4.1.1圆的标准方程

合集下载

4.1.1圆的标准方程

4.1.1圆的标准方程
2 2

例3
ABC的三个顶点的坐标分别 是A( 5, 1 )
B( 7, 3),C(
2, 8), 求它的外接圆的方程 。
分析:不在同一条直线上的三点可以确定一 个圆,三角形有唯一的外接圆.
那么如何求圆的方程呢?
关键是求圆心坐标和半径! 一般可用待定系数法去求.即设出圆心坐 标和半径,利用已知条件列出相应的方程,通 过解方程组求出圆心坐标和半径.
所以圆心为C的圆的标准方程是
( x 3) ( y 2) 25
2 2
思考:求三角形外接圆的两种方法. 小结:本节课主要学习了圆的标准方程及 如何求圆的标准方程,还有点和圆的位置 关系.
4.1 圆的方程
4.1.1圆的标准方程
思考:什么样的点集叫做圆? 平面上到定点距离等于定长的点的集合(轨迹)是 圆。定点就是圆心,定长就是半径。
P={M||MC|=r }
一、建立圆的标准方程
求圆心为C(a ,b ),半径是r 的圆的方程。
如图(1),设M(x ,y )是 圆上任意一点,根据定义,点 M到圆心C的距离等于r ,所以 圆C就是集合 P={M||MC|=r }
l
A O C B X
又圆心C在直线上,因此圆心C 是直线 l与l '的交点, 半径长等于CA 或CB。
解:因为A(1,1),B(2,-2),所以线段
l
A O C B X
AB的中点D的
坐标为
3 1 ( , ) 2 2
k AB
直线AB的斜率为
2 1 3 2 1
因此线段AB的垂直平分线l’的方程是
二、圆的标准方程的应用
例1写出圆心为A( 2, 3), 半径长等于5的圆 的方程, 并判断点M( 5, 7),N( 是否在这个圆上 。 5, 1)

高一数学人教版A版必修二课件:4.1.1 圆的标准方程

高一数学人教版A版必修二课件:4.1.1 圆的标准方程

解析答案
(2)求y-x的最大值和最小值;
解 设y-x=b,即y=x+b,
当y=x+b与圆相切时,纵截距b取得最大值和最小值,
|2-0+b| 此时 2 = 3.
即 b=-2± 6.
故 y-x 的最大值为-2+ 6,最小值为-2- 6.
解析答案
(3)求x2+y2的最大值和最小值. 解 x2+y2表示圆上的点与原点距离的平方,由平面几何知识知, 它在原点与圆心所在直线与圆的两个交点处取得最大值和最小值, 又圆心到原点的距离为2, 故(x2+y2)max=(2+ 3)2=7+4 3, (x2+y2)min=(2- 3)2=7-4 3.
第四章 § 4.1 圆的方程
4.1.1 圆的标准方程
学习目标
1.掌握圆的定义及标准方程; 2.能根据圆心、半径写出圆的标准方程,会用待定系数法求圆的标 准方程.
问题导学
题型探究
达标检测
问题导学
知识点一 圆的标准方程
新知探究 点点落实
思考1 确定一个圆的基本要素是什么? 答案 圆心和半径. 思考2 在平面直角坐标系中,如图所示,以(1,2)为圆心,以2为半径 的圆能否用方程(x-1)2+(y-2)2=4来表示? 答案 能. 1.以点(a,b)为圆心,r(r>0)为半径的圆的标 准方程为(x-a)2+(y-b)2=r2. 2.以原点为圆心,r为半径的圆的标准方程为x2+y2=r2.
返回
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B

高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析)

高中数学圆与方程知识点归纳与常考题型专题练习(附解析) 知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系 直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆> 直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。

圆的标准方程1

圆的标准方程1

(3)圆心是C(a,b),半径是r的圆的标准方程是
(x-a) 2 + (y-b) 2 = r2 .
(4) 圆的标准方程有哪些特点?
①是关于x、y的二元二次方程; ②方程明确给出了圆心坐标和半径; ③确定圆的方程必须具备三个独立条件即a、b、r。
练习:1、写出下列各圆的方程:
(1)圆心在点C(3, 4 ),半径是 5 (2) 经过点P(5,1),圆心在点C(8,-3)
(3) 注意圆的平面几何知识的运用以及应用圆的方程解决实 际问题。
作业
习题4.1 P134 3、 4
4.1.1圆的标准方程
求:圆心是C(a,b),半径是r的圆的方程
设M(x,y)是圆上任意一点,
y
根据定义,点M到圆心C的 距 离等于r,所以圆C就是集合
M r C
P={M| |MC|=r}
由两点间的距离公式,M适
O
x
合的条件可表示为:
说明:
(x-a) 2 + (y-b) 2 = r
1、特点:明确给出了圆
把上式两边平方得:
心坐标和半径。
(x-a) 2 + (y-b) 2 = r2
2、确定圆的方程必须具 备三个独立条件。
问题:试推导圆心是C(a,b),半 y 径
是r的圆的方程。
r M(x,y)
C
.
O
x
(1) 圆是 平面内到定点的距离等于定长 的点的集合;
(2) 推导中利用了 两点间的距离 公式进行坐标化;
练习2: 已知一个圆的圆心在原点,并与直线4x+3y-70=0 相切,求圆的方程。
x 2+y2=196
补充练习:
(1)已知一圆过P(4,-2),Q(-1, 3)两点,且在y轴上截得的线段长

4.1.1圆的标准方程 (1)

4.1.1圆的标准方程 (1)

X
已知隧道截面是一个半径为4的半圆,车辆只能在道路 中心一侧行驶。现有一辆宽3m,高3.5m的货车,试问该车能顺利驶入隧 道吗? 解:以隧道截面底边为X轴,底边中垂线为y轴建立直角坐标系
Y
应用升华
则隧道截面半圆的方程为:
x y 16( y 0)
2 2
0
3 4 X
当x 3时,y 7 3.5
2
4、求圆心在C(8,3),且与直线3x-4y-2=0相切的圆方程.
4、解:圆的半径 r
C(8,3)
3 8 4 3 2 3 2 ( 4) 2
2
0
X
圆的方程为: (x-8)2+(y-3)2=4
变式训练
已知△AOB的顶点坐标分别为A(4,0),B(0,3),O (0,0),求△AOB外接圆方程。
因此,该货车不ቤተ መጻሕፍቲ ባይዱ顺利驶入隧道
Y
3
解:∵ A(4,0),B(0,3),O(0,0)
B
AB 5, AOB 90

