岩质边坡稳定性分析
岩质边坡稳定性分析计算
![岩质边坡稳定性分析计算](https://img.taocdn.com/s3/m/c7ff1bbcf71fb7360b4c2e3f5727a5e9856a27d0.png)
岩质边坡稳定性分析计算引言:岩质边坡是指由岩石构成的边坡体,它的稳定性分析是地质工程中的一项重要内容。
本文将围绕岩质边坡的稳定性分析进行详细讨论,包括边坡的力学特性、稳定性分析的方法和计算步骤。
一、岩质边坡力学特性:岩质边坡的力学特性主要包括边坡坡度、岩性、结构构造、地质构造、坡面覆盖物、地下水等。
这些因素对边坡的稳定性有着重要影响。
1.边坡坡度:边坡坡度是指地面或水平面与边坡倾斜线的夹角,是影响边坡稳定性的重要因素。
坡度越大,边坡的稳定性越差。
2.岩性:岩石的强度、粘聚力、内摩擦角等岩性参数对边坡稳定性有着重要影响。
一般来说,岩性较强的边坡稳定性较好。
3.结构构造:边坡中的断层、节理、褶皱等结构构造对边坡的稳定性有着重要影响。
结构面的发育程度和倾角越大,边坡的稳定性越差。
4.地质构造:地质构造包括岩层倾角、层面、节理等,对边坡的稳定性具有重要影响。
地质构造的研究可以帮助我们了解边坡的受力特点和变形规律。
5.坡面覆盖物:坡面覆盖物通常包括土壤、草地、水层等,这些覆盖物的分布情况和特性对边坡的稳定性有着显著影响。
6.地下水:地下水的存在对边坡的稳定性具有重要影响。
当地下水位上升时,边坡会受到水的浸润,导致边坡强度降低,从而增加边坡失稳的可能性。
二、岩质边坡稳定性分析方法:岩质边坡的稳定性分析方法主要有极限平衡法和有限元法两种,下面将对这两种方法进行介绍。
1.极限平衡法:极限平衡法是一种经典的岩质边坡稳定性分析方法,它基于边坡体在其稳定状态下的力学平衡原理进行计算。
这种方法通常将边坡分割为无限小的切割体,并假设切割体沿着内摩擦边界面滑动,从而得到边坡的稳定状态。
2.有限元法:有限元法是一种基于有限元理论进行边坡稳定性分析的方法。
这种方法将边坡体离散为有限数量的单元,通过求解单元之间的位移和应力,得到边坡的稳定状态。
有限元法能够模拟较为复杂的边坡几何形状和边界条件,但计算复杂度较大。
三、岩质边坡稳定性计算步骤:进行岩质边坡稳定性分析计算时,通常需要进行以下步骤:1.边坡参数确定:根据实地调查和实验数据,确定边坡的坡度、坡高、岩石强度参数、结构面参数等。
岩质边坡稳定性分析计算
![岩质边坡稳定性分析计算](https://img.taocdn.com/s3/m/9c3ad22e571252d380eb6294dd88d0d232d43c46.png)
表4*3.3边坡岩体内摩擦角的折减系数
边坡岩体完整程度
内摩擦角的折戚系数
完解
0, 95〜0, 90
较完整
0. 90-0.85
较破碎
注:1全风化层可按成分相同的土 IB考虑; 2强风化基岩可根据池方经验适当折减*
0.85**0.80
4.3.4边坡岩体等效内摩擦角宜按当地经验确定。当缺乏当地 经验时, 可按表4.3.4取值。
面形态按本规范附录A选择具体计算方法。
A*OH圆弧形沿面的边坡稳定性系数可按下列公式计算{图 A, 0, 1):
式中:F. 第;计算条块滑面内摩擦角(°); A 1列1形汾面边坡计算示怠 第计算条块搿面长度( mh
d, 第H十算条块滑面倾角('),滑面倾向与滑动方向
相同时取正值,滑面倾向与滑动方向相反时取 负
结构面结 合 差
外 倾 结 构 面 或 外 倾 3 、 同 8m «的边坡 稳
结构面的组合线倾角 >75'或 定 , 15m 岛 的 边
<27*
坡欠稳定
较破晬
结构面结合 良好或一般
较破碎
结构面结合
(碎裂禳嵌〉良好或一般
1窪,
夕卜倾结构面或外倾不同 8m S的边坡 稳
结构面的组合线倾角 >75•或 定,ISm髙 的边坡
值:
:
LA 第,计算条块滑面单位宽度总水压力<kN/m); Gt——第/计算条块单位宽度自重(kN/m);
第/计算条块单位宽度竖向附加荷载方 向指向下方时 取正值|指向上方时取负值;
___
G ——第i_if算条块单位宽度水平荷载方向指 向坡外时取正 值,指向坡内吋取负值;
——第i及第/一 1计算条块滑面前端水头髙度(m):
(精品)图解赤平投影法分析岩质边坡稳定性
![(精品)图解赤平投影法分析岩质边坡稳定性](https://img.taocdn.com/s3/m/d3e9998487c24028905fc32e.png)
岩质边坡的稳定问题历来是边坡工程稳定性分析和研究的重要课题。
岩质边坡的变形和破坏主要受岩体中发育的各类结构面所控制。
利用极射赤平投影(以下简称赤平投影)方法进行岩质边坡稳定性的分析,可直观地表明各组结构面的组合关系、组合切割体与边坡的相对关系、不稳结构体可能变形失稳的方向等,由此得到边坡变形的边界条件,对边坡的稳定性作出定性分析和评价。
从20世纪80年代,赤平投影方法开始引进到工程地质学中,用于分析工程岩质边坡的整体稳定性,现已得到了广泛应用,是目前分析岩质边坡稳定问题的主要方法之一。
笔者综合已有理论分析方法与工程实践,从简洁、实用的角度出发,结合工程实例,总结提出赤平投影法分析岩质边坡稳定性的图解模板,谨供同行研究参考。
