“航空航天”简介含义起源 历史及发展

合集下载

航空航天介绍

航空航天介绍

航空航天的发展
而在艰难的抗战短时期中国的航空并没有
如同西方那样真正的起飞
直到解放后1954年7月3日中国才有了真正
属于自己的飞机“初教—5”第一架飞机纪录 片.rm
航空航天的发展
中国航天的发展
中国航天虽然起步较晚 但发展迅速! 1956年2月,著名科学家钱 学森向中央提出《建立中国 国防航空工业的意见》。3月国务院制订《一九五六 年至一九六七年科 学技术发展远景规划纲要(草 案)》,其中提出要在十二年内使 中国喷气和火 箭技术走上独立发展的道路
航空航天的起源
1783年8月第一只氢气球在法国升空,同年
11月热气球第一次载人升空并航行9000米 1783年11月21日,法国人罗齐埃和达尔朗 德在巴黎米也特堡,乘坐蒙特哥菲新制的 热气球试飞。这个气球高20多米,直径约 15米。它上升到1000米高度,在巴黎上空 飘行25分钟,最后平安降落在距起飞地约 9000米之处。这是人类第一次成功的升空 航行。
航空航天的发展
运输机及客运机
第二次世界大战结束初期美 国开始把大量的运输机改装 成为客机。
图-144
60年代以来,世界上出现了一些大型运输机和超音速运输 机,逐渐推广使用涡轮风扇发动机。著名的有前苏联生产 的安-22、伊尔-76;美国生产的C-141、C-5A、波音 -747;法国的空中客车等。超音速运输机有英法联合研 制的“协和”式和原苏联的图-144 其中安-22与图-144都是当今的世界之最
航空航天的发展
从某种程度上可以说近代世界航天的发展,冷
战是其最大的推动力 为了在军事上取得压倒性胜利,美苏在太空的竞 争直到冷战结束就从未停止过,当然世界航天 也随之迅猛发展 从发射人造卫星到载人飞行; 从绕地飞行到进行深空探测; 从宇宙飞船到航天飞机到空间站,人类的脚步在 不断的走出这个孕育人类的摇篮!航天飞机起 飞.mpg