O
3 △AOB外接圆的圆心为AB中点 (2, ) 2 3 2 25 2 ∴△AOB外接圆的方程为:( x 2) ( y ) 2 4
A 4
AB为△AOB外接圆的直径 1 5 ∴△AOB外接圆的半径 r AB 2 2
Y
-2 C(0、0) r=2
0
+2
X
-1 C(-1、0) r=1
0
X
练习 3、已知圆心在C(8,3),圆经过M(5、1),求圆方程.
Y
3、解:圆的半径:
C(8,3) M( 5 、 1 ) X
0
Y
r CM (5 - 8)2 1 - 3 13 圆的方程为: (x-8)2+(y-3)2=13

4.1.1 圆的标准方程

4.1.1 圆的标准方程

目标导航
知识梳理
重难聚焦
典例透析
题型一 题型二 题型三
(2)(方法一)由题意,得线段 AB 的垂直平分线的方程为
3x+2y-15=0.

3������ + 2������-15 = 0, 解得 3������ + 10������ + 9 = 0,
������ = 7, ������ = -3.
所以圆心 C 的坐标为(7,-3).
求圆的标准方程时,一般先从确定圆的两个要素入手,即先求出圆 心的坐标和半径,再写出圆的标准方程.
②确定圆心和半径时,常用到中点坐标公式、两点间的距离公式,
有时还用到平面几何知识,如“弦的中垂线必过圆心”“两条弦的中 垂线的交点为圆心”等.
(2)待定系数法,步骤是:
①设圆的标准方程为(x-a)2+(y-b)2=r2(r>0); ②由条件列方程(组)解得a,b,r的值; ③写出圆的标准方程.
������
������
<
-
5 2
.
-12-
4.1.1 圆的标准方程
目标导航
知识梳理
重难聚焦
典例透析
题型一 题型二 题型三
题型二 求圆的标准方程
【例2】 求下列圆的标准方程: (1)圆心是(4,-1),且过点(5,2); (2)经过A(6,5),B(0,1)两点,并且圆心C在直线l:3x+10y+9=0上. 解:(1)(方法一)由题意知圆的
-11-
4.1.1 圆的标准方程
题型一 题型二 题型三
目标导航
知识梳理
重难聚焦
典例透析
【变式训练1】 已知点A(1,2)在圆C:(x-a)2+(y+a)2=2a2的内部,求

课件5: 4.1.1 圆的标准方程

课件5: 4.1.1  圆的标准方程
∵|AM|= 2-02+2-12= 5<r, ∴点 A 在圆内. ∵|BM|= 1-02+8-12= 50=r, ∴点 B 在圆上. ∵|CM|= 6-02+5-12= 52>r, ∴点 C 在圆外. ∴圆的标准方程为 x2+(y-1)2=50. 点 A 在圆内,点 B 在圆上,点 C 在圆外.
点评:判定点与圆的位置关系,可以判定该点与圆心的距离和圆的 半径的大小关系,也可将该点坐标代入圆的方程判断,方法如下: 点A(x0,y0)到圆心C(a,b)的距离为 |AC|= x0-a2+y0-b2. ①当点A(x0,y0)在圆上时,|AC|=r,即(x0-a)2+(y0-b)2=r2; ②当点A(x0,y0)在圆内时,|AC|<r,即(x0-a)2+(y0-b)2<r2; ③当点A(x0,y0)在圆外时,|AC|>r,即(x0-a)2+(y0-b)2>r2.
题型一 圆的标准方程
例1 求满足下列条件的各圆的方程: (1)圆心在y轴上,半径是1,且过点(1,2); (2)圆心在点C(3,4),半径是 5 ; (3)经过点P(5,1),圆心在点C(8,-3).
解析:根据题设条件,可利用圆的标准方程解决. (1)x2 +(y-2)2=1 (2)(x-3)2+(y-4)2=5; (3)解法一:∵圆的半径r=|CP|= 5-82+1+32 =5, 圆心在点(8,-3). ∴圆的方程是(x-8)2+(y+3)2=25.
跟踪训练
1.写出下列方程表示的圆的圆心和半径. (1)x2+y2=2; (2)(x-3)2+y2=a2(a≠0); (3)(x+2)2+(y+1)2=b2(b≠0).
解析:搞清圆的标准方程(x-a)2+(y-b)2=r2(r>0) 中,圆心为(a,b),半径为r,本题易于解决. (1)圆心(0,0),半径为 2 . (2)圆心(3,0),半径为|a|. (3)圆心(-2,-1),半径为|b|.