1 赤平投影法分析岩质边坡稳定性的基本方法赤平投影法在进行工程岩质边坡的稳定性分析赤平投影法分析岩质边坡稳定性图解模板时,具有一定的假设前提,即边坡岩体是刚性的,不考虑内部块体之间的应变,同时忽略条件力的作用,只考虑块体滑动力与抗滑力的作用。
1. 1 岩体中发育 1 组结构面的情况边坡岩体中仅发育 1 组结构面时,可能的失稳岩体滑动方向即为结构面的倾向,边坡稳定性分析比较简单,可以概括为 3 种工况:( 1)当结构面倾向与边坡倾向相反,则不考虑结构面倾角大小,边坡是稳定的;( 2)当结构面倾向与边坡倾向相对一致,倾角大于边坡倾角,边坡是较稳定的;(3)当结构面倾向与边坡倾向相对一致,倾角小于边坡倾角,边坡是不稳定的。
这是一种最基本、理想的状况,实际工程边坡岩体中分布的结构面远较之复杂。
1. 2 岩体中发育 2 组结构面的情况边坡岩体中发育 2 组结构面时,边坡的稳定则主要受控于结构面的组合情况。
用赤平投影方法,根据结构面和边坡的产状作赤平投影图,分析结构面组合交线与边坡投影弧的相对关系,判断边坡的稳定状态,通常有以下 5 种情况( 如图 1)。
图 1 两组结构面和边坡的赤平投影关系图(1)图1中,2组结构面(J1,J2)的交点(M)位于人工边坡(cS)及天然边坡(nS)投影弧的对侧(图1-a)。
工程地质学-第六章岩质边坡
![工程地质学-第六章岩质边坡](https://img.taocdn.com/s3/m/adb83b7e366baf1ffc4ffe4733687e21af45ffea.png)
综合评估
综合多种方法对加固后的边 坡进行评估,得出较为准确 的评估结果,为后续的工程 设计和施工提供依据。
04 岩质边坡的监测与预警
监测内容与方法
变形监测 通过测量边坡的位移、倾斜、沉 降等参数,评估边坡的稳定性。 方法包括全站仪测量、GPS监测、 裂缝尺等。
声波监测 利用声波在岩石中的传播速度和 波形变化,判断边坡内部的裂隙、 破碎带等结构特征。
准确性和完整性。
数据处理与分析
03
建立数据处理中心,对采集的数据进行实时处理、分析,提取
关键信息,为预警提供依据。
预警系统运行与维护
数据采集与传输
确保传感器正常运行,数据能够实时、准确地传输到数据处理中心。
预警阈值调整
根据实际监测数据和工程经验,适时调整预警阈值,提高预警的准 确性和可靠性。
系统维护与升级
稳定性计算模型
01
02
03
极限平衡法
基于力的平衡原理,通过 计算岩体的滑动力和抗滑 力,评估边坡的稳定性。
有限元法
通过建立边坡的有限元模 型,模拟岩体的应力分布 和变形过程,预测可能的 破坏模式和稳定性状况。
离散元法
针对岩体的离散性质,模 拟岩块之间的相互作用和 运动过程,评估边坡的整 体稳定性。
工程地质学-第六章岩质边坡
目录
• 岩质边坡的定义与分类 • 岩质边坡的稳定性分析 • 岩质边坡的加固与防护 • 岩质边坡的监测与预警 • 岩质边坡工程实例分析
01 岩质边坡的定义与分类
定义
总结词
岩质边坡是指由岩石构成的边坡,其稳定性对工程安全至关重要。
详细描述
岩质边坡是由各种岩石(如沉积岩、岩浆岩、变质岩等)构成的边坡,其特点是岩石的物理、化学和力学性质较 为稳定,不易发生风化、侵蚀等现象。岩质边坡的稳定性对于工程安全具有重要意义,特别是在山区、河流两岸 等地区,岩质边坡的稳定性问题尤为突出。
高陡岩质边坡微震监测与稳定性分析研究
![高陡岩质边坡微震监测与稳定性分析研究](https://img.taocdn.com/s3/m/0b26ad6ebdd126fff705cc1755270722192e59a4.png)
高陡岩质边坡微震监测与稳定性分析研究一、本文概述随着基础设施建设的快速发展,高陡岩质边坡的稳定性问题日益凸显,成为岩土工程领域的研究热点。
高陡岩质边坡的稳定性不仅关系到工程项目的安全,也直接影响周边环境和人民生命财产安全。
因此,对高陡岩质边坡的稳定性进行准确分析和有效监测显得尤为重要。
本文旨在通过微震监测技术,对高陡岩质边坡的稳定性进行深入分析,以期为相关工程实践提供理论支持和实际应用指导。
本文首先介绍了高陡岩质边坡的特点和稳定性分析的重要性,阐述了微震监测技术在边坡稳定性分析中的应用原理和优势。
随后,详细描述了微震监测系统的构建过程,包括传感器的选型与布置、数据采集与处理等关键步骤。
在此基础上,结合具体工程案例,对微震监测数据进行了深入分析,探讨了高陡岩质边坡的变形破坏机制和稳定性影响因素。
提出了基于微震监测数据的边坡稳定性评估方法和预警体系,为边坡工程的安全运营提供了有力保障。
本文的研究不仅丰富了高陡岩质边坡稳定性分析的理论体系,也为实际工程应用提供了有效手段。
通过微震监测技术的应用,可以实现对高陡岩质边坡稳定性的实时监测和预警,有助于及时发现潜在的安全隐患,采取相应的工程措施,确保边坡工程的安全稳定。
本文的研究成果也为类似工程提供了借鉴和参考,具有重要的理论价值和实践意义。
二、高陡岩质边坡地质特性分析高陡岩质边坡作为一种特殊的地理现象,其地质特性直接影响着边坡的稳定性和安全性。
因此,对高陡岩质边坡的地质特性进行深入分析,是开展微震监测与稳定性分析的关键前提。
高陡岩质边坡的岩石类型多样,常见的有花岗岩、石灰岩、砂岩等。
