4.1.1 中职数学 实数指数幂ppt课件

合集下载

中职教育-数学(基础模块)上册课件:第4章 指数函数与对数函数.ppt

中职教育-数学(基础模块)上册课件:第4章  指数函数与对数函数.ppt
图4-6
接下来,我们再用描点法作出函数y log 1 x 和y log 1 x
的图像.
2
3
对数函数的定义域为(0,+∞),在定义域内取若干个x 值,分别求出对应的y值,然后列表,如表4-8、表4-9所示.
表4-8
x
… 1/4 1/2 1
2
4

y

2
1
0 -1 -2 …
表4-9
x
… 1/9 1/3 1
3
9

y

2
1
0 -1 -2 …
以表中的x值为横坐标,对应的y值为纵坐标,在直角坐标
系中依次描出相应的点(x,y),然后用光滑的曲线依次连接
这些点,即可得到函数y log 1 x 和 y log 1 x 的图像,如图4-7
所示.
2
3
图4-7
一般地,对数函数 y loga x (a 0 且 a 1)具有下列性质:
第4章 指数函数与对数函数
4.1 • 实数指数幂 4.2 • 指数函数 4.3 • 对数 4.4 • 对数函数
内容简介:本章完成了由正整数指数幂到实数指数幂 及其运算的逐步推广过程,介绍了指数函数的概念、图像和 性质,引入了对数概念及运算法则,并在此基础上介绍了对 数函数的概念、图像和性质。
学习目标:理解有理数指数幂;掌握实数指数幂及其 运算法则;了解幂函数,理解指数函数的图像和性质;了解 指数函数的实际应用,理解对数的概念;掌握利用计算器求 对数值;了解积、商、幂的对数、对数函数的图像和性质及 对数函数的实际应用。
m
an
1 n am
计算器辅助求值
下面,我们以用CASIO
fx-82ES

4.1.1----中职数学-实数指数幂ppt课件

4.1.1----中职数学-实数指数幂ppt课件
第四章 指数函数与对数函数 4.1 实数指数幂
解决问题 复习引入
如果x2=9,则x=±3 ;x叫做9的平方根 .
问 如果x2=5,则x=± 5;x叫做5的平方根 . 题 如果x3=8,则x= 2 ;x叫做8的 立方根 .
如果x3=-8,则x= -2 ;x叫做8的 立方根 .
如果 x2 a ,那么 x a 叫做 a 的平方根(二次方
其中 3 叫做 81 的 4 次算术根.
即 4 81 3
2
当n为奇数时,实数a的n次方根只有一个. -32 的 5 次方根是-2 , 即 5 32 2
27 的 3 次方根是 3, 即 3 27 3
3 零的n次方根是零.
动脑思考 探索新知
形如 n a ( n N+且n 1)的式子叫做a 的 n 次根式,

自我探索 使用工具
计算下列各题(精确到 0.0001): (1) 3 2 ; (2) 3 0.3564 ; (3) 4 0.5 ; (4) 7 273 .
汇报展示 全班比拼
如何用计算器计算 n a 小组分工 合作探索
知识回顾 复习引入
计算:
1
问 23= 8 ; 32 = 9

0
2=
1


明 当 n 为偶数时, a 0 .

m
当 a n 有意义,且 a 0 ,
明 m、n N且n >1
巩固知识 典型例题
例 1 将下列各分数指数幂写成根式的形式
4
(1) a 7 ;
3
(2) a 5 ;
(3)
3
Hale Waihona Puke a2.例 2 将下列各根式写成分数指数幂的形式:
(1) 3 x2 ; (2) 3 a4 ; (3) 1 . 5 a3