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

最新人教版高中数学必修二第四章圆与方程第一节第1课时圆的标准方程

第四章 圆 与 方 程 4.1 圆 的 方 程 4.1.1 圆的标准方程圆的标准方程圆心为C(x 0,y 0),半径为r 的圆的标准方程为(x -x 0)2+(y -y 0)2=r 2,特别地,圆心在原点时,圆的标准方程为x 2+y 2=r 2.(1)如果圆的标准方程为(x +x 0)2+(y +y 0)2=a 2(a ≠0),那么圆的圆心、半径分别是什么? 提示:圆心为(-x 0,-y 0),半径为|a|.(2)如果点P(x 0,y 0)在圆x 2+y 2=r 2上,那么x 20 +y 20 =r 2,若点P 在圆内呢?圆外呢?提示:若点P 在圆内,则x 20 +y 20 <r 2;若点P 在圆外,则x 20 +y 20 >r 2.1.辨析记忆(对的打“√”,错的打“×”) (1)圆的标准方程由圆心、半径确定.( √ ) (2)方程(x -a)2+(y -b)2=m 2一定表示圆.( × )(3)原点在圆(x -x 0)2+(y -y 0)2=r 2上,则x 20 +y 20 =r 2.( √ ) 提示:(1)如果圆的圆心位置、半径确定,圆的标准方程是确定的. (2)当m =0时,表示点(a ,b).(3)原点在圆上,则(0-x 0)2+(0-y 0)2=r 2,即x 20 +y 20 =r 2. 2.圆(x -1)2+y 2=3的圆心坐标和半径分别是( ) A .(-1,0),3B .(1,0),3C .()-1,0, 3D .()1,0 , 3【解析】选D.根据圆的标准方程可得,(x -1)2+y 2=3的圆心坐标为(1,0),半径为 3 . 3.到原点的距离等于 3 的点的坐标所满足的方程是________.【解析】设点的坐标为(x ,y),根据到原点的距离等于 3 以及两点间的距离公式,得(x -0)2+(y -0)2= 3 ,两边平方得x 2+y 2=3,是半径为 3 的圆. 答案:x 2+y 2=3类型一 圆的标准方程的定义及求法(数学抽象、数学运算)1.以点(2,-1)为圆心,以 2 为半径的圆的标准方程是( ) A .(x +2)2+(y -1)2= 2 B .(x +2)2+(y -1)2=2 C .(x -2)2+(y +1)2=2D .(x -2)2+(y +1)2= 2【解析】选C.由题意,圆的标准方程是(x -2)2+(y +1)2=2. 2.圆心在y 轴上,半径为1,且过点(1,3)的圆的方程是( ) A .x 2+(y -2)2=1 B .x 2+(y +2)2=1 C .x 2+(y -3)2=1D .x 2+(y +3)2=1【解析】选C.由题意,设圆的标准方程为x 2+(y -b)2=1,由于圆过点(1,3),可得1+(3-b)2=1,解得b =3,所以所求圆的方程为x 2+(y -3)2=1.3.已知圆C :(x -6)2+(y -8)2=4,O 为坐标原点,则以OC 为直径的圆的方程为( ) A .(x -3)2+(y +4)2=100 B .(x +3)2+(y -4)2=100 C .(x -3)2+(y -4)2=25D .(x +3)2+(y -4)2=25【解析】选C.圆C 的圆心坐标C(6,8),则OC 的中点坐标为E(3,4),半径|OE|=32+42=5,则以OC 为直径的圆的方程为(x -3)2+(y -4)2=25.4.圆心在直线x -2y -3=0上,且过点A(2,-3),B(-2,-5)的圆的标准方程为________. 【解析】方法一(几何性质法):设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a). 因为该圆经过A ,B 两点,所以|CA|=|CB|,所以(2a +3-2)2+(a +3)2 =(2a +3+2)2+(a +5)2 , 解得a =-2,所以圆心为C(-1,-2),半径长r =10 . 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法二(待定系数法):设所求圆的标准方程为(x -a)2+(y -b)2=r 2,由题设条件知,⎩⎨⎧a -2b -3=0,(2-a )2+(-3-b )2=r 2,(-2-a )2+(-5-b )2=r 2,解得a =-1,b =-2,r =10 (负值舍去), 故所求圆的标准方程为(x +1)2+(y +2)2=10.方法三(几何性质法):线段AB 的中点的坐标为(0,-4), 直线AB 的斜率k AB =-3+52+2 =12, 所以弦AB 的垂直平分线的斜率为k =-2,所以弦AB 的垂直平分线的方程为y +4=-2x ,即2x +y +4=0. 又圆心是直线2x +y +4=0与直线x -2y -3=0的交点, 所以圆心坐标为(-1,-2),所以圆的半径长r =(2+1)2+(-3+2)2 =10 , 故所求圆的标准方程为(x +1)2+(y +2)2=10. 答案:(x +1)2+(y +2)2=101.直接法求圆的方程圆的方程由圆心、半径决定,因此求出圆心和半径即可写出圆的标准方程. 2.待定系数法求圆的方程(圆心(a ,b)、半径为r)特殊位置 标准方程 圆心在x 轴上 (x -a)2+y 2=r 2 圆心在y 轴上 x 2+(y -b)2=r 2 与x 轴相切 (x -a)2+(y -b)2=b 2 与y 轴相切(x -a)2+(y -b)2=a 23.利用圆的性质求方程求圆的方程时,可以利用圆的性质求圆心、半径,如弦的垂直平分线过圆心,过切点垂直于切线的直线过圆心等.类型二点与圆的位置关系的判断(数学抽象、数学运算)1.点P(m,5)与圆x2+y2=24的位置关系是( )A.在圆外 B.在圆内C.在圆上 D.不确定【解析】选A.把P(m,5)代入x2+y2=24,得m2+25>24,所以点P在圆外.2.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足( )A.是圆心B.在圆上C.在圆内D.在圆外【解析】选C.因为(3-2)2+(2-3)2=2<4,所以点P(3,2)在圆内.3.点(1,1)在圆(x+2)2+y2=m上,则圆的方程是________.【解析】因为点(1,1)在圆(x+2)2+y2=m上,故(1+2)2+12=m,所以m=10.则圆的方程为(x+2)2+y2=10.答案:(x+2)2+y2=10.4.已知点A(1,2)不在圆C:(x-a)2+(y+a)2=2a2的内部,求实数a的取值范围.【解析】由题意知,点A在圆C上或圆C的外部,所以(1-a)2+(2+a)2≥2a2,所以2a+5≥0,所以a≥-52.因为a≠0,所以a的取值范围为⎣⎢⎡⎭⎪⎫-52,0∪(0,+∞).【思路导引】1.