这些岩石的物理力学性质,如强度、弹性模量、泊松比等,直接决定了边坡的承载能力和变形特性。
岩石中的节理、裂隙等结构面的发育情况,对边坡的稳定性有着重要影响。
这些结构面不仅降低了岩体的整体强度,还容易成为应力集中的区域,从而引发边坡的破坏。
高陡岩质边坡的地质构造背景也是不可忽视的因素。
岩质边坡稳定性分析
![岩质边坡稳定性分析](https://img.taocdn.com/s3/m/2c27c18ab0717fd5370cdc00.png)
块体Ⅰ
块体Ⅱ 块体Ⅱ
块体Ⅱ
(三)、多平面滑动
边坡岩体的多平面滑动, 分为一般多平面滑动和 阶梯状滑动两个亚类。 阶梯状滑动,破坏面由多个实际滑动面和受拉面 组成,呈阶梯状,坡稳定性的计算思路与单平面 滑动相同,即将滑动体的自重 (仅考虑重力作用时) 分解为垂直滑动面的分量和平行滑动面的分量。
' ' tg [ 2 C cos( ) 2 sin( )] sin j j t ' tg gH sin sin( )
第三节 岩质边坡稳定性分析
•一、岩质边坡应力分布特征 •二、岩质边坡的变形与破坏 •三、岩质边坡稳定性分析步骤 •四、岩质边坡稳定性计算
一、 边坡岩体中的应力分布特征
斜坡(slope)统指地表一切具有侧向临空面的地质 体,包括天然斜坡和人工边坡。 天然斜坡(简称斜坡)是指自然地质作用形成未经 人工改造的斜坡。 人工边坡(简称边坡)是指经人工开挖或改造形成 的斜坡。 研究目的:研究边坡变形破坏的机理(包括应力分 布及变形破坏特征)与稳定性,为边坡预测预报及 整治提供岩体力学依据。其中稳定性计算是岩体 边坡稳定性分析的核心。
(四)、楔形体滑动
楔形体滑动的滑 动面由两个倾向 相反、且其交线 倾向与坡面倾向 相同、倾角小于 边坡角的软弱结 构面组成。
边坡岩体稳定性分析的计算方法
![边坡岩体稳定性分析的计算方法](https://img.taocdn.com/s3/m/d417a036fbd6195f312b3169a45177232e60e45d.png)
边坡岩体稳定性分析的计算方法边坡岩体稳定性分析是地质工程设计工作中十分重要的一部分,是评价和研究边坡岩体稳定性的重要方法之一。
随着地质工程的发展,计算机技术的发展和应用,计算边坡岩体稳定性的方法也在不断发展和完善。
本文介绍了边坡岩体稳定性分析的计算方法,以及计算边坡岩体稳定性的重要步骤和要素。
二、边坡岩体稳定性的计算方法1.计算要求计算边坡岩体稳定性的要求是首先进行岩体的力学性质分析,确定岩体的抗剪强度和抗压强度,以及岩体的尺寸、形状、排列结构和构造;随后确定边坡的几何形状参数和水文地质因素,以及重力作用体系的参数;最后,按照边坡分析方法进行计算,确定边坡岩体的稳定系数。
2.计算过程(1)岩体力学性质分析。
首先分析岩体的抗剪强度和抗压强度,其次施加水平和垂直运动,确定岩体的变形特性;(2)边坡几何形状分析。
确定边坡的几何形状参数,包括坡度、坡面宽度、坡面长度等,同时确定水文地质因素,如雨水、渗水、地下水等;(3)重力作用体系分析。
确定边坡岩体的重力作用体系,包括自重、滑移压力、地下水压力、渗水压力等;(4)运用边坡分析方法计算边坡岩体的稳定性。
可以采用等效滑动面法、艾里克斯准则、薛定谔方程等方法,计算边坡岩体的稳定性。
三、边坡岩体稳定性分析的要素1.岩体力学特性岩体的抗剪强度和抗压强度是影响边坡岩体稳定性的主要因素之一。
岩体的抗剪强度可以通过抗拉强度、抗折强度等相关试验来测定,而抗压强度可以通过抗压强度试验、岩石试验等来确定。
2.边坡几何参数边坡几何参数是指边坡的坡度、坡面宽度、坡面长度等参数,这些参数是影响边坡岩体稳定性的重要因素。
一般来说,边坡坡度越陡,边坡稳定性越低;坡面宽度、坡面长度越小,边坡稳定性越低。
3.水文地质条件水文地质条件是指边坡周围的雨水、渗水、地下水等情况,这些条件也是影响边坡岩体稳定性的重要因素。
一般来说,边坡周围有大量雨水、地下水时,边坡稳定性就会变差。
4.重力作用体系重力作用体系是指边坡岩体受到的重力、滑移压力、地下水压力、渗水压力等因素的综合作用,这也是影响边坡岩体稳定性的重要因素。
边坡稳定性分析
![边坡稳定性分析](https://img.taocdn.com/s3/m/db38a57fe418964bcf84b9d528ea81c759f52e5c.png)
边坡稳定性分析
1、边坡稳定性分析之前,应根据岩土工程地质条件对边坡的可能破坏方式及相应破坏方向、破坏范围、影响范围等作出判断。
判断边坡的可能破坏方式时应同时考虑到受岩土体强度控制的破坏和受结构面控制的破坏。
2、边坡抗滑移稳定性计算可采用刚体极限平衡法。
对结构复杂的岩质边坡,可结合采用极射赤平投影法和实体比例投影法;当边坡破坏机制复杂时,可采用数值极限分析法。
3、计算沿结构面滑动的稳定性时,应根据结构面形态采用平面或折线形滑面。
计算土质边坡、极软岩边坡、破碎或极破碎岩质边坡的稳定性时,可采用圆弧形滑面。
4、采用刚体极限平衡法计算边坡抗滑稳定性时,可根据滑面形态按本规范附录A选择具体计算方法。
5、边坡稳定性计算时,对基本烈度为7度及7度以上地区的永久性边坡应进行地震工况下边坡稳定性校核。
