程是:36×(0.5+2)=36×2.5=90km,故④正确;故答案为①②④.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题(本大题共6小题,第19题8分,20题10分,21题10分,22题12分,23题12分,24题14分,共66分)19.如图,一只甲虫在5×5的方格(2016秋•蚌埠期中)如图,直线l1在平面直角坐标系中与y轴交于点A,点B(﹣3,3)也在直线l1上,将点B先向右平移1个单位长度,再向下平移2个单位长度得到点C,点C也在直线l1上.(1)求点C的坐标和直线l1的解析式;(2)已知直线l2:y=x+b经过点B,与y轴交于点E,求△ABE的面积.【考点】待定系数法求一次函数解析式;坐标与图形变化-平移.【分析】(1)根据平移的法则即可得出点C的坐标,设直线l1的解析式为y=kx+c,根据点B、C的坐标利用待定系数法即可求出直线l1的解析式;(2)由点B的坐标利用待定系数法即可求出直线l2的解析式,再根据一次函数图象上点的坐标特征求出点A、E,根据三角形的面积公式即可求出△ABE的面积.【解答】解:(1)由平移法则得:C点坐标为(﹣3+1,3﹣2),即(﹣2,1).设直线l1的解析式为y=kx+c,则,解得:,∴直线l1的解析式为y=﹣2x﹣3.(2)把B点坐标代入y=x+b得,3=﹣3+b,解得:b=6,∴y=x+6.当x=0时,y=6,∴点E的坐标为(0,6).当x=0时,y=﹣3,∴点A坐标为(0,﹣3),∴AE=6+3=9,∴△ABE的面积为×9×|﹣3|=.【点评】本题考查了待定系数法求一次函数解析式、坐标与图形变化中的平移以及三角形的面积,根据点的坐标利用待定系数法求出函数解析式是解题的关键.21.(10分)(2016秋•蚌埠期中)如图,已知在△ABC中,∠B>∠C,AD是BC边上的高,AE是∠BAC的平分线,求证:∠DAE=(∠B﹣∠C).【考点】三角形内角和定理.【分析】根据三角形内角和定理以及AD是BC边上的高,求得∠BAD=90°﹣∠B,再根据AE平分∠BAC,求得∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣∠B﹣∠C,最后根据∠DAE=∠BAE﹣∠BAD即可求解.【解答】证明:∵AD是BC边上的高,∴∠BAD=90°﹣∠B.∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣∠B﹣∠C.∵∠DAE=∠BAE﹣∠BAD,∴∠DAE=(90°﹣∠B﹣∠C)﹣(90°﹣∠B)=∠B﹣∠C=(∠B﹣∠C).【点评】本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理:三角形内角和是180°.22.(12分)(2009春•宜春期末)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?【考点】三角形的面积;三角形的外角性质.【分析】(1)根据三角形内角与外角的性质解答即可;(2)过E作BC边的垂线即可;(3)过A作BC边的垂线AG,再根据三角形中位线定理求解即可.【解答】解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求;(3)过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•AG=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.【点评】本题涉及到三角形外角的性质、三角形中位线定理及三角形的面积公式,涉及面较广,但难度适中.23.(12分)(2016•开江县二模)阅读理解:在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点).(1)已知点A(﹣,0),B为y轴上的一个动点.①若点B(0,3),则点A与点B的“非常距离”为3;②若点A与点B的“非常距离”为2,则点B的坐标为(0,2)或(0,﹣2);③直接写出点A与点B的“非常距离”的最小值;(2)已知点D(0,1),点C是直线y=x+3上的一个动点,如图2,求点C与点D“非常距离”的最小值及相应的点C的坐标.【考点】一次函数综合题.【分析】(1)①根据若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|解答即可;②根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值;③设点B的坐标为(0,y).因为|﹣﹣0|≥|0﹣y|,所以点A与点B的“非常距离”最小值为|﹣﹣0|=;(2)设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0=x0+2,据此可以求得点C的坐标.【解答】解:(1)∵|﹣﹣0|=,|0﹣3|=3,∴<3,∴点A与点B的“非常距离”为3.故答案为:3;②∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2),故答案为:(0,2)或(0,﹣2);③点A与点B的“非常距离”的最小值为.故答案为:;(2)如图2,取点C与点D的“非常距离”的最小值时,需要根据运算定义“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”解答,此时|x1﹣x2|=|y1﹣y2|,即AC=AD,∵C是直线y=x+3上的一个动点,点D的坐标是(0,1),∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:|x0|=,此时C(﹣,).