2021届高三数学(理科)一轮复习通关检测卷全国卷(一)(解析版)
2021届高三数学(文理通用)一轮复习题型专题训练:利用导数研究函数的极值(一)(含答案)
《利用导数研究函数的极值》(一)考查内容:主要涉及求已知函数的极值一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数334y x x =-+有( ) A .极大值6,极小值2 B .极大值2,极小值6 C .极小值-1,极大值2D .极小值2,极大值82.函数()x f x xe -=在[0,4]x ∈上的极大值为( )A .1eB .0C .44e D .22e 3.已知函数()2()ln xf x ef e x e'=-,则()f x 的极大值点为( ) A .1eB .1C .eD .2e4.函数sin cos y x x x =+的一个极小值点为( ) A .2x π=-B .2x π=C .x π=D .32x π=5.函数331y x x =-+在[]3,3-的极大值是( ) A .19B .3C .-1D .-176.若2x =-是函数()321213f x x ax x =--+的一个极值点,则函数()f x 的极小值为( ) A .113-B .16-C .16D .1737.若函数3()3f x x x m =-+的极小值为-1,则函数()f x 的极大值为( )A .3B .-1C .13 D .2 8.正项等比数列{}n a 中的14031,a a 是函数()3214633f x x x x =-+-的极值点,则2061a =( )A .1B .2CD .1-9.若函数3()()3f x x a x b =--+的极大值为M ,极小值为N ,则M N -( ) A .与a 有关,且与少有关B .与a 无关,且与b 有关C .与a 无关,且与b 无关D .与a 有关,且与b 无关10.已知函数[]21()(1)(2)(1)3ln 2f x f x f f x x '''=-+--,则()f x () A .只有极大值B .只有极小值C .既有极大值也有极小值D .既无极大值也无极小值11.已知()ln (0)af x x a x=+≠,则 A .当0a <时,()f x 存在极小值()f a B .当0a <时,()f x 存在极大值()f a C .当0a >时,()f x 存在极小值()f aD .当0a >时,()f x 存在极大值()f a12.已知函数()32247f x x x x =---,其导函数为()f x ',则以下4个命题: ①()f x 的单调减区间是2,23⎛⎫-⎪⎝⎭;②()f x 的极小值是-15;③()f x 有且只有一个零点;④当2a >时,对任意的2x >x a ≠,恒有()()()()f x f a f a x a '>+-. 其中真命题的个数为( ) A .1 B .2 C .3 D .4二.填空题 13.函数321()313f x x x x =+--的极小值是__________ 14.已知函数()()21ln f x f x x =-',则()f x 的极大值为________. 15.若2x =-是函数()()211x f x x ax e-=+-的极值点,则()f x 的极大值为___16.已知函数()()()224f x x xax b =-++的图象关于1x =对称,记函数()f x 的所有极值点之和与积分别为m ,n ,则()f m n +=______. 三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知函数()ln f x ax bx x =+,()f x 在x e =处的切线方程是0x y e +-=,其中e 是自然对数的底数. (1)求实数a ,b 的值; (2)求函数()f x 的极值.18.已知函数322()3(1)1f x kx k x k =+--+在0,4x x ==处取得极值. (1)求常数k 的值;(2)求函数()f x 的单调区间与极值.19.已知函数21()22f x x mx lnx =--,m R ∈. (1)若1m =,求()f x 的单调递增区间和单调递减区间; (2)求()f x 的极值点.20.已知函数()()ln f x ax x a R =-∈. (1)讨论()f x 的极值;(2)若()f x 有两个零点1x ,2x ,证明:12112ln ln x x +>.21.已知函数()2ln f x x a x =--,R a ∈. (1)求函数()f x 的极值;(2)当2a =-时,若直线l :2y kx =-与曲线()y f x =没有公共点,求k 的取值范围.22.已知2a >,函数()1ln xf x e x ax e=+-. (1)判断()f x 极值点的个数;(2)若()1212x x x x <,是函数()f x 的两个极值点,证明:()()212ln f x f x a -<.《利用导数研究函数的极值》(一)解析1.【解析】令2330y x '=-=,解得1x =±,则,y y '随x 的变化如下表所以,当1x =-时,函数有极大值为6;当1x =时,函数有极小值为2.故选:A. 2.【解析】由()xf x xe-=可得1()x xf x e-'=,当(]0,1x ∈时()0f x '>,()f x 单调递增, 当(]1,4x ∈时()0f x '<,()f x 单调递减, 所以函数()xf x xe-=在[0,4]x ∈上的极大值为()11f e=,故选:A 3.【解析】因为()()2ln xf x ef e x e '=-,所以()()21ef e f x x e'-'=, 所以()()()2112ef e f e f e ee e=-'=-'', 因此()1f e e '=,所以()21f x x e='-,由()0f x '>得:02x e <<;由()0f x '<得:2x e >;所以函数()f x 在()0,2e 上单调递增,在()2,e +∞上单调递减,因此()f x 的极大值点2x e =.故选D4.【解析】因为sin cos y x x x =+,所以sin cos sin cos y x x x x x x '=+-=,A 选项,当2x π=-时,0y '=,在2x π=-的左侧附近,0y '>;在2x π=-的右侧附近,0y '<,所以2x π=-是极大值点,故A 错;B 选项,当2x π=时,0y '=,在2x π=的左侧附近,0y '>;在2x π=的右侧附近,0y '<,所以2x π=是极大值点,故B 错;C 选项,当x π=时,y π'=-,所以x π=不是极值点;D 选项,当32x π=时,0y '=,在32x π=的左侧附近,0y '<;在32x π=的右侧附近,0y '>,所以32x π=是极小值点,故D 正确.故选:D. 5.【解析】由于()()2333+11y x x x =-=-,由'0y =得出1x =±.当()1,1x ∈-时, '0y <,该函数在()11-,单调递减,当(),1x ∈-∞-时, '>0y ,该函数在(),1x ∈-∞-单调递增, 当()1,+x ∈∞时, '>0y ,该函数在()1,+x ∈∞单调递增. 则该函数在1x =-处取得极大值3,故选:B. 6.【解析】∵()321213f x x ax x =--+,∴()222x x ax f =--',由题意得()2240f a '-=+=,解得12a =-,∴()32112132x x f x x =+-+,∴()()()2221f x x x x x '=+-=+-.当2x <-或1x >时,()0f x '>;当21x -<<时,()0f x '<.所以,函数()y f x =的单调递增区间为(),2-∞-和()1,+∞,单调递减区间为()2,1-,当1x =时,函数()y f x =取得极小值()111121326f =+-+=-, 故选:B .7.【解析】2'()333(1)(1)f x x x x =-=+-,显然当11x x <->或时,'()0f x >,当11x -<<时,'()0f x <,∴1-是极大值点,1是极小值点,于是有(1)131f m =-+=-,1m =,从而(1)1313f -=-++=,即极大值为3.故选A .8.【解析】由()3214633f x x x x =-+-,则()22860f x x x =+'-=,因为14031,a a 是函数()3214633f x x x x =-+-的极值点,所以140316a a ⋅=,又0n a >,所以2016a ==2061=1,故选A .9.【解析】32()()3()3()301f x x a x b f x x a x a '=--+∴=--=∴=±当1x a <-时()0f x '>;当11a x a -<<+时()0f x '<;当1x a >+时()0f x '>;因此当1x a =-时()f x 取极大值;当1x a =+时()f x 取极小值; (1)(1)4M N f a f a ∴-=--+=,故选:C10.【解析】3()(1)(2)(1)f x f x f f x''''=-+--,∴(1)(1)(2)(1)3f f f f ''''=-+--且3(2)2(1)(2)(1)2f f f f ''''=-+--,解得1(1)2'=-f ,3(2)2f '=,246()02x x f x x+-'==,2x =-±0x >,∴()f x 在2x =-B . 11.【解析】f ′(x )221a x a x x x-=-=, a >0时,令f ′(x )>0,解得:x >a , 令f ′(x )<0,解得:0<x <a ,故f (x )在(0,a )递减,在(a ,+∞)递增, 故f (x )极小值=f (a ),无极大值,a ≤0时,f ′(x )>0,f (x )在(0,+∞)递增,无极值,故选C . 12.【解析】()32247f x x x x =---,其导函数为()2344f x x x '=--.令()0f x '=,解得23x =-,2x =.当()0f x '>时,即2x 23x -或时,函数单调递增,当()0f x '<时,即223x -<<时,函数单调递减,故当2x =时,函数有极小值,极小值为()215f -=-,当23x =-时,函数有极大值,极大值为203f ⎛⎫< ⎪⎝⎭,故函数只有一个零点,①②③正确;∵2a >,2x >且x a ≠, ∴令()()()()()g x f x f a f a x a =-'--,则()()22344344g x x x a a =-----',记()()g x h x '=,因为当2x >时,()640h x x -'=>,则()h x 在(2,+∞)单调递增,又因为()()0g a h a '==,∴当2x a <<时,()0g x '<,当x a >时,()0g x '>,∴以()g x ⋅在(2,a )递减,在(),a +∞递增,又x a ≠,∴()()0g x g a >=成立,故④正确.故选D. 13.【解析】函数321()313f x x x x =+--,则()223f x x x '=+-, 令()0f x '=,由2230x x +-=得3x =-或1x =,如下表所示:函数()32313f x x x x =+--在(),3-∞-上为增函数,在()3,1-上为减函数,在()1,+∞上为增函数,故()f x 在1x =处有极小值,极小值为()318f =-.14.【解析】2(1)2(1)()1(1)1,(1)11f f f x f f x '''=-'-='∴= , 因此()2ln f x x x =-,2()102f x x x-='=∴=时取极大值2ln22-15.【解析】()()211e x f x x ax -=+-,()()2121x f x x a x a e -'⎡⎤∴=+++-⎣⎦, 由题意可得()()3210f a e-'-=-+=,解得1a =-.()()211e x f x x x -∴=--,()()212x f x x x e -'=+-,令()0f x '=,得2x =-或1x =. 列表如下:所以,函数()y f x =的单调递增区间为(),2-∞-和()1,+∞,单调递减区间为()2,1-,所以,函数()y f x =的极大值为()352f e -=.故答案为:35e. 16.【解析】因为()f x 的图象关于1x =对称,所以()()()()0224f f f f ⎧=⎪⎨-=⎪⎩,即()()()0401641640b a b ⎧-=⎪⎨-++=⎪⎩,解得40a b =-⎧⎨=⎩,所以()()()2244f x x x x =--, 此时()222[(2)4)[])4(2)(2f x x x x -----=-22(4)(4)(),()x x x f x f x =--=∴关于直线1x =对称,()2232'2(4)(4)(24)412816f x x x x x x x x x =-+--=--+()()32224[()2(2)]4124x x x x x x x =--+-=---.令()'0f x =,得1x =或2240x x --=, 从而123m =+=,()144n =⨯-=-,故()()13515f m n f +=-=-⨯=-.故答案为:15-.17.【解析】(1)由()ln f x ax bx x =+,得()()1ln f x a b x '=++, 由()f x 在x e =处的切线方程是0x y e +-=,知切点为(),0e ,斜率为1-,所以()()()021f e a b e f e a b ⎧=+=⎪⎨=+=-'⎪⎩,解之得11a b =⎧⎨=-⎩.(2)()ln f x x x x =-,()ln f x x '=-,令()0f x '=,得1x =,由表可知,当1x =时,()f x 取得极大值1;()f x 无极小值.18.【解析】(1)由题意2()36(1)f x kx k x '=+-,又函数在0,4x x ==处取得极值,所以0,4x x ==是方程()0f x '=的两个解,∴346(1)0k k ⨯+-=中,解得13k =;(2)由(1)3218()239f x x x =-+,2()4f x x x '=-,0x <或4x >时,()0f x '>,()f x 的增区间为(,0)-∞和(4,)+∞,04x <<时,()0f x '<,()f x 的减区间是(0,4),所以0x =时,()f x 极大值(0)f ==89,4x =时,()f x 极小值88(4)9f ==-. 综上,增区间是(,0)-∞和(4,)+∞,减区间是(0,4),极大值是89,极小值是889-.19.【解析】(1)1m =,21()22f x x x lnx ∴=--,(0,)x ∈+∞,222()1x x f x x x x--∴'=--=,令()0f x '>,解得:2x >或1x <-, 令()0f x '<,解得:12x -<<,而(0,)x ∈+∞, 故()f x 在(0,2)递减,在(2,)+∞递增; (2)21()22f x x mx lnx =--,(0,)x ∈+∞, 222()x mx f x x m x x--∴'=--=,令()0f x '=,解得:1x =2x =,10x =<,20x =>,x ∴∈时,()0f x '<,x ∈,)+∞时,()0f x '>,故()f x 在(0,2m 递减,在(2m +)+∞递增;故()f x 有极小值点,极小值点是2m x +=.20.【解析】(1)()()110ax f x a x x x-'=-=>, ①当0a ≤时,由于0x >,故10ax ,()0f x '<,所以()f x 在()0,∞+内单调递减,无极值; ②当0a >时,由()0f x '=,得1x a=, 在10,a ⎛⎫ ⎪⎝⎭上,()0f x '<,在1,a ⎛⎫+∞⎪⎝⎭上,()0f x '>, 所以函数()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞⎪⎝⎭, 函数()f x 有极小值11ln f a a ⎛⎫=+⎪⎝⎭,无极大值, 综上:当0a ≤时,()f x 无极值;当0a >时,()f x 有极小值1ln a +,无极大值.2021届高三一轮复习题型专题训练(2)函数()f x 有两个零点1x ,2x ,不妨设12x x <, 由(1)得,0a >且111ln 0,0f a a a e ⎛⎫=+<∴<<⎪⎝⎭, 则11ln 0x ax -=,22ln 0x ax -=,()2121ln ln x x a x x -=-,即2121ln ln x x a x x -=-, 要证:121112,0ln ln a x x e +><<,需证:12112a x x +>, 只需证:12122x x a x x +>,只需证:12211221ln ln 2x x x x x x x x +->-,只需证:22212121ln 2x x x x x x ->,只需证:2211121ln 2x x x x x x ⎛⎫<- ⎪⎝⎭, 令211x t x =>,即证11ln 2t t t ⎛⎫<- ⎪⎝⎭,设11()ln 2t t t t ϕ⎛⎫=-- ⎪⎝⎭, 则2221()02t t t tϕ--'=<,即函数()t ϕ在()1,+∞单调递减, 则()()10t ϕϕ<=,即得12112ln ln x x +>. 21.【解析】(1)()2ln f x x a x =--定义域为()0,∞+,()1a x a f x x x'-=-=. ①当0a ≤时,()0f x '>,()f x 为()0,∞+上的增函数,所以函数()f x 无极值. ②当0a >时,令()0f x '=,解得x a =.当()0,x a ∈,()0f x '<,()f x 在()0,a 上单调递减; 当(),x a ∈+∞,()0f x '>,()f x 在(),a +∞上单调递增.故()f x 在x a =处取得极小值,且极小值为()2ln f a a a a =--,无极大值. 综上,当0a ≤时,函数()f x 无极值;当0a >时,()f x 有极小值为2ln a a a --,无极大值. (2)当2a =-时,()22ln f x x x =-+,直线l :2y kx =-与曲线()y f x =没有公共点,等价于关于x 的方程222ln kx x x -=-+2021届高三一轮复习题型专题训练在()0,∞+上没有实数解,即关于x 的方程()12ln k x x -=在()0,∞+上没有实数解, 即2ln 1xk x-=在()0,∞+上没有实数解. 令()2ln xg x x =,则有()()221ln x g x x-'=.令()0g x '=,解得e x =, 当x 变化时,()g x ',()g x 的变化情况如下表:且当0x →时,()g x →-∞;e x =时,()g x 的最大值为2e;当x →+∞时,()0g x →,从而()g x 的取值范围为2,e ⎛⎤-∞ ⎥⎝⎦.所以当()21,e k ⎛⎫-∈+∞⎪⎝⎭时,方程()12ln k x x -=无实数解, 解得k 的取值范围是21,e ⎛⎫++∞ ⎪⎝⎭. 22.【解析】(1)由题意得()11x f x e a e x'=+-,0x >, 令()()11x g x f x e a e x'==+-,0x >, 则()211x g x e e x'=-在()0,∞+上递增,且()10g '=, 当()0,1x ∈时,()0g x '<,()g x 递减;当()1,x ∈+∞,()0g x '>,()g x 递增,∴()()min 120g x g a ==-<∵1110ag ea -⎛⎫=> ⎪⎝⎭,()120g a =-<,∴11,1x a ⎛⎫∃∈ ⎪⎝⎭,()10g x =. 当()10,x x ∈时,()()0g x f x '=>,()f x 递增; 当()1,1x x ∈时,()()0g x f x ='<,()f x 递减,2021届高三一轮复习题型专题训练 ∴1x x =是()f x 的极大值点 ∵()11ln 01ln g a a+=>+,()120g a =-<,∴()21,1ln x a ∃∈+,()20g x =.当()21,x x ∈时,()()0g x f x ='<,()f x 递减; 当()2,x x ∈+∞时,()()0g x f x '=>,()f x 递增,∴2x x =是()f x 的极小值点.∴()f x 在()0,∞+上有两个极值点 (2)证明:()1212x x x x <,是函数()f x 的两个极值点. 由(1)得12111ln x x a a<<<<+,且()()120g x g x ==, 即()()1212121111x x g x e a g x e a e x e x =+-==+-,所以()2121121x x x x e e e x x --=. ∴210x x ->,11a x <,()2111ln x a a x <<+, 由121111ln ,x x a a <<<<+,则121x x a <,即121a x x <,所以1210a x x -< ∴()()()()()()2122212121112111ln ln ln 1ln x x x x f x f x e e a x x x x a a a e x x x x ⎛⎫-=-+--=--+<+⎡⎤ ⎪⎣⎦⎝⎭设()()1ln 2a a a a ϕ=+->,则()110a aϕ'=-<, ∴()a ϕ在2a >时单调递减,则()()2ln 210a ϕϕ<=-<∴1ln a a +<,则()21ln a a a +<.∴()()221ln 2ln f x f x a a -<=。
2021年全国乙卷理科数学试题及答案
绝密★启用前2021年全国乙卷理科数学试卷时间:120分钟满分:150分命卷人:审核人:一、选择题((每小题5分,共60分))1. 设,则( )A. B.C. D.2. 已知集合,,则( )A. B.C. D.3. 已知命题﹐;命题,则下列命题中为真命题的是( )A. B.C. D.4. 设函数,则下列函数中为奇函数的是( )A. B.C. D.5. 在正方体中,为的中点,则直线与所成的角为( )A. B.C. D.6. 将名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶个项目进行培训,每名志愿者只分配到个项目,每个项目至少分配名志愿者,则不同的分配方案共有( )A. 种B. 种C. 种D. 种7. 把函数图像上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数的图像,则( )A. B.C. D.8. 在区间与中各随机取个数,则两数之和大于的概率为( )A. B.C. D.9. 魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点在水平线上,和是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”.与的差称为“表目距的差”,则海岛的高( )A.B.C.D.10. 设,若为函数的极大值点,则A. B.C. D.11. 设是椭圆:的上顶点,若上的任意一点都满足,则的离心率的取值范围是( )A. B.C. D.12. 设,,,则( )A. B.C. D.二、填空题((每小题5分,共20分))13. 已知双曲线:的一条渐近线为,则的焦距为__________.14. 已知向量,,若,则__________.15. 记的内角,,的对边分别为,,,面积为,,,则__________.16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为__________(写出符合要求的一组答案即可).三、解答题((每小题12分,共60分))17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为和, 样本方差分别记为和. (1)求,,,: (2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高 ( 如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高 , 否则不认为有显著提高 ) 。
2021年全国高考理科数学(全国一卷)试题及答案
2021年全国普通高等学校招生全国统一考试〔全国一卷〕理科数学一、选择题:〔此题有12小题,每题5分,共60分。
〕 1、设z=,那么∣z ∣=〔 〕B. C.1 D.2、集合A={x|x 2-x-2>0},那么A =〔 〕A 、{x|-1<x<2}B 、{x|-1≤x ≤2}C 、{x|x<-1}∪{x|x>2}D 、{x|x ≤-1}∪{x|x ≥2}3、某地区经过一年的新农村建立,农村的经济收入增加了一倍,实现翻番,为更好地理解该地区农村的经济收入变化情况,统计了该地区新农村建立前后农村的经济收入构成比例,得到如下饼图:那么下面结论中不正确的选项是〔 〕A. 新农村建立后,种植收入减少B. 新农村建立后,其他收入增加了一倍以上 建立前经济收入构成比例建立后经济收入构成比例D.新农村建立后,养殖收入与第三产业收入的总和超过了经济收入的一半4、记Sn 为等差数列{an}的前n项和,假设3S3= S2+ S4,a1=2,那么a5=〔〕A、-12B、-10C、10D、125、设函数f〔x〕=x³+〔a-1〕x²+ax .假设f〔x〕为奇函数,那么曲线y= f〔x〕在点〔0,0〕处的切线方程为〔〕A.y= -2xB.y= -xC.y=2xD.y=x6、在∆ABC中,AD为BC边上的中线,E为AD的中点,那么=〔〕A. -B. -C. +D. +7、某圆柱的高为2,底面周长为16,其三视图如右图。
圆柱外表上的点M在正视图上的对应点为A,圆柱外表上的点N在左视图上的对应点为B,那么在此圆柱侧面上,从M到N的途径中,最短途径的长度为〔〕A. 2B. 2C. 3D. 28.设抛物线C:y²=4x的焦点为F,过点〔-2,0〕且斜率为的直线与C交于M,N两点,那么·=( )9.函数f〔x〕= g〔x〕=f〔x〕+x+a,假设g〔x〕存在2个零点,那么a的取值范围是( )A. [-1,0〕B. [0,+∞〕C. [-1,+∞〕D. [1,+∞〕10.下列图来自古希腊数学家希波克拉底所研究的几何图形。