6、塌滑区内无重要建(构)筑物的边坡采用刚体极限平衡法和静力数值计算法计算稳定性时,滑体、条块或单元的地震作用可简化为一个作用于滑体、条块或单元重心处、指向坡外(滑动方向)的水平静力,其值应按下列公式计算:
Q e=αw G (5.2.6-1)
Q ei=αw G i (5.2.6-2)
式中:Q e、Q ei——滑体、第i计算条块或单元单位宽度地震力(kN/m);
G、G i——滑体、第i计算条块或单元单位宽度自重[含坡顶建(构)筑物作用](k N/m);
αw——边坡综合水平地震系数,由所在地区地震基本烈度按表5.2.6确定。
表5.2.6 水平地震系数
7、当边坡可能存在多个滑动面时,对各个可能的滑动面均应进行稳定性计算。
岩石边坡稳定分析
![岩石边坡稳定分析](https://img.taocdn.com/s3/m/e61e846deff9aef8941e0691.png)
1.6 不同破坏模式的讨论
由于边坡岩体构造复杂多样,所以岩质边坡的破坏模式有许多种, 在大部分岩石力学及岩石边坡稳定方面的教材中,岩质边坡的简化 破坏形式可以分为:① 平面破坏(Plane Failure);②楔体破坏 (Wedge Failure);③倾倒破坏(Toppling Failure)。
边坡工程—边坡稳定性分析实例
杨松林(岩体稳定分析的广义条分法初步探讨,岩土工 程学报, 1999, 20(1))针对传统竖直条分法和萨尔玛法 应用于岩体边坡的稳定性分析的缺点,提出了适用范围更 广的广义条分法,广义条分法考虑了条块间分界面的应力 变形关系,采用条块间分界面的应力变形本构关系代替传 统的两类条分法对条块分界面上力的大小、方向或作用点 的人为假定,这一做法更加符合岩土工程的实际情况,并 采用优化搜索的方法给出了相对最危险的潜在滑动面及其 稳定系数
边坡工程—边坡稳定性分析实例
楔体滑动(Wedge slides)发 生在边坡被仅仅两个不平行 的不连续表面切割的情况下。 在这些情况下,近似的四边 滑块被两个岩体不连续表面 和两个地面的切平面围成。 倾倒破坏(Toppling)涉及 岩柱或岩块绕某一固定基面 转动。如图3为弯曲式倾倒 和块体式倾倒,另外还有弯 曲块体复合式倾倒。图4出 示了次生倾倒模式
边坡工程—边坡稳定性分析实例
岩质边坡稳定性分析
![岩质边坡稳定性分析](https://img.taocdn.com/s3/m/511d11ab6aec0975f46527d3240c844769eaa0cf.png)
03
边坡稳定性评价方法:采用何种方法进行稳定性评价, 如极限平衡法、数值模拟法等
04
边坡稳定性分析结果:根据评价方法得出的边坡稳定 性等级,以及可能的失稳模式等
05
边坡治理措施:针对边坡稳定性问题,提出相应的治 理措施,如支护加固、排水措施等
06
边坡监测与预警:建立边坡监测系统,实时监测边坡 稳定性,及时发现并预警可能的边坡失稳风险。
04
综合评价方法:结合多种分析方法,对边坡稳定性进行综合评价
地质条件
01
岩石类型:不同岩石的力学性质和抗风化能力不同
02
地质构造:断层、褶皱等地质构造对边坡稳定性产生影响
03
地下水:地下水位变化、地下水渗流对边坡稳定性产生影响
04
气候条件:降雨、温度等气候条件对边坡稳定性产生影响
水文条件
1
地下水位:地下 水位的升降会影 响边坡的稳定性
目录
01. 边坡稳定性分析的重要性 02. 岩质边坡稳定性分析方法 03. 岩质边坡稳定性影响因素 04. 岩质边坡稳定性分析案例
保障工程安全
边坡稳定性分析是工程设计的重要环
01
节,关系到工程的安全性和稳定性。 边坡稳定性分析可以预测边坡的变形
02
和破坏,为工程设计提供依据。 边坡稳定性分析可以指导工程设计和
数值模拟法: 利用计算机 模拟边坡变 形和破坏过 程
概率分析法: 通过概率统 计方法评估 边坡稳定性
模糊数学法: 利用模糊数 学理论对边 坡地质力学分析:分析边坡的地质构造、岩石力学性质等
02
数值模拟分析:利用计算机模拟边坡的变形、破坏过程
03
现场监测分析:通过现场监测获取边坡的变形、应力等数据
岩质边坡稳定性分析
![岩质边坡稳定性分析](https://img.taocdn.com/s3/m/ad0e2ae66e1aff00bed5b9f3f90f76c661374c08.png)
✓ 数值模拟法:利用计算机 模拟边坡的变形和破坏过 程,预测边坡的稳定性
12 34
✓ 模糊数学法:利用模糊数 学的方法,对边坡的稳定 性进行评价和预测
综合分析方法
定性分析:根据经验、知识、现场调查等对 边坡稳定性进行评估
定量分析:利用数学模型、计算机模拟等方 法对边坡稳定性进行定量计算
综合分析:结合定性和定量分析方法,对边 坡稳定性进行全面评估
边坡稳定性得到显著提高,保障
了高速公路的安全运营
某水电站边坡稳定性分析
01
水电站概况:介绍水电站的地理 位置、规模、结构等基本信息
03
边坡稳定性分析方法:介绍采用 的边坡稳定性分析方法,如极限 平衡法、有限元法等
05
边坡治理措施:根据边坡稳定性 分析结果,提出相应的边坡治理 措施,如锚杆加固、排水措施等
监测与预警:通过实时监测边坡变形、应力 等参数,对边坡稳定性进行动态评估和预警
岩质边坡稳定性分析的影响 因素
地质条件