将点P的坐标代入圆的方程,看方程的等于号变成了什么符号,然后进行判断.2.验证点P与圆心的距离与半径之间的关系.3.将点的坐标代入圆的方程,解方程即可得出m的值,进而得方程.4.不在圆的内部,即在圆上或圆外.点与圆位置关系的判断与应用(1)位置关系的判断:①几何法:判断点到圆心的距离与半径的大小;②代数法:将点的坐标代入圆的方程左边,判断与r 2的大小. (2)位置关系的应用:代入点的坐标,利用不等式求参数的范围.【补偿训练】1.若点(3,a)在圆x 2+y 2=16的内部,则a 2的取值范围是( ) A .[0,7) B .(-∞,7) C .{7}D .(7,+∞)【解析】选A.由点在圆的内部,得9+a 2<16得a 2<7,又a 2≥0,所以0≤a 2<7. 2.若点(2a ,a -1)在圆x 2+(y -1)2=5的内部,则a 的取值范围是( ) A .(-1,1) B .(0,1) C .⎝ ⎛⎭⎪⎫-1,15 D .⎝ ⎛⎭⎪⎫-15,1【解析】选D.因为点(2a ,a -1)在圆的内部,所以d =(2a )2+(a -2)2 =4a 2+a 2-4a +4 =5a 2-4a +4 < 5 , 解得-15 <a <1,所以a 的取值范围是⎝ ⎛⎭⎪⎫-15,1 .3.若点A(a +1,3)在圆C :(x -a)2+(y -1)2=m 外,则实数m 的取值范围是( ) A .(0,+∞) B .(-∞,5) C .(0,5)D .[0,5]【解析】选C.由题意,得(a +1-a)2+(3-1)2>m ,即m<5, 又由圆的方程知m>0,所以0<m<5.类型三 与圆有关的最值问题(数学抽象、数学运算)角度1 与几何意义有关的最值问题【典例】已知x 和y 满足(x +1)2+y 2=14,试求x 2+y 2的最值.【思路导引】首先由条件观察x 、y 满足的条件,然后分析x 2+y 2的几何意义,求出其最值. 【解析】由题意知,x 2+y 2表示圆上的点到坐标原点距离的平方,显然当圆上的点与坐标原点的距离取得最大值和最小值时,其平方也相应取得最大值和最小值.原点O(0,0)到圆心C(-1,0)的距离d =1,故圆上的点到坐标原点的最大距离为1+12 =32 ,最小距离为1-12 =12.因此x2+y2的最大值和最小值分别为94,14.1.本例条件不变,试求yx的取值范围.【解析】设k=yx,变形为k=y-0x-0,此式表示圆上一点(x, y)与点(0, 0)连线的斜率,由k=yx,可得y=kx,此直线与圆有公共点,圆心到直线的距离d≤r,即|-k|k2+1≤12,解得-33≤k≤33.即yx的取值范围是⎣⎢⎡⎦⎥⎤-33,33.2.本例条件不变,试求x+y的最值.【解析】令y+x=b并将其变形为y=-x+b,问题转化为斜率为-1的直线在经过圆上的点时在y轴上的截距的最值.当直线和圆相切时,在y轴上的截距取得最大值和最小值,此时有|-1-b|2=12,解得b=±22-1,即最大值为22-1,最小值为-22-1.角度2 距离的最值问题【典例】1.设P是圆(x-3)2+(y+1)2=4上的动点,Q是直线x=-3上的动点,则|PQ|的最小值为( )A.6 B.4 C.3 D.2【解析】选B.|PQ|的最小值为圆心到直线的距离减去半径长.因为圆的圆心为(3,-1),半径长为2,所以|PQ|的最小值为3-(-3)-2=4.2.已知圆O的方程为(x-3)2+(y-4)2=25,则点M(2,3)到圆上的点的距离的最大值为________.【解析】由题意知,点M在圆O内,O为圆心,MO的延长线与圆O的交点到点M(2,3)的距离最大,最大距离为(2-3)2+(3-4)2+5=5+ 2 .答案:5+ 2【思路导引】1.转化为圆心到直线x=-3的距离减去半径;2.转化为M到圆心的距离加半径.1.与圆有关的最值问题的常见类型及解法(1)形如u=y-bx-a形式的最值问题,可转化为过点(x, y)和(a, b)的动直线斜率的最值问题.(2)形如l=ax+by形式的最值问题,可转化为动直线y=-abx+lb在y轴上的截距的最值问题.(3)形如(x-a)2+(y-b)2形式的最值问题,可转化为动点(x, y)到定点(a, b)的距离的平方的最值问题.2.求圆外一点到圆的最大距离和最小距离的方法采用几何法,先求出该点到圆心的距离,再加上或减去圆的半径,即可得距离的最大值或最小值.1.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是( )A.2 B.1+ 2 C.2+22D.1+2【解析】选B.圆(x-1)2+(y-1)2=1的圆心为(1,1),圆心到直线x-y=2的距离为 2 ,圆心到直线的距离加上半径就是圆上的点到直线的最大距离,即最大距离为1+ 2 .2.若实数x,y满足(x+5)2+(y-12)2=142,则x2+y2的最小值为( )A.2 B.1 C.0 D.-1【解析】选B.x2+y2表示圆上的点(x,y)与(0,0)间距离的平方,由几何意义可知最小值为(14-13)2=1.3.如果实数x,y满足(x-2)2+y2=3,求yx的最大值和最小值.【解析】方法一:如图,当过原点的直线l与圆(x-2)2+y2=3相切于上方时yx最大,过圆心A(2,0)作切线l的垂线交于B,在Rt△ABO中,OA=2,AB= 3 .所以切线l的倾斜角为60°,所以yx的最大值为 3 .同理可得yx的最小值为- 3 .方法二:令yx=n,则y=nx与(x-2)2+y2=3联立,消去y得(1+n2)x2-4x+1=0,Δ=(-4)2-4(1+n2)≥0,即n2≤3,所以- 3 ≤n≤ 3 ,即yx的最大值和最小值分别为 3 ,- 3 .【补偿训练】1.已知圆C的圆心为C(x0,x),且过定点P(4,2).(1)求圆C的标准方程.(2)当x为何值时,圆C的面积最小?求出此时圆C的标准方程.【解析】(1)设圆C的标准方程为(x-x0)2+(y-x)2=r2(r≠0).因为圆C过定点P(4,2),所以(4-x0)2+(2-x)2=r2(r≠0).所以r2=2x2-12x+20.所以圆C的标准方程为(x-x0)2+(y-x)2=2x2-12x+20.(2)因为(x-x0)2+(y-x)2=2x2-12x+20=2(x-3)2+2,所以当x=3时圆C的半径最小,则圆C的面积最小.此时圆C的标准方程为(x-3)2+(y-3)2=2.2.已知实数x,y满足方程x2+(y-1)2=14,求(x-2)2+(y-3)2的取值范围.【解析】(x-2)2+(y-3)2可以看成圆上的点P(x,y)到A(2,3)的距离.圆心C(0,1)到A(2,3)的距离为d=(0-2)2+(1-3)2=2 2 ,由图可知,圆上的点P(x ,y)到A(2,3)的距离的范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .即(x -2)2+(y -3)2 的取值范围是⎣⎢⎡⎦⎥⎤22-12,22+12 .。