2021届高三数学(文理通用)一轮复习题型专题训练:函数的值域(一)(含解析)
《函数的值域》(一)主要考查内容:主要涉及简单函数求值域问题一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.函数[]22,0,3y x x x =-∈的值域为( ) A .[]0,3 B .[]1,3C .[]1,0-D .[]1,3-2.函数()f x =的值域是( )A .(,2]-∞B .(0,)+∞C .[2,)+∞D.3.函数y = )A .RB .[0,)+∞C .3(,]2-∞D .30,2⎡⎤⎢⎥⎣⎦4.函数()11(1)f x x x =--的值域为( )A .4(0,]5B .5(0,]4C .3(0,]4D .4(0,]35.函数13y = )A .(],3-∞B .(]0,1C .(]0,3D .(]1,3 6.函数y 121x =-的值域是( ) A .(),1-∞ B .()(),00,-∞⋃+∞ C .()1,-+∞D .()(),10,-∞-⋃+∞7.函数y = ) A .[0,)+∞ B .[0,4] C .[0,4) D .(0,4)8.函数()26512x x f x -+⎛⎫= ⎪⎝⎭的值域为( )A .(]0,16B .[)16,+∞ C .10,16⎛⎤⎥⎝⎦D .1,16⎡⎫+∞⎪⎢⎣⎭9.函数y x =的值域为( ).A .2⎡⎤-⎣⎦B .[]0,4C .0,2⎡+⎣D .2⎡-+⎣10.函数y x = ) A .(-∞,1] B .(-∞,-1]C .RD .[1,+∞11.函数()3452xf x x-+=-的值域是( )A .()(),22,-∞+∞B .()(),22,-∞--+∞C .55,,22⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .R12.函数y =的值域为( )A .[B .C .(-∞D .[)+∞二.填空题13.函数2y x =+的值域为__.14.函数y x =的值域是___________________.15.求函数21x y x +=-的值域__________. 16.当0x <时,函数2321xy x x =++的值域是_________.三.解答题(解答应写出文字说明、证明过程或演算步骤) 17.求函数3254x y x+=-的定义域与值域.18.求函数2y x =+19.求下列函数的值域:(1)2224y x x =+-;(2)2223x x y x ++=;(3)234x x y x -+=; (4)23,[2,4]21x y x x =∈-;(5)211x y x x +=++;(6)22211x x y x x --=++.20.已知函数243()3axx f x -+=.(1)当1a =时,求函数()f x 的值域; (2)若()f x 有最大值81,求实数a 的值.21.已知()1425x x f x -=-+,[]0,2x ∈.(1)求()f x 的值域;(2)若()227f x m am <-+对任意0,2m都成立,求a 的取值范围.22.已知函数24()(0,1)2x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.《函数的值域》(一)解析1.【解析】()22211y x x x =-=--,∴对称轴为1x =,抛物线开口向上,03x ≤≤,∴当1x =时,min 1y =-,1-距离对称轴远,∴当3x =时,max 3y =,∴13y -≤≤.故选:D.2.【解析】令()22()2112g x x x x =--+=-++, 则有:当1x =-时,()max ()2g x =,即()max ()f x =因为()f x =为根式函数,则()0f x ≥,所以0()f x ≤≤D3.【解析】函数y ==,21990,244x ⎛⎫⎡⎤--+∈ ⎪⎢⎥⎝⎭⎣⎦,∴函数y =⎡⎢⎣即30,2⎡⎤⎢⎥⎣⎦.故选:D.4.【解析】由题可知,函数()221111(1)11324f x x x x x x ===---+⎛⎫-+⎪⎝⎭因为22211331400224431324x x x ⎛⎫⎛⎫-≥⇒-+≥⇒<≤ ⎪ ⎪⎝⎭⎝⎭⎛⎫-+⎪⎝⎭, 故值域为4(0,]3,故选:D 5.【解析】0≥,∴11≤,∴1033<≤.故选:C6.【解析】由121xy =- 可得1210xy =+>,即()10y y +> ,解之得1y <- 或0y >,应选答案D .7.【解析】:由于016416x ≤-<,所以[)0,4y ∈.即值域为[0,4),故选C.8.【解析】设2265(3)44u x x x =-+=--≥-,则()1,42uf u u ⎛⎫=≥- ⎪⎝⎭,因为12xy ⎛⎫= ⎪⎝⎭为减函数,所以()()0416f u f <≤-=,即值域为(]0,16.故选:A.9.【解析】因为y x =240x x -,解得04x .可得函数()y f x x ==-[]0,4.又()1f x '==令()(2)g x x =-,则()()()1222410g x x x x -'=--+>,即()f x '在[]0,4上单(2)0x -=,解得2x =-,即()f x 在0,2⎡⎣上单调递减,在2⎡⎤⎣⎦上单调递增,所以2x =为极小值点,又(22f -=-(0)0f =,()44f =.∴函数y x =的值域为2⎡⎤-⎣⎦.故选:A .10.【解析】(0)t t =≥,则212t x -=,所以2211(1)122t y t t -=+=--+,当1t =时,此时函数取得最大值1,所以函数的值域为(,1]-∞.故选:A. 11.【解析】()344341077252252525x x x f x x x x x -+--+==-=-=-+----)()2f x ∴≠-,值域为()(),22,-∞-⋃-+∞)故选:B.12.【解析】要使函数()y f x ==需满足1010x x +⎧⎨-⎩,解得:11x -,所以函数的定义域为[]1,1-,根据函数的解析式,x y 增大,即该函数为增函数,所以最小值为()1f -=()1f =所以值域为⎡⎣,故选:A .13.【解析】2y x =+30x ∴-≥,解得3x ≥.又函数2y x =+为定义域内的增函数,∴26y x =≥.即函数2y x =+的值域为[)6,+∞.14.【解析】由120x +≥得12x ≥-,因为函数y x =为定义域单调递增函数,所以12y ≥-,即值域是1,.2⎡⎫-+∞⎪⎢⎣⎭15.【解析】因为21x y x +=-,所以23111x y x x +==+--,又301x ≠- 所以3111y x =+≠-,故函数的值域为()()-11∞+∞,, 16.【解析】2331212x y x x x x==++++()1x ≠-,因为0x <,所以1220x x ++≤-=,当且仅当1x =-时“=”号成立, 因为1x ≠-,所以函数2321xy x x =++的值域是{|0}y y <,故答案为{|0}y y <. 17.【解析】要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233235445445444(54x x x y x x x x ++-+==⨯=⨯=-+---⨯-),因为540x -≠,所以10(54x ≠-),即2304(54x ≠⨯-),所以34y ≠-,即值域为3{|}4y y ≠-.18.【解析】令t =()0t ≥,则212t x -=.∴原函数可化为22151()24y t t t =-++=--+. ∵当12t =,即38x =时,max 54y =;且原函数无最小值.故原函数的值域为5,4⎛⎤-∞ ⎥⎝⎦.19.【解析】(1)因为2224y x x =+-22(1)5x =+-,所以22(1)50x y +=+≥, 所以250y y +≥,所以(52)00y y y +≥⎧⎨≠⎩,所以0y >或25y ≤-, 所以函数2224y x x =+-的值域为2,(0,)5⎛⎤-∞-⋃+∞ ⎥⎝⎦. (2)因为2223x x y x++=2321x x =++21123()33x =++23≥,所以函数2223x x y x ++=的值域为2,3⎡⎫+∞⎪⎢⎣⎭. (3)因为234x x y x-+=43x x =+-, 所以当0x >时,3431y ≥=-=,当且仅当2x =时,等号成立, 当0x <时,4()3y x x =--+--3≤-437=--=-,当且仅当2x =-时,等号成立,所以函数234x x y x-+=的值域为(][,7,)1-∞-+∞.(4)2331212x y x x x==--,当[2,4]x ∈时,函数为递减函数,所以2x =时,y 取得最大值,最大值为23262217⨯=⨯-,当4x =时,y 取得最小值,最小值为2341224131⨯=⨯-, 所以函数23,[2,4]21xy x x =∈-的值域为126[,]317. (5)由211x y x x +=++得2(1)10yx y x y +-+-=, 当0y =时,方程的根为1x =-,当0y ≠时,根据关于x 的一元二次方程有解,得2(1)4(1)0y y y ∆=---≥,即23210y y --≤,解得103y -≤<或01y <≤, 综上可得函数211x y x x +=++的值域为1,13⎡⎤-⎢⎥⎣⎦. (6)由22211x x y x x --=++得2(2)(1)10y x y x y -++++=,当2y =时,方程的根为1x =-,当2y ≠时,根据一元二次方程有解得2(1)4(2)(1)0y y y ∆=+--+≥,即2230y y --≤,解得12y -≤<或23y <≤,综上可得函数211x y x x +=++的值域为[1,3]-. 20.【解析】(1)当1a =时,2243(2)111()3333xx x f x -+---===, ∴函数()f x 的值域为1[3,)+∞.(2)令243t ax x =-+,当0a 时,t 无最大值,不合题意; 当0a <时,222443()3t ax x a x a a =-+=--+,43t a∴-,又()3tf t =在R 上单调递增,434()33813t a f x -∴===,434a∴-=,4a ∴=-.21.【解析】(1)令2x t = ,[]0,2x ∈ ,[]1,4t ∴∈()1425x x f x -=-+,∴()()221152444g t t t t =-+=-+[]1,4t ∈ ,()[]4,5g t ∴∈,()f x ∴的值域为[]4,5.(2)()227f x m am <-+对任意0,2m都成立∴()2max 275m am f x -+>=,即2275m am -+>,故2220m am -+>(]0,2m ∈,由2220m am -+>,可转化为:22a m m <+,可得22m a m+>224m m +≥=,当且仅当1m =取等号,∴4a < 22.【解析】(1)∵()f x 是R 上的奇函数,∴()()f x f x -=-即:242422x x x x a a a aa a a a ---+-+=-++.即2(4)2422x x x xa a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x x f x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x ∴-<-<+,211121x∴-<-<+ ∴函数()f x 的值域为()1,1-. (3)由()220xmf x +->可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+.当[]1,2x ∈时,(21)(22)21x x x m +->-令(2113)xt t -=≤≤),则有(2)(1)21t t m t t t+->=-+,函数21y t t=-+在1≤t ≤3上为增函数,∴max 210(1)3t t -+=,103m ∴>,故实数m 的取值范围为(10,3)+∞。
2021届高三数学(文理通用)一轮复习题型专题训练:利用导数研究函数的最值(一)(含答案)
《利用导数研究函数的最值》(一)考查内容:主要涉及利用导数求函数的最值,已知函数的极值求参数(取值范围)一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已经知道函数32()2f x x x =-在[1,3]-上,则下列说法不正确...的是( ) A .最大值为9B .最小值为3-C .函数()f x 在区间[1,3]上单调递增D .0x =是它的极大值点2.若函数()322111323f x x ax a =-+恰有两个零点,则()f x 在[]3,3-上的最大值为( ) A .23B .1C .43D .833.函数1cos 2f xx x 在π0,2⎡⎤⎢⎥⎣⎦上的最小值为( )A .1B .π4C .π12+D .π162+ 4.直线()0x a a =>分别与曲线21y x =+,ln y x x =+相交于A ,B 两点,则AB 的最小值为()A .1B .2CD5.函数()ln ,02,0x x f x x x >⎧=⎨+≤⎩,直线y t =与()y f x =的图象相交于A 、B 两点,则AB 的最小值为( )A .3B .CD .16.若函数()33=-f x x x 在区间()5,21a a -+上有最小值,则实数a 的取值范围是( ) A .(]1,4- B .()1,4- C .11,2⎛⎤- ⎥⎝⎦D .11,2⎛⎫- ⎪⎝⎭7.已知()y f x =是奇函数,当()0,2x ∈时,()1ln 2f x x ax a ⎛⎫=->⎪⎝⎭,当()2,0x ∈-时,()f x 的最小值为1,则a 的值为( )A .23B .45C .1D .128.已知函数()213ln 2f x x x a x ⎛⎫=-+- ⎪⎝⎭在区间(1,3)上有最大值,则实数a 的取值范围是( ) A .111,22⎛⎫-⎪⎝⎭B .1,52⎛⎫- ⎪⎝⎭C .111,22⎛⎫⎪⎝⎭D .1,52⎛⎫ ⎪⎝⎭9.已知函数()()23xf x ae x a =-∈R ,若[]0,2x ∈时,()f x 在0x =处取得最大值,则a 的取值范围为( )A .6a e<B .212a e ≥C .0a ≤D .2126a e e<< 10.若函数()321233f x x x =+-在区间(),3a a +内既存在最大值也存在最小值,则a 的取值范围是( )A .()3,2--B .()3,1--C .()2,1--D .()2,0-11.已知函数1()(1)ln 1f x ax a x x=--++(R a ∈)在(0,1]上的最大值为3,则a =( ) A .2B .eC .3D .2e12.设函数()3236222xx f x e x x x ae x ⎛⎫=+-+-- ⎪⎝⎭,若不等式()0f x ≤在[)2,-+∞上有解,则实数a 的最小值为( )A .312e-- B .3142e-- C .322e-- D .11e--二.填空题13.设函数()332x x x af x x x a ⎧-≤=⎨->⎩,,,若()f x 无最大值,则实数a 的取值范围是__.14.已知函数23()(4)2ln 2f x x a x x =++-在区间(1,2)上存在最值,则实数a 的取值范围是_____________.15. 已知e 为自然对数的底数,若对任意[]1,x e ∈,总存在唯一的[]1,1y ∈-,使得2ln y y e a x =-,成立,则实数a 的取值范围是( )A .[]1,eB .11,e e⎛⎤+ ⎥⎝⎦C .1,1e e ⎛⎤+ ⎥⎝⎦D .11,1e e ⎛⎫++ ⎪⎝⎭16.不等式1x ax lnx xe ++≤对于定义域内的任意x 恒成立,则a 的取值范围为__ 三.解答题(解答应写出文字说明、证明过程或演算步骤)17.设函数32()f x x ax bx =++的图象与直线38y x =-+相切于点(2,2)P . (1)求函数()f x 的解析式;(2)求函数()f x 在区间[1,4]-上的最值;18.设()3f x ax bx c =++为奇函数,其图象在点()()1,1f 处的切线与直线670x y --=垂直,导函数()f x '的最小值为12-.(1)求a 、b 、c 的值;(2)求函数()f x 的单调递增区间,极大值和极小值,并求函数()f x 在[]1,3-上的最大值与最小值.19.已知函数()()32391f x x x x x R =--+∈.(1)求函数()f x 的单调区间.(2)若()210f x a -+≥对[]2,4x ∀∈-恒成立,求实数a 的取值范围.20.()2ln af x x x=+,a R ∈. (1)若()f x 在[)2,+∞是增函数,求实数a 的范围; (2)若()f x 在[]1,e 上最小值为3,求实数a 的值; (3)若()2f x x <在1x >时恒成立,求a 的取值范围.21.已知0a >,函数()()326933f x x x a x a =-++-,[]1,3x ∈.(1)求函数()f x 在2x =处的切线;(2)若函数()y f x =在3x =处有最大值,求实数a 的取值范围.22.已知函数()n ()l f x x x m m R =--∈. (1)若函数()f x 有两个零点,求m 的取值范围;(2)证明:当3m ≥-时,关于x 的不等式()()20xf x x e +-<在1,12⎡⎤⎢⎥⎣⎦上恒成立.《利用导数研究函数的最值》(一)解析1.【解析】2()34f x x x '=-,令2()340f x x x '=->,解得0x <或43x >, 所以当[1,0)x ∈-,4(,3]3时,()0f x '>,函数()f x 单调递增,当4(0,)3x ∈时,()0f x '<,函数()f x 单调递减,C 错误;所以0x =是它的极大值点,D 正确;因为(0)0,(3)27299f f ==-⨯=,所以函数()f x 的最大值为9,A 正确;因为4641632(1)123,()2327927f f -=--=-=-⨯=-,所以函数()f x 的最小值为3-,B 正确.故选:C2.【解析】令()()20f x x ax x x a '=-=-=,所以0x =或x a =,显然0a ≠,∵()f x 恰有两个零点,21(0)03f a =≠,∴另一个极值点x a =必为零点, ()3321110323f a a a a ∴=-+=,解得2a =,所以()321433f x x x =-+.所以()5044(3),(0),(2)0,3,333f f f f -=-=== ∴()f x 在[]3,3-上的最大值为43,故选:C .3.【解析】()1sin 2f x x '=-,当π0,6x ⎡⎫∈⎪⎢⎣⎭时,()0f x '>; 当ππ,62x ⎛⎤∈⎥⎝⎦时,()0f x '<. 又()01f =>ππ24f ⎛⎫=⎪⎝⎭,所以()minππ24f x f ⎛⎫== ⎪⎝⎭.故选:B 4.【解析】设A (a ,2a+1),B (a ,a+lna ),∴|AB |=211a a lna a lna +-+=+-(),令y 1x lnx =+-,则y ′=11x-, ∴函数在(0,1)上单调递减,在(1,+∞)上单调递增, ∴x =1时,函数y 的最小值为20>,∴|AB |=2111a a lna a lna a lna +-+=+-=+-(),其最小值为2.故选:B .5.【解析】联立2y x y t =+⎧⎨=⎩,解得2x t y t =-⎧⎨=⎩,可得点()2,A t t -.联立ln y x y t =⎧⎨=⎩,解得t x e y t⎧=⎨=⎩,可得点(),tB e t .由题意可得200tt e -≤⎧⎨>⎩,解得2t ≤,()22t tAB e t e t =--=-+, 令()2tg t e t =-+,其中2t ≤,()1tg t e '=-. 当0t <时,()0g t '<,此时,函数()y g t =单调递减; 当02t <≤时,()0g t '>,此时,函数()y g t =单调递增. 所以,()()0min 0023g t g e ==-+=.因此,AB 的最小值为3.故选:A.6.【解析】对函数()f x 进行求导,得()233'=-+f x x ,当11x -<<,()0f x '>,当1x <-或1x >时,()0f x '<,所以函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,在1x =-处函数()f x 取得极小值2-,因为函数在()5,21a a -+端点处的函数值无法取到,所以区间()5,21a a -+内必存在极小值点1x =-,且此极小值点为最小值,因此5121a a -<-<+,解得14a -<<,又因为()22f =-,即函数()f x 在2x =时的函数值与1x =-处的极小值相同,为了保证在区间()5,21a a -+上最小值在1x =-取到,所以12a ≤,综上,112a -<≤.故选:C 7.【解析】由已知及奇函数的性质可得,()f x 在()0,2上有最大值1-,又()'1fx a x=-,当0a ≤时,()f x 在区间()0,2上单调递增,不满足题意; 当0a >时,且1(0,)x a∈时,()'0f x >,当1(,2)x a ∈时,()'0f x <,故()f x 在1(0,)a上单调递增,在1(,2)a 上单调递减,所以max 1()()ln 11f x f a a ==--=-,解得1a =.故选:C8.【解析】2123312()22x a x f x x a x x'⎛⎫-+-+ ⎪⎝⎭=-+-=. 令21()232g x x a x ⎛⎫=-+-+ ⎪⎝⎭, 由韦达定理可得若函数()g x 有零点,则必有一个负零点和一个正零点, 又由函数21()3ln 2f x x x a x ⎛⎫=-+-⎪⎝⎭在区间(1,3)上有最大值, 则21()232g x x a x ⎛⎫=-+-+ ⎪⎝⎭在区间(1,3)上有零点, 由零点存在性定理可得1(1)23023(3)183302g a g a ⎧=-+-+>⎪⎪⎨⎪=-+-+<⎪⎩,解得11122a -<<. ∴实数a 的取值范围是111,22⎛⎫-⎪⎝⎭.故选:A. 9.【解析】()66xxx x f x ae x e a e ⎛⎫'=-=-⎪⎝⎭令()6x xg x e =,∴()()61xx g x e -'= ∴1x <时,()0g x '>,()g x 在(),1-∞单调递增;∴1x >时,()0g x '<,()g x 在()1+∞,单调递减.如图∴()()max 61g x g e==, ∴当6a e ≥时,60x xa e-≥,∴()0f x '≥,()f x 在R 上单调递增,不成立.当0a ≤时,()f x 在[]0,2上单调递减,成立;当60a e <<时,60x xa e-=有两个根1x ,()2120x x x << ∵当1x x <时,60x xa e->,()0f x '>;当12x x x <<时,60xxa e -<,()0f x '<; 当2x x >时,60x xa e->,()0f x '> ∴()f x 在[]10,x ,[]2,x +∞上单调递增,在[]12,x x 上单调递减,显然不成立. 综上,0a ≤.故选:C10.【解析】由()22(2)0f x x x x x '=+=+=得2x =-或0x =,可以判断()f x 在0x =处取得极小值()203f =-,在2x =-处取得极大值()223f -=.令()23f x =-,得3x =-或0x =,令()23f x =,得2x =-或1x =,由题意知函数()f x 在开区间(),3a a +内的最大、最小值只能在2x =-和0x =处取得,结合函数()f x 的图象可得:03132a a <+≤⎧⎨-≤<-⎩,解得32a -<<-,故a 的取值范围是()3,2--.故选:A11.【解析】222211(1)1(1)(1)()a ax a x ax x f x a x x x x+-++--'=+-==,(0,1)x ∈ ,令()(1)(1)g x ax x =--,(0,1)x ∈,①当1a ≤时,110ax x -≤-<,()0g x ∴>,()0f x '>,∴()f x 在(0,1]上单调递增,max ()(1)f x f a ∴==,即3a =(舍去),②当1a >时,1(0,)x a ∈,()0>g x ,()0f x '>;1(,1)x a∈时,()0<g x ,()0f x '<,故()f x 在1(0,)a 上单调递增,在1(,1)a上单调递减,max 11()()2(1)ln 3f x f a a a a∴==--+=,即(1)ln 10a a a -++=,令()(1)ln 1h x x x x =-++(1x >),1()ln 0h x x x'=--<, ()h x ∴在(1,)+∞上单调递减,且(e)0h =,e a ∴=,故选B.12.【解析】若()0f x ≤ 有解,即3232622x xa x x x e≥+-+- ()2x ≥-的最小值 ,设()323622x xh x x x x e =+-+- ,()()()211336312x x x x h x x x x x e e--=+-+=-++' ,整理为:()()()()113123123x x x h x x x x x e e -⎛⎫=-++=-++ ⎪⎝⎭' , 再设()123x g x x e =++ ,()131103x x xe g x e e -=-==' ,解得ln3x =- ,当()2,ln3x ∈-- 时,()0g x '< ,当[)ln3,x ∈-+∞,()0g x '> , 所以当ln3x =- 时,()g x 取得最小值,()ln3ln3210g -=-++> , 即()1203x g x x e=++>恒成立,所以当[)2,1x ∈- 时,()0h x '< , 当()1,x ∈+∞ 时,()0h x '> 所以函数()h x 在1x = 时,取得最小值,()3112h e =-- ,即31312242a a e e≥--⇒≥--,所以a 的最小值是3142e-- ,故选B. 13.