岩石类型:不 同岩石类型的 力学性质和抗 风化能力不同
01
地下水:地下 水的存在和分Leabharlann 布对边坡稳定 性产生影响03
02
地质构造:断层、 褶皱等地质构造 对边坡稳定性产 生影响
04
岩体结构:岩 体的结构特征 对边坡稳定性 产生影响
02
边坡地质条件:分析边坡的地质 条件,如岩石类型、结构、地下 水等
04
边坡稳定性分析结果:展示边坡 稳定性分析的结果,如安全系数、 破坏模式等
06
结论:总结边坡稳定性分析的结 论,如边坡稳定性是否满足要求, 是否需要采取治理措施等
某矿山边坡稳定性分析
矿山概况:地理位置、 开采方式、地质条件 等
《岩体力学》第九章边坡岩体稳定性
![《岩体力学》第九章边坡岩体稳定性](https://img.taocdn.com/s3/m/8da3f6debed5b9f3f80f1c92.png)
第九章边坡岩体稳定性斜坡:倾斜的地面,是天然斜坡和人工边坡的总称。
边坡的分类:自然边坡:天然的山坡和谷坡(地壳隆起或下降引起)按成因分丿人工边坡:人工开挖、改造形成如采矿边坡、铁路公路路堑与路堤边土质边坡坡等岩质边坡按岩性分丿本章主要讨论人工开挖的岩质边坡的稳定性。
岩质边坡稳定性分析方法:1)数学力学分析法(包括块体极限平衡法、弹性力学法和弹塑性力学分析法及有限元法等)2)模型模拟试验法(相似材料模型试验、光弹试验法和离心模型试验)3)原位观测法此外,还有破坏概率法、信息论方法及风险决策法等。
「、稳定性系数稳定性计算*核心内容:安全性系数(安全系数)第一节边坡岩体中的应力分布特征一、应力分布特征假定岩体为连续、均质、各向同性的介质,且不考虑时间效应的情况下(1 )边坡面附近的主应力迹线明显偏转,与坡面趋于平行,二3与坡面趋于正交,而向坡体内逐渐恢复初始应力状态;(2 )坡面附近出现应力集中现象;(3)坡面处的径向应力为零,故坡面岩体仅处于双向应力状态,向坡内逐渐转为三向应力状态;(4)因主应力偏转,坡体内的最大剪应力迹线由直线变为凹向坡面的弧线。
、影响边坡应力分布的因素(1 )天然应力:h f,坡体内拉应力范围加大。
(2)坡形、坡高、坡角及坡底宽度等,对边坡应力分布有一定的影响;坡高f,「、二彳也大;坡角f,拉应力范围f,坡脚剪应力f。
(3)岩体性质及结构特征变形模量E对边坡影响不大,□对边坡应力影响明显。
第二节边坡岩体的变形与破坏一、边坡岩体变形破坏的基本类型1•边坡变形的基本类型根据其形成机理分为两种类型:卸荷回弹和蠕变变形。
2•边坡破坏的基本模型四类,见教材P771平面滑动:单平面滑动,双平面滑动,多平面滑动L2楔形状滑动剪切破坏以滑坡形式「3)圆弧形滑动1(4 )倾倒破坏(以崩塌形成)拉断破坏(以崩塌形式)实际上,就是两种:滑坡和崩塌。
二、影响岩体边坡变形破坏的因素1•岩性:岩体越坚硬,边坡不易破坏,反之,容易破坏(一般情况)。
岩质边坡稳定分析及支护方式
![岩质边坡稳定分析及支护方式](https://img.taocdn.com/s3/m/fa5d349fa76e58fafbb00323.png)
优点:可从根本上解决边坡的稳定性问题,达 到根治的目的。
3)加固 (1)注浆加固 当边坡坡体较破碎、节理裂隙较发育时, 可采用压力注浆这一手段,对边坡坡体进行 加固。灌浆液在压力的作用下,通过钻孔壁 周围切割的节理裂隙向四周渗透,对破碎边 坡岩土体起到胶结作用,形成整体,提高坡 体整体性及稳定性的目的。 优点:注浆加固可对边坡进行深层加固。 (2)锚杆加固 当边坡坡体破碎,或边坡地层软弱时,可 打入一定数量的锚杆,对边坡进行加固。锚 杆加固边坡的机理相当于螺栓的作用。 优点:锚杆加固为一种中浅层加固手段。
(2)岩体结构的影响,表现在节理裂隙的发育程度 及其分布规律、结构面的胶结情况、软弱面和 破碎带的分布与边坡的关系、下伏岩石界面的 形态以及坡向坡角等;
(3)水文地质条件的影响,包括地下水的埋藏条件、 地下水的流动及动态变化等;
(4)地貌的影响,如边坡的高度、坡度和形态等;
(5)风化作用的影响,主要体现为风化作用将减弱岩 石的强度,改变地下水的动态;
崩破塌坏边坡破坏的基本类楔型形体滑动
倾倒破坏
崩塌
边
楔形状滑动
坡
圆弧滑动
多平面滑动
破 滑坡 平面滑动 双平面滑动 坏
类
单平面滑动
型
圆弧形滑动
倾倒破坏
单平面滑动
双平面滑动
多平面滑动
边坡的安全等级
根据边坡破坏后造成损失的严重性、边坡的类型及坡 高等因素将边坡的安全等级划分为三级,如表1.1所示。
三、边坡岩体稳定性分析
后果
四、边坡岩体稳定性计算
影响岩质边坡稳定性的工程地质因素分析
![影响岩质边坡稳定性的工程地质因素分析](https://img.taocdn.com/s3/m/70edb67303768e9951e79b89680203d8ce2f6ab0.png)
影响岩质边坡稳定性的工程地质因素分析本文论述了岩质边坡形成以后涉及其稳定性的各式各样原因,阐明了岩质边坡的变形破坏是各式各樣内在和外在地质原因总结作用的结局,并细述各式各样地质原因对其稳定性的影响。
标签:工程地质分析;岩质边坡;稳定性能;地质因素1 边坡稳定性的影响因素分析1.1 岩体结构类型的影响对于岩质边坡来说,边坡并不是整体的一块,而是由各种各样的结构面和结构体组成不同的边坡岩体结构类型。