航空航天简介含义起源历史及发展

航空航天简介含义起源历史及发展

航空与航天是20世纪人类认识和改造自然进程中最活跃、最有影响的科学技术领域,也是人类文明高度发展的重要标志.指飞行器在地球大气层内的航行活动,指飞行器在大气层外宇宙空间的航行活动.人类在征服大自然的漫长岁月中,早就产生了翱翔天空、遨游宇宙的愿望.在生产力和科学技术水平都很低下的时代,这种愿望只能停留在幻想的阶段.虽然人类很早就做过种种飞行的探索和尝试,但实现这一愿望还是从18世纪的热空气气球升空开始的.自从20世纪初第一架带动力的、可操纵的飞机完成了短暂的飞行之后,人类在大气层中飞行的古老梦想才真正成为现实.经过许多杰出人物的艰苦努力,航空科学技术得到迅速发展,飞机性能不断提高.人类逐渐取得了在大气层内活动的自由,也增强了飞出大气层的信心.到了50年代中期,在火箭、电子、自动控制等科学技术有了显着进展的基础上,第一颗人造地球卫星发射成功,开创了人类航天新纪元,广阔无垠的宇宙空间开始成为人类活动的新疆域. 航空航天事业的发展是20世纪科学技术飞跃进步,社会生产突飞猛进的结果.航空航天的成果集中了科学技术的众多新成就.迄今为止的航空航天活动,虽然还只是人类离开地球这个摇篮的最初几步,但它的作用已远远超出科学技术领域,对政治、经济、军事以至人类社会生活都产生了广泛而深远的影响.人类活动范围的飞跃人类为了扩大社会生产活动,必然要不断开拓新的天地.人类活动范围,经历了从陆地到海洋,从海洋到大气层,从大气层到宇宙空间的逐渐扩展的过程.人类活动范围的每一次飞跃,都大大增强了认识和改造自然的能力,促进了生产力的发展和社会的进步.人类为了实现腾空飞行的理想,曾经历了一段艰难曲折的道路.中国西汉时期的飞人试验、中世纪欧洲人的跳塔扑翼飞行和其他先驱者的勇敢尝试屡遭失败,使人们认识到简单模仿动物,特别是鸟类飞行的做法并不能使人升空.飞行探索遂转向研究轻于空气的航空器.1783年,法国蒙哥尔费兄弟的热空气气球和查理的氢气气球相继升空成功,实现了人类自古以来的“凌云之志”,标志着人类在征服天空的道路上迈出了第一步.性能优于气球、飞行方向可以操纵的飞艇随之获得发展.轻于空气的航空器存在升力小、阻力大、飞行速度慢等缺点,不能实现便捷的飞行,人们转而探索重于空气的航空器.18世纪产业革命后对汽车用内燃机和船用螺旋桨的研究,为重于空气的航空器提供了动力基础.在G.凯利、O.李林达尔等航空先驱对滑翔机和空气动力作用的初步研究之后,美国制造成功世界公认的第一架飞机,并在1903年12月17日实现了人类首次持续的、有动力的、可操纵的飞行,开创了现代航空的新纪元.20世纪上半叶相继发生了两次世界大战,航空的发展首先对战争产生了重大影响.从1909年起,一些国家政府就注意到飞机的军事用途,相继成立了航空科学研究机构.在第一次世界大战中,飞机开始得到大规模使用,出现了执行不同军事任务的机种.在20~30年代,飞机完成了从双翼机到张臂式单翼机、从木布结构到全金属结构,从敞开式座舱到密闭式座舱,从固定式起落架到收放式起落架的过渡,的升限、速度提高了2~4倍.而发动机功率则提高了5倍,航空工业逐渐成为独立的产业部门.第二次世界大战引起了航空工业的第二次大发展,参战飞机数量剧增,性能迅速提高,空军发展成为对战争全局有重要影响的一个军种.飞机气动外形的改进、燃气涡轮发动机和机载雷达的应用,改变了飞机的面貌.战后喷气技术迅速发展,军用飞机广泛采用喷气发动机.随着超音速空气动力学、结构力学和材料科学的进展,飞机突破了“音障”和“热障”,飞行速度达到2~3倍音速,进入了超音速飞行时代.变后掠机翼和垂直起落技术的成功为变后掠翼飞机和垂直起落飞机的发展创造了条件.直升机也得到发展和广泛应用.在两次世界大战间隙中发展起来的民用航空运输也有了很大增长,从50年代起,喷气式旅客机逐渐取代了螺旋桨旅客机.随着低耗油率的高涵道比涡轮风扇发动机的产生,70年代初出现了大型宽体高亚音速喷气式旅客机和货机,飞机载重量大大增加.飞机成了国民经济和人民生活不可缺少的交通工具.人类从模仿鸟类飞行开始,已发展到能比任何鸟类飞得更高、更快、更远.航天不同于航空,飞行器在极高真空的宇宙空间以类似于自然天体的运动规律飞行.实现航天首先要寻找不依赖空气、有巨大推力的运载工具.这种工具就是火箭.中国是火箭的发源地,公元12世纪就在战争中使用了火箭.20世纪初,以К.Э.齐奥尔科夫斯基、.戈达德和H.奥伯特为代表的航天理论先驱者阐明了利用火箭进行航天的基本原理,描绘了现代液体火箭的设想.1926年戈达德首先研制成功世界上第一枚液体火箭.在一些国家陆续成立了火箭学会,开展理论研究和小型液体火箭的研制工作.在第二次世界大战期间,纳粹德国集中力量研制大型液体火箭,并于1942年10月成功地进行了A-4火箭即以后的V-2火箭的发射试验,为战后发展大型导弹和航天运载工具奠定了基础.1957年 8月和12月,苏联和美国分别发射成功洲际导弹.1957年10月4日,世界第一颗人造地球卫星由苏联发射成功,它标志着人类活动范围的又一次飞跃.1961年4月12日,苏联Ю.А.加加林乘“东方”1号飞船进入太空,人类实现了遨游太空的理想.1969年7月20~21日,美国.阿姆斯特朗和.奥尔德林乘“阿波罗”11号飞船登月成功,创造了人类涉足地球以外另一个天体的纪录.从60年代以来,为科学研究、国民经济和军事服务的各种科学卫星与应用卫星获得很大发展,并取得显着的效益.70年代后各种卫星向着多用途、高可靠、长寿命、低成本的方向发展.载人航天活动为认识宇宙、开发和利用太空提供了条件,并为在太空建立永久性的航天站奠定了基础.80年代可以重复使用的的出现,为人类提供了理想的航天运载工具,使航天活动进入一个新的阶段.空间探测获得了丰硕的成果,先后有12人登上了月球.无人的空间探测器已在金星和火星着陆,还探测了太阳系大多数行星,有的还将飞出太阳系.在不到30年的时间内,航天技术取得了划时代的成就,成为世界新技术革命的一个重要组成部分.现代科学技术的结晶航空技术和航天技术都是高度综合的现代科学技术,它们以基础科学和技术科学为基础,集中应用了20世纪许多工程技术新成就.力学、热力学、材料学、医学、电子技术、自动控制、喷气推进、计算机、真空技术、低温技术、半导体技术、制造工艺学等都对航空航天的进步发挥了重要作用.这些科学技术在航空航天的应用中互相交叉和渗透,产生了一些新学科,使航空和航天科学技术形成了完整的体系.航空航天不断提出的新要求,又促进了这些科学技术的进步.莱特兄弟对航空的一个重大贡献是在飞机设计中应用了原理.后来航空技术的每一项成就,多与空气动力学的进展有关.空气动力学的机翼理论和边界层理论为早期飞机性能的改进指出了方向.所有通过大气层的飞行器都要利用风洞实验来确定它们的空气动力外形和空气动力特性.亚音速、跨音速和超音速空气动力学的发展,取得了后掠翼和面积律的一系列成果,在飞机采用涡轮喷气发动机后突破了“音障”,实现了超音速飞行.在耐热和防热材料发展的基础上,高超音速空气动力学和气动热力学为飞机突破“热障”和再入大气层的飞行器的防热设计指出了方向.气动热力学和发动机气动力学也是航空发动机和火箭发动机的重要理论基础之一.飞行器结构力学和强度理论,对飞行器的性能和经济性都有重大影响.分析空气动力和飞行器相互作用的气动弹性力学,成功地解决了曾引起飞机多次事故的颤振问题.已经成为研究在空气动力等外力作用下飞行器运动规律的科学,成为各类飞行器设计的理论基础之一.而天体力学则为研究航天器的运行奠定了理论基础.推进系统是飞机和火箭的心脏,是决定它们性能的重要因素.活塞式航空发动机的发展提高了早期飞机的飞行速度;在叶轮机械的效率大幅度提高的基础上出现的,使飞机的飞行速度得以超过音速;高性能的涡轮风扇发动机降低了耗油率和发动机噪声,使得巨型旅客机有可能投入航线飞行.与飞机相比,对航天器运载火箭的性能影响更大.液体火箭发动机性能的提高,对成功地发射第一颗人造地球卫星起了重要的作用.只有在研制成功大推力的助推发动机和高性能的液氧液氢发动机之后,才有可能成功地进行载人登月飞行.高性能的固体火箭发动机促进了战略导弹和战术导弹的发展.航天飞机助推用的固体火箭发动机,单台推力已超过10兆牛约 1千吨力.随着能源的不断开发,利用核能、太阳能的各种发动机将在航空航天活动中得到更广泛的应用.真空技术和低温技术的发展,对低温推进剂在火箭上的应用、研制高性能火箭发动机以及航天器的热设计都有着关键性的作用.医学对航空航天的发展有着十分重要的作用.研究人对航空航天特殊环境的适应性和医学保障的航空航天医学,是航空航天生命保障技术的医学基础,它的发展保证了人在航空航天活动中的安全和高效率的工作.电子技术、自动控制、计算机与航空航天密切相关.这些技术应用于飞行器的通信、导航、制导、控制、侦察、预警、遥感等方面,大大提高了飞行器的性能.在飞机上应用先进的微电子技术、自动控制和计算机技术,使飞机实现了主动控制和机载电子系统小型化、综合化、数字化,提高了飞机的机动飞行、目标捕获、识别和跟踪、自动火力控制以及全天候飞行等能力.在火箭上采用高精度惯性器件、先进的计算机和制导方法,使火箭的制导精度有了很大的提高.航天器采用多变量控制、最优控制等先进控制技术和计算机,使航天器能够完成复杂的姿态控制、轨道控制等任务.计算机辅助设计和制造使飞行器设计和制造发生了重大变化.对航天器实施跟踪、测量和控制的航天测控系统复杂而庞大,且多是具有信息反馈的实时控制系统,需要应用先进的电子技术、自动控制、计算机以及系统工程的原理进行设计.是航空工程和航天工程中最重要的技术工具.从民用航空的订座系统到多功能、大信息量和高度自动化的航天测控系统,无不依赖计算机.航空航天要求采用高速度、大容量的大型计算机.它要求电子设备、计算机的体积小、重量轻、可靠性高和寿命长,又促使电子元器件和计算机向小型化和微型化的方向发展.航空航天的需要是推动电子技术、自动控制和计算机技术飞速发展的主要动力之一.20世纪以来,和的规模日益扩大,工程技术的复杂程度越来越高.一架大型飞机由数十万个零部件组成,涉及许多企业的各种工序,只要存在一处隐患,就可能危及数百名乘客的生命安全,为了保证可靠性和提高经济效益,需要做大量的协调和管理工作.60年代参加美国“阿波罗”载人登月工程的有上百个科研机构,二万多家企业.