【解析】f ′(x )2332x x ax a ,,>⎧-≤=⎨-⎩,令f ′(x )=0,则x =±1,若f (x )无最大值,则3123a a a a ≤-⎧⎨--⎩>,或312322a a a a a -⎧⎪--⎨⎪-⎩>>>, 解得:a ∈(﹣∞,﹣1).故答案为 1a <-14.【解析】由题可得223(4)2'()3(4)x a x f x x a x x++-=++-=,因为函数()f x 在区间(1,2)上存在最值,所以'(1)'(2)0f f ⋅<,即(5)(9)0a a ++<,解得95a -<<-,故实数a 的取值范围是(9,5)--.15.【解析】设2()yf y y e =,[]1,1y ∈-,()lng x a x =-,[]1,x e ∈,2()(2)y f y y y e '=+,10y -≤<时,()0f y '<,()f y 递减,01y <≤时,()0f y '>,()f y 递增,∴min ()(0)0f y f ==,1(1)f e --=,(1)f e =,∴1()(,]{0}f y e e∈()ln g x a x =-在[1,]e 上是减函数,∴()[1,]g x a a ∈-,由题意1[1,](,]{0}a a e e -⊆,∴11a e s e ⎧->⎪⎨⎪≤⎩,即11a e e +<≤.故选:B .16.【解析】已知1x ax lnx xe ++≤对于定义域()0,∞+内的任意x 恒成立,即1x xe lnx a x --≤对于()0,∞+内的任意x 恒成立,令()1x x g xe ln x x =--,则只需在定义域内()min a g x ≤即可,()ln ln 1ln 1ln 1x x x x x xe lnx e e x e x x x x g x +--⋅---∴=-==, 1x e x ≥+,当0x =时取等号,由1x e x ≥+可知,ln ln 1x x e x x +≥++,当ln 0x x +=时取等号,()ln ln 1ln 1ln 11x x e x x x x x xg x +--++--=≥=∴,当ln 0x x +=有解时,令()()ln 0h x x x x =+>,则()110h x x'=+>, ()h x ∴在()0,∞+上单调递增,又1110h e e ⎛⎫=-< ⎪⎝⎭,()110h =>,()00,x ∴∃∈+∞使得()00h x =,()min 1g x ∴=,则1a ≤,所以a 的取值范围为(],1-∞.17.【解析】(1)32()f x x ax bx =++,2'()32f x x ax b =++, 根据题意32(2)2222f a b =+⋅+=,2'(2)3243f a b =⨯++=-, 解得6a =-,9b =.故32()69f x x x x =-+.(2)2'()3129f x x x =-+,取2'()30291f x x x -=+=,解得11x =,23x =.故函数在[]1,1-上单调递增,在()1,3上单调递减,在[]3,4上单调递增.()116f -=-,(1)4f =,()30f =,()44f =.故函数的最大值为4,最小值为16-. 18.【解析】(1)()f x 为奇函数,()()f x f x ∴-=-,即33ax bx c ax bx c --+=---,0c ∴=.()23f x ax b '=+的最小值为12-,12b ∴=-.又直线670x y --=的斜率为16,因此()136f a b '=+=-, 故2a =,12b =-,0c;(2)()3212f x x x =-,()(26126f x x x x '=-=+,列表如下:所以函数()f x 的单调递增区间为(,-∞和)+∞,()f x 的极大值为(f =f=-又()110f -=,()318f =,所以当x =()f x 取得最小值为- 当3x =时,()f x 取得最大值1. 19.【解析】(1)令,解得或,令,解得:. 故函数的单调增区间为,单调减区间为.(2)由(1)知在上单调递增,在上单调递减,在上单调递增,又,,,∴, ∵对恒成立, ∴,即,∴20.【解析】(1)∵()2ln a f x x x =+,∴()212a f x x x'=-.∵()f x 在[)2,+∞上是增函数,∴()2120a f x x x '=-≥在[)2,+∞上恒成立, 即2xa ≤在[)2,+∞上恒成立. 令()2xg x =,则()mina g x ≤⎡⎤⎣⎦,[)2,x ∈+∞. ∵()2xg x =在[)2,+∞上是增函数,∴()()min 21g x g ==⎡⎤⎣⎦,∴1a ≤.所以实数a 的取值范围为(],1-∞; (2)由(1)得()22x af x x-'=,[]1,x e ∈. ①若21a ≤,即12a ≤,则20x a -≥,即()0f x '≥在[]1,e 上恒成立, 此时()f x 在[]1,e 上是增函数,所以()()min 123f x f a ===⎡⎤⎣⎦,解得32a =(舍去);②若12a e <<,即122ea <<,令()0f x '=,得2x a =. 当12x a <<时,()0f x <′,所以()f x 在()1,2a 上是减函数, 当2a x e <<时,()0f x >′,所以()f x 在()2,a e 上是增函数. 所以()()()min2ln 213f x f a a ==+=⎡⎤⎣⎦,解得22e a =(舍去);③当2ea ≥时,()220x a f x x-'=≤在[]1,e 上恒成立, ∴()f x 在区间[]1,e 为减函数,∴()()min 2ln 3af x f e e e==+=,解得a e =. 综上可得,a e =;(3)因为()2f x x <,在1x >时恒成立,所以22ln ax x x+<,在1x >时恒成立, 即32ln a x x x <-,在1x >时恒成立, 令()3ln h x xx x =-,所以()231ln h x x x '=--,设()231ln r x x x =--,所以()160r x x x'=->在1x >时恒成立, 所以()r x 在()1,+∞上是增函数,即()h x '在()1,+∞上是增函数,所以()()120h x h ''>=>,所以()h x 在()1,+∞上是增函数,所以()()11h x h >=, 所以21a ≤,解得12a ≤,所以a 的取值范围1,2⎛⎤-∞ ⎥⎝⎦.21.【解析】(1)因为2()31293f x x x a '=-++,则(2)33f a '=-,又有(2)32f a =+,故函数()f x 在2x =处的切线为(33)38y a x a =--+.(2)由32()6(93)3f x x x a x a =-++-知函数()y f x =的图象过定点(1,4),且22()312933(2)1f x x x a x a '⎡⎤=-++=-+-⎣⎦,又因为函数()y f x =在3x =处有最大值,则(1)(3)f f ,即23a. 当1a 时,()0f x '在[1,3]上恒成立,()f x 在[1,3]上单调递增,所以()y f x =在3x =处有最大值,符合题意;当213a <时,(1)(3)30f f a ''==>,令()0f x '=,则12(1,2)x =-,22(2,3)x =+,从而知()f x 在()11,x 上单调递增,()12,x x 上单调递减,()2,3x 上单调递增,故函数()y f x =在[1,3]上的最大值为()1f x 或(3)f .又因为()123(22f x a a =++-23(226a a a ++-,即2(13(1)1a a -+-,令110,3a t ⎛⎤-=∈ ⎥⎝⎦,则()23g t t =在10,3⎛⎤ ⎥⎝⎦上单调递增,且114g ⎛⎫=⎪⎝⎭,可得114a t -=,则314<a . 综上,实数a 的取值范围为3,4⎡⎫+∞⎪⎢⎣⎭22.【解析】(1)令()f x lnx x m 0=--=,m lnx x ∴=-; 令()g x lnx x =-,()11x g x 1x x-∴=-=', 令()g x 0'>,解得0x 1<<,令()g x 0'<,解得x 1>,则函数()g x 在()0,1上单点递增,在()1,∞+上单点递减,()()max g x g 11∴==-. 要使函数()f x 有两个零点,则函数()g x 的图像与y m =有两个不同的交点.则m 1<-,即实数m 的取值范围为(),1∞--. (2)()()x f x x 2e 0+-<,()x m x 2e lnx x ∴>-+-;设()()x1h x x 2e lnx x,x ,12⎡⎤=-+-∈⎢⎥⎣⎦,()()x1h x x 1e x ⎛⎫=--⎝'⎪⎭; 设()x1u x e x =-,()x21u x e 0x =+>',则()u x 在1,12⎡⎤⎢⎥⎣⎦上单调递增.又1u 202⎛⎫=<⎪⎝⎭,()u 1e 10=->.01x ,12⎛⎫∴∃∈ ⎪⎝⎭,使得()0u x 0=, 即0x 01e x =,00lnx x ∴=-. 当01x ,x 2⎡⎫∈⎪⎢⎣⎭时,()()u x 0,h x 0';当(]0x x ,1∈时,()()u x 0,h x 0'><; ()h x ∴在01,x 2⎡⎫⎪⎢⎣⎭上单调递增,在(]0x ,1上单调递减.()()()()0x 0000000max 0012h x h x x 2e lnx x x 22x 12x x x ∴==-+-=-⋅-=--. 设()2φx 12x x =--,()222222x φx 2x x-∴=-='. 当1x ,12⎛⎫∈⎪⎝⎭时,()φx 0'>恒成立,则()φx 在1,12⎛⎫⎪⎝⎭上单调递增, ()()φx φ13∴<=-,即当1x ,12⎡⎤∈⎢⎥⎣⎦时,()h x 3<-.∴当m 3≥-时,关于x 的不等式()()x f x x 2e 0+-<在1,12⎡⎤⎢⎥⎣⎦上恒成立.。
2021年高考理科数学全国新课标卷1(附答案)
2021年高考理科数学全国新课标卷1(附答案)2021年普通高等学校夏季招生全国统一考试数学理工农医类(全国卷I新课标)注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2021课标全国Ⅰ,理1)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ). A.A∩B= B.A∪B=R C.B?A D.A?B2.(2021课标全国Ⅰ,理2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为( ).A.-4 B.?A.500π3866π3cm B.cm 3344 C.4 D. 557.(2021课标全国Ⅰ,理7)设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( ).A.3 B.4 C.5 D.68.(2021课标全国Ⅰ,理8)某几何体的三视图如图所示,则该几何体的体积为( ).3.(2021课标全国Ⅰ,理3)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样x2y254.(2021课标全国Ⅰ,理4)已知双曲线C:2?2=1(a>0,b>0)的离心率为,则C的渐近线方程为( ).ab211A.y=?x B.y=?x341C.y=?x D.y=±x25.(2021课标全国Ⅰ,理5)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于( ).A.16+8π B.8+8π C.16+16π D.8+16π+9.(2021课标全国Ⅰ,理9)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m1展开式的二项式系数的最大值为b.若13a=7b,则m=( ).A.5 B.6 C.7 D.8x2y210.(2021课标全国Ⅰ,理10)已知椭圆E:2?2=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两ab点.若AB的中点坐标为(1,-1),则E的方程为( ).x2y2x2y2?=1 B.?=1 A.45363627x2y2x2y2?=1 D.?=1 C.2718189A.[-3,4] B.[-5,2]C.[-4,3] D.[-2,5]6.(2021课标全国Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为( ).??x2?2x,x?0,11.(2021课标全国Ⅰ,理11)已知函数f(x)=?若|f(x)|≥ax,则a的取值范围是( ).?ln(x?1),x?0.A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]12.(2021课标全国Ⅰ,理12)设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3,….若b1>c1,b1+c1=2a1,an+1=an,bn+1=A.{Sn}为递减数列cn?anb?an,cn+1=n,则( ). 22 第 1 页共 1 页B.{Sn}为递增数列C.{S2n-1}为递增数列,{S2n}为递减数列 D.{S2n-1}为递减数列,{S2n}为递增数列第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须做答.第(22)题~第(24)题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.(2021课标全国Ⅰ,理13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b.若b・c=0,则t=__________. 14.(2021课标全国Ⅰ,理14)若数列{an}的前n项和Sn?21an?,则{an}的通项公式是an=__________. 3315.(2021课标全国Ⅰ,理15)设当x=θ时,函数f(x)=sin x-2cos x取得最大值,则cos θ=__________.16.(2021课标全国Ⅰ,理16)若函数f(x)=(1-x2)(x2+ax+b)的图像关于直线x=-2对称,则f(x)的最大值为__________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(2021课标全国Ⅰ,理17)(本小题满分12分)如图,在△ABC中,∠ABC=90°,AB=3,BC=1,P为△ABC内一点,∠BPC=90°.19.(2021课标全国Ⅰ,理19)(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为1,且各件产品是否为优质品相互独2(1)若PB=1,求PA; 2(2)若∠APB=150°,求tan∠PBA.18.(2021课标全国Ⅰ,理18)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.20.(2021课标全国Ⅰ,理20)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.第 2 页共 2 页21.(2021课标全国Ⅰ,理21)(本小题满分12分)设函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(1)求a,b,c,d的值;(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑. 22.(2021课标全国Ⅰ,理22)(本小题满分10分)选修4―1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)当a=-2时,求不等式f(x)<g(x)的解集; (2)设a>-1,且当x∈???a1?,?时,f(x)≤g(x),求a的取值范围. ?22?(1)证明:DB=DC;(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.23.(2021课标全国Ⅰ,理23)(本小题满分10分)选修4―4:坐标系与参数方程?x?4?5cost,已知曲线C1的参数方程为?(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,y?5?5sint?曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(2021课标全国Ⅰ,理24)(本小题满分10分)选修4―5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.第 3 页共 3 页感谢您的阅读,祝您生活愉快。
百师联盟2021届高三上学期一轮复习联考(三)-全国卷Ⅰ理科数学试卷及参考答案
百师联盟2021届高三一轮复习联考(三)全国卷I理科数学试卷(考试时间120分钟,满分150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合P ={x|x 2-1>0},Q ={x|x -2≥0},则P ∪Q 为( )A.{x|x ≥2}B.{x|x<-1或x ≥2}C.{x|x<-1或x>1}D.R2.已知复数z =21i i,则z ·z 的值( ) A.0 B.2i C.2 D.13.cos50°cos10°-sin50°sin170°=( )A.cos40°B.sin40°C.12D.24.已知m 2≥3,则直线y =mx 与圆x 2+y 2=1的位置关系为( )A.相切B.相离C.相交或相切D.相交5.函数f(x)=xe x的图象在点(1,f(1))处的切线方程为( ) A.y =x +e -1 B.y =e C.y =x -e -1 D.x =e6.将函数f(x)=sinx 的图象上各点横坐标变为原来的12,纵坐标不变,再将所得图象向左平移3π个单位,得到函数g(x)的图象,则函数g(x)的解析式为( ) A.g(x)=sin(12x +3π) B.g(x)=sin(12x +23π) C.g(x)=sin(2x +3π) D.g(x)=sin(2x +23π) 7.已知正实数a ,b 满足a +b =1,则(3+1a )(1+2b)的最小值为( ) A.14+46 B.25 C.24 D.1238.等差数列{a n }的前n 项和为S n ,其中a 3=52,S 4=14,则当S n 取得最大值时n 的值为( ) A.4或5 B.3或4 C.4 D.39.已知α∈(2π,π),且cos(α-4π)=35,则tan α=( ) A.-7 B.-17 C.-7或-17 D.-7或17 10.如图所示,某旅游景区的B ,C 景点相距2km ,测得观光塔AD 的塔底D 在景点B 的北偏东45°,在景点C 的北偏西60°方向上,在景点B 处测得塔顶A 的仰角为45°,现有游客甲从景点B 沿直线去往景点C ,则沿途中观察塔顶A 的最大仰角的正切值为(塔底大小和游客身高忽略不计)( )2 B.22C.1D.32 11.设有穷数列{a n }的前n 项和为S n ,令T n =12n s s s n++⋅⋅⋅+,称T n 为数列a 1,a 2,…,a n 的“凯森和”,已知数列a 1,a 2,…,a 2020的“凯森和”为4042,那么数列-1,a 1,a 2,…,a 2020的“凯森和”为( )A.4036B.4037C.4038D.403912.已知a,b满足0<a<b<e,则a b+ln aa与b a+ln bb的大小关系为()A.a b+ln aa>b a+ln bbB.a b+ln aa=b a+ln bbC.a b+ln aa<b a+ln bbD.不能确定二、填空题:本题共4小题,每小题5分,共20分。
2021年全国新高考Ⅰ卷数学试题(解析版)
2021 年普通高等学校招生全国统一考试数学本试卷共 4 页,22 小题,满分 150 分.考试用时 120 分钟.注意事项:1. 答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.用 2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4. 考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合 A = {x -2 < x < 4}, B = {2, 3, 4, 5} ,则 A B = ()A.{2}B. {2, 3}C. {3, 4}D. {2, 3, 4}【答案】B【解析】【分析】利用交集的定义可求A B .【详解】由题设有 A ⋂ B = {2, 3} ,故选:B .2. 已知 z = 2 - i ,则 z (A. 6 - 2i z + i ) = (B. 4 - 2i)C. 6 + 2iD. 4 + 2i【答案】C 【解析】【分析】利用复数的乘法和共轭复数的定义可求得结果.【详解】因为 z = 2 - i ,故 z = 2 + i ,故 z (z + i )= (2 - i )(2 + 2i ) = 6 + 2i故选:C.22 2 3. 已知圆锥的底面半径为 ,其侧面展开图为一个半圆,则该圆锥的母线长为()A. 2B. 2C. 4D. 4【答案】B【解析】【分析】设圆锥的母线长为l ,根据圆锥底面圆的周长等于扇形的弧长可求得l 的值,即为所求.【详解】设圆锥的母线长为l ,由于圆锥底面圆的周长等于扇形的弧长,则π l = 2π ⨯ ,解得l = 2 .故选:B.4. 下列区间中,函数 f (x ) = 7 sin ⎛x - π ⎫单调递增的区间是( )6 ⎪A. ⎛ 0, π ⎫ ⎝⎭B. ⎛ π , π ⎫C. ⎛π , 3π ⎫D.⎛ 3π , 2π ⎫⎪ ⎪ ⎪ 2 ⎪ ⎝ 2 ⎭⎝ 2 ⎭⎝ 2 ⎭⎝ ⎭【答案】A【解析】π π π【分析】解不等式2k π -< x - < 2k π + 2 6 2(k ∈ Z ) ,利用赋值法可得出结论.【详解】因为函数 y = sin x 的单调递增区间为⎛2k π - π , 2k π + π ⎫(k ∈ Z ),2 2 ⎪ ⎝ ⎭对于函数 f (x ) = 7 sin ⎛ x - π ⎫ ,由2k π - π < x - π < 2k π + π (k ∈ Z ) , 6 ⎪ 2 6 2 ⎝ ⎭2k ππ 2π 解得- < x < 2k π + 3 3(k ∈ Z ) , 取 k = 0 ,可得函数 f ( x ) 的一个单调递增区间为⎛ - π , 2π ⎫,3 3 ⎪ ⎝ ⎭则⎛ 0, π ⎫ ⊆ ⎛ - π , 2π ⎫ , ⎛ π ,π ⎫ ⊄ ⎛ - π , 2π ⎫,A 选项满足条件,B 不满足条件;2 ⎪3 3 ⎪ 2 ⎪ 3 3 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭取 k = 1 ,可得函数 f ( x ) 的一个单调递增区间为⎛ 5π , 8π ⎫,3 3 ⎪ ⎝ ⎭⎛π , 3π ⎫ ⊄ ⎛ - π , 2π ⎫且⎛π , 3π ⎫ ⊄⎛ 5π , 8π ⎫ , ⎛ 3π , 2π ⎫ ⊄ ⎛ 5π , 8π ⎫ ,CD 选项均不满足条件. 2 ⎪ 3 3 ⎪ 2 ⎪ 3 3 ⎪ 2 ⎪ 3 3 ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成 y = A sin (ωx + φ) 形式,再求2 2= = θ ( θ + θ ) ⎝⎝y = A sin (ωx + φ) 的单调区间,只需把ω x + ϕ 看作一个整体代入 y = sin x 的相应单调区间内即可,注意要先把ω 化为正数.F F x 2 y 2 MF ⋅ MF5. 已知 1 , 2 是椭圆C :+= 1的两个焦点,点 M 在C 上,则1942的最大值为( )A. 13B. 12C. 9D. 6【答案】C【解析】【 分 析 】 本 题 通 过 利 用 椭 圆 定 义 得 到MF 1 + MF 2= 2a = 6, 借 助 基 本 不 等 式2MF ⋅ MF ≤ 即可得到答案. 1 22 ⎭【详解】由题, a 2 = 9, b 2 = 4 ,则 MF 1 + MF 2 = 2a = 6 ,2所以 MF ⋅ MF ≤ = 9 (当且仅当 MF 1 = MF 2 = 3 时,等号成立). 1 22 ⎭ 故选:C .【点睛】本题关键在于正确理解能够想到求最值的方法,即通过基本不等式放缩得到.sin θ (1+ sin 2θ )6. 若tan θ = -2 ,则 sin θ + cos θ= ()A. - 6 5B. -2 C.2 D. 6555【答案】C【解析】【分析】将式子进行齐次化处理,代入tan θ = -2 即可得到结果. 【详解】将式子进行齐次化处理得:sin θ (1+ sin 2θ ) sin θ + cos θ sin θ (sin 2 θ + cos 2θ + 2sin θ cos θ ) sin sin cos sin θ + cos θsin θ (sin θ + cos θ ) tan 2 θ + tan θ 4 - 2 2 = = = = .sin 2 θ + cos 2 θ 1+ tan 2 θ1+ 4 5故选:C .【点睛】易错点睛:本题如果利用tan θ = -2 ,求出sin θ , cos θ 的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.max max7. 若过点(a , b ) 可以作曲线y = e x 的两条切线,则( )A. e b < aB. e a < bC. 0 < a < e bD. 0 < b < e a【答案】D【解析】【分析】根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果 【详解】在曲线 y = e x 上任取一点 P (t , et) ,对函数 y = e x 求导得 y ' = e x ,所以,曲线 y = e x 在点 P 处的切线方程为 y - e t = e t(x - t ) ,即 y = e t x + (1- t )e t , 由题意可知,点(a , b ) 在直线 y = e tx + (1- t )e t上,可得b = ae t+ (1- t )e t= (a +1- t )e t,令 f (t ) = (a +1- t )e t,则 f '(t ) = (a - t )e t.