4.1.1《圆的标准方程》课件(新人教A版必修2)

4.1.1《圆的标准方程》课件(新人教A版必修2)

2
金太阳教育网
引入新课
品质来自专业 信赖源于诚信
当圆心位置与半径大小确定后,圆就唯一确定 了.
因此一个圆最基本要素是圆心和半径. 如图,在直角坐标系中,圆心(点)A的位置用 坐标 (a,b) 表示,半径r的大小等于圆上任意点M(x, y) 与圆心A (a,b) 的距离.
y M (x, y) r A(a,b) O x
3
金太阳教育网
复习引入
品质来自专业 信赖源于诚信
我们在前面学过,在平面直角坐标系中,两 点确定一条直线,一点和倾斜角也能确定一条直 线.在平面直角坐标系中,如何确定一个圆呢?
y M
r
A O x
4
金太阳教育网
圆的方程
( x a) ( y b) r
2 2
2
得: 整理得:
( x 0) ( y 0) r
2 2
2
x y r
2 2
2
8
金太阳教育网
典型例题
品质来自专业 信赖源于诚信
例1 写出圆心为 A(2,3) ,半径长等于5的圆的 方程,并判断点 M1 (5,7) , 2 ( 5 ,1) 是否在这 M 个圆上. 解:圆心是 A(2,3) ,半径长等于5的圆的标准 方程是: ( x 2) 2 ( y 3) 2 25
把这个方程称为圆心为A(a, b),半径长为r 的圆 的方程,把它叫做圆的标准方程(standard equation of circle).
7
金太阳教育网
特殊位置的圆方程
品质来自专业 信赖源于诚信
圆心在坐标原点,半径长为r 的圆的方程是什么? 因为圆心是原点O(0, 0),将x=0,y=0和半径 r 带入圆的标准方程:

人教高中数学 必修二 4.1.1圆的标准方程(公开课教案)

人教高中数学 必修二 4.1.1圆的标准方程(公开课教案)

《4.1.1 圆的标准方程》教案
授课时间:授课地点:授课教师:
一、教材分析:圆是解析几何中一类重要的曲线,是在学生学习了直线与方程的基础知识之后,知道了在直角坐标系中通过建立方程可以达到研究图形性质,圆的标准方程正是这一知识运用的延续,在学习中使学生进一步体会数形结合的思想,形成用代数方法解决几何问题的能力,是进一步学习圆锥曲线的基础。

对于知识的后续学习,具有相当重要的意义.
二、教学目标:
1、知识与技能:①掌握圆的标准方程,能根据圆心、半径写出圆的标准方程;反之,
会根据圆的标方程,求圆心和半径;
②会判断点和圆的位置关系;
③会用待定系数法和几何法求圆的标准方程;
2、过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思
想,通过圆的标准方程解决实际问题的学习,注意培养学生观察问
题、发现问题和解决问题的能力.
3、情感态度和价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习
数学的热情和兴趣.
三、内容分析:
重点:圆的标准方程的求法及其应用
难点:会根据不同的已知条件求圆的标准方程
四、教具学具的选择:多媒体、圆规、直尺、课件.
五、教学方法:采用“问题-探究”教学法.
六、教学过程:。

人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)

人教A版高中数学必修二4.1.1 圆的标准方程 课件(共16张PPT)
设圆的标准方程为(x-a)2+(y-b)2=r2。
六.小结
1.圆心是 A(a,b),半径为r的圆A的标准方程是(x–a)2+(y–b )2=r2 2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系
几何法 先求出点M与圆心A的距离d
(1)若点M在圆A上,则d=r; (2)若点M在圆A内,则 d<r; (3)若点M在圆A外,则 d>r.
数与形,本是相倚依 焉能分作两边飞 数无形时少直觉 形少数时难入微 数形结合百般好 隔离分家万事休 切莫忘,几何代数统一体 永远联系莫分离
—— 华罗庚
O
平面直角坐标系

直线方程 1.点斜式方程 ������ − ������������ = ������(������ − ������������)

r2

展开平方后,
(x–2)2+(y+3)2=y25.
① ②得:a 2b 8 0
A(5,1)
③-②得:a b 1 0

解得a=2,b=-3,r=5.


O M
(6,-1) x B(7,-3)
∴ △ABC的外接圆方程为

(x–2)2+(y+3)2=25.

C(2,-8)
kAB 2
(1 a)2 (1 b)2 r 2
(2 a)2 (2 b)2 r 2

ab1 0
a 3 解得 b 2
r 5
∴圆C方程是(x-3)2+(y-2)2=25.