高中数学人教B版必修第二册4.1.1实数指数幂及其运算课件

高中数学人教B版必修第二册4.1.1实数指数幂及其运算课件
3.2.,3.15,3.142,3.1416,3.14160,...
中的数,随着小数点后位数的增加,都越来越接近,从而两个序列 23.1,23.14,23.141,23.1415,23.14159,...; 23.2,23.15,23.142,23.1416,23.14160,...; 中的数,随着指数的变化,也都会越来越接近一个实数,这个实数就是2π
5 125 (2) 2 3
3 3
典型例题
例3 化简下列各式:
(1)
x y 5 2 3
1 2
x y x y
1 4
1
1 2
5 6
1 3
1 6
(2) m m1 2
m m 1 2
1 2
三、用信息技术求实数指数幂
实数指数幂的值可以通过计算器或计算机软件方便地求得. 在GeoGebra中,在“运算区”利用符号“⋀”,就可以得到实数指数幂的精确值或近似值.如下 图所示,前面三个是在符号计算模式下的输入和所得到的结果,后面两个是在数值计算模 式下得到的结果。下面我们来求本节情境与问题中的年平均增长率。
第四章 指数函数、对数函数与幂函数
4.1.1 实数指数幂及其运算
国家统计局有关数据显示,我国科研和开发机构基础研究经费支出近些年 呈爆炸式增长:2013年为221.59亿元,2014年、2015年、202X年的年增长率分 别为16.84%,14.06%,14.26%。
你能根据这三个年增长率的数据,算出年平均增长幸,并以2013年的经费 支出为基础,预测202X年及以后各年的经费支出吗?
一、有理指数幂
初中我们已经学习了整数指数幂的知识,例如25=2×2×2×2×2=32,
1 30=
5
3

北师大版(2021)中职数学基础模块上册《有理数指数幂》课件

北师大版(2021)中职数学基础模块上册《有理数指数幂》课件
4.1.1 有理数指数幂
8
9
64
-64 指数
(正整数指数幂)an a a a a
n个
(0指数幂) a0 1 (a 0)
n N
(负整数指数幂)
an
1 an
(a 0,n N )

底数
计算:
计算:
无解
负数没有平方根 正数的平方根有两个,它们互为相反数 所有实数都有且只有一个立方根
概念探明
3. 有理数指数幂运算 P118【随堂练习】第4题化简(式中字母均为正实数)..
根指数
被开方数
计算:
2 2 -3
a
-2 2
2
归纳
例1
例2 化简
有理数指数幂
整 (正整数指数幂)an a a a a
n N
指数

n个
指 (0指数幂) a0 1 (a 0)


(负整数指数幂)
an

1 an
(a 0,n N )

底数
有理数
整数 分数
分数指数幂
试想,如果幂指数n是分数时,此时的指数幂应该如何表示呢?
有理数指数幂运算性质
有理数指数幂运算性质:
2. 根式与分数指数幂互化
例3 将下列根式用分数指数幂表示(式中字母均为正实数).
3. 有理数指数幂运算
例4 化简(式中的字母均为正实数)
1. 用对数的运算性质计算 P117【随堂练习】第1题填空..
P117【随堂练习】第2题计算..
2. 根式与分数指数幂互化 P118【随堂练习】第3题用分数指数幂表示下列根式..

实数指数幂及其运算ppt课件

实数指数幂及其运算ppt课件
(3) 4 24 2, 4 (2)4 2, 4( 2)4 2.
结论:an开偶次方根,则有 n an | a | .
式子 n an 对任意a ∊ R都有意义.
公式1.
n a
n
a.
适用范围: ①当n为大于1的奇数时, a∈R. ②当n为大于1的偶数时, a≥0.
公式2. n an a.
适用范围:n为大于1的奇数, a∈R.
【1】下列各式中, 不正确的序号是( ① ④ ).
① 4 16 2 ② ( 5 3)5 3 ③ 5 (3)5 3 ④ 5 (3)10 3 ⑤ 4 (3)4 3
【2】求下列各式的值.
⑴ 5 32;
⑵ ( 3)4 ;
⑶ ( 2 3)2 ; ⑷ 5 2 6 .
解: ⑴ 5 32 5 (2)5 2;
④积的乘方,等于各因式幂的积,即: (a b)m ambm
在运算法则②中,若去掉m>n会怎样?
m=n m<n
a3 a3
a33
a0
1
a3 a5
a35
a2
1 a2
a ?0
a0 1(a 0)
an
1 an
(a
0,n
N

将正整数指数幂推广到整数指数幂
练习:
80 1
( 8)0 1
(a b)0 1
公式3. n an | a | .
适用范围:n为大于1的偶数, a∈R.
例1.求下列各式的值
(1) 3 (8)3 ;
(2) (10)2 ;
(3) 4 (3 )4 ;
(4) (a b)2 (a b).
解: 1 3 83 = -8; 2 102 | 10 | =10; 3 4 3 4 | 3 | 3; 4 a b2 | a b | a b a b.