当t < a 时, f '(t ) > 0 ,此时函数 f (t ) 单调递增,当t > a 时, f '(t ) < 0 ,此时函数 f (t ) 单调递减,所以, f (t ) = f (a ) = e a ,由题意可知,直线 y = b 与曲线 y = f (t ) 的图象有两个交点,则b < f (t ) = e a,当t < a +1时, f (t ) > 0 ,当t > a +1时, f (t ) < 0 ,作出函数 f (t ) 的图象如下图所示:由图可知,当0 <b <e a时,直线y =b 与曲线y = f (t )的图象有两个交点.故选:D.【点睛】数形结合是解决数学问题常用且有效的方法8.有6 个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1 个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立【答案】B【解析】【分析】根据独立事件概率关系逐一判断【详解】P(甲) =1,P(乙) =1,P(丙) =5,P(丁) =6=1,6636366P(甲丙) = 0 ≠P(甲)P(丙),P(甲丁) =136=P(甲)P(丁)P(乙丙) =136故选:B≠P(乙)P(丙),P(丙丁) = 0 ≠P(丁)P(丙)【点睛】判断事件A, B 是否独立,先计算对应概率,再判断P( A)P(B) =P( AB) 是否成立二、选择题:本题共4 小题,每小题5 分,共20 分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5 分,部分选对的得2 分,有选错的得0 分.9.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c ( i = 1, 2,⋅⋅⋅, n), c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样数据的样本极差相同【答案】CD【解析】【分析】A、C 利用两组数据的线性关系有E( y) =E(x) +c 、D( y) =D(x) ,即可判断正误;根据中位数、极差的定义,结合已知线性关系可判断B、D 的正误.OP 1 = OP 2OA ⋅ OP 3 = OP 1 ⋅ O P 2 OP 2 4sin 2 α 2 【详解】A : E ( y ) = E (x + c ) = E (x ) + c 且c ≠ 0 ,故平均数不相同,错误; B :若第一组中位数为 x i ,则第二组的中位数为 y i = x i + c ,显然不相同,错误; C :D ( y ) = D (x ) + D (c ) = D (x ) ,故方差相同,正确;D :由极差的定义知:若第一组的极差为 x max - x min ,则第二组的极差为y max - y min = (x max + c ) - (x min + c ) = x max - x min ,故极差相同,正确;故选:CD10. 已知O 为坐标原点,点 P 1 (cos α , sin α ),P 2 (cos β , -sin β ) ,P 3 (cos (α + β ), sin (α + β )),A (1, 0),则()A B.C. D.【答案】AC【解析】【分析】A 、B 写出OP 1 , 、AP 1 , AP 2 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【 详 解 】 A : OP 1 = (cos α , sin α ) , OP 2 = (cos β , -sin β ) , 所 以 | =1 ,| = 1 ,故| OP 1 |=| OP 2 |,正确;B : AP 1 = (cos α -1, sin α ) , AP 2 = (cos β -1, -sin β ) ,所以| == α= = 2 | sin | , 2同理| = 2 | sin β | ,故| AP |,| AP | 不一定相等,错误;21 2C :由题意得: OA ⋅ OP 3 = 1⨯cos(α + β ) + 0⨯sin(α + β ) = cos(α + β ) ,OP 1 ⋅ OP 2 = cos α ⋅cos β + sin α ⋅ (-sin β ) = cos(α + β ) ,正确;D :由题意得: OA ⋅ OP 1 = 1⨯cos α + 0⨯sin α = cos α ,OP 2 ⋅ O P 3 = cos β ⨯cos(α + β ) + (-sin β ) ⨯sin(α + β )= cos α cos 2 β - sin α sin β cos β - sin α sin β cos β - cos α sin 2 βAP 1 = AP 2OA ⋅ OP 1 = OP 2 ⋅ O P 3OP |= cos 2 α + sin 2 α 1 OP |= (cos β)2 + (-sin β )2 2 AP |= (cos α -1)2+ sin 2α 1cos 2α - 2 cos α +1+ sin 2α 2(1- cos α ) AP |= (cos β -1)2 + sin 2 β 211 534 = cos α cos 2β - sin α sin 2β = cos(α + 2β ) ,错误;故选:AC11. 已知点 P 在圆(x - 5)2+ ( y - 5)2= 16 上,点 A (4, 0) 、 B (0, 2) ,则( )A. 点 P 到直线 AB 的距离小于10B. 点 P 到直线 AB 的距离大于2C. 当∠PBA 最小时, PB = 3D. 当∠PBA 最大时, PB = 3【答案】ACD【解析】【分析】计算出圆心到直线 AB 的距离,可得出点 P 到直线 AB 的距离的取值范围,可判断 AB 选项的正误;分析可知,当∠PBA 最大或最小时, PB 与圆 M 相切,利用勾股定理可判断 CD 选项的正误. 【详解】圆( x - 5)2+ ( y - 5)2= 16 的圆心为 M (5, 5) ,半径为4 ,直线 AB 的方程为 x + y= 1,即 x + 2 y - 4 = 0 ,42圆心 M 到直线 AB 的距离为= = 11 5 > 4 , 5所以,点 P 到直线 AB 的距离的最小值为11 5 - 4 < 2 ,最大值为11 5 + 4 < 10 ,A 选项正确,B 选项错55误;如下图所示:当∠PBA 最大或最小时, PB 与圆 M 相切,连接 MP 、 BM ,可知 PM ⊥ PB ,BM ==, MP = 4 ,由勾股定理可得 BP == 3 2 ,CD 选项2212 + 225 + 2⨯ 5 - 4 (0 - 5)2 + (2 - 5)2BM 2 - MP 2正确.故选:ACD.【点睛】结论点睛:若直线l 与半径为r圆C 相离,圆心C 到直线l 的距离为d ,则圆C 上一点 P 到直线l 的距离的取值范围是[d - r , d + r ].12. 在正三棱柱 ABC - A 1B 1C 1 中,AB = AA 1 = 1 ,点 P 满足 BP = λ BC + μ BB 1 ,其中λ ∈[0,1] ,μ ∈[0,1] ,则()A. 当λ = 1 时, △AB 1P 的周长为定值B. 当 μ = 1 时,三棱锥 P - A 1BC 的体积为定值C. 当λ = 1时,有且仅有一个点 P ,使得 A P ⊥ BP21D. 当 μ = 1 时,有且仅有一个点 P ,使得 AB ⊥ 平面 AB P21 1【答案】BD【解析】【分析】对于A ,由于等价向量关系,联系到一个三角形内,进而确定点的坐标; 对于B ,将 P 点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C ,考虑借助向量 平移将 P 点轨迹确定,进而考虑建立合适的直角坐标系来求解 P 点的个数;对于D ,考虑借助向量的平移将 P 点轨迹确定,进而考虑建立合适的直角坐标系来求解 P 点的个数.【详解】易知,点 P 在矩形 BCC 1B 1 内部(含边界).对于A ,当λ = 1 时, BP = BC + μ BB 1 =BC + μCC 1 ,即此时 P ∈ 线段CC 1 , △AB 1P 周长不是定值,故A 错误;AP = ⎛ - 3 = - 对于B ,当 μ = 1 时,BP = λ BC + BB 1 =BB 1 + λ B 1C 1 ,故此时 P 点轨迹为线段 B 1C 1 ,而B 1C 1 //BC ,B 1C 1 // 平面 A 1BC ,则有 P 到平面 A 1BC 的距离为定值,所以其体积为定值,故B 正确.对于C ,当λ = 1时, BP = 1BC + μ BB ,取 BC , BC 中点分别为Q , H ,则 BP = BQ + μQH ,所221 1 1以 P 点轨迹为线段QH ,不妨建系解决,建立空间直角坐标系如图,A ⎛ 3 , 0,1⎫ ,P (0, 0,μ ) ,B ⎛ 0, 1 , 0 ⎫, 1 2⎪ 2 ⎪ ⎝ ⎭⎝ ⎭则, 0, μ -1⎫ , BP = ⎛ 0, - 1 , μ ⎫, μ (μ -1) = 0 ,所以 μ = 0 或 μ = 1 .故 H ,Q 均满足,故 1 2⎪ 2 ⎪ ⎝ ⎭⎝ ⎭ C 错误;对于D ,当 μ = 1时, BP = λ BC + 1BB ,取 BB , CC 中点为 M , N . BP = BM + λ M N ,所以 P 点2 211 1轨迹为线段 MN .设 P ⎛ 0, y , 1 ⎫ ,因为 A ⎛ 3 ⎫ ⎛ ,0, 0,所以 AP = - 3 , y , 1 ⎫ , AB ⎛ 3 1 ⎫ , , -1 , 0 2 ⎪ 2 ⎪ 2 0 2 ⎪ 1 2 2 ⎪ ⎝ ⎭ ⎝ ⎭ 3 1 1 1⎝ ⎭ ⎝ ⎭所以 + y 0 - = 0 ⇒ y 0 = - ,此时 P 与N 重合,故D 正确. 4 2 2 2故选:BD .【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.三、填空题:本题共 4 小题,每小题 5 分,共 20 分.13. 已知函数 f ( x ) = x 3 (a ⋅ 2x - 2- x )是偶函数,则a = .【答案】1【解析】【分析】利用偶函数的定义可求参数a 的值.【详解】因为 f (x ) = x 3 (a ⋅ 2x - 2-x ) ,故 f (-x ) = -x 3 (a ⋅ 2-x - 2x ),因为 f ( x ) 为偶函数,故 f (-x ) = f ( x ) ,时 x 3 (a ⋅ 2x - 2-x ) = -x 3 (a ⋅ 2-x - 2x ),整理得到(a -1)(2x +2-x )=0 ,故 a = 1 , 故答案为:114. 已知O 为坐标原点,抛物线C : y 2 = 2 px ( p > 0 )的焦点为 F ,P 为C 上一点,PF 与 x 轴垂直,Q 为p p 1 x 轴上一点,且 PQ ⊥ OP ,若 FQ = 6 ,则C 的准线方程为.【答案】 x =- 32【解析】【分析】先用坐标表示 P ,Q ,再根据向量垂直坐标表示列方程,解得 p ,即得结果.【详解】不妨设P ( , p )∴Q (6 + 2 2uuur , 0), PQ = (6, - p ) 因为 PQ ⊥ OP ,所以 p ⨯ 6 - p 2 = 0 Q p > 0∴ p = 3∴ C 的准线方程为 x =- 32 2 故答案为: x =- 32【点睛】利用向量数量积处理垂直关系是本题关键. 15. 函数 f ( x ) = 2x -1 - 2 ln x 的最小值为 .【答案】1【解析】【分析】由解析式知 f (x ) 定义域为(0, +∞) ,讨论0 < x ≤ 1 、 1< x ≤ 1、 x > 1 ,并结合导数研究的单调22性,即可求 f (x ) 最小值.【详解】由题设知: f (x ) =| 2x -1| -2 ln x 定义域为(0, +∞) , ∴当0 < x ≤ 1时, f (x ) = 1- 2x - 2 ln x ,此时 f (x ) 单调递减;2当 1 < x ≤ 1时, f (x ) = 2x -1- 2 ln x ,有 f '(x ) = 2 - 2≤ 0 ,此时 f (x ) 单调递减;2x当 x > 1 时, f (x ) = 2x -1- 2 ln x ,有 f '(x ) = 2 - 2> 0 ,此时 f (x ) 单调递增;x又 f (x ) 在各分段的界点处连续,∴综上有: 0 < x ≤ 1时, f (x ) 单调递减, x > 1 时, f (x ) 单调递增; ∴ f (x ) ≥ f (1) = 1故答案为:1.16. 某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm ⨯12dm 的长方形纸,对折 1 次共可以得到10dm ⨯12dm , 20dm ⨯ 6dm 两种规格的图形,它们的面积之和S = 240dm 2 ,对折 2 次共可以得到5dm ⨯12dm ,10dm ⨯ 6dm , 20dm ⨯ 3dm 三种规格的图形,它们的面积之和 S 2 = 180dm 2 ,以此类推,则对折 4 次共可以得到不同规格图形的种数为;如果对折n 次,+ 120n 2n -1( ) ( ) 2 ( )那么∑S k = dm 2.k =1【答案】(1). 5(2).720 -15(3 + n ) 2n -4【解析】【分析】(1)按对折列举即可;(2)根据规律可得 S n ,再根据错位相减法得结果.【详解】(1)对折 4 次可得到如下规格: 5 dm ⨯12dm , 5 dm ⨯ 6dm , 5dm ⨯ 3dm , 10dm ⨯ 3dm ,4 2 220dm ⨯ 3dm ,共5 种;4(2)由题意可得S = 2 ⨯120 , S = 3⨯ 60 , S = 4 ⨯ 30 , S = 5⨯15 , , S 120n +1 = , 12120⨯ 2 120⨯ 3 120⨯ 43120(n +1) 4n2n -1设 S = + + +L +, 20 21 22 2n -1则 1S = 120⨯ 2 + 120 ⨯ 3 +120 n +1 + , 22122 2n60⎛1- 1 ⎫ 1 ⎛ 1 1 1 ⎫ 120 (n +1) 2n -1 ⎪ 120(n +1) 两式作差得 S = 240 +120 + + + n -1 ⎪ - = 240 + ⎝ ⎭ - 1 n 2 ⎝ 2 2 2 ⎭ 2120 120(n +1)120(n + 3) 1- 22 = 360 -- = 360 -, 2n -1 2n240(n + 3) 2n15(n + 3)因此, S = 720 -= 720 -. 2n15 n + 3 故答案为: 5 ; 720 -.2n -42n -4【点睛】方法点睛:数列求和 常用方法:(1) 对于等差等比数列,利用公式法可直接求解; (2) 对于{a n b n }结构,其中{a n } 是等差数列,{b n }是等比数列,用错位相减法求和; (3) 对于{a n + b n } 结构,利用分组求和法;(4) 对于⎧ 1 ⎫ 结构,其中{a } 是等差数列,公差为d (d ≠ 0) ,则1= 1 ⎛ 1 - 1 ⎫ ,利用裂 ⎨ ⎬na a⎪ ⎩ a n a n +1 ⎭nn +1d ⎝ a n a n +1 ⎭ n n项相消法求和.四、解答题:本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17. 已知数列{a } 满足a = 1 , a= ⎧a n +1, n 为奇数, n1n +1⎨a + 2, n 为偶数. ⎩ n(1) 记b n = a 2n ,写出b 1 , b 2 ,并求数列{b n } 的通项公式;(2) 求{a n }的前 20 项和.【答案】(1) b 1 = 2, b 2 = 5 ;(2) 300 .【解析】【分析】(1)根据题设中的递推关系可得b n +1 = b n + 3 ,从而可求{b n } 的通项.(2)根据题设中的递推关系可得{a n } 的前20 项和为S 20 可化为 S 20 = 2(b 1 + b 2 + + b 9 + b 10 ) -10 ,利用(1) 的结果可求 S 20 .【详解】(1)由题设可得b 1 = a 2 = a 1 +1 = 2, b 2 = a 4 = a 3 +1 = a 2 + 2 +1 = 5又 a 2k +2 = a 2k +1 +1, a 2k +1 = a 2k + 2 ,故 a 2k +2 = a 2k + 3 即b n +1 = b n + 3 即b n +1 - b n = 3 所以{b n }为等差数列,故b n = 2 + (n -1)⨯ 3 = 3n -1 .(2) 设{a n }的前20 项和为 S 20 ,则 S 20 = a 1 + a 2 + a 3 + + a 20 ,因为a 1 = a 2 -1, a 3 = a 4 -1,, a 19 = a 20 -1 ,所以S 20 = 2 (a 2 + a 4 + + a 18 + a 20 ) -10= 2(b + b ++ b + b) -10 = 2⨯⎛10⨯ 2 +9⨯10 ⨯ 3⎫-10 = 300 . 129102⎪ ⎝ ⎭【点睛】方法点睛:对于数列的交叉递推关系,我们一般利用已知的关系得到奇数项的递推关系或偶数项的递推关系,再结合已知数列的通项公式、求和公式等来求解问题.18. 某学校组织“一带一路”知识竞赛,有 A ,B 两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A 类问题中的每个问题回答正确得 20 分,否则得 0 分: B 类问题中的每个问题回答正确得 80 分,否则得 0 分,己知小明能正确回答 A 类问题的概率为 0.8,能正确7 回答 B 类问题的概率为 0.6,且能正确回答问题的概率与回答次序无关.(1) 若小明先回答 A 类问题,记 X 为小明的累计得分,求 X 的分布列; (2) 为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2) B 类. 【解析】【分析】(1)通过题意分析出小明累计得分 X 的所有可能取值,逐一求概率列分布列即可.(2)与(1)类似,找出先回答 B 类问题的数学期望,比较两个期望的大小即可. 【详解】(1)由题可知, X 的所有可能取值为0 , 20 ,100 .P ( X = 0) = 1- 0.8 = 0.2 ; P ( X = 20) = 0.8(1- 0.6) = 0.32 ; P ( X = 100) = 0.8⨯ 0.6 = 0.48 . 所以 X 的分布列为(2)由(1)知, E ( X ) = 0⨯ 0.2 + 20⨯ 0.32 +100 ⨯ 0.48 = 54.4 .若小明先回答 B 问题,记Y 为小明的累计得分,则Y 的所有可能取值为0 , 80 ,100 .P (Y = 0) = 1- 0.6 = 0.4 ; P (Y = 80) = 0.6 (1- 0.8) = 0.12 ; P ( X = 100) = 0.8⨯ 0.6 = 0.48 .所以 E (Y ) = 0⨯ 0.4 + 80 ⨯ 0.12 +100 ⨯ 0.48 =57.6 .因为54.4 < 57.6 ,所以小明应选择先回答 B 类问题.19. 记 ABC 是内角A , B , C 的对边分别为a , b , c .已知b 2 = ac ,点 D 在边 AC 上,BD sin ∠ABC = a sin C .(1) 证明: BD = b ;(2) 若 AD = 2DC ,求cos ∠ABC【答案】(1)证明见解析;(2)cos ∠ABC = . 12X 0 20100 P0.20.320.48c a c b b 【解析】【分析】(1)根据正弦定理的边角关系有 BD = ac ,结合已知即可证结论.b(2)由题设 BD = b , AD =2b , DC = b,应用余弦定理求cos ∠ADB 、cos ∠CDB ,又 3 32 b 4 11b 2∠ADB = π - ∠CDB ,可得2a + = ,结合已知及余弦定理即可求cos ∠ABC .a 2 3【详解】(1) 由题设, BD =a sin C ,由正弦定理知: =b sin C ,即= c , sin ∠ABC ∴ BD =ac,又b 2 = ac ,b∴ BD = b ,得证.(2) 由题意知: BD = b , AD =2b , DC = b , 3 3sin C sin ∠ABC sin ∠ABC b2 + 4b 2- 2 13b 2 - c 2 2+ b 2 - 2 10b 2 - a 2 ∴ cos ∠ADB = 9 = 9 ,同理cos ∠CDB = 9 = 9 , 2b ⋅ 2b 4b 2 2b ⋅ b2b 2 3 3 3 3∵ ∠ADB = π - ∠CDB ,13b 2 - 9 c 2 a 2 = - 10b 292 211b 2∴4b 22b 2,整理得2a + c =,又b 3 = ac ,332b 4 11b 2 4 2 2 4 a 21 a2 =3 ∴ 2a + = a 2 ,整理得6a 3-11a b + 3b = 0 ,解得 b 2 = 3 或 b 22 ,a 2 + c 2 -b 24a 2由余弦定理知: cos ∠ABC == -, 2ac3 2b 2当 a 2 = 1时, cos ∠ABC = 7 > 1不合题意;当 a 2 = 3 时, cos ∠ABC = 7 b 2 36 b 2 2 12 2 ;综上,cos ∠ABC =7.12【点睛】关键点点睛:第二问,根据余弦定理及∠ADB =π-∠CDB 得到a, b, c 的数量关系,结合已知条件及余弦定理求cos ∠ABC .20.如图,在三棱锥A -BCD 中,平面ABD ⊥平面BCD ,AB =AD ,O 为BD 的中点.(1)证明:OA ⊥CD ;(2)若OCD 是边长为1 的等边三角形,点E 在棱AD 上,DE = 2EA ,且二面角E -BC -D 的大小为45︒,求三棱锥A -BCD 的体积.【答案】(1)详见解析(2)36【解析】【分析】(1)根据面面垂直性质定理得AO⊥平面BCD,即可证得结果;(2)先作出二面角平面角,再求得高,最后根据体积公式得结果.【详解】(1)因为AB=AD,O 为BD 中点,所以AO⊥BD因为平面ABD 平面BCD =BD ,平面ABD⊥平面BCD,AO ⊂平面ABD,因此AO⊥平面BCD,因为CD ⊂平面BCD,所以AO⊥CD(2)作EF⊥BD 于F, 作FM⊥BC 于M,连FM因为AO⊥平面BCD,所以AO⊥BD, AO⊥CD所以EF⊥BD, EF⊥CD,BD ⋂CD =D ,因此EF⊥平面BCD,即EF⊥BC因为FM⊥BC,FM I EF =F ,所以BC⊥平面EFM,即BC⊥MF3 17 y则∠EMF 为二面角 E-BC-D 的平面角, ∠EMF = π4 因为 BO = OD , OCD 为正三角形,所以 OCD 为直角三角形 因为 BE = 2ED ,∴ FM = 1 BF = 1 (1+ 1) = 2223 3从而EF=FM= 2∴ AO = 13Q AO ⊥ 平面BCD,所以V = 1 AO ⋅ S3 ∆BCD= 1 ⨯1⨯ 1 ⨯1⨯ = 3 3 2 6【点睛】二面角的求法:一是定义法,二是三垂线定理法,三是垂面法,四是投影法. 21. 在平面直角坐标系 xOy 中,已知点 F 1 (- (1) 求C 的方程;17, 0) 、 F 2( 17, 0) MF 1- MF2= 2 ,点 M 的轨迹为C .(2) 设点T 在直线 x = 1上,过T 的两条直线分别交C 于A 、B 两点和 P ,Q 两点,且 TA ⋅ TB = TP ⋅ TQ ,2求直线 AB 的斜率与直线 PQ 的斜率之和.【答案】(1) x 2 2- = 1( x ≥ 1) ;(2) 0 . 16【解析】【分析】(1)利用双曲线的定义可知轨迹C 是以点 F 1 、 F 2 为左、右焦点双曲线的右支,求出a 、b 的值,即可得出轨迹C 的方程; (2)设点T⎛ 1 , t ⎫ ,设直线 AB 的方程为 y - t = k ⎛ x - 1 ⎫,设点 A ( x , y ) 、B (x , y ) ,联立直线 AB 与 2 ⎪ 1 2 ⎪1 12 2⎝ ⎭ ⎝ ⎭曲线C 的方程,列出韦达定理,求出 TA ⋅ TB 的表达式,设直线 PQ 的斜率为k 2 ,同理可得出 TP ⋅ TQ 的表达式,由 TA ⋅ TB = TP ⋅ TQ 化简可得k 1 + k 2 的值. 【详解】因为 MF 1 - MF 2 = 2 < F 1F 2 = 2 ,- 2 = ( > > ) = = y 1 2 1 2 2 所以,轨迹C 是以点 F 1 、 F 2 为左、右焦点的双曲线的右支,设轨迹C 的方程为 x a 2y 21 a 0, b 0 ,则2a2 ,可得 a 1 , b =b= 4 ,所以,轨迹C 的方程为 x 2 2-= 1( x ≥ 1) ;16(2)设点T ⎛ 1 , t ⎫,若过点T 的直线的斜率不存在,此时该直线与曲线C 无公共点,2 ⎪ ⎝ ⎭不妨直线 AB 的方程为 y - t = k ⎛ x - 1 ⎫,即 y = k x + t - 1 k ,1 2 ⎪12 1⎝ ⎭⎧ y = k x + t - 1 k 2 联立⎪ 1 2 1 ,消去 y 并整理可得(k 2 -16) x 2 + k (2t - k ) x + ⎛ t - 1 k ⎫ +16 = 0 ,⎨ ⎪⎩16x 2 - y 2 = 16 设点 A ( x , y ) 、 B ( x , y1 1 1) ,则 x > 1 且 x > 1. 1 ⎪ ⎝ ⎭ 1 1 2 2 1 2 22⎛ 1 ⎫2k 2- 2k t t - k ⎪ +16 由韦达定理可得 x 1 + x 2 = 1 1, k 2 -16 x 1 x 2 = ⎝ 2 1 ⎭, 1 k 2 -16x + x 1(t 2 +12)(1+ k 2) 所以, TA ⋅ TB = (1+ k 2 )⋅ x - ⋅ x - = (1+ k 2 )⋅⎛ x x - 1 2 + ⎫ = 1 ,1 1 21 12 2 4 ⎪ k 2 -16 ⎝ ⎭ 1(t 2 +12)(1+ k 2 )设直线 PQ 的斜率为k 2 ,同理可得 TP ⋅ TQ =2,k 2-16(t 2 +12)(1+ k 2 ) (t 2 +12)(1+ k 2 )因为 TA ⋅ TB = TP ⋅ TQ ,即1=k 2-16k 2-162,整理可得k 2 = k 2,12即(k 1 - k 2 )(k 1 + k 2 ) = 0 ,显然k 1 - k 2 ≠ 0 ,故k 1 + k 2 = 0 . 