常见的结构类型有块状结构、镶嵌结构、碎裂结构、层状结构、层状碎裂结构、散体结构。
块状结构岩体,整体强度较高,在动力作用下的变形特征接近于均质弹性体.受到震动一般不会发生失稳破坏;对于镶嵌结构岩体,地震或其他扰动时可能会造成局部的崩塌和落石,但不会造成大规模的失稳;碎裂结构岩体的地震或其他扰动时反应比较强烈,强烈的地震会导致碎裂结构岩体松动,造成大量的崩塌、落石以及小规模的滑动;层状结构的岩体受层面的控制,在地震或其他扰动作用下可能沿层面产生滑动;而对于散体结构的边坡,在地震或其他扰动作用下,不仅产生大量的崩塌和滑塌,而且有可能导致大规模滑坡和流滑。
土质边坡可以看成散体结构,在地震或其他扰动时将会产生大量的变形、滑塌、滑坡和流滑。
1.2 岩性组合的影响岩性对边坡的影响主要反映为不同岩性的边坡产生滑坡的程度不同。
由粘土、泥岩、页岩、泥灰岩以及它们的变质岩如片岩、板岩、千枚岩组成的岩体,或由上述软岩与一些硬岩互层组成的岩体,或由某些岩性软弱、易风化的岩浆岩(如凝灰岩)组成的岩体具有抗风化性差、风化产物中含有较多的粘性、泥质颗粒,具有很高的亲水性、膨胀性、崩解性等特征。
这些地层的软岩及其风化产物一般抗剪性能差,遇水湿润后即产生表层软化和泥化,形成很薄的粘粒层,抗剪强度极低。
由于岩性、颗粒成分和矿物成分的差异,导致水文地质条件的差异。
细颗粒的泥质、粘土质软层既是吸水层,又是相对的隔水层,在干湿交替的情况下粘土成分的高收缩性,使岩土体中裂隙迅速发生并扩大,各种地表水很容易渗入坡体。
岩质边坡稳定性的影响因素
![岩质边坡稳定性的影响因素](https://img.taocdn.com/s3/m/f2167bc6760bf78a6529647d27284b73f242363e.png)
岩质边坡稳定性的影响因素
岩质边坡稳定性的影响因素包括:
1. 岩层性质:岩石的强度、韧性、岩石结构、裂隙性质等会直接影响边坡的稳定性。
砂岩、泥岩等软弱岩石容易发生滑坡,而石灰岩、花岗岩等坚硬岩石边坡相对较稳定。
2. 边坡坡度:边坡的坡度对稳定性有很大影响。
较大的坡度会增加边坡滑动的倾向,特别是在厚度相对较小的岩层上。
3. 斜坡高度:边坡的高度也会影响稳定性。
较高的边坡容易受到重力和水力的影响,增加了滑动的风险。
此外,边坡的高度还会对岩石坚硬度的变化带来影响。
4. 斜坡的线性形状:边坡的线性形状也是稳定性的重要因素。
边坡的几何形状和岩层的结构会直接影响边坡的稳定性。
当岩层结构与边坡的几何形状相互协调时,边坡稳定性较好。
5. 地下水:地下水对边坡的稳定性也有着重要的影响。
地下水的变化会改变岩石的饱和度和孔隙水压,进而影响边坡的稳定性。
对岩石结构敏感的地下水与岩石接触面上拥有较大水压的地方,可能导致边坡滑移或溃坡。
总而言之,岩质边坡的稳定性受到岩石性质、边坡坡度、边坡高度、边坡形状以
及地下水等多个因素的综合影响。
在工程实践中,需要对这些因素进行综合考虑,以确保边坡的稳定性。
岩质边坡稳定性计算
![岩质边坡稳定性计算](https://img.taocdn.com/s3/m/fbe5b00b32687e21af45b307e87101f69e31fba7.png)
岩质边坡稳定性计算
1计算方法
按《建筑边坡工程技术规范》(GB50330-2013)等有关规程规范,对各优势节理与边坡面采用赤平投影稳定性分析,采用理正岩土计算软件进行计算,根据计算结果,部分结构面与边坡面组合计算是稳定的,对于其他可能产生滑动的结构面再采用三维楔形体稳定性分析,计算出安全系数。
2计算参数的选取
根据岩体结构面特征,结合相关规范,边坡主要地层计算指标如下表9:
边坡地层计算参数表9
注:中风化花岗岩的抗剪强度指标为结构面抗剪强度,其它抗剪强度指标均为直接快剪指标。
3计算结果及评价
根据本次计算结果,按照《建筑边坡工程技术规范》(GB50330-2013)等有关规范规程对边坡稳定性验算,其计算结果详见表10:
边坡稳定性计算结果表10
根据计算结果,现有状态下边坡岩体是整体稳定的。
影响边坡安全的主要因素是边坡有一组优势节理裂隙(48°∠24°)影响边坡的稳定性;边坡危岩受雨水、温度等环境因素以及岩体结构面充填物软化、膨胀等因素影响易发生崩塌滑落。
岩质边坡稳定分析
![岩质边坡稳定分析](https://img.taocdn.com/s3/m/bdb3a4e3844769eae109ed55.png)
Rockslide at Yosemite National Park, California kills one, injures 4
6.岩质边坡①稳尾定纵①性剖①尾尾的面纵纵剖评开剖面面价挖开开挖方后挖后后法破最最大坏大主剪接近度图 定量应应力力计图图算((MMPPaa))
分析方法 定性分析 — 工程地质分析
还可能再次滑动破坏
危害 已滑动破坏过的老滑坡的危害
结构疏松破碎
强度低
老滑坡体 透水性强
稳定性差
据了解,有些县市建新城时,没搞清楚地质状况就先行建设,结果把整个新
城建在滑坡体上,如巴东就是一个典型,该城从1979年滑至1坡99体5年三次迁城选址,
二建新城,浪费巨大。
边界线