人教B版实数指数幂及其运算精品PPT推荐1

人教B版实数指数幂及其运算精品PPT推荐1

(2)意义
①a =n a (a>0),
正分数
分 数
指数幂 ②a =(n a)m=n__a_m (a>0,m,n∈N*,且mn 为

既约分数)
数 负分数
1
幂 指数幂 a-s=_a_s (as 有意义且 a≠0)
0 的分数 0 的正分数指数幂等于 0,0 的负分数指数幂
指数幂 没有意义
(3)运算法则 ①前提:s,t 为任意有理数. ②法则:asat=as+t;(as)t=ast;(ab)s=asbs.
得_xn __=a,则_x _称为 a 的 n 次方根;当n a有意义的时候,_n_a_称为根 式,n 称为_根指数______,a 称为被开方数.
(2)根式的性质
①(n a)n=_a _.
②n
_a _当n为奇数时, an=_|a| __当n为偶数时.
思考 1:类比平方根、立方根,猜想:当 n 为偶数时,一个数的 n 次方根有多少个?当 n 为奇数时呢?
思考 2:如何理解分数指数幂? [提示] (1)与根式的关系:分数指数幂是根式的另一种写法,根 式与分数指数幂可以相互转化;
(2)底数的取值范围:由分数指数幂的定义知 a≤0 时,a 可能会
有意义.当 a 有意义时可借助定义将底数化为正数,再进行运算; (3)运算性质:分数指数幂的运算性质形式上与整数指数幂的运
所以 1-6x+9x2= 1-3x2=|1-3x|=1-3x. (2)因为(±9)2=81,所以 81 的平方根为±9,即 a=±9,又(-2)3 =-8, 所以-8 的立方根为-2,所以 b=-2, 所以 a+b=-9-2=,错误的画“×”)
(1)当 n∈N*时,(n -16)n 都有意义.( ) (2)任意实数都有两个偶次方根,它们互为相反数.( ) (3) 3-π2=π-3.( ) (4)0 的任何指数幂都等于 0.( )

最新中职数学基础模块上册《实数指数幂及其运算法则》ppt课件3精品文档

最新中职数学基础模块上册《实数指数幂及其运算法则》ppt课件3精品文档
21
小结:①分数指数幂的意义及运算性质
②指数概念的扩充,引入分数指数幂概念后,
指数概念就实现了由整数指数幂向有理数指数 幂的扩充 .
而且有理指数幂的运算性质对于无理指数幂也适 用,这样指数概念就扩充到了整个实数范围。
③对于指数幂 a n ,当指数n扩大至有理数时,
要注意底数a的变化范围。如当n=0时底数a≠0; 当n为负整数指数时,底数a≠0;当n为分数时, 底数a>0。
8
有理数指数幂
10
复习:(口算)5 a10 5 (a2)5 a2 a 5
1)5 32 2)4 81 3) 210
12
3 a12 3 (a4)3 a4 a 3
2
2
3 a2 3 (a 3 )3 a 3
4)3 312
1
1
a (a 2 )2 a 2
n
am
m
m
n(an)nan(m ,nN*且 ,n1)
1、计算下列各式:
1 1 3
(1)a2a4a 8
(2)(x
1 2
1
y3
)6
(3)(
8a3
1
)3
27b6
(4)2x13(1x13
2
2x 3)
2
19
3 、下列正确的是()
1
A 、 x ( x ) 2 ( x 0 )
B、
1
x3
3
x
C
、(
x
)
3 4
4
( y )3(x, y
0)
y
x
1
D 、6 y 2 y 3 ( y 0 )
6
三、负整数指数幂
a-n =
1 an
(a ≠ 0,n N+ )