因此,直线 AB 与直线 PQ 的斜率之和为0 .【点睛】方法点睛:求定值问题常见的方法有两种:(1) 从特殊入手,求出定值,再证明这个值与变量无关;(2) 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22. 已知函数 f ( x ) = x (1- ln x ) .(1) 讨论 f( x ) 的单调性;1 2 1 2 2a ⎪b ⎪ (2) 设a , b 为两个不相等的正数,且b ln a - a ln b = a - b ,证明: 2 <1 + 1< e . a b【答案】(1) f ( x ) 的递增区间为(0,1) ,递减区间为(1, +∞) ;(2)证明见解析. 【解析】【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设 1 = x , 1 = x ,原不等式等价于2 < x + x < e ,前者可构建新函数,利用极值点偏移可证,后者a1 b2 1 2可设 x 2 = tx 1 ,从而把 x 1 + x 2 < e 转化为(t -1)ln (t +1) - t ln t < 0 在(1, +∞) 上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为(0, +∞ ) ,又 f '(x ) = 1- ln x -1 = -ln x , 当 x ∈(0,1)时, f '(x ) > 0 ,当 x ∈(1, +∞) 时, f '( x ) < 0 ,故 f (x ) 的递增区间为(0,1) ,递减区间为(1, +∞) . (2)因为b ln a - a ln b = a - b ,故b (ln a +1) = a (ln b +1) ,即ln a +1 = ln b +1, a b故 f ⎛ 1 ⎫ = f ⎛ 1 ⎫ ,⎝ ⎭⎝ ⎭设 1 = x , 1 = x ,由(1)可知不妨设0 < x < 1, x> 1.a1b21 2因为 x ∈(0,1)时, f (x ) = x (1- ln x ) > 0 , x ∈(e , +∞) 时, f ( x ) = x (1- ln x ) < 0 ,故1 < x 2 < e . 先证: x 1 + x 2 > 2 ,若 x 2 ≥ 2 , x 1 + x 2 > 2 必成立.若 x 2 < 2 , 要证: x 1 + x 2 > 2 ,即证 x 1 > 2 - x 2 ,而0 < 2 - x 2 < 1,故即证 f (x 1 ) > f (2 - x 2 ) ,即证: f ( x 2 ) > f (2 - x 2 ) ,其中1 < x 2 < 2 . 设 g (x ) = f ( x ) - f (2 - x ),1 < x < 2 , 则 g '(x ) = f '( x ) + f '(2 - x ) = -ln x - ln (2 - x ) = -ln ⎡⎣x (2 - x )⎤⎦ ,因为1 < x < 2 ,故0 < x (2 - x ) < 1,故-ln x (2 - x ) > 0 ,max 所以 g '(x ) > 0 ,故 g ( x ) 在(1, 2) 为增函数,所以 g ( x ) > g (1) = 0 , 故 f (x ) > f (2 - x ) ,即 f ( x 2 ) > f (2 - x 2 ) 成立,所以 x 1 + x 2 > 2 成立,综上, x 1 + x 2 > 2 成立. 设 x 2 = tx 1 ,则t > 1,结合ln a +1 = ln b +1 , 1 = x , 1 = x 可得: x (1- ln x ) = x (1- ln x ) ,a b a 1b 21 12 2即:1- ln x = t (1- ln t - ln x ) ,故ln x = t -1- t ln t ,1 1 1t -1要证: x 1 + x 2 < e ,即证(t +1) x 1 < e ,即证ln (t +1) + ln x 1 < 1 ,即证: ln (t +1)+ t -1- t ln t < 1 ,即证: (t -1)ln (t +1) - t ln t < 0 ,t -1令 S (t ) = (t -1)ln (t +1) - t ln t , t > 1 ,则 S '(t ) = ln (t +1) +t -1 -1- ln t = ln ⎛1+ 1 ⎫ - 2,t +1t ⎪t +1 ⎝ ⎭先证明一个不等式: ln (x +1) ≤ x . 设u (x ) = ln ( x +1) - x ,则u '( x ) = 1x +1 -1 = -x , x +1当-1 < x < 0 时, u '(x ) > 0 ;当 x > 0 时, u '( x ) < 0 , 故u ( x ) 在(-1, 0) 上为增函数,在(0, +∞) 上为减函数,故u ( x ) = u (0) = 0 ,故ln ( x +1) ≤ x 成立由上述不等式可得当t > 1时, ln ⎛1+1 ⎫ ≤ 1 < 2,故 S '(t ) < 0 恒成立, t ⎪t t +1 ⎝ ⎭故 S (t ) 在(1, +∞) 上为减函数,故 S (t ) < S (1) = 0 ,故(t -1)ln (t +1) - t ln t < 0 成立,即 x 1 + x 2 < e 成立.综上所述, 2 < 1 + 1< e .a b【点睛】方法点睛:极值点偏移问题,一般利用通过原函数的单调性,把与自变量有关的不等式问题转化与原函数的函数值有关的不等式问题,也可以引入第三个变量,把不等式的问题转化为与新引入变量有关的不等式问题.。
2021届高考数学一轮复习第一部分考点通关练第二章函数导数及其应用考点测试10对数与对数函数含解析人教B版
考点测试10 对数与对数函数高考概览高考在本考点的常考题型为选择题,分值5分,中、低等难度考纲研读1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念及其单调性,掌握对数函数图象通过的特殊点 3.体会对数函数是一类重要的函数模型4.了解指数函数y =a x(a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数一、基础小题1.计算log 29×log 34+2log 510+log 50.25=( ) A .0 B .2 C .4 D .6答案 D解析 由对数的运算公式和换底公式可得log 29×log 34+2log 510+log 50.25=2log 23×log 24log 23+log 5(102×0.25)=4+2=6.故选D.2.设函数f (x )=⎩⎪⎨⎪⎧4x-1,x ≤0,log 2x ,x >0,则f ⎝ ⎛⎭⎪⎫12=( )A .-1B .1C .-12D .22答案 A解析 f ⎝ ⎛⎭⎪⎫12=log 212=-1,故选A. 3.函数f (x )=lg (x +1)+lg (x -1)( ) A .是奇函数 B .是偶函数C .是非奇非偶函数D .既是奇函数又是偶函数答案 C解析 函数f (x )的定义域为{x |x >1},定义域不关于原点对称,故该函数是非奇非偶函数,故选C.4.若lg 2,lg (2x +1),lg (2x+5)成等差数列,则x 的值等于( ) A .1 B .0或18C .18D .log 23答案 D解析 由题意知lg 2+lg (2x+5)=2lg (2x+1),2(2x+5)=(2x+1)2,(2x )2-9=0,2x=3,x =log 23.故选D.5.已知a ,b ,c 分别是方程2x =-x ,log 2x =-x ,log 2x =x 的实数解,则( ) A .b <c <a B .a <b <c C .a <c <b D .c <b <a答案 B解析 由2a=-a >0,得a <0,由log 2b =-b <0,得0<b <1,由log 2c =c >0,得c >1,综上可知,a <b <c ,故选B.6.设m =log 0.30.6,n =12log 20.6,则( )A .m -n >m +n >mnB .m -n >mn >m +nC .m +n >m -n >mnD .mn >m -n >m +n答案 A解析 m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,mn <0.1m +1n =log 0.60.3+log 0.64=log 0.61.2<log 0.60.6=1,即m +nmn<1,故m +n >mn .又(m -n )-(m +n )=-2n >0,所以m -n >m +n .故m -n >m +n >mn ,所以选A.7.已知log 23=a ,log 37=b ,则log 4256=( ) A.3+ab1+a +abB .3a +ba +a 2+bC.3+b1+a +bD .1+a +ab 3+ab答案 A解析 log 4256=log 256log 242=3+log 271+log 23+log 27=3+log 23·log 371+log 23+log 23·log 37=3+ab1+a +ab.故选A.8.已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,则a 的取值范围是( )A .[1,2)B .[1,+∞)C .[2,+∞)D .(-∞,-2]∪[1,+∞)答案 B解析 函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3x 2-1,x ≥2,若f (a )≥1,可得⎩⎪⎨⎪⎧a <2,e a -1≥1或⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,解⎩⎪⎨⎪⎧a <2,e a -1≥1,可得1≤a <2;解⎩⎪⎨⎪⎧a ≥2,log 3a 2-1≥1,可得a ≥2.综上a ≥1.故选B.9.设x ,y ,z 均为大于1的实数,且log 2x =log 3y =log 5z ,则x 3,y 5,z 2中最小的是( ) A .z 2B .y 5C .x 3D .三个数相等答案 C解析 因为x ,y ,z 均为大于1的实数,所以log 2x =log 3y =log 5z >0,不妨设log 2x =log 3y =log 5z =t ,则t >0,x =2t,y =3t,z =5t,所以x 3=23t=8t ,y 5=35t =243t ,z 2=52t =25t,又y =x t 在(0,+∞)上单调递增,故x 3最小.故选C.10.计算:912-log95=________.答案 35解析 912-log 95=912×9-log 95=3×15=35.11.已知2x =72y=A ,且1x +1y=2,则A 的值是________.答案 7 2解析 由2x =72y=A 得x =log 2A ,y =12log 7A ,则1x +1y =1log 2A +2log 7A =log A 2+2log A 7=log A 98=2,A 2=98.又A >0,故A =98=7 2.12.已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.答案 9解析 因为f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),所以-log 3m =log 3n ,所以mn =1.因为f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,所以-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理.若log 3n =2,得n =9,则m =19.此时-log 3m 2=4>2,不满足题意.综上可得n m=9.二、高考小题13.(2019·天津高考)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案 A解析 因为y =log 5x 是增函数,所以a =log 52<log 55=0.5.因为y =log 0.5x 是减函数,所以b =log 0.50.2>log 0.50.5=1.因为y =0.5x 是减函数,所以0.5=0.51<c =0.50.2<0.50=1,即0.5<c <1.所以a <c <b .故选A.14.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( )A .1010.1B .10.1C .lg 10.1D .10-10.1答案 A解析 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.故选A.15.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( )A .y =ln (1-x )B .y =ln (2-x )C .y =ln (1+x )D .y =ln (2+x )答案 B解析 函数y =ln x 过定点(1,0),(1,0)关于直线x =1对称的点还是(1,0),只有y =ln (2-x )过此点,故选B.16.(2016·全国卷Ⅰ)若a >b >1,0<c <1,则( ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c解析 解法一:由a >b >1,0<c <1,知a c>b c,A 错误;∵0<c <1,∴-1<c -1<0,∴y =x c -1在x ∈(0,+∞)上是减函数,∴bc -1>ac -1,又ab >0,∴ab ·bc -1>ab ·ac -1,即ab c >ba c,B 错误;易知y =log c x 是减函数,∴0>log c b >log c a ,∴log b c <log a c ,D 错误;由log b c <log a c <0,得-log b c >-log a c >0,又a >b >1>0,∴-a log b c >-b log a c >0,∴a log b c <b log a c ,故选C.解法二:依题意,不妨取a =10,b =2,c =12.易验证A ,B ,D 均是错误的,只有C 正确.17.(2018·全国卷Ⅰ)已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a =________. 答案 -7解析 根据题意,有f (3)=log 2(9+a )=1,可得9+a =2,所以a =-7.18.(2016·浙江高考)已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.答案 4 2解析 令log a b =t ,∵a >b >1,∴0<t <1,由log a b +log b a =52得,t +1t =52,解得t =12或t =2(舍去),即log a b =12,∴b =a ,又a b =b a ,∴a a =(a )a ,即a a =a a 2,亦即a =a2,解得a =4,∴b =2.三、模拟小题19.(2020·湖南湘潭高三阶段测试)如果2log a (P -2Q )=log a P +log a Q ,那么P Q的值为( )A.14 B .4 C .6 D .4或1答案 B解析 由题意知P >0,Q >0,P >2Q .由2log a (P -2Q )=log a P +log a Q 可得log a (P -2Q )2=log a (PQ ),所以(P -2Q )2=PQ ,可化为P 2-5PQ +4Q 2=0,又因为Q >0,所以⎝ ⎛⎭⎪⎫P Q 2-5P Q+4=0,解得P Q =4或P Q=1(舍去).故选B.20.(2019·广州市高三年级调研)已知实数a =2ln 2,b =2+2ln 2,c =(ln 2)2,则a ,b ,c 的大小关系是( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析 因为ln 2=log e 2,所以0<ln 2<1,所以c =(ln 2)2<1,而20<2ln 2<21,即1<a <2,b =2+2ln 2>2,所以c <a <b .故选B.21.(2019·大庆模拟)设函数f (x )=x 3+log 2(x +x 2+1),则对任意实数a ,b ,若a +b ≥0,则( )A .f (a )+f (b )≤0B .f (a )+f (b )≥0C .f (a )-f (b )≤0D .f (a )-f (b )≥0答案 B解析 设f (x )=x 3+log 2(x +x 2+1),其定义域为R ,f (-x )=-x 3+log 2(-x +x 2+1)=-x 3-log 2(x +x 2+1)=-f (x ),所以f (x )是奇函数,且在[0,+∞)上单调递增,故f (x )在R 上单调递增,那么a +b ≥0,即a ≥-b 时,f (a )≥f (-b ),得f (a )≥-f (b ),可得f (a )+f (b )≥0.故选B.22.(2019·安庆二模)若函数f (x )=log a x (a >0且a ≠1)的定义域与值域都是[m ,n ](m <n ),则a 的取值范围是( )A .(1,+∞)B .(e ,+∞)C .(1,e)D .答案 D解析 函数f (x )=log a x 的定义域与值域相同等价于方程log a x =x 有两个不同的实数解.因为log a x =x ⇔ln x ln a =x ⇔ln a =ln x x ,所以问题等价于直线y =ln a 与函数y =ln x x 的图象有两个交点.作函数y =ln x x 的图象,如图所示.根据图象可知,当0<ln a <1e 时,即1<a <e 1e 时,直线y =ln a 与函数y =ln xx的图象有两个交点.故选D.23.(2019·陕西咸阳高三联考)已知函数f (x )=x ·ln 1+x 1-x ,a =f ⎝ ⎛⎭⎪⎫-1π,b =f ⎝ ⎛⎭⎪⎫1e ,c=f ⎝ ⎛⎭⎪⎫14,则以下关系成立的是( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b答案 A解析 因为f (x )=x ·ln 1+x1-x=x [ln (1+x )-ln (1-x )],所以f (-x )=(-x )[ln (1-x )-ln (1+x )]=x [ln (1+x )-ln (1-x )]=f (x ),所以f (x )为偶函数,所以a =f ⎝ ⎛⎭⎪⎫-1π=f ⎝ ⎛⎭⎪⎫1π.当0<x <1时,易知f (x )为增函数.又0<14<1π<1e <1,所以f ⎝ ⎛⎭⎪⎫14<f ⎝ ⎛⎭⎪⎫1π<f ⎝ ⎛⎭⎪⎫1e ,即c <a <b ,故选A.24.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c 是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________. 答案 (16,36)解析 作出函数f (x )的图象如图所示.当x >4时,由f (x )=3-x =0,得x =3,得x =9,若a ,b ,c 互不相等,不妨设a <b <c ,因为f (a )=f (b )=f (c ),所以由图象可知0<a <2<b <4,4<c <9,由f (a )=f (b ),得1-log 2a =log 2b -1,即log 2a +log 2b =2,即log 2(ab )=2,则ab =4,所以abc =4c ,因为4<c <9,所以16<4c <36,即16<abc <36,所以abc 的取值范围是(16,36).一、高考大题本考点在近三年高考中未涉及此题型. 二、模拟大题1.(2020·湖北黄冈摸底)设f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2. (1)求a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解 (1)∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2.由⎩⎪⎨⎪⎧1+x >0,3-x >0,得-1<x <3,∴函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x ) =log 2[(1+x )(3-x )] =log 2[-(x -1)2+4],∴当x ∈[0,1]时,f (x )是增函数;当x ∈⎝ ⎛⎦⎥⎤1,32时,f (x )是减函数, 故函数f (x )在⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=2. 2.(2019·福建漳州模拟)已知函数f (x )=-x +log 21-x1+x .(1)求f ⎝⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019的值;(2)当x ∈(-a ,a ],其中a ∈(0,1),a 是常数时,函数f (x )是否存在最小值?若存在,求出f (x )的最小值;若不存在,请说明理由.解 (1)∵f (x )+f (-x )=log 21-x 1+x +log 21+x 1-x =log 21=0,∴f ⎝ ⎛⎭⎪⎫12019+f ⎝ ⎛⎭⎪⎫-12019=0.(2)函数f (x )存在最小值.f (x )的定义域为(-1,1), ∵f (x )=-x +log 2⎝⎛⎭⎪⎫-1+2x +1, 当x ∈(-1,1)时,f (x )为减函数,∴当a ∈(0,1),x ∈(-a ,a ]时,f (x )单调递减. ∴当x =a 时,f (x )min =-a +log 21-a1+a .3.(2019·渭南模拟)已知函数f (x )=lnx +1x -1. (1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)对于x ∈[2,6],f (x )=ln x +1x -1>ln mx -17-x恒成立,求实数m 的取值范围. 解 (1)由x +1x -1>0,解得x <-1或x >1, ∴函数f (x )的定义域为(-∞,-1)∪(1,+∞), 当x ∈(-∞,-1)∪(1,+∞)时,f (-x )=ln-x +1-x -1=ln x -1x +1=ln ⎝⎛⎭⎪⎫x +1x -1-1=-ln x +1x -1=-f (x ). ∴f (x )=lnx +1x -1是奇函数.(2)由于x ∈[2,6]时,f (x )=ln x +1x -1>ln mx -17-x恒成立,∴x +1x -1>m x -17-x>0恒成立, ∵x ∈[2,6],∴0<m <(x +1)(7-x )在x ∈[2,6]上恒成立. 令g (x )=(x +1)(7-x )=-(x -3)2+16,x ∈[2,6],由二次函数的性质可知,当x ∈[2,3]时函数g (x )单调递增,x ∈[3,6]时函数g (x )单调递减,∴当x ∈[2,6]时,g (x )min =g (6)=7, ∴0<m <7.故实数m 的取值范围为(0,7).4.(2019·大庆模拟)已知函数f (x )=lg ⎝⎛⎭⎪⎫x +ax-2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解 (1)当a >1时,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时,g ′(x )=1-a x 2=x 2-ax2>0恒成立,∴g (x )=x +a x-2在[2,+∞)上是增函数,∴f (x )=lg ⎝ ⎛⎭⎪⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0, 即x +ax-2>1对x ∈[2,+∞)恒成立, ∴a >3x -x 2,令h (x )=3x -x 2,则h (x )=3x -x 2=-⎝ ⎛⎭⎪⎫x -322+94,又h (x )在x ∈[2,+∞)上是减函数, ∴h (x )max =h (2)=2,∴a的取值范围为(2,+∞).。
2021年全国高考乙卷数学(理)试题(解析版)
,所以 .
故选:D
6.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()
A. 60种B. 120种C. 240种D. 480种
【答案】C
【解析】
【分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.
当 时,由 , ,画出 的图象如下图所示:
由图可知 , ,故 .
当 时,由 时, ,画出 的图象如下图所示:
由图可知 , ,故 .【解析】
【分析】先考虑函数的零点情况,注意零点左右附近函数值是否编号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到 所满足的关系,由此确定正确选项.
【详解】若 ,则 为单调函数,无极值点,不符合题意,故 .
有 和 两个不同零点,且在 左右附近是不变号,在 左右附近是变号的.依题意,为函数的极大值点, 在 左右附近都是小于零的.
【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.
7.把函数 图像上所有点的横坐标缩短到原来的 倍,纵坐标不变,再把所得曲线向右平移 个单位长度,得到函数 的图像,则 ()
A. B.
C. D.
【答案】B
【解析】
【分析】解法一:从函数 的图象出发,按照已知的变换顺序,逐次变换,得到 ,即得 ,再利用换元思想求得 的解析表达式;
8.在区间 与 中各随机取1个数,则两数之和大于 的概率为()
A. B. C. D.
【答案】B
【解析】
【分析】设从区间 中随机取出的数分别为 ,则实验的所有结果构成区域为 ,设事件 表示两数之和大于 ,则构成的区域为 ,分别求出 对应的区域面积,根据几何概型的的概率公式即可解出.