O
x


C

圆的标准方程说课课件人教新课标

圆的标准方程说课课件人教新课标
所以本节内容在整个解析几何中起着承前启后 的作用.
▪ 2.学情分析
授课对象是文科班的学生。学生只具有一般 的归纳推理能力,但他们思维活跃,有一定的发 现问题解决问题的能力。由于学生学习解析几何 的时间还不长、学习程度较浅,对坐标法的运用 还不够熟练,基础不太好,在学习过程中难免会 出现困难。
3.教学目标
▪ 4、教学重难点 ⑴重点:
圆的标准方程的求法及其简单应用;
⑵难点: 会根据不同的已知条件求圆的标准方程;
▪ 5.教学手段:
利用《几何画板》和视频播放器,依 托多媒体,让学生进行数学活动和数学实 验。
二、教法学法分析
▪ 教法分析 ▪ 学法分析
1、教法
为了充分调动学生学习的积极性,本节课采 用“启示式” 教学法,用环环相扣的问题将探究活 动层层深入,使教师总是站在学生思维的最近发 展区上。
2、学法
本课时重活化教材,强化体验。在活动中 探究,不断发现问题,提出问题,解决问 题。在教学中,让学生经历知识的形成和 发展,通过视察、归纳、思考、探索、交 流、反思参与学习,最大限度的发挥学生的 主体地位,使学生真正成为课堂的主人。
教学过程设计
1、趣味开篇,激发兴趣 2、回顾探究 获得新知 3、随堂练习,巩固新知 4、应用举例 深入探究 5、课堂小结 知识整合 6、作业布置 拓展引申
1、趣味开篇 激发兴趣 第一给出一张图片,上面展示日常生活中与圆相关 的常见的词语和物品
然后播放一段和圆相关的趣味视频,让学生对圆的
知识产生探求愿望。
2、回顾探究 获得新知 第一让学生回答两个问题
1.在平面直角坐标系中,已知两点坐标P1(x1,y1), P2(x2,y2),如何求两点间的距离呢? 2.我们在前面学过,在平面直角坐标系中,两点确 定一条直线,一点和倾斜角也能确定一条直线.

高中数学新人教A版必修2课件:第四章圆与方程4.1.1圆的标准方程

高中数学新人教A版必修2课件:第四章圆与方程4.1.1圆的标准方程

解:(3)设圆心为 C,AB 的垂直平分线方程为 3x+2y-15=0.

3x 3x
2y 15 10y 9
0, 0,

x y
7, 3,
所以圆心 C(7,-3),又 CB= 65 ,
故所求圆的方程为(x-7)2+(y+3)2=65.
(4)以A(-1,2),B(5,-6)为直径两端点的圆的方程.
3.圆的标准方程的定义 我们把方程(x-a)2+(y-b)2=r2称为圆心为(a,b),半径长为r(r>0)的圆的方 程,把它叫做圆的标准方程. 特别地,当圆心在坐标原点,即a=b=0时,圆的标准方程为x2+y2=r2;当圆心 在坐标原点,r=1时,圆的标准方程为x2+y2=1,称为单位圆.
4.几种特殊位置的圆的标准方程
4.1.1 圆的标准方程
课标要求:1.会用定义推导圆的标准方程并掌握圆的标准方程的特征.2. 能根据所给条件求圆的标准方程.3.会判断点与圆的位置关系.
自主学习
知识探究
1.确定圆的几何要素 在平面直角坐标系中,当圆心位置与半径大小确定后,圆就唯一确定了.因 此,确定一个圆最基本的要素是圆心和半径,即位置和大小. 2.圆的定义 平面内与定点的距离等于定长的点的集合是圆.其中定点就是圆心,定长 就是半径长.
条件
方程形式
单位圆(圆心在原点,半径长 r=1)
x2+y2=1
过原点(圆心(a,b),半径长 r= a2 b2 ) 圆心在原点(即 a=0,b=0,半径长为 r,r>0)
(x-a)2+(y-b)2=a2+b2 x2+y2=r2
圆心在x轴上(即b=0,半径长为r,r>0) 圆心在y轴上(即a=0,半径长为r,r>0) 圆心在x轴上且过原点(即b=0,半径长r=|a|)

4.1.1圆的标准方程

4.1.1圆的标准方程

例1 写出圆心为A(2,-3),半径长等于5的圆的 方程,并判断点M1(5,-7),M2(-2,-1),M3(4,2)是否 在这个圆上.
解: 所求的圆的标准方程是(x-2)2+(y+3)2=25 若点到圆心的距离为d,
y
M3
(x0-a)2+(y0-b)2>r2时,点M在圆C外; o d>r时,点在圆外;
M2
x
(x0-a)2+(y0-b)2=r2时,点M在圆C上; d=r时,点在圆上;
(x0-a)2+(y0-b)2<r d<r时,点在圆内; 2时,点M在圆C内.
A
例2. 已知的顶点坐标分别是A(4,0),B(0,3),C(0,0),求 外接圆的方程。(请用多种方法求解)
变式训练: ABC 的三个顶点的坐标分别A(5,1), B(7,-3),C(2, -8),求它的外接圆的方程.
课堂小结
⑴这节课你学到了哪些知识和解题技能? ⑵这节课你学到了哪些数学思想方法? ⑶你还有哪些收获?
问题:什么叫做圆?
圆的定义
平面内与定点距离等于定长的点的集 合(轨迹)是圆,定点就是圆心,定长就是半径.
根据圆的定义怎样求出圆心是C(a,b), 半径是r的圆的方程?
圆心C(a,b),半径r
y
M(x,y) O x
( x a) ( y b) r
2 2
2
C
标准方程 特别地,若圆心为O(0,0),则圆的方程为:
解题规律:
求圆的标准方程的一般方法: ①根据题设条件,列出关于的方程组,解方程组 得到得值,写出圆的标准方程. ②根据确定圆的要素,以及题设条件,分别求出 圆心坐标和半径大小,然后再写出圆的标准方程

(必修2)4.1.1圆的标准方程(2课时)

(必修2)4.1.1圆的标准方程(2课时)

• (1)当圆心在某条直线上时, • (一)可设出圆心坐标,将圆心用一个字母 表示. • (二)也可以考虑若圆心在另一条直线上, 则圆心为两直线的交点.
• (2)当圆经过不共线三点时, • (一)可由两边的中垂线求得圆心,进而求 出半径. • (二)也可设标准方程,将三点坐标代入,
解三元一次方程组求得a、b、r.
• (3)设圆心坐标为(a,b),圆的方程为 • (x-a)2+(y-b)2=5. • 已知圆过点(0,1),(2,1),代入圆的方程中 得, 2 2
a +(1-b) =5 2 2 (2 - a ) + (1 - b ) =5 a1=1 ∴ b1=-1

a2=1 ,或 b2=3
练习
1.(1)已知点A(1,1)在圆C:x2+y2-2ax+2ay+2a2=4的内 部,求实数a的取值范围.
(2)点(2a, 1 a)在圆x2 + y2 = 4的内部,求实数 a 的取值范围. 2.根据下列条件,求圆的方程:
(1)求以C(1,3)为圆心,且和直线3x-4y-7=0相切的 直线的方程。
4.1.1 圆的标准方程
y O
A
x
r
生活中的圆
复习引入
问题一:什么是圆?初中时我们是怎样给圆 下定义的? 平面内与定点距离等于定长的点的集合(轨迹)是 圆。 问题二:平面直角坐标系中,如何确定一个 圆? 圆心:确定圆的位置 半径:确定圆的大小
探究新知
问题三:圆心是C(a,b),半径是r的圆的方程是什么?
圆心C:两条直线的交点
半径CA:圆心到圆上一点
例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且 圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方 程. 解:∵A(1,1),B(2,-2)