【点评】本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键.24.(14分)(2011•日照)某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200 170乙连锁店160 150设集团调配给甲连锁店x台空调机,集团卖出这100台电器的总利润为y(元).(1)求y关于x的函数关系式,并求出x的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?【考点】一次函数的应用.【分析】(1)首先设调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱60﹣(70﹣x)=(x﹣10)台,列出不等式组求解即可;(2)由(1)可得几种不同的分配方案;依题意得出y与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.【解答】解:(1)由题意可知,调配给甲连锁店电冰箱(70﹣x)台,调配给乙连锁店空调机(40﹣x)台,电冰箱为60﹣(70﹣x)=(x﹣10)台,则y=200x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=20x+16800.∵∴10≤x≤40.∴y=20x+16800(10≤x≤40);(2)由题意得:y=(200﹣a)x+170(70﹣x)+160(40﹣x)+150(x﹣10),即y=(20﹣a)x+16800.∵200﹣a>170,∴a<30.当0<a<20时,20﹣a>0,函数y随x的增大而增大,故当x=40时,总利润最大,即调配给甲连锁店空调机40台,电冰箱30台,乙连锁店空调0台,电冰箱30台;当a=20时,x的取值在10≤x≤40内的所有方案利润相同;当20<a<30时,20﹣a<0,函数y随x的增大而减小,故当x=10时,总利润最大,即调配给甲连锁店空调机10台,电冰箱60台,乙连锁店空调30台,电冰箱0台.【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绣湖中学八年级数学学科期中教学质量检测卷(2017.11)一.选择题(每小题4分共40分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是(▲)A.B.C.D.2.长度分别为2,7,x的三条线段能组成一个三角形,x的值可以是(▲)A.4 B.5 C.6 D.93.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000 元.若每个篮球80元,每个足球50元,则篮球最多可购买(▲)A.16个B.17个C.33个D.34个4.不等式组的解集表示在数轴上正确的是(▲)A.B.C.D.5.一副三角板按如图所示叠放在一起,则图中∠α的度数是(▲)A.60°B.75°C.90°D.105°6.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为(▲)A.50°B.130°C.50°或130°D.55°或130°7.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=8cm2,则S阴影面积等于(▲)A.4cm2B.3cm2C.2cm2 D.1cm28.用反证法证明命题“三角形中至少有一个角大于或等于60°”时,首先应假设这个三角形中(▲)A.有一个内角大于60°B.有一个内角小于60°C.每一个内角都大于60°D.每一个内角都小于60°9.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为(▲)A.4 B.5 C.6 D.710.动手操作:在长方形形纸片ABCD中,AB=6,AD=10.如图所示,折叠纸片,使点A 落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P,Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为(▲)第5题第7题第9题第10题A.4cm B.6cm C.8cm D.10cm二.填空题(每小题5分共30分)11.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是▲.12.某公司打算最多用1 200元印刷广告单,已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x张满足的不等式为▲.13.运行程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x后程序操作仅进行了一次就停止,则x的取值范围是▲.14.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的“内角正度值”为45°,那么该等腰三角形的顶角等于▲.15.我国三国时期数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”,如图1所示.在图2中,若正方形ABCD的边长为14,正方形IJKL的边长为2,且IJ∥AB,则正方形EFGH的边长为▲.16.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM 的长为 ▲ .第11题 第15题 第16题三.解答题(17-20每题8分,21题10分,22-23每题12分,24题14分,共80分)17.(1)解不等式3x +1<-2 (2)解不等式组:⎪⎩⎪⎨⎧<----≥+133425)2(563x x x x18.