2021年普通高等学校招生全国统一考试数学试题理(全国卷1,含答案)
2021年普通高等学校招生全国统一考试数学试题 理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设1i2i 1iz -=++,则||z = A .0B .12C .1D .22.已知集合{}220A x x x =-->,则A =RA .{}12x x -<< B .{}12x x -≤≤ C .}{}{|1|2x x x x <->D .}{}{|1|2x x x x ≤-≥3.某地域通过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地域农村的经济收入转变情况,统计了该地域新农村建设前后农村的经济收入组成比例,取得如下饼图:建设前经济收入组成比例 建设后经济收入构成比例则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12-B .10-C .10D .125.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .28.设抛物线C :y 2=4x 的核心为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .89.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆组成,三个半圆的直径别离为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部份记为II ,其余部份记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则A .p 1=p 2B .p 1=p 3C .p 2=p 3D .p 1=p 2+p 311.已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右核心,过F 的直线与C 的两条渐近线的交点别离为M 、N .若△OMN 为直角三角形,则|MN |= A .32B .3 C. D .412.已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为 ABCD二、填空题:本题共4小题,每小题5分,共20分。
2021届全国一卷高考理科数学全真模拟卷(一)含答案解析
2021届高考全国一卷理科数学全真模拟(一)含答案解析卷I (选择题)一、 选择题 (本题共计 14 小题 ,共计70分 , )1. (5分) 已知集合A ={x|x ≤−12},B ={x|1<(12)x<2},则(∁R A)∩B =( ) A.{x|−12≤x <0} B.{x|−12<x <0} C.{x|−1≤x <−12} D.{x|−1<x <−12}2. (5分) 已知复数z =(1+i)21−i,则|z|=( )A.1B.√2C.√3D.√53. (5分) 设a =log 2018√2019,b =log 2019√2018,c =201812019,则a ,b ,c 的大小关系是( )A.a >b >cB.a >c >bC.c >a >bD.c >b >a4. (5分) 用0.618法选取试点,实验区间为[2, 4],若第一个试点x 1处的结果比x 2处好,x 1>x 2,则第三个试点应选取在( ) A.2.236 B.3.764 C.3.528 D.3.9255. (5分) 函数f (x )=|x|−ln |x|x的图象大致为( )A. B.C. D.6. (5分) 用a 表示掷一枚质地均匀的骰子向上的点数,则方程3x 2+2ax +3=0有两个不等实根的概率为( ) A.23B.12C.13D.167. (5分) 在Rt △ABC 中,点D 为斜边BC 的中点,|AB →|=8,|AC →|=6,则AD →⋅AB →=( ) A.48 B.40C.32D.168. (5分) 若执行如图所示的程序框图,则输出的m =A.8B.11C.10D.99. (5分) 已知{a n }为等差数列,其前n 项和为S n ,且2a 1+3a 3=S 6,则以下结论正确是( )A.a10=0B.S10最小C.S7=S12D.S19=010. (5分)已知点M(x0, y0)(x0y0≠0)是椭圆C:x24+y2=1上的一点F1,F2是椭圆C的左、右焦点,MA是∠F1MF2的平分线若F1B⊥MA,垂足为B,则点B到坐标原点O的距离d的取值范围为()A.(0, 1)B.(0, 32) C.(0, √3) D.(0, 2)11. (5分)关于函数f(x)=cos|x|+|cos x|有下述四个结论:①f(x)是偶函数;②f(x)在区间(−π2,0)上单调递增;③f(x)在[−π,π]上有4个零点;④f(x)的最大值为2.其中所有正确的编号是( )A.①②④B.②④C.①④D.①③12. (5分)在长方体ABCD−A1B1C1D1中,AB=2BC=2,若此长方体的八个顶点都在体积为9π2的球面上.则此长方体的表面积为( )A.16B.18C.20D.2213. (5分)我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,用现代式子表示即为:在△ABC中,角A,B,C所对的边分别为a,b,c,则△ABC的面积S=√14[(ab)2−(a2+b2−c22)2].根据此公式,若a cos B+(b+3c)cos A=0,且a2−b2−c2=2,则△ABC的面积为()A.√2B.2√2C.√6D.2√314. (5分)已知△ABC的三个内角A,B,C所对的边分别为a,b,c,且满足asin A=2,b(tan A+tan B)= 2c tan B,则△ABC面积最大值为()A.√63B.2√33C.√64D.3√34卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分,)15. 若直线y=kx+b是曲线y=ln x的切线,也是曲线y=e x−2的切线,则b=________.16. 已知等比数列{a n }的前n 项和为S n ,若S 4、S 2、S 3成等差数列,且a 2+a 3+a 4=−18,若S n ≥2016,则n 的取值范围为________.17. 某工厂在实验阶段大量生产一种零件,这种零件有A ,B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为12,至少一项技术指标达标的概率为34.按质量检验规定:两项技术指标都达标的零件为合格品,任意依次抽取该种零件4个,设ζ表示其中合格品的个数,则E ζ________.18. 已知双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 上存在两点A ,B 关于直线 y =x −8 对称,且线段AB 的中点在直线 x −2y −14=0 上,则双曲线的离心率为________. 三、 解答题 (本题共计 5 小题 ,每题 12 分 ,共计60分 , )19. 如图,在三棱柱ABC −A 1B 1C 1中,侧棱CC 1⊥底面ABC ,且CC 1=2AC =2BC ,AC ⊥BC ,D 是AB 的中点,点M 在侧棱CC 1上运动.(1)当M 是棱CC 1的中点时,求证:CD // 平面MAB 1;(2)当直线AM 与平面ABC 所成的角的正切值为32时,求二面角A −MB 1−C 1的余弦值.20. 已知抛物线C:x 2=2y ,过点A (0,1)且互相垂直的两条动直线l 1,l 2与抛物线C 分别交于P ,Q 和M ,N . (1)求四边形MPNQ 面积的取值范围;(2)记线段PQ 和MN 的中点分别为E ,F ,求证:直线EF 恒过定点.21. 已知f(x)=x −12(ln x)2−k ln x −1(k ∈R). (1)若f(x)是(0,+∞)上的增函数,求k 的取值范围;(2)若函数f(x)有两个极值点,判断函数f(x)零点的个数.22. 某地农民种植A 种蔬菜,每亩每年生产成本为7000元,A 种蔬菜每亩产量及价格受天气、市场双重影响,预计明年雨水正常的概率为23,雨水偏少的概率为 13.若雨水正常,A 种蔬菜每亩产量为2000公斤,单价为6元/公斤的概率为14,单价为3元/公斤的概率为34; 若雨水偏少,A 种蔬菜每亩产量为1500公斤,单价为6元/公斤的概率为 23,单价为3元/公斤的概率为13. (1)计算明年农民种植A 种蔬菜不亏本的概率;(2)在政府引导下,计划明年采取“公司加农户,订单农业”的生产模式,某公司未来不增加农民生产成本,给农民投资建立大棚,建立大棚后,产量不受天气影响,因此每亩产量为2500公斤,农民生产的A 种蔬菜全部由公司收购,为保证农民的每亩预期收入增加1000元,收购价格至少为多少?23. 某县一中计划把一块边长为20米的等边三角形ABC 的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D 在AB 上,E 在AC 上.(1)设AD =x(x ≥10),ED =y ,试用x 表示y 的函数关系式;(2)如果DE 是灌溉输水管道的位置,为了节约,则希望它最短,DE 的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE 的位置又应该在哪里?说明理由.参考答案与试题解析 2020年7月10日高中数学一、 选择题 (本题共计 14 小题 ,共计70分 ) 1.【解答】解:因为B ={x|1<(12)x<2},所以B ={x|−1<x <0}, 因为集合A ={x|x ≤−12}, 所以∁R A ={x|x >−12},(∁R A)∩B ={x|−12<x <0}. 故选B . 2. 【解答】解:复数z =(1+i)21−i=2i1−i=2i(1+i)(1−i)(1+i)=i −1, 则|z|=√12+(−1)2=√2. 故选B . 3. 【解答】解:∵ c =201812019>20180=1,1=log 20182018>a =log 2018√2019=12log 20182019>12,b =log 2019√2018=12log 20192018<12,∴ a ,b ,c 的大小关系为c >a >b . 故选C . 4.【解答】解:由已知试验范围为[2, 4],可得区间长度为2,利用0.618法选取试点:x 1=2+0.618×(4−2)=3.236,x 2=2+4−3.236=2.764,∵x1处的结果比x2处好,则x3为4−0.618×(4−3.236)=3.528故选C.5.【解答】解:由函数解析式得:x≠0,函数f(x)是偶函数,排除C,D;x>0时,f(x)=x−ln xx2,f′(x)=1−1x+2ln xx3,且f′(1)=0,所以f(x)的极值点为1,故排除A.故选B.6.【解答】解:Δ=(2a)2−4×3×3>0,解得a>3或a<−3(舍),∴ a=4,5,6,∴ P=36=12.故选B.7.【解答】此题暂无解答8.【解答】此题暂无解答9.【解答】解:设等差数列的公差为,,,化为:,即,给出下列结论:.,正确;.,可能大于,也可能小于,因此不正确;.,正确;.,正确.故选,,.10.【解答】方法一:由题意可知B为F1N的中点,连接OB,所以|OB|=12|F2N|=12(|MN|−|MF2|),由|MN|=|MF1|,所以|OB|=12(|MN|−|MF2|)=12(|MF1|−|MF2|)<12|F1F2|=√3,所以0<|OB|<√3;方法二:当点M在椭圆与y轴交点处时,点B与原点O重合,此时|OB|取最小值0.当点P在椭圆与x轴交点处时,点M与焦点F1重合,此时|OB|取最大值√3.因为x0y0≠0,所以|OB|的取值范围是(0, √3).11.【解答】解:①f(−x)=cos|−x|+|cos(−x)|=cos|x|+|cos x|=f(x),∴f(x)是偶函数,故①正确;②当x∈(−π2,0)时,f(x)=cos x+cos x=2cos x,此时f(x)在(−π2,0)单调递增,故②正确;③当x∈[π2,π]时,f(x)=cos x−cos x=0,此时有无数个零点,故③错误;④当x>0时,f(x)=cos x+|cos x|≤|cos x|+|cos x|≤2,当x=π2+2kπ(k≥0,k∈Z)等号成立,又∵f(x)是偶函数,∴f(x)的最大值为2,故④正确.故选A.12.【解答】解:由球体积为9π2知,球半径R=32,又(2R)2=AB2+BC2+AA12,所以AA1=2,所以长方体的表面积为2×(2×2+2×1+2×1)=16. 故选A.13.【解答】解:由a cos B+(b+3c)cos A=0及正弦定理,可得sin A cos B+cos A sin B+3sin C cos A=0,即sin(A+B)+3sin C cos A=0,即sin C(1+3cos A)=0,因为sin C≠0,所以cos A=−13,由余弦定理可得a2−b2−c2=−2bc cos A=23bc=2,解得bc=3,由△ABC的面积公式可得,S=√14[(bc)2−(c2+b2−a22)2]=√14[32−(−1)2]=√2.14.【解答】解:∵asin A=2,∴由正弦定理asin A =bsin B=csin C,可得b=2sin B,c=2sin C,∵b(tan A+tan B)=2c tan B,可得b(sin Acos A +sin Bcos B)=2c⋅sin Bcos B,∴由正弦定理可得:sin B(sin Acos A +sin Bcos B)=2sin C⋅sin Bcos B,整理可得:sin B⋅sin A cos B+sin B cos Acos A cos B =2sin C⋅sin Bcos B,∴sin B⋅sin Ccos A cos B =2sin C⋅sin Bcos B,∵sin C≠0,sin B≠0,cos B≠0,∴解得cos A=12,由A∈(0, π),可得A=π3,∴S△ABC=12bc sin A=√34bc=√34×2sin B×2sin C=√3sin B sin C=√3sin B sin(2π3−B)=√3sin B(√32cos B+12sin B)=√32sin(2B−π6)+√34,∵B∈(0,2π3),∴2B−π6∈(−π6, 7π6),∴S△ABC=√32sin(2B−π6)+√34≤3√34,当且仅当2B−π6=π2,即B=π3时等号成立,∴△ABC面积最大值为3√34.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)15.设y=kx+b与y=e x−2和y=ln x的切点分别为(x1, e x1−2)、(x2, ln x2);由导数的几何意义可得k=e x1−2=1x2,曲线y=e x−2在(x1, e x1−2)处的切线方程为y−e x1−2=e x1−2(x−x1),即y=e x1−2⋅x+(1−x1)e x1−2,曲线y=ln x在点(x2, ln x2)处的切线方程为y−ln x2=1x2(x−x2),即y=1x2x+ln x2−1,则{e x1−2=1x2(1−x1)e x1−2=ln x2−1,∴(1x2−1)(ln x2−1)=0,解得x2=1,或x2=e.当x2=1时,切线方程为y=x−1,即b=−1,当x2=e时,切线方程为y=xe,b=0.∴b=−1或0.16.【解答】解:设等比数列的公比为,∵、、成等差数列,∴,∴,又,∴,解得,∵,∴,化为,当为偶数时,不成立,舍去.当为奇数时,化为,解得:.∴的取值范围为大于等于的奇数.故答案为:大于等于的奇数.17.【解答】解:由题得至少一项技术指标达标的概率为34,故不合格的概率为14,又因为有且仅有一项技术指标达标的概率为12,所以合格品的概率为P=1−12−14=14.故Eζ=4×14=1. 故答案为:1. 18.【解答】解:设,,线段的中点的坐标为,则有由②①得,.∵,∴,∴,∵,∴,∵,∴∵点在直线上,∴,∴,,∴,,即双曲线的离心率为.故答案为:.三、解答题(本题共计 5 小题,每题 12 分,共计60分)19.【解答】(1)证明:取线段AB的中点E,连接DE,EM.∵AD=DB,AE=EB,∴DE // BB1,ED=1BB1,2BB1.又M为CC1的中点,∴CM // BB1,CM=12∴四边形CDEM是平行四边形.∴CD // EM,又EM⊂MAB1,CD⊄MAB1∴CD // 平面MAB1;(2)解:∵CA,CB,CC1两两垂直,∴ 以C 为原点,CA ,CB ,CC 1所在直线分别为x 、y 、z 轴建立空间直角坐标系.∵ 在三棱柱ABC −A 1B 1C 1中,侧棱CC 1⊥底面ABC ,可得∠MAC 为直线AM 与平面ABC 所成的角,设AC =1,tan ∠MAC =32,得CM =32∴ C(0, 0, 0),A(1, 0, 0),B(0, 1, 0),B 1(0, 1, 2),M(0, 0, 32),AM →=(−1,0,32),AB 1→=(−1,1,2) 设AMB 1的法向量为n →=(x,y,z),{AM →⋅n →=−x +32z =0AB 1→⋅n →=−x +y +2z =0 可取n →=(3,−1,2)又平面B 1C 1CB 的法向量为CA →=(1,0,0).cos <n →,CA →>CA →⋅n→|n →||CA →|=3√1414. ∵ 二面角A −MB 1−C 1为钝角,∴ 二面角A −MB 1−C 1的余弦值为−3√1414.20.【解答】(1)解:由题意可知:两直线l 1,l 2的斜率一定存在,且不等于0,设l 1:y =kx +1(k ≠0),P (x 1,y 1),Q (x 2,y 2) ,则 l 2:y =−1k x +1(k ≠0), 联立直线l 1与抛物线的方程得:{y =kx +1,x 2=2y ,⇒x 2−2kx −2=0,其中Δ=4k 2+8>0 ,由韦达定理得:{x 1+x 2=2k ,x 1x 2=−2,由上可得|PQ|=√1+k 2|x 1−x 2|=√(1+k 2)(8+4k 2) ,同理 |MN|=√(1+1k 2)(8+4k 2), 则四边形MPNQ 面积S =12|PQ||MN|=12√(2+k 2+1k 2)(80+32k 2+32k 2), 令k 2+1k 2=t ≥2,则S =12√(2+t)(80+32t)=√8t 2+36t +40, ∴ 当且仅当t =2 ,即 k =±1 时 ,S 取得最小值12, 且当 t →+∞ 时,S →+∞,故四边形MPNQ 面积的范围是[12,+∞).(2)证明:由(1)有x 1+x 2=2k ,y 1+y 2=2k 2+2,∴ PQ 的中点E 的坐标为(k,k 2+1) ,同理点 F 的坐标为 (−1k ,1k 2+1),于是,直线EF 的斜率为:k EF =k 2+1−(1k 2+1)k+1k =k 2−1k 2k+1k =k −1k , 则直线EF 的方程为:y −(k 2+1)=(k −1k )(x −k)⇒y =(k −1k )x +2,∴ 直线EF 恒过定点(0,2).21.【解答】解:(1)由f(x)=x−12(ln x)2−k ln x−1得:f′(x)=x−ln x−kx,由题意知f′(x)≥0恒成立,即x−ln x−k≥0,设F(x)=x−ln x−k,F′(x)=1−1x,x∈(0,1)时,F′(x)<0,F(x)递减,x∈(1,+∞)时,F′(x)>0,F(x)递增;故F(x)min=F(1)=1−k≥0,即k≤1,故k的取值范围是(−∞,1].(2)当k≤1时,f(x)单调,无极值;当k>1时,F(1)=1−k<0,一方面,F(e−k)=e−k>0,且F(x)在(0,1)递减,所以F(x)在区间(e−k,1)有一个零点.另一方面F(e k)=e k−2k,设g(k)=e k−2k(k>1),则g′(k)=e k−2>0,从而g(k)在(1,+∞)递增,则g(k)>g(1)=e−2>0,即F(e k)>0,又F(x)在(1,+∞)递增,所以F(x)在区间(1,e k)有一个零点. 因此,当k>1时,f′(x)在(e−k,1)和(1,e k)各有一个零点,将这两个零点记为x1,x2(x1<1<x2),当x∈(0,x1)时,F(x)>0,即f′(x)>0;当x∈(x1,x2)时,F(x)<0,即f′(x)<0;当x∈(x2,+∞)时F(x)>0,即f′(x)>0;从而f(x)在(0,x1)递增,当(x1,x2)递减,在(x2,+∞)递增;于是x1是函数的极大值点,x2是函数的极小值点.下面证明:f(x1)>0,f(x2)<0由f′(x1)=0得x1−ln x1−k=0,即k=x1−ln x1,由f(x1)=x1−12(ln x1)2−k ln x1−1得f(x1)=x1−12(ln x1)2−(x1−ln x1)ln x1−1=x1+12(ln x1)2−x1ln x1−1,令m(x)=x+12(ln x)2−x ln x−1,则m′(x)=(1−x)ln xx,①当x∈(0,1)时,m′(x)<0,m(x)递减,m(x)>m(1)=0,x1<1,故f(x1)>0;②当x∈(1,+∞)时m′(x)<0,m(x)递减,则m(x)<m(1)=0,x2>1,故f(x2)<0;一方面,因为f(e−2k)=e−2k−1<0,又f(x1)>0,且f(x)在(0,x1)递增,所以f(x)在(e−2k,x1)上有一个零点,即f(x)在(0,x1)上有一个零点.另一方面,根据e x>1+x(x>0)得e k>1+k,则有:f(e4k)=e4k−12k2−1>(1+k)4−12k2−1=k4+4k(k−34)2+74k>0又f(x2)<0,且f(x)在(x2,+∞)递增,故f(x)在(x2,e4k)上有一个零点,即f(x)在(x2,+∞)上有一个零点.又f(1)=0,故f(x)有三个零点.22.【解答】解:(1)只有当价格为6元/公斤时,农民种植A种蔬菜才不亏本所以农民种植A种蔬菜不亏本的概率是P=23×14+13×23=718,(2)按原来模式种植,设农民种植A种蔬菜每亩收入为ξ元,则ξ可能取值为:5000,2000,−1000,−2500.P(ξ=5000)=23×14=16,P(ξ=2000)=13×23=29,P(ξ=−1000)=23×34=12,P(ξ=−2500)=13×13=19,Eξ=5000×16+2000×29−1000×12−2500×19=500,设收购价格为a元/公斤,农民每亩预期收入增加1000元,则2500a≥700+1500,即a≥3.4,所以收购价格至少为3.4元/公斤,23.【解答】解:(1)∵的边长是米,在上,则,,∴,故,在三角形中,由余弦定理得:,;(2)若作为输水管道,则需求的最小值,∴,当且仅当即时“”成立.。