4.1.1圆的标准方程课件人教新课标

4.1.1圆的标准方程课件人教新课标

[变式训练] (1)若圆C与圆(x+2)2+(y-1)2=1关于
原点对称,则圆C的方程为( )
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y-1)2=1
C.(x-1)2+(y+2)2=1 D.(x+1)2+(y-2)2=1
(2)已知圆C的圆心在x轴的正半轴上,点M(0, 5 )
在圆C上,且圆心到直线2x-y=0的距离为
(3)圆心坐标是(-1,-2),半径是2,故不正确. (4)点(0,0)在圆外,故不正确. 答案:(1)× (2)√ (3)× (4)×
2.圆心为P(-1,2)、半径长是2的圆的标准方程是 ()
A.(x-1)2+(y-2)2=2 B.(x+1)2+(y-2)2=4 C.(x-2)2+(y+1)2=4 D.(x-1)2+(y-2)2=4 解析:根据圆心P的坐标为(-1,2),圆的半径长为 2,得圆的标准方程为(x+1)2+(y-2)2=4. 答案:B
[知识提炼·梳理] 1.圆的标准方程 (1)圆的定义:平面内到定点的距离等于定长的点的 集合叫作圆,定点称为圆心,定长称为圆的半径.
(2)确定圆的要素是圆心和半径,如图所示.
(3)圆的标准方程:圆心为A(a,b),半径长为r的圆 的标准方程是(x-a)2+(y-b)2=r2.
当a=b=0时,方程为x2+y2=r2,表示以原点为圆 心、半径为r的圆.
故所求圆的标准方程为(x-4)2+(y-6)2=5. 分别计算点M,N,P到圆心C的距离: |CM|= (4-5)2+(6-3)2= 10> 5, |CN|= (4-3)2+(6-4)2= 5, |CP|= (4-3)2+(6-5)2= 2< 5, 所以点M在圆外,点N在圆上,点P在圆内.
[迁移探究1] (变换条件)将典例2中两点P1,P2坐标改 为“P1(4,9)和P2(6,3)”,求以P1P2为直径的圆的方程,并 判断点M(6,9),N(3,3),Q(5,3)是在圆上、圆内还是圆 外.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.1.1 圆的标准方程
课前预习学案 1.预习目标 回忆圆的定义,初步了解用方程建立圆的标准方程. 2.预习内容
1:圆的定义是怎样的?
2:圆的特点是什么?
4
3.提出疑惑
同学们,通过你的自主学习,你还有那些疑惑,请填在下面的表格中
疑惑点
疑惑内容
课 内探究学案 一.学习目标 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆 的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一 些简单的实际问题. 2.通过圆的标准方程的推导,培 养学生利用求曲线的方程的一般步骤解决一些实际 问题 的能力. 3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又 服务于实践,可以适时进行辩证唯物主义思 想教育. 学习重点:(1)圆的标准方程的推导步骤;(2)根据具 体条件正确写出圆的标准方程. 学习难点:运用圆的标准方程解决一些简单的实际问题. 2.学习过程 探究一:如何建立圆的标准方程呢? 1.建系设点
二: 从图形上动点 P 性质考虑,用求曲线方程的一般方法解决. 解:(1) 解法一:(学生口答) 设圆心 C(a,b)、半径 r,则由 C 为 P 1 P 2 的中点得:
又由两点间的距离公式得: ∴所求圆的方程为:(x-5) 2 +(y-6) 2 =10 解法二:(给出板书) ∵直径上的四周角是直角,∴对于圆上任一点 P(x,y),有 PP 1 ⊥PP 2 .
1
(5)证明化简后的方程就是所求曲线的方程,简称证明. 其中步骤(1)(3)(4)必不可少. (三)合作探究、精讲精练 探究一:如何建立圆的标准方程呢? 1.建系设点 由学生在黑板上画出直角坐标系,并问有无不同建立坐标系的方法.教师指出:这两 种建立坐标系的方法都对,原点在圆心这是特殊情况,现在仅就一般情况推导.因为 C 是 定点,可设 C(a,b)、半径 r,且设圆上任一点 M 坐标为(x,y). 2.写点集 根据定义,圆就是集合 P={M||MC|=r}. 3.列方程
2.圆的方程的特点:点(a,b)、r 分别表示圆心坐标和圆的半径;
3.求圆的方程的两种方法:(1)待定系数法;(2)轨迹法.
【板书设计】 探究一:圆的标准方程 1.建系设点 2.写点集 3.列方程 4.化简方程 探究二:圆的方程形式特点 例 1 变式训练1 例2 变式训练2 课堂小结 【作业布置】 导学案课后练习与提高
3.反思总结 圆的定义
几何特征
方程特征
待定系数法法
轨迹法法
四.当堂检测
1.圆(x+1)2+(y-2)2=4 的圆心、半径是 (

A.(1,-2),4
B.(1,-2),2
C.(-1,2),4
D.(-1,2),2
2.过点 A(4,1)的圆 C 与直线 x y 1 0 相切于点 B(2,1).则圆 C 的方程为
2.点P( m2 ,5 )与圆 x 2 y 2 24 的位置关系是(
)
A.在圆外 B.在圆内 C.在圆上 D.不确定
3.已知圆C与圆 (x 1)2 y 2 1关于直线 y x 对称,则圆C的方程为(