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O . (1)求证:△AEC ≌△BED ; (2)若∠1=42°,求∠BDE 的度数.19.(1)等腰三角形一腰上的中线将这个等腰三角形的周长分成15cm 和6cm 两部分.求等腰三角形的底边长.(2)已知等腰三角形中,有一个角比另一个角的2倍少20°,求顶角 的度数.20.我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.21.我校快乐走班数学兴趣小组开展了一次活动,过程如下:设∠BAC=θ(0°<θ<90°)小棒依次摆放在两射线之间,并使小棒两端分别落在两射线上.活动一:如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答:.(填“能“或“不能”)(2)设AA1=A1A2=A2A3=1.则θ=度;活动二:如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1.数学思考:(3)若只能摆放5根小棒,求θ的范围.22.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.23.如图1,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P 与点A不重合),连结CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连结QB并延长交直线AD于点E.(1)如图1,猜想∠QEP=°;(2)如图2,3,若当∠DAC是锐角或钝角时,其它条件不变,猜想∠QEP的度数,选取一种情况加以证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的长.24.定义:四条边都相等且四个角都是直角的四边形叫做正方形。

我校“快乐走班”数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=6,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:DP=DQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)如图③,固定三角板直角顶点在D点不动,转动三角板,使三角板的一边交AB的延长线于点P,另一边交BC的延长线于点Q,仍作∠PDQ的平分线DE交BC延长线于点E,连接PE,若AB:AP=3:4,请帮小明算出△DEP的面积.参考答案及评分标准)一.选择题(每小题4分共40分)二.填空题(每小题5分共30分)11.同位角相等,两直线平行 12. 50+0.3x ≤1200 13. x <8 14. 90°或30° . 15. 10 . 16.+或1四.解答题(17-20每题8分,21题10分,22-23每题12分,24题14分,共80分) 17. (1)x<-1 ...................................................................................................(4分) (2)解:,由①得,x <﹣3,由②得,x <5,故不等式组的解集为:x <﹣3......................................................(4分) 18.解:(1)证明:∵AE 和BD 相交于点O , ∴∠AOD=∠BOE . 在△AOD 和△BOE 中, ∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED . 在△AEC 和△BED 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BED AEC BEAE B A , ∴△AEC ≌△BED (ASA )....................................................... (4分) (2)∵△AEC ≌△BED ,∴EC=ED ,∠C=∠BDE . 在△EDC 中,∵EC=ED ,∠1=42°,∴∠C=∠EDC=69°, ∴∠BDE=∠C=69°......................................................................(4分) 19. 解:(1)∵等腰三角形的周长是15cm +6cm=21cm ,20. 设等腰三角形的腰长、底边长分别为xcm ,ycm ,由题意得⎪⎪⎩⎪⎪⎨⎧=+=+6211521y x x x ,或⎪⎪⎩⎪⎪⎨⎧=+=+1521621y x x x ,解得,或(不合题意,舍去),∴等腰三角形的底边长为1cm;......................................................(4分)(2)设另一个角是x,表示出一个角是2x﹣20°,①x是顶角,2x﹣20°是底角时,x+2(2x﹣20°)=180°,解得x=44°,所以,顶角是44°;②x是底角,2x﹣20°是顶角时,2x+(2x﹣20°)=180°,解得x=50°,所以,顶角是2×50°﹣20°=80°;③x与2x﹣20°都是底角时,x=2x﹣20°,解得x=20°,所以,顶角是180°﹣20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.........(4分)20.(1)解:设甲种书柜单价为x元,乙种书柜的单价为y元,由题意得:,解之得:,答:设甲种书柜单价为180元,乙种书柜的单价为240元.........