四川省成都市2021届高三高考一诊数学(理科)试卷 含解析
2021年四川省成都市高三高考数学一诊试卷(理科)一、选择题(共12小题).1.已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}2.已知i是虚数单位,设z=,则复数+2对应的点位于复平面()A.第一象限B.第二象限C.第三象限D.第四象限3.抛物线y=2x2的焦点坐标为()A.(1,0)B.(,0)C.(0,)D.(0,)4.已知a=log0.22,b=0.32,c=20.3,则()A.c<a<b B.a<c<b C.a<b<c D.b<c<a5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n6.若tan(α+)=﹣3,则sin2α=()A.B.1C.2D.﹣7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=﹣2x B.y=4x﹣2C.y=2x D.y=﹣4x+28.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则此函数的解析式为()A.y=sin(2x+)B.y=sin(2x+)C.y=sin(4x+)D.y=sin(4x+)9.下列命题中的真命题有()A.已知a,b实数,则“”是“log3a>log3b”的充分而不必要条件B.已知命题p:∀x>0,总有(x+1)e x>1,则¬p:∃x0≤0,使得(x0+1)e x≤1C.设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的充要条件D.“∃x0∈R,>x02”的否定为“∀x∈R,2x≤x2”10.如图为某几何体的三视图,已知正视图为一正方形和其内切圆组成,圆半径为1,则该几何体表面积为()A.16﹣2πB.16+πC.16﹣πD.16+2π11.自古以来,人们对于崇山峻岭都心存敬畏,同时感慨大自然的鬼斧神工,一代诗圣杜甫曾赋诗《望岳》:“岱宗夫如何?齐鲁青未了.造化钟神秀,阴阳割昏晓.荡胸生曾云,决毗入归鸟.会当凌绝顶,一览众山小.”然而,随着技术手段的发展,山高路远便不再人们出行的阻碍,伟大领袖毛主席曾作词:“一桥飞架南北,天堑变通途”.在科技腾飞的当下,路桥建设部门仍然潜心研究如何缩短空间距离方便出行,如港珠澳跨海大桥等.如图为某工程队将A到D修建一条隧道,测量员测得一些数据如图所示(A,B,C,D在同一水平面内),则A,D间的距离为()A.km B.km C.km D.km12.已知双曲线=1,O为坐标原点,P,Q为双曲线上两动点,且OP⊥OQ,则△POQ 面积的最小值为()A.20B.15C.30D.25二、填空题(共3小题).13.已知向量=(2,1),=(﹣1,k),•(2﹣)=0,则k等于.14.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为.7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.15.的展开式中x2y2项的系数是三、解答题(共1小题,满分0分)16.函数f(x)=e x﹣1﹣e﹣x+1+a sinπx(x∈R,a>0)存在唯一的零点,则实数a的取值范围是.三、解答题17.已知等比数列{a n}的公比q>1,且a1,a3的等差中项为10,a2=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和S n.18.为了认真贯彻落实北京市教委关于做好中小学生延期开学期间“停课不停学”工作要求,各校以教师线上指导帮助和学生居家自主学习相结合的教学模式积极开展工作,并鼓励学生积极开展锻炼身体和课外阅读活动.为了解学生居家自主学习和锻炼身体的情况,从某校高三年级随机抽取了100名学生,获得了他们一天中用于居家自主学习和锻炼身体的总时间分别在[2,3),[3,4),[4,5),…,[8,9),[9,10)(单位:小时)的数据,整理得到的数据绘制成频率分布直方图(如图).(Ⅰ)由图中数据求a的值,并估计从该校高三年级中随机抽取一名学生,这名学生该天居家自主学习和锻炼身体的总时间在[5,6)的概率;(Ⅱ)为了进一步了解学生该天锻炼身体的情况,现从抽取的100名学生该天居家自主学习和锻炼身体的总时间在[2,3)和[8,9)的人中任选3人,求其中在[8,9)的人数X的分布列和数学期望;(Ⅲ)假设同一时间段中的每个数据可用该时间段的中点值代替,试估计样本中的100名学生该天居家自主学习和锻炼身体总时间的平均数在哪个时间段?(只需写出结论)19.如图,四棱锥P﹣ABCD中,AB∥DC,∠ADC=,AB=AD=CD=2,PD=PB=,PD⊥BC.(1)求证:平面PBD⊥平面PBC;(2)在线段PC上存在点M,使得,求平面ABM与平面PBD所成锐二面角的大小.20.已知F1,F2分别为椭圆C1:=1(a>b>0),且焦距是2,离心率是.(1)求椭圆C1的方程;(2)不平行于坐标轴的直线与圆x2+(y+1)2=1相切,且交椭圆C1于A,B,若椭圆C1上一点P满足,求实数λ2的取值范围.21.已知函数f(x)=2x3+3(1+m)x2+6mx(x∈R).(1)讨论函数f(x)的单调性;(2)若f(1)=5,函数g(x)=a(lnx+1)﹣≤0在(1,+∞)上恒成立,求整数a的最大值.[选修4-4,坐标系与参数方程]22.已知在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线l的普通方程及曲线C的直角坐标方程;(2)已知P(2,1),直线l与曲线C相交于A,B两点,求的值.[选修4-5,不等式选讲]23.设函数f(x)=|x+|+|x﹣a|.(1)若f(2)>a+1,求a的取值范围;(2)若对∀a∈(0,+∞),f(x)≥m恒成立,求实数m的取值范围.参考答案一、选择题(共12小题).1.已知集合A={x|x2﹣x﹣2≤0},集合B为整数集,则A∩B=()A.{﹣1,0,1,2}B.{﹣2,﹣1,0,1}C.{0,1}D.{﹣1,0}解:A={x|﹣1≤x≤2},B=Z,∴A∩B={﹣1,0,1,2}.故选:A.2.已知i是虚数单位,设z=,则复数+2对应的点位于复平面()A.第一象限B.第二象限C.第三象限D.第四象限解:∵z==,∴,则+2对应点为(2,1),在第一象限.故选:A.3.抛物线y=2x2的焦点坐标为()A.(1,0)B.(,0)C.(0,)D.(0,)解:整理抛物线方程得x2=y∴焦点在y轴,p=∴焦点坐标为(0,)故选:D.4.已知a=log0.22,b=0.32,c=20.3,则()A.c<a<b B.a<c<b C.a<b<c D.b<c<a 解:∵a=log0.22<log0.21<0,∴a<0,b=0.32=0.09,∵c=20.3>20=1,∴c>1,∴c>b>a,故选:C.5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n解:A、m,n平行于同一个平面,故m,n可能相交,可能平行,也可能是异面直线,故A 错误;B、α,β垂直于同一个平面γ,故α,β可能相交,可能平行,故B错误;C、α,β平行于同一条直线m,故α,β可能相交,可能平行,故C错误;D、垂直于同一个平面的两条直线平行,故D正确.故选:D.6.若tan(α+)=﹣3,则sin2α=()A.B.1C.2D.﹣解:由tan(α+)=﹣3,得=﹣3,解得tanα=2,所以sin2α====.故选:A.7.设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.y=﹣2x B.y=4x﹣2C.y=2x D.y=﹣4x+2解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,f(1)=2;曲线y=f(x)在点(1,2)处的切线的斜率为:4,则曲线y=f(x)在点(1,2)处的切线方程为:y﹣2=4(x﹣1).即y=4x﹣2.故选:B.8.已知函数y=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则此函数的解析式为()A.y=sin(2x+)B.y=sin(2x+)C.y=sin(4x+)D.y=sin(4x+)解:由函数的图象可得A=1,==﹣,∴ω=2.再根据五点法作图可得2×+φ=π,求得φ=,故有函数y=sin(2x+),故选:B.9.下列命题中的真命题有()A.已知a,b实数,则“”是“log3a>log3b”的充分而不必要条件B.已知命题p:∀x>0,总有(x+1)e x>1,则¬p:∃x0≤0,使得(x0+1)e x≤1C.设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的充要条件D.“∃x0∈R,>x02”的否定为“∀x∈R,2x≤x2”解:对于A:已知a,b实数,则“”是“log3a>log3b”的必要不充分条件,故A错误;对于B:已知命题p:∀x>0,总有(x+1)e x>1,则¬p:∃x0>0,使得(x0+1),故B错误;对于C:设α,β是两个不同的平面,m是直线且m⊂α.“m∥β”是“α∥β”的必要不充分条件,故C错误;对于D:“∃x0∈R,>x02”的否定为“∀x∈R,2x≤x2”,故D正确.故选:D.10.如图为某几何体的三视图,已知正视图为一正方形和其内切圆组成,圆半径为1,则该几何体表面积为()A.16﹣2πB.16+πC.16﹣πD.16+2π解:根据几何体的三视图转换为直观图为:该几何体为一个长为2,宽为2,高为1的长方体,挖去一个半径为1的半球.故几何体的表面积为S=4×2×1+2×2+4﹣π•12+2•π•12=16+π.故选:B.11.自古以来,人们对于崇山峻岭都心存敬畏,同时感慨大自然的鬼斧神工,一代诗圣杜甫曾赋诗《望岳》:“岱宗夫如何?齐鲁青未了.造化钟神秀,阴阳割昏晓.荡胸生曾云,决毗入归鸟.会当凌绝顶,一览众山小.”然而,随着技术手段的发展,山高路远便不再人们出行的阻碍,伟大领袖毛主席曾作词:“一桥飞架南北,天堑变通途”.在科技腾飞的当下,路桥建设部门仍然潜心研究如何缩短空间距离方便出行,如港珠澳跨海大桥等.如图为某工程队将A到D修建一条隧道,测量员测得一些数据如图所示(A,B,C,D在同一水平面内),则A,D间的距离为()A.km B.km C.km D.km 解:如图所示,连接BD,在△BCD中,∵BD2=BC2+CD2﹣2BC•CD•cos∠BCD=9+25﹣2×3×5×(﹣)=49,∴BD=7,又∵,即,解得:sin∠DBC=,∵∠ABD=∠ABC﹣∠DBC,∴cos∠ABD=cos(90°﹣∠DBC)=sin∠DBC=,在△ABD中,AD2=AB2+BD2﹣2AB•BD•cos∠ABD=16+49﹣2×4×7×=65﹣12,即A,D间的距离为km,故选:A.12.已知双曲线=1,O为坐标原点,P,Q为双曲线上两动点,且OP⊥OQ,则△POQ 面积的最小值为()A.20B.15C.30D.25解:设直线OP的方程为y=kx,k>0,且P在第一象限内,代入双曲线=1,可得P(,k),由OP⊥OQ,可将上面中的k换为﹣,可得Q(k,﹣),所以△POQ面积S=|OP|•|OQ|=•••=10(1+k2)≥10(1+k2)•=20,当且仅当5﹣4k2=5k2﹣4,即k=1时,上式取得等号,所以△POQ面积的最小值为20.故选:A.二、填空题13.已知向量=(2,1),=(﹣1,k),•(2﹣)=0,则k等于12.解:∵=(2,1),=(﹣1,k),∴2﹣=2(2,1)﹣(﹣1,k)=(5,2﹣k),又∵•(2﹣)=0,∴2×5+1×(2﹣k)=0,解得k=12故答案为:1214.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为01.7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481.解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01;其中第二个和第四个都是02,重复,舍去;可知对应的数值为08,02,14,07,01,04;则第5个个体的编号为01.故答案为:01.15.的展开式中x2y2项的系数是420解:∵表示8个因式(1+2x﹣)的乘积,要得到含x2y2的项,需其中有2个因式取2x,2个因式取﹣,其余的因式都取1.故展开式中x2y2项的系数为•22•••=420,故答案为:420.三、解答题(共1小题,满分0分)16.函数f(x)=e x﹣1﹣e﹣x+1+a sinπx(x∈R,a>0)存在唯一的零点,则实数a的取值范围是(0,].解:函数f(x)=e x﹣1﹣e﹣x+1+a sinπx(x∈R,a>0)存在唯一的零点,等价于函数φ(x)=a sinπx与函数g(x)=e1﹣x﹣e x﹣1只有唯一一个交点,∵φ(1)=0,g(1)=0,∴函数φ(x)=a sinπx与函数g(x)=e1﹣x﹣e x﹣1唯一交点为(1,0),又∵g′(x)=﹣e1﹣x﹣e x﹣1,且e1﹣x>0,e x﹣1>0,∴g′(x)=﹣e1﹣x﹣e x﹣1在R上恒小于零,即g(x)=e1﹣x﹣e x﹣1在R上为单调递减函数,又∵φ(x)=a sinπx(a>0)是最小正周期为2,最大值为a的正弦函数,∴可得函数φ(x)=a sinπx与函数g(x)=e1﹣x﹣e x﹣1的大致图象如图:∴要使函数φ(x)=a sinπx与函数g(x)=e1﹣x﹣e x﹣1只有唯一一个交点,则φ′(1)≥g′(1),∵φ′(1)=πa cosπ=﹣πa,g′(1)=﹣e1﹣1﹣e1﹣1=﹣2,∴﹣πa≥﹣2,解得a≤,又∵a>0,∴实数a的范围为(0,].故答案为:(0,].三、解答题17.已知等比数列{a n}的公比q>1,且a1,a3的等差中项为10,a2=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设,求数列{b n}的前n项和S n.解:(Ⅰ)由题意可得:,∴2q2﹣5q+2=0,∵q>1,∴,∴数列{a n}的通项公式为.(Ⅱ),∴,=,上述两式相减可得∴=.18.为了认真贯彻落实北京市教委关于做好中小学生延期开学期间“停课不停学”工作要求,各校以教师线上指导帮助和学生居家自主学习相结合的教学模式积极开展工作,并鼓励学生积极开展锻炼身体和课外阅读活动.为了解学生居家自主学习和锻炼身体的情况,从某校高三年级随机抽取了100名学生,获得了他们一天中用于居家自主学习和锻炼身体的总时间分别在[2,3),[3,4),[4,5),…,[8,9),[9,10)(单位:小时)的数据,整理得到的数据绘制成频率分布直方图(如图).(Ⅰ)由图中数据求a的值,并估计从该校高三年级中随机抽取一名学生,这名学生该天居家自主学习和锻炼身体的总时间在[5,6)的概率;(Ⅱ)为了进一步了解学生该天锻炼身体的情况,现从抽取的100名学生该天居家自主学习和锻炼身体的总时间在[2,3)和[8,9)的人中任选3人,求其中在[8,9)的人数X的分布列和数学期望;(Ⅲ)假设同一时间段中的每个数据可用该时间段的中点值代替,试估计样本中的100名学生该天居家自主学习和锻炼身体总时间的平均数在哪个时间段?(只需写出结论)解:(Ⅰ)因为(0.05+0.1+0.18+a+0.32+0.1+0.03+0.02)×1=1,所以a=0.2.因为0.2×1×100=20,所以该天居家自主学习和锻炼身体总时间在[5,6)的学生有20人.所以从该校高三年级中随机抽取一名学生,这名学生该天居家自主学习和锻炼身体总时间在[5,6)的概率为.(Ⅱ)由图中数据可知,该天居家自主学习和锻炼身体总时间在[2,3)和[8,9)的人分别为5人和3人.所以X的所有可能取值为0,1,2,3.P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=.所以X的分布列为:X0123P所以数学期望E(X)=.(Ⅲ)样本中的100名学生该天居家自主学习和锻炼身体总时间的平均数在[5,6).19.如图,四棱锥P﹣ABCD中,AB∥DC,∠ADC=,AB=AD=CD=2,PD=PB=,PD⊥BC.(1)求证:平面PBD⊥平面PBC;(2)在线段PC上存在点M,使得,求平面ABM与平面PBD所成锐二面角的大小.【解答】(1)证明:因为四边形ABCD是直角梯形,且AB∥DC,∠ADC=,AB=AD =2,所以BD=,又CD=4,∠BDC=45°,由余弦定理可得,BC=,所以CD2=BD2+BC2,故BC⊥BD,又因为BC⊥PD,PD∩BD=D,PD,BD⊂平面PBD,所以BC⊥平面PBD,又因为BC⊂平面PBC,所以平面PBD⊥平面PBC;(2)设E为BD的中点,连结PE,因为PB=PD=,所以PE⊥BD,PE=2,由(1)可得平面ABCD⊥平面PBD,平面ABCD∩平面PBD=BD,所以PE⊥平面ABCD,以点A为坐标原点,建立空间直角坐标系如图所示,则A(0,0,0),B(0,2,0),C(2,4,0),D(2,0,0),P(1,1,2),因为,所以,所以,平面PBD的一个法向量为,设平面ABM的法向量为,因为,,则有,即,令x=1,则y=0,z=﹣1,故,所以,故平面ABM与平面PBD所成锐二面角的大小为.20.已知F1,F2分别为椭圆C1:=1(a>b>0),且焦距是2,离心率是.(1)求椭圆C1的方程;(2)不平行于坐标轴的直线与圆x2+(y+1)2=1相切,且交椭圆C1于A,B,若椭圆C1上一点P满足,求实数λ2的取值范围.解:(1)由已知可得2c=2,且,所以a=2,c=1,则b2=a2﹣c2=3,所以椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),P(x0,y0),由,则x1+x2=λx0,y1+y2=λy0,且…①又因为直线y=k(x+t),(kt≠0)与圆相切,所以,即k=)…②联立方程,消去y整理可得:(4+3k2)x2+6k2tx+3k2t2﹣12=0,所以x,所以y,所以P(﹣),代入①得,②代入③得,t≠±1,t≠0,因为(),()2++1≠3,所以λ2∈(0,.21.已知函数f(x)=2x3+3(1+m)x2+6mx(x∈R).(1)讨论函数f(x)的单调性;(2)若f(1)=5,函数g(x)=a(lnx+1)﹣≤0在(1,+∞)上恒成立,求整数a的最大值.解:(1)f′(x)=6x2+6(1+m)x+6m=6(x+1)(x+m),①当m=1时,f′(x)≥0,f(x)在R上单调递增;②当m>1时,﹣m<﹣1,令f'(x)=0⇒x=﹣m,或x=﹣1,则有f′(x)>0⇒x<﹣m或x>﹣1,此时函数f(x)为单调递增;f′(x)<0⇒﹣m<x <﹣1,此时函数f(x)单调递减;③当m<1时,﹣m>﹣1,f'(x)=0⇒x=﹣m,或x=﹣1,则有f′(x)>0⇒x<﹣1或x>﹣m,此时函数f(x)为单调递增;f′(x)<0⇒﹣1<x <﹣m,此时函数f(x)单调递减;综上,m=1时,f(x)在R上单调递增;m>1时,f(x)在(﹣∞,﹣m)和(﹣1,+∞)上单调递增,在(﹣m,﹣1)上单调递减;m<1时,f(x)在(﹣∞,﹣1)和(﹣m,+∞)上单调递增,在(﹣1,﹣m)上单调递减.(2)由f(1)=2+3(1+m)+6m=5得,m=0,所以f(x)=2x3+3x2,又因为当x∈(1,+∞)时,lnx+1>0,所以g(x)=a(lnx+1)﹣≤0在(1,+∞)上恒成立,即在(1,+∞)上恒成立,此时,令h(x)=(x∈(1,+∞)),则有a≤h(x)min,∵=,令F(x)=2lnx﹣(x>1),则有F'(x)=>0,即得F(x)在(1,+∞)上单调递增,又因为F(2)=2ln2﹣<0,F(e)=2﹣>0,故可得h'(x)=0在(1,+∞)上有且只有一个实根x0,且2<x0<e,此时,所以当1<x<x0时,h'(x)<0,此时函数h(x)单调递减,当x>x0时,h'(x)>0,此时函数h(x)单调递增,因此可得h(x)min=h(x0)==2x0<2e.从而可得a<2x0<2e,所以:当a=5时,不等式g(x)≤0不恒成立;当a=4时,不等式g(x)≤0恒成立;故有实数a的最大值为4.[选修4-4,坐标系与参数方程]22.已知在平面直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线l的普通方程及曲线C的直角坐标方程;(2)已知P(2,1),直线l与曲线C相交于A,B两点,求的值.解:(1)由(t为参数),消去参数t,可得直线l的普通方程为x+y﹣3=0,由,即,又x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为;(2)将直线l的参数方程化为,代入代入曲线C的直角坐标方程,得,>0,<0,∴===.[选修4-5,不等式选讲]23.设函数f(x)=|x+|+|x﹣a|.(1)若f(2)>a+1,求a的取值范围;(2)若对∀a∈(0,+∞),f(x)≥m恒成立,求实数m的取值范围.解:(1)函数f(x)=|x+|+|x﹣a|,又f(2)>a+1,可得|2+|+|2﹣a|>a+1,等价为或或或,解得a≤﹣或﹣<a<0或0<a<或a∈∅,则a的取值范围为(﹣∞,0)∪(0,);(2)对∀a∈(0,+∞),f(x)≥m恒成立,可得m≤f(x)min,由f(x)=|x+|+|x﹣a|≥|x++a﹣x|=|a+|=a+≥2,当且仅当﹣1≤x≤1时,上式取得等号,则m≤2,即m的取值范围是(﹣∞,2].。
2021年普通高等学校招生全国统一考试理科数学(乙卷)(附答案解析)
=
1
(m
>
0)
的一条渐近线为
√ 3x +
my
=
0,
则
C
的焦距为
m
14. 已知向量 a = (1, 3), b = (3, 4), 若 (a − λb) ⊥ b, 则 λ =
.
15.
记
△ABC
的内角
A,
B,
C
的对边分别为
a,
b,
c,
面积为
√ 3,
B
=
60◦,
a2
+
c2
=
3ac,
则
b
=
. .
16. 以图 ① 为正视图, 在图 ②③④⑤ 中选两个分别作为侧视图和俯视图, 组成某个三棱锥的三视图, 则所
4.
设函数
f (x)
=
1
−
x ,
则下列函数中为奇函数的是
(
).
1+x
A: f (x − 1) − 1
B: f (x − 1) + 1
C: f (x + 1) − 1
D: f (x + 1) + 1
答案:B.
解析:f (x)
=
−1
+
x
2 +
1
关于
(−1,
−1)
中心对称.
向右 1 个单位, 向上 1 个单位后关于 (0, 0) 中心对称. 所以 y = f (x − 1) + 1 为奇函数.