制造的元器件多达几百万个.研制这样复杂的工程系统所面临的难题是:怎样把比较笼统的初始要求例如使航天员安全登上月球并返回地面逐步变为成千上万个工程任务的参加者的具体工作;怎样把这些工作最终组合成一个技术上合理、经济上合算、研制周期短、协调运转方便的实际工程系统.这样复杂的工程系统涉及大规模复杂社会劳动的组织协调和管理,需要有一套严密而科学的组织管理方法,即系统工程的方法.航空航天为系统工程的发展和应用提供了实践机会,它也是应用系统工程的最早和最大的收益者.航空航天开拓的系统工程思想对人类社会的生产活动也产生了重要影响.对社会进步的重大贡献航空航天的发展虽然与军事应用密切相关,但更为重要的是人类在这个领域所取得的巨大进展,对国民经济的众多部门和社会生活的许多方面都产生了重大影响,改变了世界的面貌.航空的发展大大改变了交通运输的结构,飞机为人们提供了一种快速、方便、经济、安全、舒适的运输手段,国际航班已经代替了远洋客轮,成为人们洲际往来的主要工具,密切了世界各国的交往.国内航班在一些国家更多地代替了铁路客运,加快了边远地区的开发.大型喷气式客机和通信卫星被认为是信息社会的两个重要支柱.在工业方面,飞机还广泛用于空中摄影、大地测绘、地质勘探和资源调查;在农业方面,飞机用于播种施肥、除草灭虫、森林防火以及环境保护.这一切对传统生产方式的变革产生了深远的影响.航天技术与其他科学技术相结合开创了许多新的技术途径,它们直接服务于国民经济的众多部门,产生了巨大的经济和社会效益.具有通信距离远、容量大、质量好、可靠性高、灵活机动等优点,已成为现代通信的重要手段.80年代初期,国际卫星通信网已承担三分之二的洲际电信业务和几乎全部洲际电视传输业务.卫星广播可以对广大地区的公众直接进行电视广播,使电视广播技术发生根本性的变革.卫星通信能够把分散的电子计算机设备连成全国或国际的信息网络,大大发挥计算机系统的效用.卫星通信和卫星广播对幅员辽阔、经济比较落后的国家是最经济、最有效的通信和广播手段.卫星导航引起了导航技术的重大变化,实现了全天候、全球、高精度导航定位,应用于舰船导航、海洋调查、海上石油钻探、大地测绘、搜索营救等方面.气象卫星提供的云图和其他气象观测资料对于提高气象预报的精度,特别是对台风等灾害性天气预报有很重要的作用,给国民经济许多部门带来很大好处.地球资源卫星是普查地球资源的最迅速、最有效、最经济的工具,可应用于调查地下矿藏、海洋资源、水利资源,协助管理农、林、牧、渔业,监视自然灾害和环境污染等方面.一颗地球资源卫星每年获得的收益约为卫星研制和发射费用的十几倍.航空技术和航天技术不仅给国民经济各部门带来直接经济效益,而且通过新技术、新产品、新材料、新工艺以及新的管理方法向国民经济各部门推广和转移,带来了十分可观的间接经济效益.航空航天为科学研究的发展作出了重要贡献.在很长时间内,人类对自然界的认识全部来自在地球表面进行的生产活动和科学研究.航空技术为人类提供了从空中观察自然界的条件.气球是最早进行对地观测、大气探测的空中运载工具.飞机可以在上万米的高空对地球进行大面积观测.航天揭开了从太空观测、研究地球和整个宇宙的新时代.刚一上天就发现了地球辐射带.接着,各种科学卫星和空间探测器发现了地球磁层、地冕、太阳风,基本上了解了它们的结构及其相互影响,测量了太阳系大多数行星的大气参数、表面结构和化学成分;在宇宙中发现了大量的X射线,γ射线和红外天体,发现了极高能量的粒子以及可能是“黑洞”的天体.载人航天实现了人在太空的天文观测,并且送人登上了月球,进行实地考察.通过航天活动获得的有关地球空间、行星际空间、太阳系和遥远宇宙天体的极其丰富的信息,大大更新了人类对于地球空间、太阳系和整个宇宙的认识,推动了天文学、空间物理学、高能物理学、生物学的发展,形成了一些新的学科分支.装有各种遥感器的航天器已经成为观测和监视地球物理环境的有效工具.卫星气象观测、卫星海洋观测、卫星资源勘测等新技术推动了气象学、海洋学、水文学、地质学、地理学、测绘学的发展,产生了卫星气象学、卫星海洋学、卫星测绘学等一系列新的学科分支.载人航天器为人类创造了一个具有众多特殊环境条件极高真空、微重力、超低温、强太阳辐射的天然实验室,可借以开展物理、化学、生物、医学、新材料、新工艺等综合研究工作.例如,在微重力条件下,可以研制和生产高纯度大单晶、超纯度金属和超导合金以及特种生物药品等.航空技术和航天技术用于军事使军事装备和军事技术发生了根本的变化.飞机用于战争,使战争开始从平面向立体转化.飞机在战争中可以执行拦击、侦察、轰炸、攻击、运输和救护等任务,用飞机和直升机执行空投和空降已成为机动作战的主要途径.各种电子干扰飞机实行电子干扰和反干扰,是现代进攻和防御作战中不可缺少的手段.各种喷气式军用飞机、火箭和导弹成为保障国家安全的重要武器.战略轰炸机、洲际导弹和核潜艇等战略武器构成核威慑力量.卫星侦察具有侦察面积大、速度快、可定期或连续监视一个地区,不受国界和地理条件限制等优点,已成为现代作战指挥系统和战略武器系统的重要组成部分.军用通信卫星、军用导航卫星、军用测地卫星、军用气象卫星等都有重要军事意义.由侦察卫星、军用通信卫星、军用导航卫星以及空中预警和指挥飞机构成的侦察、通信、导航、预警和指挥系统,是国家现代防务系统的“神经中枢”.20世纪以来,是发展最快的新兴工业.全世界从事航空航天工业的科技人员和工人,总数达几千万.在一些发达国家中,航空航天工业已经成为国民经济中重要的产业部门.航空航天工业是典型的知识和技术密集型的工业.航空航天工业的发达程度,已经成为衡量一个国家科学技术、国防建设和国民经济现代化水平的重要标志之一.中国的航空航天事业中国是世界文明古国.中国古籍中记载了许多与飞行有关的神话、传说和绘画.“嫦娥奔月”是人类最古老的登月幻想.鲁班制作木鸟、西汉时期的滑翔尝试和列子御风的想象,说明古代中国人民已想到利用空气浮力和空气动力升空飞行.现在仍在使用的帆、舵、风车等是古人在长期生产活动中利用风力和水力制造的生产工具.中国的风筝和火箭是世界公认的最古老的飞行器,走马灯的原理和现代燃气涡轮的工作原理基本相同,竹蜻蜓则是螺旋桨和的雏形.这些发明和创造显示了古代中国人民出众的智慧和才能.灿烂的中国古代文化和其他国家的古代文明,共同孕育了现代航空航天技术的萌芽.在近代,中国人民也为航空航天的发展作出了自己的贡献.世界上第一架飞机诞生之后,中国许多仁人志士为振兴中华而热心发展航空事业.从1887年华蘅芳制造中国第一个氢气气球到1949年这一段时间里,尽管条件极端困难,中国的航空事业还是获得了一定的进展.一些杰出的中国科学家在空气动力、火箭技术、燃烧理论等方面所作的卓有成效的研究,推动了有关学科领域的发展,为中国争得了荣誉.中国航空事业的蓬勃发展是从中华人民共和国成立之后开始的.1951年成立了航空工业管理局,随后组建了飞机、发动机和材料工艺等研究机构.1954年制造出第一架教练机初教5,1956年试制成功第一架喷气式歼击机歼5,1958年小型多用途运输机运5投入使用,同年又自行设计了初级教练机初教6,1959年第一架超音速喷气式歼击机歼6飞上了蓝天,实现了从修理到制造,从生产螺旋桨飞机到喷气式飞机,从仿制到自行研制的转变.1960年建立的中国航空研究院,从事飞机、发动机、仪表、电器、附件、电子设备和航空武器的设计研究;开展了空气动力、结构强度、燃气涡轮、风洞技术、生命保障、材料工艺、导航和控制以及飞行试验等方面的应用研究.中国航空工业形成了科学研究、生产和教育相结合的工业体系,培养了近20万各种专业人才.60年代后,全天候高空高速歼击机和低空性能优越的强击机已装备部队,新型飞机日益增多.中国已能生产各种型号的歼击机、轰炸机、强击机、直升机、运输机、侦察机以及战术导弹,为空军、海军提供了军事技术装备,满足了民航事业的部分需要,并向世界上一些国家出口.中国民用航空随着国民经济的发展和对外交往的扩大,形成了以北京为中心的航空运输网,开辟了200多条国内、国际航线,对发展国民经济和方便人民生活发挥了重要作用.专业航空为农业、林业、牧业、渔业、探矿、救灾、海上油田和环境保护等提供了广泛的服务.中国人民解放军空军和海军航空兵部队拥有训练有素的飞行人员和先进的技术装备,承担着保卫祖国领空安全和支援国家建设的光荣任务.中国航天事业是在50年代中期开始的,1956年,中国制定了12年科学发展远景规划,把火箭和喷气技术列为重点发展项目.同年建立了第一个导弹、火箭研究机构,1958年把发射人造地球卫星列入国家科学规划,组建机构开展空间物理学研究和探空火箭研制工作,并开展星际航行的学术活动和实验设备的筹建工作.中国航天事业在创业之初经历了经济上、技术上的种种困难,经过艰苦奋斗,终于在1960年2月发射成功第一枚探空试验火箭,同年11月又发射成功第一枚自制的,1964年6月发射成功自行研制的第一枚运载火箭,在60年代后期又研制成功中程和中远程运载火箭,为中国航天事业的发展奠定了基础.中国于60年代中期制定了研制和发射人造地球卫星的空间计划.1968年组建了中国空间技术研究院.1970年4月24日, 中国第一颗人造地球卫星“东方红”1号发射成功,使中国成为继苏、美、法、日之后世界上第五个用自制运载火箭成功地发射卫星的国家.1971年3月3日发射成功的第二颗人造地球卫星向地面发回了各项科学实验数据,正常工作了8年.1975年11月26日首次发射成功返回型人造地球卫星,中国成了继美、苏之后世界上第三个掌握卫星返回技术的国家.1980年5月,向南太平洋发射大型运载火箭取得成功,1981年9 月20日首次用一枚大型运载火箭把三颗空间物理探测卫星送入地球轨道,1982年10月从水下潜艇发射运载火箭成功.1984年4月8日,发射了一颗对地静止轨道试验通信卫星“东方红”2号,4月16日卫星定点于东经125°赤道上空. 到1985年10月,中国依靠自己的力量共发射了17颗不同类型的人造地球卫星.这些卫星为地质、测绘、地震、海洋、农林、环境保护等国民经济部门和空间科学研究提供了十分有价值的资料.第一颗试验通信卫星已用于国内通信广播和电视节目传输,对改善边远地区的通信和广播状况发挥了重要作用.通过一系列航天活动,中国已经建立了各类人造卫星、运载火箭、发射设备和测量控制系统的研究、设计、试验和生。