(4分)(2)解:设甲种书柜购买m个,则乙种书柜购买(20﹣m)个;由题意得:解之得:8≤m≤10因为m取整数,所以m可以取的值为:8,9,10即:学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个,方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个................................. .(4分)21.(1)答:能............................................................................(3分)(2)θ=22.5度;..........................................................................(3分)(3)∵A4A3=A4A5,∴∠A4A3A5=∠A4A5A3=4θ°,∵根据三角形内角和定理和等腰三角形的性质,∴6θ≥90°,5θ<90°,∴15°≤θ<18°...........................................................................(4分) 22.(1)10-3=7(米)..........................................................................(4分) (2)作AE ⊥OM ,BF ⊥OM , ∵∠AOE +∠BOF=∠BOF +∠OBF=90° ∴∠AOE=∠OBF 在△AOE 和△OBF 中,⎪⎩⎪⎨⎧=∠=∠∠=∠OB OA OBF AOE BFO OEA , ∴△AOE ≌△OBF (AAS ), ∴OE=BF ,AE=OF即OE +OF=AE +BF=CD=17(m )∵EF=EM ﹣FM=AC ﹣BD=10﹣3=7(m ), ∴2EO +EF=17, 则2×EO=10,所以OE=5m ,OF=12m ,所以OM=OF +FM=15m..........................................................................(4分) (3))由勾股定理得ON=OA=13, 所以MN=15﹣13=2(m ).答:玛丽在荡绳索过程中离地面的最低点的高度MN 为2米........(4分) 23.解:(1)∠QEP=60°;.........................................................................(4分) (2)∠QEP=60°.以∠DAC 是锐角为例. 证明:如图2,∵△ABC 是等边三角形, ∴AC=BC ,∠ACB=60°,∵线段CP 绕点C 顺时针旋转60°得到线段CQ , ∴CP=CQ ,∠PCQ=6O°,∴∠ACB +∠BCP=∠BCP +∠PCQ , 即∠ACP=∠BCQ , 在△ACP 和△BCQ 中,⎪⎩⎪⎨⎧=∠=∠=CQ CP BCQ ACP CB CA , ∴△ACP ≌△BCQ (SAS ), ∴∠APC=∠Q , ∵∠1=∠2,∴∠QEP=∠PCQ=60°; ................................................................(4分) (3)作CH ⊥AD 于H ,如图3, 与(2)一样可证明△ACP ≌△BCQ , ∴AP=BQ ,∵∠DAC=135°,∠ACP=15°, ∴∠APC=30°,∠PCB=45°, ∴△ACH 为等腰直角三角形, ∴AH=CH=AC=×4=2, 在Rt △PHC 中,PH=CH=2,∴PA=PH ﹣AH=2﹣2,∴BQ=2﹣2..........................................................................(4分)(1)证明:∵四边形ABCD 是正方形, ∴∠ADC=∠DCQ=90°,AD=CD , ∵∠PDQ=90°, ∴∠ADP=∠CDQ .在△ADP 与△CDQ 中⎪⎩⎪⎨⎧=∠=∠︒=∠=∠CD AD CDQ ADP DCQ A 90,∴△ADP ≌△CDQ (ASA ),∴DP=DQ ..........................................................................(4分) (2)猜测:PE=QE .证明:由(1)可知,DP=DQ . ∵DE 平分∠PDQ , ∴∠PDE=∠QDE=45°,在△DEP 与△DEQ 中,⎪⎩⎪⎨⎧=∠=∠=DE DE QDE PDE DQ DP ,∴△DEP ≌△DEQ (SAS ),∴PE=QE ..........................................................................(4分)(3)解:∵AB :AP=3:4,AB=6,∴AP=8,BP=2.与(1)同理,可以证明△ADP ≌△CDQ ,∴CQ=AP=8.与(2)同理,可以证明△DEP ≌△DEQ ,∴PE=QE .设QE=PE=x ,则BE=BC +CQ ﹣QE=14﹣x .在Rt △BPE 中,由勾股定理得:BP 2+BE 2=PE 2, 即:22+(14﹣x )2=x 2,解得:x=,即QE=.∴S △DEQ =QE•CD=××6=. ∵△DEP ≌△DEQ ,∴S △DEP =S △DEQ =..........................................................................(6分)。

相关文档
最新文档