地质今在年三2峡月考25察日发,现记,者只从要国地土势资平源坦部些三的峡地地方质,灾多害半防有治居指民挥和部城获镇悉,,而三这峡些库平区地 十正之 在八建九设是中古的滑巫坡山,新如城秭(离归旧老城县数城十、里新)一滩处镇2、00云0万阳立老方县米城的、滑云坡安体镇,等正等以。每在天这1些毫 古米左滑右坡的上速,人度滑们动繁衍。生26日息,,耕记种者收赶获到。巫古山代新三县峡城人,口在少暮,雨没路有上大看规到模滑的坡开已挖拉和裂高水 楼泥大路厦面的,建一设条,条所裂以缝虽触然目是惊建心城,在有许的多长滑达坡10体米上。,滑人坡与体自位然于倒新能城上中千心年区相,安坡无度事28。 至30度,影响范围包括县残联、防疫站、法院、公安局、港务局等十多家单位及
整理ppt
● 坡高越高,坡内拉应力越高
● 坡角越大,拉应力范围越大,切向应力值越高
坡形 ● 基坑底宽 W<0.8H 时坡脚处τmax随底宽的缩小而急剧增大
影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作用于AD上的静水压力U为
H Z 1 w w V gZ w w 2 s in
边坡稳定性系数为
( G cos U V si n ) tg C j jAD G si n V cos
3、有水压力作用与地震作用
水平地震作用 FEK=1G
边坡的稳定性系数
(一)、几何边界条件分析
几何边界条件分析的内容是查清岩体中的各类结 构面及其组合关系,确定出可能的滑移面、切割 面。 几何边界条件分析的目的是确定边坡中可能滑动 岩体的位置、规模及形态,定性地判断边坡岩体 的破坏类型及主滑方向。 几何边界条件的分析可通过赤平投影、实体比例 投影等图解法或三角几何分析法进行。
பைடு நூலகம்
(二)、受力条件分析
在工程使用期间,可能滑动岩体或其边界面上承 受的力的类型及大小、方向和合力的作用点统称 为受力条件。 边坡岩体上承受的力常见有:岩体重力、静水压 力、动水压力、建筑物作用力及震动力等等。 1.地震作用 水平地震作用:FEK=1G
2.水压力:包括渗透静水压力和渗透动水压力。 静水压力——水对岩体的静压力,数值上等于岩体受到 的浮力。 动水压力——与水力梯度有关,数值上等于岩体受到的 渗流阻力。
在滑动过程中,滑动体除沿滑动面滑动外,被结构 面分割开的块体之间还要产生相互错动。 采用分块极限平衡法和不平衡推力传递法进行稳定 性计算。
AB面 BC面
S1
S2
C N1tg 1 1 AB
C N 2 2BC 2tg
BD面
S
C3 BDQtg 3
W s in [ C BD cos ) C ( AB W tg cos ] tg C BD s in ) Q ( tg tg ) s in( ) ( tg tg ) cos ) (
K 边坡稳定 ; K 边坡不稳 s s
四、 边坡岩体稳定性计算
(一)、单平面滑动
1、仅有重力作用时 滑动面上的抗滑力 Fs=Gcosβtgφj+CjL
Fr=Gsinβ 稳定性系数
G cos tg C F j jL s F G sin r
tg 2 C n j jsi tg gH si n si n( )
U g V w
F gV J r w
(三)、确定计算参数
试验数据
极限状态下的反算数据
经验数据
从偏安全的角度起见,一般选用的计算参数,应 接近于残余强度。研究表明:残余强度与峰值强 度的比值,大多变化在0.6~0.9之间,因此,在没有 获得残余强度的条件下,建议摩擦系数计算值在 峰值摩擦系数的60%~90%之间选取,内聚力计算 值在峰值内聚力的10%~30%之间选取。
(四)、楔形体滑动
楔形体滑动的滑 动面由两个倾向 相反、且其交线 倾向与坡面倾向 相同、倾角小于 边坡角的软弱结 构面组成。
稳定性系数计算的 基本思路 首先将滑体自重 G 分解为垂直交线 BD 的分量 N 和平 行交线的分量 ( 即滑动力 Gsinβ) ,然后将 N 投影到两 个滑动面的法线方向,求得作用于滑动面上的法向 力N1和N2,最后求得抗滑力及稳定性系数。 可能滑动体的滑动力为Gsinβ,垂直交线的分量为N = Gcosβ 。将 Gcosβ 投影到△ ABD 和△ BCD 面的法线 方向上,得法向力N1、N2
(一)、应力分布特征
在岩体中进行开挖,形成人工边坡后,由 于开挖卸荷,在近边坡面一定范围内的岩 体中,发生应力重分布作用,使边坡岩体 处于重分布应力状态。
边坡岩体为适应重分布应力状态,将发生 变形和破坏。因此,研究边坡岩体重分布 应力特征是进行稳定性分析的基础。
边坡面附近的主应力迹线发生偏转。最大主应 力与坡面近于平行,最小主应力与坡面近于正 交,向坡体内逐渐恢复初始应力状态。 坡面上径向应力为零,为双向应力状态,向坡 内逐渐转为三向应力状态。
岩体边坡的变形与破坏是边坡发展演化过程 中两个不同的阶段,变形属量变阶段,而破 坏则是质变阶段,它们形成一个累进性变形 破坏过程。
(一)、边坡岩体变形的基本类型 (二)、边坡破坏的基本类型 (三)、影响岩体边坡变形破坏的因素
(一)、边坡岩体变形的基本类型
1、卸荷回弹 •在成坡过程中,由于 荷重不断减少,边坡岩 体在减荷方向(临空面) 产生伸长变形,即卸荷 回弹。 •天然应力越大,向临 空方向的回弹变形量也 越大。往往会伴随产生 一系列的张性结构面。