航天发展内容

航天发展内容

航天发展内容航天发展是指人类利用科学技术探索和开发太空资源,实现航天事业的持续发展。

航天发展涉及航天器的研制、发射、运行和利用,以及相关的技术、设备和应用等方面。

本文将从航天发展的历史、航天器的类型、航天应用以及未来的前景等方面进行阐述。

一、航天发展的历史自古代人类开始观测星象以来,人们就对太空充满了好奇和探索欲望。

航天的历史可以追溯到20世纪初。

当时的俄罗斯和美国先后成立了航天机构,并相继进行了无人航天器的试验。

1957年,苏联发射了世界上第一颗人造卫星“斯普特尼克1号”,标志着人类航天事业的开启。

此后,航天技术得到了飞速的发展。

人类首次进入太空、登月、载人航天等重要里程碑相继实现,航天发展取得了重大突破。

二、航天器的类型航天器是指在太空中进行飞行、探测、观测和实验的载具。

根据使用目的和载人与否,航天器可以分为载人航天器和无人航天器两大类。

载人航天器主要用于宇航员的太空飞行和执行科学实验任务,如国际空间站。

无人航天器则分为地球观测卫星、通信卫星、导航卫星等不同类型,用于进行地球观测、通信和导航等工作。

三、航天应用航天技术广泛应用于各个领域。

在地球观测方面,航天器可以通过搭载遥感仪器,获取地球的高精度影像和数据,用于气象预测、环境监测、资源调查等工作。

在通信方面,航天器可以作为卫星通信系统的重要组成部分,实现全球范围内的通信覆盖。

此外,航天器还可以用于导航定位、天文观测、科学研究等领域。

四、航天发展的前景随着科技的不断进步和航天技术的不断成熟,航天发展的前景非常广阔。

首先,在载人航天方面,人类有望进一步开展深空探测,如登陆火星等任务。

其次,在无人航天器方面,未来会有更多的遥感卫星和通信卫星发射,实现更精确的地球观测和通信。

此外,航天技术还可以应用于资源开发、太空旅游等方面,进一步推动人类航天事业的发展。

航天发展不仅是科技的进步,也是人类对未知世界的探索和开拓。

随着航天技术的不断发展,我们对太空的认识将会更加深入,航天应用也会更加广泛。

航天发展历史

航天发展历史

航天发展历史全文共四篇示例,供读者参考第一篇示例:航天发展历史航天是人类最伟大的探索之一,它代表着人类对未知领域的探索和勇气,也蕴含着人类对未来的既定信念。

航天的发展历史可以追溯到古代的火箭技术,但正式开始的时间被定格在20世纪初。

以下将对航天发展历史作一概述,带您回顾这段激动人心的历史。

第一阶段:火箭技术的起源火箭技术的起源可以追溯到中国古代,有关火药的记载可以追溯到公元900年左右。

火药的发明为后来火箭的发展提供了基础。

在19世纪末和20世纪初,火箭技术得到了飞速发展,德国的赫尔曼·奥伯特和美国的罗伯特·戈达德分别成为火箭技术的奠基人。

他们的研究成果为后来的航天发展奠定了基础。

第二阶段:太空探索的开端二战结束后,各国开始竞相研发火箭技术,为了尝试将人类送入太空。

1957年,苏联成功发射了世界上第一颗人造卫星——斯普尼克1号,这标志着人类太空探索的开端。

之后,美国也投入了大量资源进行航天技术的研究,成功在1969年将阿波罗11号航天飞船送上月球,成为世界上第一个登月的国家。

20世纪末至21世纪初,国际空间站的建设成为各国航天领域的焦点。

1998年,国际空间站正式开始建设,美国、俄罗斯、欧洲、日本和加拿大等国家参与其中。

国际空间站为人类提供了一个开展太空研究和实验的平台,也为后续深空探索奠定了基础。

21世纪初,各国开始加大对深空探索的投入,探索火星、木星等行星成为航天领域的新热点。

美国的“好奇号”探测器成功登陆火星,开展了深入的探索研究。

中国也积极开展月球探测任务,成功实现了月球着陆和返回任务,成为世界上第三个拥有火星探测能力的国家。

未来展望随着科技的不断进步和经费的增加,航天领域将迎来更多的突破和发展。

未来,人类可能会实现载人登陆火星的梦想,建立具有永久居住条件的月球基地,甚至开展星际探索任务。

航天发展将为人类带来更多的科技进步和生活改善,也将推动人类文明迈向更加辉煌的未来。

航天航空知识

航天航空知识

航天航空知识航天航空是指人类利用航天器进行空中飞行和太空探索的领域。

航天航空知识是指与航天航空相关的科学、技术和知识体系。

以下将为大家介绍一些关于航天航空的知识。

首先,航天航空的起源可以追溯到20世纪初。

人们一直梦想能够翱翔于天际,便开始从事航空研究。

1903年,莱特兄弟成功飞行了第一架飞机,开始了航空历史的新篇章。

随后,人们开始探索更高、更远的空间,航天航空科技得到了迅速发展。

其次,航天航空的技术包括航天器设计、制造和发射。

航天器可以分为两大类:航天飞机和火箭。

航天飞机通常是可多次使用的,可以在大气层内进行飞行和着陆;火箭则是一次性的,主要用于将航天器送入太空。

航天器设计和制造的核心技术包括:结构设计、燃料技术、导航控制系统等。

而发射技术则主要包括:发射台建设和发射控制等。

再次,航天探索是航天航空的重要方面。

人类通过航天器进行太空探索,可以更深入地了解地球和宇宙的奥秘。

人类首次登月是航天史上的里程碑事件。

1969年,阿波罗11号成功登陆月球,成为第一个登上月球的人类。

此后,人类陆续进行了多次载人和无人探测任务,开展了对行星、星系和宇宙起源等问题的研究。

最后,航天航空在工业和民用领域具有广泛的应用。

航天技术的发展带来了航空工业和相关产业的兴起。

在飞机制造领域,航天技术的应用使得飞机的性能和安全性有了大幅度提升。

在航空航天领域,卫星通信技术的发展使得人们可以通过卫星实现全球通信和导航定位。

此外,航天技术还在军事、气象、农业等多个领域得到了广泛应用。

在航天航空科技的快速发展背后,离不开科学家、工程师和技术人才的辛勤努力。

航天航空知识的传播和教育是培养航天航空人才的重要环节。

同时,航天航空知识的传播也对普通公众产生了重要影响,人们对航天航空的了解和支持,有助于推动航天科技的进一步发展。

总之,航天航空知识是一门综合性的学科,涉及航天器设计、航天探索和航空应用等方面。

通过学习航天航空知识,可以增加对航天航空科技的了解,亲身感受人类不断探索宇宙的壮丽历程。

航空航天技术的发展与应用

航空航天技术的发展与应用

航空航天技术的发展与应用随着科技的不断进步和人类社会的不断发展,航空航天技术也在不断地向前推进。

从早期的热气球、飞艇到现在的火箭、卫星,航空航天技术的发展历经了漫长的过程,取得了丰硕的成果,为人类探索宇宙、发展经济、提高生活质量等方面做出了重要贡献。

一、航空航天技术的起源航空的起源可以追溯到古代中国和古希腊时期,人类一直向往飞翔的自由,试图摆脱地面的束缚。

公元前300年左右,古希腊的哲学家阿基米德发明了一个风力螺旋桨,用来驱动可操纵的机械鸟飞行。

公元2世纪,古代中国的韩信发明了最早的风车车,用来装在车中利用风力吹动旗帜进行信号传递。

20世纪初,在受到“飞行器”一词启示后,人类工程师进行了第一次有计划的飞行尝试。

1903年,Wright兄弟发明了一种飞机,一次巨大的跨越,一次性地跨过了飞行的门槛。

此后,人类飞越了地球上的大多数地方,征服了太空和轨道,揭开了宇宙的神秘面纱。

二、航空航天技术的发展航空航天技术在发展的过程中,经历了无数的挑战和困难,但也取得了一系列的重大突破和伟大成就。

1、航空技术的发展。

1936年,德国发明了第一架喷气式飞机原型HE178,1958年,苏联发表了世界上第一篇飞船论文,提出了用多级火箭进入轨道的想法,1959年苏联宇航员加加林飞行了108分钟,自此之后,世界各国的航空技术取得了突破性的发展。