A. (x 1)2 y 2 1 B. x 2 y 2 1
1:具有什么性质的点的轨迹称为圆?
平面内与一定点距离等于定长的点的轨迹称为圆(教师在黑板上画一个圆). 2:图 2-9 中哪个点是定点?哪个点是动点?动点具有什么性质?圆心和半径都反映了 圆的什么特点?
圆心 C 是定点,圆周上的点 M 是动点,它们到圆心距离等于定长|MC|=r,圆心和半径 分别确定了圆的位置和大小.
2
答案:(1) 圆心是(3,2),半径是 5 ;(2) 圆心是(-4,-3),半径是 7 ;(3) 圆
心是(-2,0),半径是2. 例2 (1)已知两点 P 1 (4,9)和 P2(6,3),求以 P 1 P 2 为直径的圆的方程;(2)试判
断点 M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外? 解析:分析一:从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决;分析
O 的方程是

6.赵州桥的跨度是 37.4m,圆拱高约为 7.2m,求这座圆拱桥的拱圆的方程.
7
8
例2 (1)已知两点 2 为直径的圆的方程;(2)试判 断点 M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外?
变式训练2:求证:以 A(x 1 ,y 1 )、B(x 2 ,y 2 )为直径端点的圆的 方程为(x-x 1 )(x-x 2 )+(y-y 1 )(y-y 2 )=0.
化简得:x 2 +y 2 -10x-12y+51=0. 即(x-5) 2 +(y-6) 2 =10 为所求圆的方程. 解(2):(学生阅读课本) 分别计算点到圆心的距离:
因此,点 M 在圆上,点 N 在圆外,点 Q 在圆内. 点评:1.求圆的方程的方法 (1)待定系数法,确定 a,b,r; (2)轨迹法,求曲线方程的一般方法. 2.点与圆的位置关系 设点到圆心的距离为 d,圆半径为 r: (1)点在圆上 d=r;
(3)经过点 P(5,1),圆心在点 C(8,-3); 解析:要求能够用圆心坐标、半径长熟练地写出 圆的标准方程. 解:(1)x 2 +y 2 =9;(2)(x-3) 2 +(y-4) 2 =5;
点评: 圆的标准方程与圆心坐标、半径长密切相关,应熟练掌握. 变式训练1: 说出下列圆的圆心和半径:(学生回答) (1)(x-3) 2 +(y-2) 2 =5; (2)(x+4) 2 +(y+3) 2 =7; (3)(x+2) 2 + y 2 =4
C. x 2 ( y 1)2 1 D. x 2 ( y 1)2 1
4.已知圆 C 的圆心是直线 x-y+1=0 与 x 轴的交点,且圆 C 与直线 x+y+3=0 相切。则
圆 C 的方程为

5.已知圆心在 x 轴上,半径为 2 的圆 O 位于 y 轴左侧,且与直线 x+y=0 相切,则圆
(二)检查预习、交流展示
求曲线的方程的一般步骤是什么?其中哪几个步骤必不可少?
求曲线方程的一般步骤为: (1)建立适当的直角坐标系,用(x,y)表示曲线上任意点 M 的坐标,简称建系设点;图 2-9 (2)写出适合条件 P 的点 M 的集合 P={M|P(M)|},简称写点集; (3)用坐标表示条件 P(M),列出方程 f(x,y)=0,简称列方程; (4)化方程 f(x,y)=0 为最简形式,简称化简方程;
.
3.一个等腰三角形底边上的高等于 5,底边两端点的坐标是(-4,0)和(4,0),求它 的外接圆的方程.
6
参考答案:1.D 2. (x 3)2 y2 2
课后练习与提高
1.圆 (x 1)2 ( y 1)2 2 的周长是( )
A. 2 B. 2 C.2 2 D. 4
4. 1.1 圆的标准方程
【教学目标】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆 的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题. 2.通过圆的标准方程的推导,培养学生利用求曲线的方程的一般步骤解决一些实际 问题的能力. 3.通过圆的标准方程,解决一些如圆拱桥的实际问题,说明理论既来源于实践,又 服务于实践,可以适时进行辩证唯物主义思想教育. 【教 学重难点】 教学重点:(1)圆的标准方程的推导步骤;(2)根据具体条件正确写出圆的标准方程. 教学难点:运用圆的标准方程解决一些简单的实际问题. 【教学过程】 (一)情景导入、展示目标 前面,大家学习了圆的概念,哪一位同学来回答?
教师指出:圆心和半径分别确定了圆的位置和大小,从而确定了圆,所以,只要 a,b,r 三个量确定了且 r>0,圆的方程就给定了.这就是说要确定圆的方程,必须具备 三个独立的条件.注意,确定 a、b、r,可以根据条件,利用待定系数法来解决.
例 1 写出下列各圆的方程:(请三位同学演板) (1)圆心在原点,半径是 3;
由两点间的距离公式得: 4.化简方程
将上式两边平方得: (x-a) 2 +(y-b) 2 =r 2 (1)
方程(1)就是圆心是 C(a,b)、半径是 r 的圆的方程.我们把它叫做圆的标准方程.
探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
这是二元二次方程,展开后没有 xy 项,括号内变数 x,y 的系数都是 1.点(a,b)、 r 分别表示圆心的坐标和圆的半径.当圆心在原点即 C(0,0)时,方程为 x 2 +y 2 =r 2 .
2.写点集
3.列方程
4.化简方程
探究二:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
例 1 写出下列各圆的方程:(请四位同学演板) (1)圆心在原点,半径是 3;
5
(3)经过点 P(5,1),圆心在点 C(8,-3);
变式训练1: 说出下列圆的圆心和半径:(学生回答) (1)(x-3) 2 +(y-2) 2 =5; (2)(x+4) 2 +(y+3) 2 =7; (3)(x+2) 2 + y 2 =4
3
(2)点在圆外 (3)点在圆内
d>r; d<r.
变式训练2:求证:以 A(x 1 ,y 1 )、B(x 2 ,y 2 )为直径端点的圆的方程为(x-x 1 )(x-x
2 )+(y-y 1 )(y-y 2 )=0.
证明:略.
(四)反馈测试 导学案当堂检测 (五)总结反思、共同提高
1.圆的方程的推导步骤;
相关文档
最新文档