实数指数幂及其运算PPT课件

实数指数幂及其运算PPT课件
复习回顾
实数分类:
整数
有理数 实 数 无理数
分数
三维目标
1.知识与技能: 了解根式方根的概念及关系 理解分数指数幂的概念 掌握有理数指数幂的运算性质 2.过程与方法: 能运用性质进行化简计算 3.情感.态度与价值观: 注重类比思想的应用
整数指数幂
正整数指数幂:
指数

底数
运算法则:
将正整数指数幂推广到整数指数幂
运算法则:
练算
偶次方根 奇次方根
根式性质
a (a>0,n∈N+)
练习
=a
=a2
分数指数幂
分数指数幂
有理数指数幂
运算法则:
练习
小结
1:运算性质:
2.偶次方根的性质: 正数的偶次方根是两个绝对值相等符号相反的数, 负数的偶次方根无意义,零的任何次方根为零

《实数指数幂》课件

《实数指数幂》课件

定义,以及实数指数幂的运算性质。
幂的运算法则
02
包括同底数幂的乘法、除法,幂的乘方以及积的乘方等运算法
则。
无穷大与无穷小的概念
03
理解无穷大和无穷小的概念,掌握其在实数指数幂中的应用。
常见错误解析
混淆不同底数指数幂的运算
01
例如,将a^m * a^n误算为a^(m+n),而不是正确
的a^(mn)。
实数指数幂的引入
实数指数幂的定义
实数指数幂表示一个数与一个实数的乘方。例如,$a^{m/n}$ 表示 $a$ 的 $m$ 次方再 开 $n$ 次方根。
实数指数幂的引入背景
实数指数幂的引入是为了解决一些数学问题,特别是在处理连续函数和积分时,实数指数 幂提供了更灵活和实用的工具。
实数指数幂的性质
实数指数幂具有一些重要性质,如 $a^{mn} = (a^m)^n$,$a^{m/n} = sqrt[n]{a^m}$ ,以及 $(ab)^n = a^n times b^n$。这些性质在数学和物理中有广泛的应用。
《实数指数幂》ppt课件
目录
• 引言 • 实数指数幂的性质 • 实数指数幂的运算 • 实数指数幂的性质与运算的应用 • 总结与回顾
01
引言
幂的定义与性质
幂的定义
幂是乘方运算的结果,表示一个 数连续与一个相同的数相乘的次 数。例如,$a^m$ 表示 $a$ 连 续乘以自身 $m$ 次。
幂的性质
幂具有一些基本性质,如 $a^{m+n} = a^m times a^n$ ,$(a^m)^n = a^{mn}$,以及 $a^{-m} = frac{1}{a^m}$。
,从而更好地理解和求解问题。

实数指数幂及其运算完整版

实数指数幂及其运算完整版
实数指数幂及其运算
精选ppt
1
复习引入
1 初中学习的正整数指数
2 正整数指数幂的运算法则
(1)amanamn (2) (am)n amn (3) aamn amn(mn,a0) (4) (ab)mambm
精选ppt
2
思考讨论
规定: a0 1(a0)
ana1n(a0,nN)
精选ppt
3
分数指数
❖ 1.回顾初中学习的平方根,立方根的概念
1 1 3
(1)a2a4a 8
1
(2)(x2
1
y3
)6
8a3
(3)( 2
7b6
1
)3
(4)2x13(1x13
2
2x 3)
2
精选ppt
17
3 、下列正确的是()
1
A 、 x ( x ) 2 ( x 0 )
B、
1
x3
3
x
C
、(
x
)
3
4
4
( y )3(x, y
0)
y
x
1
D 、6 y 2 y 3 ( y 0 )
( 16) - 3 4= ( 2) 4 ( - 3 4) = ( 2) - 3= 27。
81
3 精选ppt
38
12
练习:求值:
912,6432
,
(
1
1
)5
32
精选ppt
13
例3:用分数指数幂的形式表示下列各式:
a2 a,a 33a2, aa(式 中 a0 )
分析:此题应结合分数指数幂意义与有理指数幂运算性质。
⑴ ar·as=ar+s (a>0,r,s∈Q);