上世纪90年代初,美国企业开始研究商业运载系统,以商业角度进行研发。

2004年,SpaceShipOne成功了首次载人亚轨道飞行。

2005年,美国政府宣布启动“Orion”任务,旨在发展一种将人员送往蓝色星球的新航天器。

2、航天技术的成就。

1957年,苏联发射了第一颗人造卫星,在此之后不断地进行了各种太空实验。

1961年4月12日,苏联宇航员尤里·加加林成为世界上首位到达太空的人,成功进行了轨道环绕飞行。

1969年,美国“阿波罗11号”任务载人登月,引起全球轰动。

1986年,苏联“和平-1”轨道站和美国“空间巨轮”行走器在轨道上相遇,进行了历史上的第一次国际合作。

航天科普知识

航天科普知识

航天科普知识航天,作为一项具有重大意义和广泛影响的科学技术领域,一直以来都备受人们的关注。

它不仅关乎国家的综合实力和发展前景,也是人类探索未知和开拓宇宙的重要途径。

在本文中,我们将为您介绍一些航天科普知识,帮助您更好地了解航天领域的重要概念和发展现状。

一、航天的定义和起源航天,顾名思义,是指人类利用航天器在地球大气层之外的空间进行活动和探索的科学与技术领域。

它的起源可以追溯到20世纪初,当时人们开始意识到利用飞行器可以突破地球的重力束缚,进入宇宙的壮丽蓝图开始逐渐展开。

二、航天器的分类和功能航天器是进行航天活动的基本工具,根据其功能和用途的不同,可以分为载人航天器和无人航天器两大类。

载人航天器主要用于携带宇航员进入太空,进行科学实验、航天探索和空间站建设等活动;而无人航天器则广泛应用于航天科研、资源勘探、遥感监测和通信导航等领域。

三、航天的重大意义航天领域的研究和发展对于国家和人类具有深远的意义。

首先,航天科技的进步可以提升国家的综合实力和军事水平,促进经济的发展和社会的进步。

其次,航天活动可以帮助人类更好地了解宇宙和地球,推动科学技术的发展和人类文明的进步。

此外,航天技术还有助于应对全球性挑战,如气候变化、天灾人祸等,为人类未来的生存和发展提供重要保障。

四、航天领域的重大突破航天科技的发展历程中,人类不断取得了重大突破和成就。

例如,20世纪60年代,美国成功完成了阿波罗登月计划,成为首个登上月球的国家。

20世纪70年代,苏联率先在太空中建立了世界上第一个空间站——“和平号”空间站。

此外,随着技术的进步,现代航天器也不断创新和完善,为人类进一步探索宇宙提供了更多的可能性。

五、航天领域的发展前景未来,航天科技将继续保持高速发展的趋势,其发展前景也备受人们期待。

首先,载人航天领域将会取得重要突破,人类将有望在更远的太空深处进行探索。

其次,商业航天的兴起将进一步推动航天产业的发展,为经济增长和就业创造更多机遇。

关于航天的资料

关于航天的资料

关于航天的资料1. 介绍航天是指人类利用航空器和航天器进行太空探索、研究和利用的科学技术活动。

航天技术的发展使人类能够进入太空,探索宇宙的奥秘,同时也推动了科学、技术和工程的进步。

2. 航天历史2.1 早期航天技术早期的航天技术起源于火箭技术的发展。

公元9世纪的中国人发明了火箭,并将其用于军事目的。

在13世纪,火箭技术传入阿拉伯地区,并逐渐传播到欧洲。

17世纪,基于火箭原理的火箭实验开始出现,并由新ton等科学家进行深入研究。

2.2 现代航天时代的开拓20世纪初,科学家们开始研究利用火箭技术进入太空的可能性。

1926年,美国物理学家罗伯特·戈达德发表了关于航天的著名论文,提出了射入太空的概念。

1944年,纳粹德国的冯·布劳恩成功发射了V-2火箭,这被认为是现代航天的开创。

2.3 航天史上的重要事件•1957年,苏联发射了人类历史上第一个人造卫星——斯普特尼克1号,标志着航天时代的正式开始。

•1961年,尤里·加加林成为第一个进入太空的人类,他的轨道绕地球一周。

•1969年,美国宇航员尼尔·阿姆斯特朗成为登上月球的第一个人。

•1971年,苏联的火星2号成为第一个成功着陆火星的航天器。

3. 航天器类型3.1 人类航天器人类航天器是指能够搭载人类进入太空的航天器。

它们通常由宇宙飞船和航天飞机组成。

人类航天器的主要任务包括太空探索、科学实验、航天员乘坐和航天飞行员的训练等。

3.2 无人航天器无人航天器是指没有航天员搭乘的航天器。

它们能够进行科学实验、监测地球环境、通信、导航、天文观测和探测等任务。

无人航天器常见的类型包括卫星、探测器和空间望远镜等。

4. 航天应用4.1 通信和导航卫星通信系统是现代通信的重要组成部分,它通过卫星传输信号,实现全球通信覆盖。

全球定位系统(GPS)则是基于卫星导航技术,为人类提供准确的位置和导航信息。

4.2 大气观测和气候研究卫星观测技术可以监测地球的气候和大气情况。

航天航空:探索宇宙的先锋

航天航空:探索宇宙的先锋

航天航空:探索宇宙的先锋航天航空是人类探索宇宙的重要手段,它不仅代表着人类对未知世界的无限好奇和探索欲望,更代表着人类科技发展的最高水平。

航天航空技术的发展,不仅推动了人类对宇宙的认知,也推动了人类科技、经济、文化等多方面的发展。

本文将从航天航空的历史、现状、未来发展等方面,探讨航天航空在探索宇宙中的先锋作用。

一、航天航空的历史航天航空的发展历史可以追溯到20世纪初,当时人类开始尝试利用火箭技术进行太空探索。

经过多年的发展,航天航空技术已经取得了巨大的进步,从早期的火箭技术到现在的卫星、载人航天、深空探测等,人类已经掌握了大量的太空探索技术。

二、航天航空的现状目前,航天航空已经成为人类探索宇宙的重要手段之一。

人类已经成功地发射了大量的卫星,用于观测宇宙、研究天体、进行气象观测等。

同时,载人航天和深空探测也取得了巨大的进展,人类已经成功地实现了多人多天的太空飞行,并且正在向更远的星球进行探测。

航天航空技术的发展,不仅推动了人类对宇宙的认知,也推动了人类科技、经济、文化等多方面的发展。

目前,航天航空已经成为了全球经济的重要支柱之一,它带动了相关产业的发展,创造了大量的就业机会,同时也推动了人类科技的不断进步。

三、航天航空的未来发展未来,航天航空将继续在探索宇宙中发挥先锋作用。

随着科技的不断进步,人类将更加深入地探索宇宙的奥秘。

同时,航天航空也将为人类带来更多的便利和福利,例如更加精准的气象预报、更加高效的物流运输等。

首先,未来航天航空技术的发展将更加注重智能化和绿色化。

随着人工智能技术的不断发展,航天航空将更加智能化,能够更加精准地预测天气的变化、更好地应对太空中的各种挑战。

同时,随着绿色环保技术的发展,航天航空将更加注重能源的利用和空气质量的保护,为人类的生存环境提供更好的保障。

其次,未来航天航空还将更加注重太空资源的开发和利用。

太空资源包括但不限于太阳能、空间矿产资源、太空环境资源等,开发利用这些资源将为人类带来更多的福利和便利。

航空航天技术的历史和未来

航空航天技术的历史和未来

航空航天技术的历史和未来近几年来,随着各种技术的飞速发展和应用,航空航天技术也开始进入了人们视野的焦点。

那么,它的历史和未来是如何的呢?1. 大起源一航空航天技术的起源可以追溯到远古时代。

当时人类尚未掌握火的力量,因此想要飞行是不可能的。

但是,人们对飞翔的渴望却从未停止过。

在史前时代,人们看到了许多具有“飞行”的特点的动物,如鸟、昆虫等,从它们身上汲取了不少启示。

2. 航空航天技术的诞生随着科学技术的发展,人们开始有了实现飞行的可能。

最早的飞行物体是热气球,它在1783年被法国兄弟封建发明。

接下来,著名的莱特兄弟更改了“蒙古人捆雁翼”的结构,1914年他们发明了蒙古人捆雁翼改进版,代表着航空航天的先驱之路。

3. 航空航天技术的发展自此以后,航空航天技术进入了一个新时代。

20世纪中叶,世界各国之间展开了激烈的航空航天竞争。

它们在速度、飞行高度、航行距离等方面的竞赛,不仅促进了科学技术的进步,而且也为人类探索宇宙、了解大自然的奥秘奠定了基础。

4. 现代航空航天技术如今,在先进的科学技术支持下,航空航天技术的水平已达到前所未有的高度。

有人类在太空工作,用着更便捷的飞行工具去往世界各地、各国之间。

同时,航空航天产业也成为了一种新型的战略性产业,它推动着整个国家的经济、技术和文化的发展。

5. 航空航天技术的未来在未来,航空航天技术将会继续发展,成为传承血液与传承航空文化的重头戏。

新一代合肥民用航空、国防航空将会逐渐成型,无人机、激光、飞行器设计技术将会更完美,大批领先航空国家的人托将会拥有更高端的航空器。

总之,航空航天技术因其特殊的性质和重要的地位,在历史和未来都具有重要意义。

我们应该倍加珍惜这一技术,实现人类的梦想和未来的愿景。

关于航天知识的资料100字

关于航天知识的资料100字

关于航天知识的资料100字航天是指在空间中进行的航行活动。

近半个世纪以来,航天的发展取得了巨大的进步,使我们可以探索宇宙,扩展人类的知识和眼界。

一如既往,以下是关于航天知识的资料:1.航天发展历程:1)1957年10月4日,前苏联发射了有史以来第一颗人造卫星“苏联卫星一号”;2)1961年4月12日,苏联千里马号飞船发射,宇航员列宾破地球重力而登上月球,开启了人类月球探索的新纪元;3)1969年7月21日,美国阿波罗11号飞船发射,宇航员中和登上月球表面进行了短暂的表面活动,也就是人类历史上第一次“足跡”探索月球;4)1971年4月14日,苏联发射了首枚“万里长征”号火箭,成功将宇宙飞船送入太空,实现了太空轨道飞行;5)2011年7月8日,中国首枚自主发射的人造卫星“天航一号”顺利发射,标志着中国走向自力更生发展航天科技的新阶段。

2.航天科学技术领域:1)运载工具:主要包括固体发动机,液体发动机,用于发射卫星的火箭;2)卫星安全技术:对大气的散射、抗衰减、定位定向等关键技术;3)宇航飞车:主要用于太空旅行和航天器回收、维修等应用;4)航天器姿态控制:通过由定时器和信号发射器控制和确定航天器的姿态。

3.航天科学家:1)俄罗斯的列宾:也称为“宇宙的先驱”,首次实现航天飞行,被誉为“苏联太空里最坚强的人”。

2)美国的罗尔斯:他被后代称为“太空的人”,在历史上植根于冠军的月球任务;3)中国的群英:他们是中国航天领域众多杰出人物,他们的奋斗为航天发展开拓了新的航程;4)日本的宫澤治夫:他是日本宇航界开拓者,被称为“迈向宇宙的精神航空大将”。

综上所述,航天知识具有悠久的历史,今天航天技术的发展更是可圈可点,同时也大大拓宽了我们的宇宙认知。

人类的探索精神永不止息,航天科学家们也在不断地开创新的航程,为探索宇宙增添了新的活力,构建人类宇宙探索的新纪元。

航空航天技术的历史和未来发展

航空航天技术的历史和未来发展

航空航天技术的历史和未来发展一、航空航天技术的起源与发展人类探索天空的历程可追溯至公元前五世纪的中国,当时的孔雀图案就是人类向天空展望的产物。

13世纪,意大利的莱昂纳多·达·芬奇画下了螺旋桨的雏形。

航空航天技术迎来重大起步是在18世纪,气球飞行的发明如同人类探索天空的“里程碑”。

到了19世纪,热气球开始商业置产,能够飞行一段时间就出售给有经济实力的人。

1903年,莱特兄弟成功试飞。

经过几十年的发展,航空技术日益成熟,空战也成为军事中重要的领域。

1947年,贝尔公司的X-1型飞行器首次超音速飞行,这标志着航空航天技术的一大飞跃。

1961年4月12日,前苏联宇航员加加林成功将“东方一号”飞船发射升空,成为人类首次进入太空的事件。

此后,美国宇航局NASA开展了大量的重返月球计划,发射了一系列载人和无人飞船,推进了航空航天技术的全面发展。

二、新时代下的航空航天技术随着信息时代的到来,航空航天技术也呈现出多元化和现代化的趋势。

1、太空探索:2018年1月,中国成功发射了一颗遥感卫星,用于高精度的地球资源勘测。

此外,中国还计划在2020年建设的“中国天眼”将在全球范围内开展前沿科学研究。

2、新型机载设备:随着航空业的迅速发展,新型机载设备的应用越来越普及,以液晶显示屏为代表的全数字化航空仪表系统、自动驾驶系统、碳复合材料的普及等都推动了航空业的发展。