2 W sin [ C BD cos( ) C BC W tg cos ] tg C BD sin ) 3 2 2 2 2 2 2 3 2 Q 2 22 ( tg tg ) sin( ) ( tg tg ) cos( ) 2 3 2 3 2 2
块体Ⅰ
块体Ⅱ 块体Ⅱ
块体Ⅱ
(三)、多平面滑动
边坡岩体的多平面滑动, 分为一般多平面滑动和 阶梯状滑动两个亚类。 阶梯状滑动,破坏面由多个实际滑动面和受拉面 组成,呈阶梯状,坡稳定性的计算思路与单平面 滑动相同,即将滑动体的自重 (仅考虑重力作用时) 分解为垂直滑动面的分量和平行滑动面的分量。
' ' tg [ 2 C cos( ) 2 sin( )] sin j j t ' tg gH sin sin( )
(四)、稳定性系数的计算和稳定性评价
稳定性系数=可供利用的抗滑力/滑动 力 安全系数:根据各种因素规定的允许 的稳定性系数。大小是根据各种影响 因素人为规定的,必须大于1。安全 系数一般=1.05~1.5
(五)、确定安全系数,进行稳定性评价
影响因素: ①岩体工程地质特征研究的详细程度; ②各种计算参数误差的大小; ③计算稳定性系数时,是否考虑了全部作用力; ④计算过程中各种中间结果的误差大小; ⑤工程的设计年限、重要性以及边坡破坏后的后果。
1.滑动体为刚体的情况
ABCD为可能滑动体,根据滑 动面产状分为Ⅰ、Ⅱ两个块体。 FⅠ为块体Ⅱ对块体Ⅰ的作用力, FⅡ为块体Ⅰ对块体Ⅱ的作用力, FⅠ和FⅡ大小相等,方向相反, 其作用方向的倾角为θ。 滑动面AB以下岩体对块体Ⅰ的 反力R1(摩阻力) 与AB面法线的 夹角为φ1。
2.滑动体内存在结构面的情况
(二)、边坡破坏的基本类型
边 坡 破 坏 的 基 本 类 型
崩塌 平面滑动 滑坡 楔形状滑动 圆弧形滑动 多平面滑动 双平面滑动
单平面滑动
倾倒破坏
崩塌:斜坡岩土体被结构面分割的块体,突然脱离 母体以垂直运动为主、翻滚跌跃而下的现象与过程 滑坡:斜坡岩土体沿着贯通的剪切破坏面(带), 产生以水平运动为主的现象,称为滑坡。 倾倒破坏:由陡倾或直立板状岩体组成的斜坡,当 岩层走向与坡面走向近平行时,在自重应力的长期 作用下,由前缘开始向临空方向弯曲、折裂,并逐 渐向坡内发展的现象称为倾倒破坏(弯曲倾倒)。
第三节 岩质边坡稳定性分析
•一、岩质边坡应力分布特征 •二、岩质边坡的变形与破坏 •三、岩质边坡稳定性分析步骤 •四、岩质边坡稳定性计算
一、 边坡岩体中的应力分布特征
斜坡(slope)统指地表一切具有侧向临空面的地质 体,包括天然斜坡和人工边坡。 天然斜坡(简称斜坡)是指自然地质作用形成未经 人工改造的斜坡。 人工边坡(简称边坡)是指经人工开挖或改造形成 的斜坡。 研究目的:研究边坡变形破坏的机理(包括应力分 布及变形破坏特征)与稳定性,为边坡预测预报及 整治提供岩体力学依据。其中稳定性计算是岩体 边坡稳定性分析的核心。
坡面附近产生应力集中带。在坡脚附近,最 大剪应力增高,最易发生剪切破坏。在坡肩 附近,常形成拉应力带。边坡愈陡,则此带 范围愈大,因此,坡肩附近最易拉裂破坏。 最大剪应力迹线为凹向坡面的弧线。
二、影响边坡应力分布的因素
(1)天然应力 水平天然应力使坡体 应力重分布作用加剧。 (2)坡形、坡高、坡角及坡底宽度 坡高不改变应力等值线的形状, 但改变主应力的大小。 坡角影响边坡岩体应力分布图像。 坡底宽度对坡脚岩体应力有较大 的影响。 坡面形状对重分布应力也有明显 的影响。
块体极限平衡法步骤
可能滑动岩体几何边界条件的分析 受力条件分析 确定计算参数 计算稳定性系数 确定安全系数,进行稳定性评价
(一)、几何边界条件分析
几何边界条件是指构成可能滑动岩体的各种边界 面及其组合关系,包括滑动面、切割面和临空面 三种。 滑动面是指起滑动(即失稳岩体沿其滑动)作用的 面,包括潜在破坏面。 切割面是指起切割岩体作用的面,由于失稳岩体 不沿该面滑动,因而不起抗滑作用,如平面滑动 的侧向切割面。 临空面指临空的自由面,它的存在为滑动岩体提 供活动空间,临空面常由地面或开挖面组成。
(三)、影响岩体边坡变形破坏的因素
5、地形地貌 直接影响边坡内的应力分布特征, 进而影响边坡的变形破坏形式及边坡的稳定性。 6、地震 产生地震惯性力 7、天然应力 8、人为因素
三、 边坡岩体稳定性分析的步骤
定性分析是在工程地质勘察工作的基础上,对边坡 岩体变形破坏的可能性及破坏形式进行初步判断。 定量分析是在定性分析的基础上,应用一定的计算 方法对边坡岩体进行稳定性计算及定量评价。
滑动体极限高度Hcr为
H cr
tg
g [sin( ) sin( j)]
j
2 C cos j sin j
忽略滑动面上内聚力(Cj=0)时
tg
∴当Cj=0,φj<β时,η<1,Hcr=0
2、有水压力作用
作用于CD上的静水压力V
V0 .5
2 gZ w w
(3)岩体性质及结构特征 岩体变形模量对边坡应力影响不大,泊松比对边坡 应力影响较大。这是由于泊松比的变化,可以使水 平自重应力发生改变。 (4)结构面 结构面的存在使坡体中应力发生不连续分布,并在 结构面周边或端点形成应力集中带或阻滞应力的传 递,这种情况在坚硬岩体边坡中尤为明显。