实数指数幂及其运算 PPT课件

实数指数幂及其运算 PPT课件

2n = a xn =a
2叫a的n次方根; x叫a的n次方根.
1.方根的定义 如果xn=a,那么x叫做 a 的n次方根,其中n>1,且
n∈N*.
即 如果一个数的n次方等于a (n>1,且 n∈N*),那么这个数叫做 a 的n次方根.
24=16 (-2)4=16
(-2)5=-32 27=128
16的4次方根是±2.
示a在实数范围内唯一的一个n次方根.
当n是偶数时, n a 只有当a≥0有意义,当a<0时 无意义. n a (a ≥ 0)表示a在实数范围内的一个 n次方根,另一个是 n a (a ≥ 0)
( n a ) n a
(1) 5 25 2, 3( 2)3 2. 结论:an开奇次方根,则有 n an a. (2) 32 3, (3)2 3, (3)2 3.
(6)0的七次方根是_____0_.
点评:求一个数a的n次方根就是求出哪个数的n 次方等于a.
23=8
8的3次方根是2. 记作:3 8 2.
ቤተ መጻሕፍቲ ባይዱ
(-2)3=-8
-8的3次方根是-2. 记作:3 8 2.
(-2)5=-32 27=128
-32的5次方根是-2.记作:5 32 2. 128的7次方根是2. 记作:7 128 2.
-32的5次方根是-2. 2是128的7次方根.
【1】试根据n次方根的定义分别求出下
列各(数1)的25n的次平方方根根. 是___±___5_;
(2)27的三次方根是____3_; (3)-32的五次方根是_-_2__; (4)16的四次方根是_±___2_; (5)a6的三次方根是___a_2_;
的平方根.
22=4 (-2)2=4

《实数指数幂及其运算法则》ppt课件

《实数指数幂及其运算法则》ppt课件

2.负数的偶次方根没有意义;
3.正数a的奇次次方根是一个正数,负数的奇次方根是一个负数 都表示为
n
a, (n为奇数)
4.0的任何次方根都是0,记作n 0 0.
①( 5)
2
2 3 3
5 ②( 5) 5③( 5) 5 ④ 6 6 ⑤ ( 6 ) 6 ⑥( 6 ) 6 ⑦ ( 6 ) 6
一、(1)化负指数为正指数,
(2)化根式为分数指数幂, (3)化小数为分数 (4)遇乘积化同底或同指数幂
二、对于计算的结果,不强求统一用什么形式来表示,
但结果不能同时含有根号和分数指数,也不能既含有分 母又含有负指数。
方法规律: n (1)先把被开方数化为 a 的形式 ( a ) a (2)再利用运算法则 计算(底数不变 ,指数相乘)
回顾旧知识
整数指数幂的概念:
指数 幂 底数
正整数指数幂的概念:
a a a ......a
n
n个a
(n N
规定:
a 1
1 n a an
0
(a 0)
1 an
( a 0, n N )
导入新课题
问题:我国农业科学家在研究某农作物的生长状况时 ,得到该作物的生长时间x周(从第1周到12周)与植 x 株高度ycm之间的关系 y= . 4
r s rs
r r r
(ab) a b (a 0, b 0, r Q
课后作业
课本P71练习1、2、3题
求值
27 , 100
2 3
-
1 2
1 -3 ,( 4 ) ,
2 3 3 2
16 - 4 ( ) 81
3

人教B版高中数学必修第二册4.1.1 实数指数幂及其运算【课件】

人教B版高中数学必修第二册4.1.1 实数指数幂及其运算【课件】
)
4
2
A. −3 =-3
B. 4 =a
3
3
3
C.( −2) =-2
D. −2 3 =2
答案:ABD
解析:由于
4
−3 2 =3, a4 =|a|,
3
−2 3 =-2,故选项A、B、D错误.
4.下列根式与分数指数幂的互化,正确的是(
1
2
A.- = − (x≥0)
3
−4
C. =
1 3
(x>0)

答案:C
解析:(1)