3、智能无人机:随着技术的发展,智能无人机已成为航空领域的重要研究方向。

国内生产的“彩虹”系列无人机,已成为近几年中国航空业发展的亮点。

4、宇航团队的新前沿:宇航团队的研究不仅靠高精度计算和航天器的设计,也有关于人类行为和社交互动的探讨。

未来的太空站是人类第二故乡,更多的研究将致力于了解太空条件下人类行为和社交活动的改变。

5、商用载人空间:在太空途中,商用载人是未来的趋势。

在美国,商用载人飞行首次于2020年11月发生,在航空、航天技术等多领域的合作和创新下,未来的载人航天舱和载人旅游将成为轨道飞行的主要焦点。

航空航天类解析

航空航天类解析

航空航天类解析一、航空航天的定义与发展历程1.1 航空航天的定义航空航天是指人类利用飞行器进行飞行和探索宇宙的科学与技术领域。

其中,航空主要研究飞机、直升机等大气层内的飞行器,而航天则关注于火箭、卫星、太空探测器等进入地球外空间的飞行器。

1.2 航空航天的发展历程•1783年,蒙哥福尔兄弟成功制造出世界上第一架热气球,标志着人类首次成功实现了载人飞行。

•1903年,莱特兄弟在美国成功制造出世界上第一架有动力的飞机,并进行了历史性的首次动力驾驶飞行。

•1957年,苏联发射了世界上第一颗人造卫星——斯普特尼克一号,开启了人类进入太空时代。

•1969年,美国“阿波罗11号”任务成功将宇航员登上月球表面,成为第一个在月球上留下脚印的国家。

二、航空航天领域的重要技术与应用2.1 航空技术•飞行器设计与制造:包括飞机、直升机、无人机等的设计、制造和改进。

•航空动力系统:研究发动机和推进系统,提高飞行器的动力性能。

•航空材料与结构:研究新材料的应用,提高飞行器的强度和轻量化程度。

•航空导航与控制:研究导航系统和自动驾驶技术,提高飞行器的准确性和安全性。

2.2 航天技术•火箭技术:研究火箭发动机原理和推进剂,实现太空探测器的发射和轨道调整。

•卫星技术:研制各类人造卫星,用于通信、气象预报、地球观测等领域。

•载人航天技术:研究宇航员生命保障、太空站建设等问题,实现载人太空探索。

•深空探测技术:研制探测器,进行对其他星球、行星等天体的探测和研究。

2.3 航空航天应用•航空运输:民用航空为人们提供了快速、安全的交通方式,促进了经济和文化的交流。

•军事应用:航空航天技术在军事领域发挥重要作用,包括侦察、打击、运输等方面。

•天文学研究:航天技术使得观测设备能够进入太空,观测精度得到提高,推动了天文学的发展。

•环境监测:卫星可进行大范围地表观测,监测气候变化、自然灾害等环境问题。

三、航空航天领域的未来发展趋势3.1 航空领域•绿色航空:研发更环保的动力系统和材料,减少飞行器对环境的影响。

航空航天技术的发展历程与现状

航空航天技术的发展历程与现状

航空航天技术的发展历程与现状航空航天技术是指以飞行器为主要研究对象的一门学科,涉及到飞行器的设计、制造、运营等方面。

随着科技的不断进步和人类对探索未知空域的热情,航空航天技术得到了长足的发展。

本文将就航空航天技术的发展历程与现状进行详细的说明。

航空技术的发展历程可以追溯到人类最早的飞行梦想。

早在古希腊时期,人们就有过飞行的幻想,但当时的技术条件无法实现。

直到19世纪末,随着工业革命和科学技术的进步,人类开始逐渐实现自己的飞行梦想。

1903年,莱特兄弟成功地制造出了世界上第一架自主驱动的飞机,这次历史性的飞行标志着航空技术的诞生。

随后,航空技术得到了迅速发展,飞机逐渐变得越来越先进,飞行速度和载人能力也不断提高。

在第一次世界大战期间,飞机成为了重要的战争武器,航空技术得到了进一步的推动。

到了20世纪中叶,航空技术迎来了一个新的里程碑,航天技术开始崭露头角。

1957年,苏联成功发射了世界上第一颗人造卫星“斯普特尼克1号”,开启了人类探索外太空的新纪元。

此后,世界各国纷纷加大航天技术的研究与开发力度,相继成功实现了载人航天、月球探测等重大任务。

航天技术的进步不仅让人们对宇宙的认识更加深入,也为地球上的通讯、导航、气象预报等领域带来了巨大的进步和便利。

随着航空航天技术的不断发展,现代的飞机和太空船已经达到了惊人的水平。

飞机不仅能够实现超音速飞行,还可以进行大范围的导航和定位,飞行高度也越来越高。

随着航空技术的不断突破,民航业的发展也取得了巨大的进步。

现在,乘飞机已经成为人们出行的主要方式之一,航空业也成为了一个庞大的产业。

而在航天技术领域,载人航天任务成为人们最为关注的研究方向之一、美国的阿波罗计划和中国的神舟计划让人类首次登上了月球,并成功返回地球。

此外,火星探测、国际空间站等项目也取得了重大的科学成果。

航天技术的发展在推动人类认识宇宙的同时,也为地球上的资源开发、环境保护等领域提供了重要支撑。

然而,航空航天技术的发展仍面临一些挑战和问题。

航天航空指南

航天航空指南

航天航空指南航天航空是现代科技的重要领域,它涉及到飞行器的设计、制造、操作和维护等多个方面。

本文将为您提供一份航天航空指南,帮助您了解航天航空的基本知识和操作要点。

一、航天航空的定义和历史航天航空是指利用航空器和航天器进行空中飞行的科学与技术领域。

航空包括民用航空和军用航空,而航天则包括载人航天和无人航天。

航天航空的发展源远流长,早在古代,人们就开始梦想能够像鸟儿一样在天空中自由飞翔。

随着科学技术的进步,人类终于实现了航天航空的壮举,首次将人类送上了太空。

二、航天航空的基本原理航天航空的基本原理包括气动力学、航空材料、航空电子技术等多个方面。

气动力学是研究空气动力学和飞行器运动的学科,它涉及到空气动力学的基本原理、飞行器的气动特性和控制方法等。

航空材料是指用于制造飞行器的材料,它要求具有轻量化、高强度、耐高温等特点。

航空电子技术则是指在飞行器上应用的电子技术,包括导航系统、通信系统、控制系统等。

三、航天航空的主要飞行器航天航空的主要飞行器包括飞机、直升机、火箭和卫星等。

飞机是最常见的飞行器,它通过利用机翼产生升力来实现飞行。

直升机则通过旋翼产生升力和推力来实现垂直起降。

火箭是一种能够在太空中飞行的飞行器,它利用推进剂的喷射产生反作用力来推动自身。

卫星是人造的天体,通过被火箭送入太空后绕地球或其他天体运行。

四、航天航空的安全和维护航天航空的安全和维护是非常重要的,它关系到人员和设备的安全。

航空器的安全包括飞行安全和地面安全两个方面。

飞行安全涉及到飞行器的设计、制造、操作和维护等各个环节,要求严格遵守相关的规章制度和标准。

地面安全则是指在地面上进行航空器的维护和修理工作时要注意安全操作,防止事故的发生。

五、航天航空的未来发展航天航空的未来发展充满了无限的可能性。

随着科技的不断进步,航天航空将迎来更加先进的飞行器和技术。

例如,超音速飞机、太空旅游、载人登陆火星等都是航天航空领域的研究热点。

同时,航天航空的发展也将带动相关产业的繁荣,促进经济的发展和社会的进步。

航空航天的发展史

航空航天的发展史

航空航天的发展史1.气球的发明:虽然气球并非真正的航空器,但它开启了人类对飞行的探索。

1783年,蒙格尔兄弟的热气球成功升空,标志着人类首次实现了悬浮于空中的梦想。

随后,热气球成为人们进行空中观测和探险的重要工具。

2.航空器发明:在19世纪末和20世纪初,许多先驱者开始研究和实验人类能够操控的航空器。

最著名的是莱特兄弟,他们于1903年12月17日成功地让自己的飞行器飞行了12秒,这个历史性的时刻被视为人类飞行史上的重要里程碑。

3.航空业的兴起:随着航空器的发明,航空业也开始迅速发展。

1914年,第一次世界大战爆发,飞机被广泛用于侦查和打击任务。

战后,民用航空业开始崛起,航空公司相继成立,并且航线网络不断扩大。

4.航空技术的进步:在20世纪的后半叶,飞机设计和技术取得了巨大的进步。

喷气式飞机的出现使飞行速度大幅提升,并且飞机的载客能力和航程也大幅增加。

1969年,美国成功实现了阿波罗11号飞船的登月任务,这是人类历史上第一次成功登月的事件,标志着航天事业的新纪元。

5.航天飞行的拓展:20世纪末和21世纪初,人类的航天飞行进一步拓展。

1998年,国际空间站开始建设,成为多国合作的航天项目,成为人类空间探索的重要平台。

2003年,中国成功发射了第一颗载人航天器,成为继美国和俄罗斯之后第三个能够独立进行载人航天的国家。

6.新航天探索的开启:近年来,航空航天领域正在进一步发展和探索新的前沿。

商业航天公司的兴起和发展使得私人公司也能够参与到航天事业中来,推动了航天技术的创新和发展。

此外,火星和外行星探测也成为航天研究的重要方向,人类正在努力实现有人类步履的火星登陆。

总结起来,航空航天的发展史是一段充满了奋斗和创新的历史。

从气球的发明到现代的航天飞行,人类不断攀登技术的高峰,开创了航空航天发展的新篇章。

未来,我们可以期待更多的突破和创新,探索更遥远的宇宙和实现更大的飞行梦想。

中国航天的起源与发展历程

中国航天的起源与发展历程

提升国际地位
03
中国航天事业的发展提升了中国在国际上的科技地位和影响力
,增强了国家的综合实力。
对国民科技教育的普及与提高
提高公众科学素养
中国航天的成功案例激发了公众 对科学的兴趣和好奇心,提高了
全民的科学素养。
培养科技人才
中国航天事业的发展为科技人才的 培养提供了广阔的舞台和机会,培 养了一大批优秀的科技人才。
创新阶段(XXXX年至今)
总结词
自主创新、国际合作
详细描述
中国航天在创新阶段更加注重自主创 新和国际合作,在火箭技术、卫星技 术等方面取得了重大进展,同时积极 参与国际航天合作,推动了中国航天 事业的快速发展。
03
中国航天的里程碑事件
人造卫星的发射
东方红一号的发射
1970年,中国成功发射了第一颗人 造卫星“东方红一号”,标志着中国 进入了人造卫星时代。
空间站的长期空间站,为 航天员提供长期居住和工作的场所。
科研计划
利用空间站开展一系列的科学实验和研究, 涉及航天医学、生物学、物理学、天文学等 多个领域,推动中国科技创新和科技进步。
航天技术的创新与商业化应用
要点一
创新
要点二
商业化应用
中国正积极开展航天技术创新,包括新型火箭、卫星技术 、载人航天技术等方面。
东方红二号的发射
1984年,中国成功发射了第二颗人造 卫星“东方红二号”,该卫星在通信 、广播、电视等领域发挥了重要作用 。
载人航天工程的成功
神舟五号的发射
2003年,中国成功发射了第一艘载人飞船“神舟五号”,杨利伟成为首位进入太 空的中国航天员。
神舟六号的发射
2005年,中国成功发射了第二艘载人飞船“神舟六号”,费俊龙和聂海胜成为第 二批进入太空的中国航天员。

航天科普说明文

航天科普说明文

航天科普说明文导语:航天科技是现代科技的重要组成部分,它不仅改变了人类的生活,还推动了科技的发展。

本文将从航天的起源、发展、应用以及未来展望等方面进行科普说明。

一、航天的起源与发展航天的起源可以追溯到20世纪初。

当时,人们对于航空技术的探索引发了对太空的好奇。

20世纪50年代,人类成功发射了第一颗人造卫星苏联的“斯普特尼克一号”,标志着航天事业的开启。

此后,世界各国相继开展了航天活动,其中美国的阿波罗计划更是将航天事业推向了巅峰,成功将人类送上了月球。

二、航天的应用领域航天科技的应用领域十分广泛。

首先是通信领域,人造卫星的发射使得全球通信变得更加便捷。

卫星导航系统如GPS也是航天技术的产物,使得我们能够准确地定位和导航。

其次是气象预报,卫星能够提供准确的气象信息,帮助我们预测天气变化。

此外,航天技术还应用于地球资源勘探、环境监测、农业、医疗等领域,对于人类社会的发展起到了重要的推动作用。

三、航天的挑战与突破航天科技的发展充满了挑战和突破。

首先是对于火箭发动机的改进,为了能够将载荷送入太空,科研人员一直在追求更高的推进力和效率。

其次是对于航天器的研制,要保证航天器在极端环境下的可靠性和安全性,需要经过严格的测试和验证。

此外,航天飞行中还涉及到空间站的建设、宇航员的生命保障等问题,这些都是航天科技面临的挑战。

四、航天的未来展望随着科技的不断发展,航天科技也将迎来更加广阔的未来。

未来,人类有望实现载人登陆火星的目标,开展更深入的太空探索。

与此同时,人们对于太空旅游的向往也越来越强烈,私人航天公司的兴起为太空旅游提供了新的可能性。

此外,航天科技还将继续在通信、气象、资源勘探等领域发挥重要作用,为人类社会的发展做出更大贡献。

结语:航天科技的发展不仅推动了科技的进步,也带给了人类更多的可能性。

通过航天科普的说明,我们能够更好地了解航天的起源、发展、应用以及未来展望,对于航天科技有了更深入的认识。

相信随着时间的推移,航天科技将会取得更多的突破,给我们带来更多的惊喜与发展机遇。

“航空航天”简介、含义、起源、历史及发展

“航空航天”简介、含义、起源、历史及发展

“航空航天”简介、含义、起源、历史及发展人类活动范畴的飞跃人类为了扩大社会生产活动,必定要持续开拓新的天地。

人类活动范畴,经历了从陆地到海洋,从海洋到大气层,从大气层到宇宙空间的逐步扩展的过程。

人类活动范畴的每一次飞跃,都大大增强了认识和改造自然的能力,促进了生产力的进展和社会的进步。

人类为了实现腾空飞行的理想,曾经历了一段艰巨曲折的道路。

中国西汉时期的飞人试验、中世纪欧洲人的跳塔扑翼飞行和其他先驱者的勇敢尝试屡遭失败,使人们认识到简单仿照动物,专门是鸟类飞行的做法并不能使人升空。

飞行探究遂转向研究轻于空气的航空器。

1783年,法国蒙哥尔费兄弟的热空气气球和J.A.C.查理的氢气气球相继升空成功,实现了人类自古以来的“凌云之志”,标志着人类在战胜天空的道路上迈出了第一步。

性能优于气球、飞行方向能够操纵的飞艇随之获得进展。

轻于空气的航空器存在升力小、阻力大、飞行速度慢等缺点,不能实现便利的飞行,人们转而探究重于空气的航空器。

18世纪产业革命后对汽车用内燃机和船用螺旋桨的研究,为重于空气的航空器提供了动力基础。

在G.凯利、O.李林达尔等航空先驱对滑翔机和空气动力作用的初步研究之后,美国莱特兄弟制造成功世界公认的第一架飞机,并在1903年12月17日实现了人类首次连续的、有动力的、可操纵的飞行,开创了现代航空的新纪元。

20世纪上半叶相继发生了两次世界大战,航空的进展第一对战争产生了重大阻碍。

从1909年起,一些国家政府就注意到飞机的军事用途,相继成立了航空科学研究机构。

在第一次世界大战中,飞机开始得到大规模使用,显现了执行不同军事任务的机种。

在20~30年代,飞机完成了从双翼机到张臂式单翼机、从木布结构到全金属结构,从放开式座舱到密闭式座舱,从固定式起落架到收放式起落架的过渡,飞机的升限、速度提升了2~4倍。

而发动机功率则提升了5倍,航空工业逐步成为独立的产业部门。

第二次世界大战引起了航空工业的第二次大进展,参战飞机数量剧增,性能迅速提升,空军进展成为对战争全局有重要阻碍的一个军种。

航空航天(知识点)

航空航天(知识点)

航空航天(知识点)航空航天是现代科技领域中一项重要的技术和工程领域,涵盖了飞行器的设计、制造、飞行控制和空间探索等各个方面。

本文将从航空航天的历史、发展、技术和应用等角度进行阐述。

1. 航空航天的历史航空航天的历史可以追溯到古代的幻想和传说。

然而,真正的航空航天发展始于18世纪末和19世纪初的气球实验。

随着科学技术的进步,人类开始关注飞行技术的发展,乔治·博雷尔、莱特兄弟等人的突破性发明使航空航天迈向了新的里程碑。

2. 航空航天的发展航空航天在20世纪取得了巨大的进展。

在航空领域,各种飞机的设计和制造已经非常成熟,包括商用飞机、军用飞机、无人机等。

而在航天领域,人类首次进入太空并成功登月,这些成就标志着航空航天事业进入了全新的纪元。

3. 航空航天的技术在航空航天领域,涉及了众多的技术和工程方面。

其中,航空技术包括了飞行器的气动设计、推进系统和飞行控制系统的研发。

而航天技术更是牵涉到了火箭发射、航天器设计、航天器轨道控制等高度复杂的工程。

4. 航空航天的应用航空航天技术在各个领域都有广泛的应用。

在民航领域,飞机成为人们出行的重要交通工具;在军事领域,航空航天技术为战争的进行提供了重要支持;在通信领域,卫星通信系统改变了信息传输的方式;在气象预测领域,航空航天技术帮助人们更好地了解天气变化。

5. 航空航天的未来随着科技的不断发展,航空航天领域也将继续迎来新的突破。

新的材料、新的能源技术和人工智能的应用将推动飞行器的发展,未来可能出现更快、更安全、更环保的飞行工具。

而在航天领域,人类探索深空将成为未来的目标,人类有望登陆更远的星球。

总结:航空航天作为一门现代科学技术,具有丰富的历史和积累的知识。

它的发展与应用改变了人类的生活方式和认识世界的方式。

我们应该持续关注航空航天领域的新动态,为其发展贡献自己的力量,共同创造更美好的未来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空航天航空与航天是20世纪人类认识和改造自然进程中最活跃、最有影响的科学技术领域,也是人类文明高度发展的重要标志。

航空指飞行器在地球大气层内的航行活动,航天指飞行器在大气层外宇宙空间的航行活动。

人类在征服大自然的漫长岁月中,早就产生了翱翔天空、遨游宇宙的愿望。

在生产力和科学技术水平都很低下的时代,这种愿望只能停留在幻想的阶段。

虽然人类很早就做过种种飞行的探索和尝试,但实现这一愿望还是从18世纪的热空气气球升空开始的。

自从20世纪初第一架带动力的、可操纵的飞机完成了短暂的飞行之后,人类在大气层中飞行的古老梦想才真正成为现实。

经过许多杰出人物的艰苦努力,航空科学技术得到迅速发展,飞机性能不断提高。

人类逐渐取得了在大气层内活动的自由,也增强了飞出大气层的信心。

到了50年代中期,在火箭、电子、自动控制等科学技术有了显著进展的基础上,第一颗人造地球卫星发射成功,开创了人类航天新纪元,广阔无垠的宇宙空间开始成为人类活动的新疆域。

航空航天事业的发展是20世纪科学技术飞跃进步,社会生产突飞猛进的结果。

航空航天的成果集中了科学技术的众多新成就。

迄今为止的航空航天活动,虽然还只是人类离开地球这个摇篮的最初几步,但它的作用已远远超出科学技术领域,对政治、经济、军事以至人类社会生活都产生了广泛而深远的影响。

人类活动范围的飞跃人类为了扩大社会生产活动,必然要不断开拓新的天地。

人类活动范围,经历了从陆地到海洋,从海洋到大气层,从大气层到宇宙空间的逐渐扩展的过程。

人类活动范围的每一次飞跃,都大大增强了认识和改造自然的能力,促进了生产力的发展和社会的进步。

人类为了实现腾空飞行的理想,曾经历了一段艰难曲折的道路。

中国西汉时期的飞人试验、中世纪欧洲人的跳塔扑翼飞行和其他先驱者的勇敢尝试屡遭失败,使人们认识到简单模仿动物,特别是鸟类飞行的做法并不能使人升空。

飞行探索遂转向研究轻于空气的航空器。

1783年,法国蒙哥尔费兄弟的热空气气球和J.A.C.查理的氢气气球相继升空成功,实现了人类自古以来的“凌云之志”,标志着人类在征服天空的道路上迈出了第一步。

性能优于气球、飞行方向可以操纵的飞艇随之获得发展。

轻于空气的航空器存在升力小、阻力大、飞行速度慢等缺点,不能实现便捷的飞行,人们转而探索重于空气的航空器。

18世纪产业革命后对汽车用内燃机和船用螺旋桨的研究,为重于空气的航空器提供了动力基础。

在G.凯利、O.李林达尔等航空先驱对滑翔机和空气动力作用的初步研究之后,美国莱特兄弟制造成功世界公认的第一架飞机,并在1903年12月17日实现了人类首次持续的、有动力的、可操纵的飞行,开创了现代航空的新纪元。