3
x2
6
·
1 2
x2 ·x3
1
x·x6

1
2
=x
6
1 2
1
+
−1−
2 3
6
=x0=1.
1
6
1
3
(2)- x=-x (x>0); 2 = y 2 =-y (y<0);
3

4
x = x −3
1
4
=
4
)
1
1
3 1
1 3
1 3
−3
(x>0);x =
= (x≠0).
x
x
x
题型3 分数指数幂的运算与化简
则可以对根式进行化简运算.
(3)对于含有字母的化简求值的结果,一般用分数指数幂的形式表
示.
跟踪训练3 计算:
1
(1)
1 −2
4
·
4 −1
3
1
0.1−2 · 3 −3 2
1
1

2
2
(a>0,b>0);

《实数指数幂及其运算法则》ppt课件

《实数指数幂及其运算法则》ppt课件
$(ab)^n = a^n times b^n$
$(uv)^n = u^n times v^n$
积的运算性质
$(u^n)v = u times u times ldots times u times v$(共n个u相乘)
积的运算性质2
$(u^n)v = u times (u^n)v$
积的运算性质3
$(ab)^{-n} = frac{1}{(ab)^n} = frac{1}{a^n times b^n}$
积的运算性质
$frac{a^m}{b^m} = (a/b)^m$
商的指数运算性质
$frac{a^m}{b^{-m}} = (a/b)^{m-n} = frac{a^{m-n}}{b^{m-n}}$
总结与回顾
卑鄙!只要 your question mark keeps track of keeping your work. OMRC
Cited from: "https://www.bokephases"
总结与回顾
* "
" 输入: 6th Party View : 尾声 (疏影)
# 2nd Party View
幂运算在数学、物理、工程等领域有广泛应用。
幂的应用
积运算可以用于计算多个数的乘积,简化计算过程。
在统计学中,积运算可以用于计算样本方差、标准差等统计量。
在物理学中,积运算可以用于计算多个物理量的乘积,如力矩、功等。
积的应用
商的应用
商运算可以用于计算两个数的比值,用于比较大小、排序等。
在经济学中,商运算可以用于计算成本效益比、投资回报率等。
尾声 (疏影): 6th Party View : 尾声 (疏影)

实数指数幂及其运算课件

实数指数幂及其运算课件

实数指数幂的运算示例
示例1
通过实际计算示范,加深对实数 指数幂运算的理解。
示例2
解答含有实数指数幂的方程,锻 炼解题技巧和思维能力。
示例3
利用数据图表展示实数指数幂的 应用场景,如经济增长和人口变 化。
对数的引入与基本性质
1
对数的定义
引入对数的概念和基本定义,与实数指数幂相互对应。
2
对数的性质
讲解对数的一些基本性质,如底数为1和对数为0的特殊情况。
实数指数幂及其运算课件
本课件将详细介绍实数指数幂及其运算的重要性和应用价值,通过生动的示 例和动人的图像,让你轻松理解这一概念。
实数指数幂的基本性质
定义
引入实数指数幂的概念和基 本定义。
性质
讲解实数指数幂的一些基本 性质,如指数为0和1时的特 殊情况。
运算法则
介绍实数指数幂的运算法则, 包括幂的乘法和除法法则。
3
对数的计算法则
介绍对数的运算法则,包括对数的乘法和除法法则。
对数与指数幂的关系
互为反函数
对数函数与指数幂函数之间的反 函数关系,图像形象展示。
换底公式
讲解换底公式的推导和应用,解 决不同底数的对数运算问题。
实际应用
结合实际应用领域,展示对数与 指数幂的关系。
对数函数与指数函数Байду номын сангаас图像与性质
图像特点
讲解对数函数和指数函数的 图像特点和可视化展示。
性质比较
对比对数函数和指数函数的 性质,如增长趋势和极限值。
应用场景
探索对数函数和指数函数在 物理、生物、经济等领域中 的应用。
常用对数与自然对数
常用对数
引入常用对数的定义和基本计算 法则。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。