20世纪上半叶相继发生了两次世界大战,航空的发展首先对战争产生了重大影响。

从1909年起,一些国家政府就注意到飞机的军事用途,相继成立了航空科学研究机构。

在第一次世界大战中,飞机开始得到大规模使用,出现了执行不同军事任务的机种。

在20~30年代,飞机完成了从双翼机到张臂式单翼机、从木布结构到全金属结构,从敞开式座舱到密闭式座舱,从固定式起落架到收放式起落架的过渡,飞机的升限、速度提高了2~4倍。

而发动机功率则提高了5倍,航空工业逐渐成为独立的产业部门。

第二次世界大战引起了航空工业的第二次大发展,参战飞机数量剧增,性能迅速提高,空军发展成为对战争全局有重要影响的一个军种。

飞机气动外形的改进、燃气涡轮发动机和机载雷达的应用,改变了飞机的面貌。

战后喷气技术迅速发展,军用飞机广泛采用喷气发动机。

随着超音速空气动力学、结构力学和材料科学的进展,飞机突破了“音障”和“热障”,飞行速度达到2~3倍音速,进入了超音速飞行时代。

变后掠机翼和垂直起落技术的成功为变后掠翼飞机和垂直起落飞机的发展创造了条件。

直升机也得到发展和广泛应用。

在两次世界大战间隙中发展起来的民用航空运输也有了很大增长,从50年代起,喷气式旅客机逐渐取代了螺旋桨旅客机。

随着低耗油率的高涵道比涡轮风扇发动机的产生,70年代初出现了大型宽体高亚音速喷气式旅客机和货机,飞机载重量大大增加。

飞机成了国民经济和人民生活不可缺少的交通工具。

人类从模仿鸟类飞行开始,已发展到能比任何鸟类飞得更高、更快、更远。

航天不同于航空,飞行器在极高真空的宇宙空间以类似于自然天体的运动规律飞行。

实现航天首先要寻找不依赖空气、有巨大推力的运载工具。

这种工具就是火箭。

中国是火箭的发源地,公元12世纪就在战争中使用了火箭。

20世纪初,以К.Э.齐奥尔科夫斯基、R.H.戈达德和H.奥伯特为代表的航天理论先驱者阐明了利用火箭进行航天的基本原理,描绘了现代液体火箭的设想。

1926年戈达德首先研制成功世界上第一枚液体火箭。

在一些国家陆续成立了火箭学会,开展理论研究和小型液体火箭的研制工作。

在第二次世界大战期间,纳粹德国集中力量研制大型液体火箭,并于1942年10月成功地进行了A-4火箭(即以后的V-2火箭)的发射试验,为战后发展大型导弹和航天运载工具奠定了基础。

1957年8月和12月,苏联和美国分别发射成功洲际导弹。

1957年10月4日,世界第一颗人造地球卫星由苏联发射成功,它标志着人类活动范围的又一次飞跃。

1961年4月12日,苏联Ю.А.加加林乘“东方”1号飞船进入太空,人类实现了遨游太空的理想。

1969年7月20~21日,美国N.A.阿姆斯特朗和E.E.奥尔德林乘“阿波罗”11号飞船登月成功,创造了人类涉足地球以外另一个天体的纪录。

从60年代以来,为科学研究、国民经济和军事服务的各种科学卫星与应用卫星获得很大发展,并取得显著的效益。

70年代后各种卫星向着多用途、高可靠、长寿命、低成本的方向发展。

载人航天活动为认识宇宙、开发和利用太空提供了条件,并为在太空建立永久性的航天站奠定了基础。

80年代可以重复使用的航天飞机的出现,为人类提供了理想的航天运载工具,使航天活动进入一个新的阶段。

空间探测获得了丰硕的成果,先后有12人登上了月球。

无人的空间探测器已在金星和火星着陆,还探测了太阳系大多数行星,有的还将飞出太阳系。

在不到30年的时间内,航天技术取得了划时代的成就,成为世界新技术革命的一个重要组成部分。

现代科学技术的结晶航空技术和航天技术都是高度综合的现代科学技术,它们以基础科学和技术科学为基础,集中应用了20世纪许多工程技术新成就。

力学、热力学、材料学、医学、电子技术、自动控制、喷气推进、计算机、真空技术、低温技术、半导体技术、制造工艺学等都对航空航天的进步发挥了重要作用。

这些科学技术在航空航天的应用中互相交叉和渗透,产生了一些新学科,使航空和航天科学技术形成了完整的体系。

航空航天不断提出的新要求,又促进了这些科学技术的进步。

莱特兄弟对航空的一个重大贡献是在飞机设计中应用了空气动力学原理。

后来航空技术的每一项成就,多与空气动力学的进展有关。

空气动力学的机翼理论和边界层理论为早期飞机性能的改进指出了方向。

所有通过大气层的飞行器都要利用风洞实验来确定它们的空气动力外形和空气动力特性。

亚音速、跨音速和超音速空气动力学的发展,取得了后掠翼和面积律的一系列成果,在飞机采用涡轮喷气发动机后突破了“音障”,实现了超音速飞行。

在耐热和防热材料发展的基础上,高超音速空气动力学和气动热力学为飞机突破“热障”和再入大气层的飞行器的防热设计指出了方向。

气动热力学和发动机气动力学也是航空发动机和火箭发动机的重要理论基础之一。

飞行器结构力学和强度理论,对飞行器的性能和经济性都有重大影响。

分析空气动力和飞行器相互作用的气动弹性力学,成功地解决了曾引起飞机多次事故的颤振问题。

大气层飞行动力学已经成为研究在空气动力等外力作用下飞行器运动规律的科学,成为各类飞行器设计的理论基础之一。

而天体力学则为研究航天器的运行奠定了理论基础。

推进系统是飞机和火箭的心脏,是决定它们性能的重要因素。

活塞式航空发动机的发展提高了早期飞机的飞行速度;在叶轮机械的效率大幅度提高的基础上出现的涡轮喷气发动机,使飞机的飞行速度得以超过音速;高性能的涡轮风扇发动机降低了耗油率和发动机噪声,使得巨型旅客机有可能投入航线飞行。

与飞机相比,火箭发动机对航天器运载火箭的性能影响更大。

液体火箭发动机性能的提高,对成功地发射第一颗人造地球卫星起了重要的作用。

只有在研制成功大推力的助推发动机和高性能的液氧液氢发动机之后,才有可能成功地进行载人登月飞行。

高性能的固体火箭发动机促进了战略导弹和战术导弹的发展。

航天飞机助推用的固体火箭发动机,单台推力已超过10兆牛(约1千吨力)。

随着能源的不断开发,利用核能、太阳能的各种发动机将在航空航天活动中得到更广泛的应用。

真空技术和低温技术的发展,对低温推进剂在火箭上的应用、研制高性能火箭发动机以及航天器的热设计都有着关键性的作用。

医学对航空航天的发展有着十分重要的作用。

研究人对航空航天特殊环境的适应性和医学保障的航空航天医学,是航空航天生命保障技术的医学基础,它的发展保证了人在航空航天活动中的安全和高效率的工作。

电子技术、自动控制、计算机与航空航天密切相关。

这些技术应用于飞行器的通信、导航、制导、控制、侦察、预警、遥感等方面,大大提高了飞行器的性能。

在飞机上应用先进的微电子技术、自动控制和计算机技术,使飞机实现了主动控制和机载电子系统小型化、综合化、数字化,提高了飞机的机动飞行、目标捕获、识别和跟踪、自动火力控制以及全天候飞行等能力。

在火箭上采用高精度惯性器件、先进的计算机和制导方法,使火箭的制导精度有了很大的提高。

航天器采用多变量控制、最优控制等先进控制技术和计算机,使航天器能够完成复杂的姿态控制、轨道控制等任务。

计算机辅助设计和制造使飞行器设计和制造发生了重大变化。

对航天器实施跟踪、测量和控制的航天测控系统复杂而庞大,且多是具有信息反馈的实时控制系统,需要应用先进的电子技术、自动控制、计算机以及系统工程的原理进行设计。

计算机是航空工程和航天工程中最重要的技术工具。

从民用航空的订座系统到多功能、大信息量和高度自动化的航天测控系统,无不依赖计算机。

航空航天要求采用高速度、大容量的大型计算机。

它要求电子设备、计算机的体积小、重量轻、可靠性高和寿命长,又促使电子元器件和计算机向小型化和微型化的方向发展。

航空航天的需要是推动电子技术、自动控制和计算机技术飞速发展的主要动力之一。

20世纪以来,航空工程和航天工程的规模日益扩大,工程技术的复杂程度越来越高。

一架大型飞机由数十万个零部件组成,涉及许多企业的各种工序,只要存在一处隐患,就可能危及数百名乘客的生命安全,为了保证可靠性和提高经济效益,需要做大量的协调和管理工作。

60年代参加美国“阿波罗”载人登月工程的有上百个科研机构,二万多家企业。

制造的元器件多达几百万个。

研制这样复杂的工程系统所面临的难题是:怎样把比较笼统的初始要求(例如使航天员安全登上月球并返回地面)逐步变为成千上万个工程任务的参加者的具体工作;怎样把这些工作最终组合成一个技术上合理、经济上合算、研制周期短、协调运转方便的实际工程系统。

相关文档
最新文档