2 3
4

=
16 81


1 5
2

=
25

整数指数幂
归 当 n N 时, an = a a a

1
纳 当 a 0 时, a0 = 1 ; an = an .
动脑思考 探索新知
m
概 念 a n n am
概念
m
a n
1
n am
其中 m、n N且n >1.
(1) 3 x2 ; (2) 3 a4 ; (3) 1 . 5 a3
将根式写成分数指数幂的形式或将分数指数幂写成根式的形式时,
要注意的m、n的对应位置关系,分数指数的分母为根式的根指数,
分子为根式中被开方数的指数.a
m n

n am
m
an
1
n am
运用知识 强化练习
1.将下列各根式写成分数指数幂的形式:
4 5
;(3)
1
5 0.453
汇报展示 全班比拼
计算器计算分数指数幂的方法
小组分工 合作探索
运用知识 强化练习
3.利用计算器求下列各式的值(精确到 0.0001):

(1)

2
2 3

2

(2) 35 ;
(3) 1 . 3 1.032
整体建构 理论升华
整 数 an a a a
a0 1

当 n 为奇数时, a R ;
明 当 n 为偶数时, a …0 .

m
当 a n 有意义,且 a 0 ,
明 m、n N且n >1
巩固知识 典型例题
例 1 将下列各分数指数幂写成根式的形式
4
(1) a 7 ;
3
(2) a 5 ;
(3)
3
a2

例 2 将下列各根式写成分数指数幂的形式:

自我探索 使用工具
计算下列各题(精确到 0.0001): (1) 3 2 ; (2) 3 0.3564 ; (3) 4 0.5 ; (4) 7 273 .
汇报展示 全班比拼
如何用计算器计算 n a 小组分工 合作探索
知识回顾 复习引入
计算:
1
问 23= 8 ; 32 = 9

0
2=
1
第四章 指数函数与对数函数 4.1 实数指数幂
解决问题 复习引入
如果x2=9,则x=±3 ;x叫做9的平方根 .
问 如果x2=5,则x=± 5;x叫做5的平方根 . 题 如果x3=8,则x= 2 ;x叫做8的 立方根 .
如果x3=-8,则x= -2 ;x叫做8的 立方根 .
如果 x2 a ,那么 x a 叫做 a 的平方根(二次方
1 负数的n次方根没有意义.
其中 3 叫做 81 的 4 次算术根.
即 4 81 3
2
当n为奇数时,实数a的n次方根只有一个. -32 的 5 次方根是-2 , 即 5 32 2
27 的 3 次方根是 3, 即 3 27 3
3 零的n次方根是零.
动脑思考 探索新知
形如 n a ( n N+且n 1)的式子叫做a 的 n 次根式,
概念
其中 n 叫做根指数, a 叫做被开方数.
1. 读出下列各根式,并计算出结果.
(1) 3 27 ; (2) 25 ; (3) 4 81 ; (4) 3 8 .
2. 填空:

习 (1)12 的 4 次算术根可以表示为
,根指数为

被开方数为

(2)-7 的 5 次方根可以表示为
被开方数为

,根指数为
归 纳 根),其中 a 叫做 a 的算术平方根).
动脑思考 探索新知
概念
一般地,如果xn=a(n∈N+且n>1),那么 x叫做a的n次方根.
当n为偶数时,正数a的n次方根有两个; 81 的 4 次方根有两个, 为 3 和-3,
an 1 an
分数
m
a n n am
m
a n
1
n am
有理指数幂
归纳小结 自我反思
1. 你学习了哪些内容? 2. 你会解决哪些新问题? 3. 在学习方法上你有哪些体会?
布置作业 继续探究
阅 读 教材章节4.1 书 写 学习与训练4.1.1 实践 了解计算器的其他计算使用方法
再见
练 (1) 3 9 ;
(2) 3 ; 4
(3) 1 ; 7 a4
习 2.将下列各分数指数幂写成根式的形式:
3
3
(1) 4 5 ; (2) 32 ;
(3)

(8)
2 5

(4) 4 4.35 .
3
(4)1.24 .
自我探索 使用工具
利用计算器求值(精确到 0.0001):
(1)
3
34
;(2)

5
相关文档
最新文档