A:
表高 × 表距 表目距的差
+
表高
B:
表高 × 表距 表目距的差
−
2020-2021学年最新高考总复习数学(理)高三考前最后一卷及答案解析一
2017-最新度下学期高三最后一考高三数学(理)试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}1,1M =-,120N xx ⎧⎫=-<⎨⎬⎩⎭,则下列结论正确的是( ) A .N M ⊆ B .N M =∅I C .M N ⊆ D .M N =U R 【命题意图】本题主要考查集合运算及分式不等式的解法,其中解不等式120x-<易忽略x 的取值为负值的情况. 【答案】C .【解析】∵1212000x x x x--<⇒>⇒<或12x >,∴()1,0,2N ⎛⎫=-∞+∞ ⎪⎝⎭U ,又∵{1,1}M =-,∴M N ⊆,故选C.2.若复数z 满足()1i 1i i z -=-+,则z 的实部为( )A .121 C.1 D.12【命题意图】本题主要考查复数的有关概念及复数的运算,属基础题.【答案】A 【解析】由()1i 1i i z -=-+=i ,得)()()()i 1i i 1i1i 1i z +==--+=11i 22+,所以z 的实部为12,故选A .3. 若()(),,,A a b B c d 是()ln f x x =图象上不同两点,则下列各点一定在()f x 图象上的是(A.(),a c b d ++B.()a c bd +,C.(),ac b d +D.(),ac bd 【命题意图】本题主要考查对数的运算法则及分析问题解决问题的能力.【答案】C 【解析】因为()(),,,A a b B c d 在()ln f x x =图象上,所以ln b a = ,ln ,d c =所以ln ln ln b d a c ac +=+=,因此(),ac b d +在()ln f x x =图象上,故选C . 4. “牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )【命题意图】本题将三视图与我国古代数学成就有机结合在一起,主要考查三视图的画法及空间想象能力.【答案】B 【解析】由直观图可知俯视图应为正方形,排除A ,C ,又上半部分相邻两曲面的交线看得见,在俯视图中应为实线,故选B.5. 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( ) A .-2B .-4C .-6D .-8答案 B 解析 将圆的方程化为标准方程为(x +1)2+(y -1)2=2-a ,所以圆心为(-1,1),半径r =2-a ,圆心到直线x +y +2=0的距离d =|-1+1+2|2=2,故r 2-d 2=4,即2-a -2=4,所以a =-4,故选B.6.某射击手射击一次击中目标的概率是0.7,连续两次均击中目标的的概率是0.4,已知某次射中,则随后一次射中的概率是( ) A .25 B .47 C .67D . 710 【命题意图】本题主要考查条件概率的计算及学生对概率模型的识别.【答案】B 【解析】设某次射中目标为事件A ,下一次射中为事件B ,则()0.7P A =,()P AB =0.4,则已知某 次射中,则随后一次射中的概率是()()()4/7P AB P B A P A ==.7.已知f (x ) =A sin(x ωϕ+)(A >0,ω>0,0πϕ<<),其导函数()f x '的图象如图所示,则()πf 的值为( )A. 3B. 2 C .23 D . 22 【命题意图】本题在知识点交汇处命题,主要考查三角函数的图像、三角函数求值及三角函数的导函数,意在考查识图能力及分析问题解决问题的能力. 【答案】D 【解析】()()cos f x A x ωωϕ'=+,由图像可得2π3ππ14222ωω⎛⎫=-⇒= ⎪⎝⎭,3π22f ⎛⎫'=- ⎪⎝⎭,可得13πππ224ϕϕ⨯+=⇒=,由24A A ω=⇒=,所以()π4sin 24x f x ⎛⎫=+ ⎪⎝⎭,()πf =3π4sin42. 8. 如下图所示的程序框图,其作用是输入x 的值,输出相应的y 值,则满足输出的值与输入的值是互为相反数的x 的个数为( ) A .0 B .1 C .2 D .3【命题意图】本题主要考查学生对程序框图的理解,及分段函数求值问题,意在考查分类讨论思想.【答案】A 【解析】由题意可得如下混合组:①21350x x x ≤⎧⎨++=⎩ ,②15230x x <≤⎧⎨-=⎩ ,③25log 0x x x >⎧⎨+=⎩,①②③均无解,故选A. 9. 直线:l 1y kx =-与曲线:C ()22430x y x y +-+=有且仅有2个公共点,则实数k 的取值范围是( )A .40,3⎛⎫ ⎪⎝⎭B .40,3⎛⎤ ⎥⎝⎦ C .14,1,33⎧⎫⎨⎬⎩⎭ D .1,13⎧⎫⎨⎬⎩⎭【命题意图】本题主要考查直线与圆的位置关系,意在考查数形结合思想.【答案】C 【解析】如图所示,直线:l 1y kx =-过点()0,1A -,曲线C 表示y 轴及圆22430x y x +-+=,其中圆心坐标为2,01r =(),,直线l 与曲线C 有且仅有2个公共点,如图,则l 过B ,C 或与圆相切,0(1)10(1),230310AB Ac k k ----====--,直线:l 1y kx =-与圆相切时,403k =或,0k =时:l 1y kx =-与曲线C 只有一个公共点,所以直线:l 1y kx =-与曲线:C ()22430x y x y +-+=有且仅有2个公共点,则实数k 的取值范围是14,1,33⎧⎫⎨⎬⎩⎭.故选C.10. 若函数2(2)()m xf x x m-=+的图象如图所示,则m 的范围为( )A .)1,(--∞B .)2,1(-C .)2,0(D .)2,1(【命题意图】本题考查函数的图像、导数的应用等基础知识,意在考查转化与化归的数学思想和逻辑思维能力.【答案】D 【解析】根据图象可知,函数图象过原点,即()00f =,所以0m ≠.当0x >时,()0f x >,所以20m ->,即2m <;函数()f x 在[]1,1-是单调递增的,所以()0f x '>在[]1,1-恒成立,()()()()()()()2222222222()0m x m x m x m x m f x xm xm -+----'==>++,Q 20m -<,∴只需要20x m -<在[]1,1-上恒成立,∴()2max0x m-<,∴1m >,综上所述:12m <<,故选D .11. 在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算7×8时,左手伸出2根手指,右手伸出3根手指,两只手伸出手指数的和为5,未伸出手指数的积为6,则7×8=10×5+6=56.计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A. 1,2 B. 1,3C. 4,2 D. 4,3解:要计算a ×b ,左手应伸出(a ﹣5)个手指,未伸出的手指数为5﹣(a ﹣5)=10﹣a ;右手应伸出(b ﹣5)个手指,未伸出的手指数为5﹣(b ﹣5)=10﹣b 两手伸出的手指数的和为(a ﹣5)+(b ﹣5)=a+b ﹣10,未伸出的手指数的积为(10﹣a )×(10﹣b )=100﹣10a ﹣10b+a ×b根据题中的规则,a ×b 的结果为10×(a+b ﹣10)+(100﹣10a ﹣10b+a ×b )而10×(a+b ﹣10)+(100﹣10a ﹣10b+a ×b )=10a+10b ﹣100+100﹣10a ﹣10b+a ×b=a ×b 所以用题中给出的规则计算a ×b 是正确的。
2021届高三数学(文理通用)一轮复习题型专题训练:幂函数(一)(含解析)
《幂函数》(一)考查内容:幂函数的定义、定义域、值域,函数图像等一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知幂函数()y f x =的图象经过点1,93⎛⎫ ⎪⎝⎭,则此幂函数的解析式为( ) A .()2f x x -=B .()2f x x =C .()2x f x =D .()2xf x -=2.已知幂函数()y f x =的图像经过点(2,4),则f 的值为( )A .1B .2C .3D .43.若12()(lg 1)m f x m x -=+为幂函数,则(3)f =( )A .9B .19CD 4.已知幂函数()()37m f x x m N -=∈的图象关于y 轴对称,且与x 轴、y 轴均无交点,则m 的值为( ) A .1- B .0C .1D .25.设函数()223()1m m f x m m x +-=--是幂函数,且当(0,)x ∈+∞,()f x 单调递增,则m 的值为( ) A .2-B .2-或1C .2D .2或1-6.已知幂函数1()(21)a g x a x +=-的图象过函数1()(0,1)2x bf x m m m -=->≠且的图象所经过的定点,则b 的值等于( )A .12±B .2±C .2D .2±7.5个幂函数:①2y x;②45y x =;③54y x =;④23y x =;⑤45y x-=.其中定义域为R 的是( ) A .只有①②B .只有②③C .只有②④D .只有④⑤8.设11,0,,1,2,32n ⎧⎫∈-⎨⎬⎩⎭,则使得()n f x x =的定义域为R 且()f x 为奇函数的所有n 值的个数为( ) A .1B .2C .3D .49.下列命题中正确的是( )A .当0α=时,函数y x α=的图象是一条直线B .幂函数的图象都经过(0,0),(1,1) 两点C .幂函数的图象不可能出现在第三象限D .图象不经过点(1,1)-的幂函数,一定不是偶函数 10.以下函数12y x =,2y x ,23y x =,1y x -=中,值域为[0,)+∞的函数共( )个 A .1B .2C .3D .411.已知幂函数n y x =在第一象限内的图象如图所示.若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C ,2C ,3C ,4C 对应的n 的值依次为( )A .11,2,2,22-- B .112,,2,22-- C .112,,,222--D .11,2,,222--12.若幂函数mn y x =(*,m n ∈N ,且m 、n 互素)的图像如图所示,则下列说法中正确的是( )A .m 、n 是奇数且1mn< B .m 是偶数,n 是奇数,且1m n> C .m 是偶数,n 是奇数,且1m n< D .m 、n 是偶数,且1m n> 二.填空题13.若幂函数f (x )的图象经过点(4,14),则()21log 32f -的值等于________.14.在函数①75y x =;②56y x =;③47y x =;④25y x -=;⑤13y x-=;⑥23y x =中定义域与值域相等的有_________个. 15.对幂函数32()f x x -=有以下结论 (1)()f x 的定义域是{|0,}x x x R ≠∈;(2)()f x 的值域是(0,)+∞; (3)()f x 的图象只在第一象限; (4)()f x 在(0,)+∞上递减; (5)()f x 是奇函数.则所有正确结论的序号是______. 16.若1144(1)(32)a a --+<-,则a 的取值范围是 ______三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知幂函数()y f x =的图象过点(.(1)求函数()f x 的解析式,并求出它的定义域; (2)试求满足()()13f a f a +>-的实数a 的取值范围.18.已知幂函数()()22421m m f x m x -+=-在0,单增函数,函数()22g x kx =+.(1)求m 的值;(2)对任意[]11,2x ∈-总存在[]21,2x ∈使()()12g x f x =,求实数k 的取值范围.19.若()()11132a a --+<-,试求a 的取值范围.20.已知幂函数()223m m y f x x --+==(其中22m -<<,m ∈Z )满足:①在区间(),0-∞上为减函数;②对任意的x ∈R ,都有()()0f x f x --=.求幂函数()f x 的解析式,并求当[]0,4x ∈时,()f x 的值域.21.如图所示的函数()F x 的图象,由指数函数()x f x a =与幂函数()b g x x =“拼接”而成.(1)求()F x 的解析式; (2)比较b a 与a b 的大小;(3)已知(4)(32)b bm m --+<-,求m 的取值范围.22.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为[4,11]-?若存在,求出a 的值;若不存在,请说明理由.《幂函数》(一)解析1.【解析】依题意,设()af x x =,则1()93a=,解得2a =-,()2f x x-∴=,故选:A .2.【解析】∵幂函数y =f (x )=x a 的图象经过点(2,4),∴2a =4,解得a =2,∴y =x 2,∴f2=2.故选B .3.【解析】12()(lg 1)m f x m x -=+为幂函数,则lg 111m m +=⇒=,则()12f x x =,则(3)f =C4.【解析】由题意可得:370m -<且37m -为偶数,m N ∈, 解得73m <,且37m -为偶数,m N ∈, ∴1m =. 故选:C . 5.【解析】由题意()f x 是幂函数,则211m m --=,解得2m =或1m =-, 因为()f x 在()0,x ∈+∞上是增函数,而当2m =时,2330m m +-=>符合题意; 当1m =-时,2330m m +-=-<,所以()f x 在()0,x ∈+∞上是减函数,不符合题意,2m ∴=.故选:C6.【解析】由于1()(21)a g x a x +=-为幂函数,则211a -=,解得:1a =,函数1()2x bf x m-=-,(0,m >且1)m ≠,当x b =时,11()22b bf b m -=-= , 故()f x 的图像所经过的定点为1(,)2b ,所以1()2g b =,即212b =,解得:2b =±,故答案选B 7.【解析】①2yx的定义域为(,0)(0,)-∞+∞,②45y x =的定义域为R , ③54y x =的定义域为(0,)+∞, ④23y x =的定义域为R , ⑤45y x-=的定义域为(,0)(0,)-∞+∞,故选:C .8.【解析】当1n =-时,1()f x x=定义域为{}0x x ≠,不满足题意 当0n =时,0()f x x =定义域为{}0x x ≠,不满足题意当12n =时,()f x ={}0x x ≥,不满足题意 当1n =时,()f x x =定义域为R ,且为奇函数,满足题意当2n =时,2()f x x =定义域为R ,是偶函数,不满足题意 当3n =时,3()f x x =定义域为R ,且为奇函数,满足题意所以,使得()n f x x =的定义域为R 且()f x 为奇函数的所有n 值的个数为2故选:B9.【解析】A ,错误,因为函数y x α=的的定义域为()(),00,-∞⋃+∞ ,故图像为是一条直线除去点()0,1 B 错误,当幂函数,0y x αα=<时图象不经过()0,0, C ,错误,如幂函数1y x -=图象在第三象限和第一象限D ,正确,故选D 10.【解析】函数12y x ==[0,)+∞,值域为[0,)+∞;函数2yx 的定义域为R ,值域为[0,)+∞;函数23y x ==20x ≥,∴函数值域为[0,)+∞;函数331y xx-==,值域为(,0)(0,)-∞+∞. ∴值域为[0,)+∞的函数共3个.故选:C.11.【解析】由幂函数的图象与性质,在第一象限内,在1x =的右侧部分的图象, 图象由下至上,幂指数依次增大,曲线1C ,2C ,3C ,4C 对应的n 的值依次为:112,,,222--,故选:C.12.【解析】将分数指数式化为根式,mn y x ==由定义域为R ,值域为[)0,+∞知n 为奇数,m 为偶数,故排除A 、D , 又由幂函数y x α=,当1α>时,图像在第一象限的部分下凸,当01α<<时,图像在第一象限的部分上凸.故选:C13.【解析】因为f (x )为幂函数,所以设()f x x α=,因为f (x )的图象经过点(4,14),所以14=14αα∴=-, 因此()2221log 31log 3111log 32232(2)()()232f -----====,故答案为:3214.【解析】①75y x =的定义域为R ,值域为R .②56y x =的定义域为[)0+∞,,值域为[)0+∞,. ③47y x =的定义域为R ,值域为[)0+∞,. ④25y x -=的定义域为(,0)(0,)-∞+∞,值域为(0+)∞,.⑤13y x-=的定义域为(,0)(0,)-∞+∞,值域为(,0)(0,)-∞+∞.⑥23y x =的定义域为R ,值域为[)0+∞,. 故定义域与值域相等的有①, ②和⑤,故答案为:3 15.【解析】对幂函数()32f x x-=,以下结论(1)()f x 的定义域是{}0,x x x R ∈,因此不正确; (2)()f x 的值域是()0,+∞,正确; (3)()f x 的图象只在第一象限,正确; (4)()f x 在()0,+∞上递减,正确; (5)()f x 是非奇非偶函数,因此不正确. 则所有正确结论的序号是(2)(3)(4). 16.【解析】幂函数yx α=,当0α<时是减函数,函数 14y x -=的定义域为()0,∞+,所以有1320a a +>->, 解得2332a <<,故答案为 23,32⎛⎫ ⎪⎝⎭.17.【解析】(1)设()f x x α=,代入点(得2α=,解得12α=, 即()12f x x ==.故函数()f x 的定义域为[)0,+∞.(2)由于()f x 的定义域为[)0,+∞,且在[)0,+∞上递增,由已知()()13f a f a +>-可得103013a a a a +≥⎧⎪-≥⎨⎪+>-⎩,a 的范围是(]1,3.18.【解析】(1)由题:()2211420m m m ⎧-=⎪⎨-+>⎪⎩解得0m = ;(2)由(1)()2f x x =,记()[]{},1,2A y y f x x ==∈,()[]{},1,2B y g x x ==∈-,由题意B A ⊆,容易求得[]1,4A =.由B A ⊆得12241424k k ≤-+≤⎧⎨≤+≤⎩,解得1142k -≤≤,即k 的取值范围是11,42⎡⎤-⎢⎥⎣⎦ 19.【解析】∵()()11132a a --+<-,∴10,320,132a a a a +>⎧⎪->⎨⎪+>-⎩或10,320,132a a a a +<⎧⎪-<⎨⎪+>-⎩或320,10,a a ->⎧⎨+<⎩解得2332a <<或1a <-.故a 的取值范围是()23,1,32⎛⎫-∞- ⎪⎝⎭.20.【解析】22m -<<,m ∈Z ,1m ∴=-,0,1.对任意x ∈R ,都有()()0f x f x --=,即()()f x f x -=,f x 是偶函数.当1m =-时,()4f x x =,满足条件①②;当1m =时,()0f x x =,不满足条件①;当0m =时,()3f x x =,条件①②都不满足,故同时满足条件①②的幂函数()f x 的解析式为()4f x x =,且在区间[]0,4上是增函数,∴当[]0,4x ∈时,函数()f x 的值域为[]0,256.21.【解析】(1)由题意得14b 12,1142a ⎧=⎪⎪⎨⎪=⎪⎩解得1,16{1,2a b ==∴x 1211,164()1,4x F x x x ⎧⎛⎫≤⎪ ⎪⎪⎝⎭=⎨⎪>⎪⎩(2)因为3211()22<,所以1116321611()()22⎡⎤<⎢⎥⎣⎦,即b aa b <. (3)由题意1122(4)(32)m m --+<-,所以40,{320,432,m m m m +>->+>-解得1332m -<<,所以m 的取值范围是12(,)33-. 22.【解析】(1)因为幂函数2242()(22)mm f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立; 当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立.。
2021届高三数学(文科)一轮复习通关检测卷全国卷(一)(解析版)
2021届高三数学(文科)一轮复习通关检测卷全国卷(一)【满分:150分】一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,则复数313i 12iz -=-的共轭复数z 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.如图,U 是全集,,,M P S 是U 的三个子集,则阴影部分所表示的集合是( )A.()M P S ⋂⋂B.()M P S ⋂⋃C.()()U M P S ⋂⋂D.()()U M P S ⋂⋃3.函数()2sin sin2f x x x =-在[]0,2π的零点个数为( ) A .2B .3C .4D .54.函 数cos sin y x x x =+在区间[-π,+π]上的图像可能是( ) A. B.C. D.5.已知154432,2,log 2p q s ===,则,,p q s 的大小关系为( ) A.q s p <<B.q p s <<C.s p q <<D.s q p <<6.已知π3sin 245x ⎛⎫-= ⎪⎝⎭.则sin 4x 的值为( )A.725B.725±C.1825D.1825±7.执行右面的程序框图,若输入的00k a ==,,则输出的k 为:( )A.2B.3C.4D.58.已知向量(3,1)a =,b 是不平行于x 轴的单位向量,且3a b ⋅=,则b 等于( )A.12⎫⎪⎪⎝⎭B.12⎛ ⎝⎭C.14⎛ ⎝⎭D.(1,0)9.若变量,x y 满足约束条件10,210,10,x y x y x y -+≥⎧⎪--≤⎨⎪++≥⎩则目标函数2z x y =+的最小值为()A.4B.1-C.2-D.3-10.已知,a b 是方程20x x -的两个不等实数根,则点(),P a b 与圆22:8C x y +=的位置关系是( ) A.点P 在圆内B.点P 在圆上C.点P 在圆外D.无法确定11.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,2(),F F a c b P -=是椭圆 C 上的动点.若12PF F 的面积的最大值为S ,则2Sc=( )B.145C.43D.16912.已知函数()223f x x ax ax b =+++的图像在点()()1,1f 处的切线方程为12y x m =-+.若函数()f x 至少有两个不同的零点,则实数b 的取值范围是( )A.()5,27-B.[]5,27-C.(]1,3-D.[]1,3-二、填空题:本题共4小题,每小题5分,共20分.13.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.14.若sin cos αα+则sin 2α的值为__________. 15.从数学内部看,推动几何学发展的矛盾有很多,比如“直与曲的矛盾”,随着几何学的发展,人们逐渐探究曲与直的相互转化,比如:“化圆为方”解决了曲、直两个图形可以等积的问题. 如图,设等腰直角三角形ABC 中,,90AB BC ABC =∠=︒,以A C 为直径作半圆,再以为直径作半圆AmB ,那么可 以探究月牙形面积(图中黑色阴影部分)与AOB △面积(图中灰色阴影部分)之间的关系,在这种关系下,若向 整个几何图形中随机投掷一点,那么该点落在图中阴影部分的概率为___________.16.已知抛物线2:2(0)C y px p =>的焦点为F ,点A 是抛物线C 上一点,以点A 为圆心,23AF 为半径的圆与y 轴相切,且截线段AF,则p =_______. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17.(12分)已知各项均为正数的等差数列{}n a 和等比数列{}n b 满足111a b ==,且236a a ⋅=,238b b a ⋅=(1)求数列{}n a ,{}n b 的通项公式.(2)若2221log n n n c a b +=,求12n c c c ++⋯+.18. (12分)某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,所得数据的茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”. (1).将频率视为概率,估计该校900名学生中“读书迷”有多少人?(2).从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动. (i)共有多少种不同的抽取方法?(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.19. (12分)如图,在四棱锥P ABCD -中,90,60ABC ACD BAC CAD ∠=∠=︒∠=∠=︒,PA ⊥平面,2,1ABCD PA AB ==.设,M N 分别为,PD AD 的中点.(1)求证:平面CMN 平面PAB .(2)求三棱锥P ABM -的体积.20. (12分)已知椭圆2222:1(0)x y C a b a b +=>>,且经过点⎝⎭. (1)求椭圆C 的标准方程;(2)若过点()0,2P 的直线交椭圆C 于,A B 两点,求OAB (O 为原点)面积的最大值.21. (12分)已知函数2()ln 2()f x a x x a =+-∈R . (1)求函数()f x 的单调区间;(2)若函数()f x 在1x =处的切线方程为45y x =-,且当对于任意实数[1,2]λ∈时,存在正实数12,x x ,使得()()()1212x x f x f x λ+=+,求12x x +的最小正整数.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4 – 4:坐标系与参数方程](10分) 已知曲线12,C C 的参数方程分别为2124cos ,4sin x C y θθ⎧=⎪⎨=⎪⎩:(θ为参数),211x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,:(t 为参数). (1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程. 23. [选修4 – 5:不等式选讲](10分)已知函数()112f x x a x =-++的最小值为2. (1).求实数a 的值;(2).若0a >,求不等式()4f x ≤的解集.答案以及解析一、选择题 1.答案:C解析:由题设得313i (13i)(12i)55i1i 12i (12i)(12i)5z -++-+====-+--+,故1i z =--,其在复平面内对应的点位于第三象限,故选C 。
2021年四川省成都市高考数学一诊试卷(理科)(附解析)
2021年四川省成都市高考数学一诊试卷(理科)(附解析)2021年成都市高2021届高三第一次诊断考试数学问题(科学)第ⅰ卷(选择题,共50分)一、多项选择题:本主题共有10个子题,每个子题得5分,每个子题给出的四个选项共50分,只有一个符合问题要求1.已知集合a?{x?z|(x?1)(x?2)?0},b?{x|?2?x?2},则ab?(a) {x | 1 | x | 2}(b){1,0,1}(c){0,1,2}(d){1,1}2?在ABC中,“a??2”是“cosa?”424(a)充分和不必要条件(b)必要和不充分条件(c)充要条件(d)既不充分也不必要条件3.如图所示,剩余部分与开挖部分的体积比为(a)3:1(b)2:1(c)1:1(d)1:2正视图侧视图77?19154c?log4.设a?(),b?(),,则a,b,c的大小顺序是2997俯视图(a)b?a?c(b)c?a?b(c)c?b?a(d)b?c?a已知空间中的两条线,N和m,是不同的,?,?对于空间中的两个不同平面,以下命题是正确的的是(a)如果M/?,m/然后呢?/?(b)如果我??,Mn、那么n/?(c)若m//?,m//n,则n//?(d)若m??,m//?,则6.执行如图所示的程序框图,如果输出结果不大于50,则输入整数k的最大值为(a)4(b)5(c)6(d)77.已知菱形abcd边长为2,?b?开始输入KS?0,n?0n?K不,是吗?s2n?2n?N1输出s?,P点满足AP??AB,3结束??r、如果是BD?内容提供商??3.那么?价值在于121(c)3(a)121(d)?3(b)?1X2y28。
在双曲线2上?2.1的左顶点a(a?0,B?0)是一条斜率为1的直线,这是两条双曲线ab1渐近线的交点分别为b,c.若ab?bc,则此双曲线的离心率为2(a)10(b)5(c)3(d)2xy409.设不等式组?x?y?2?0表示的平面区域为d.若指数函数y?ax(a?0且a?1)的图Y2.0如果图像通过区域D上的点,则a的值范围为(a)[2,3](b)[3,??)(c)(0,](d)[,1)10.如果序列{an}中的任意三个连续奇数项和三个连续偶数项可以构成三角形的边长,则{an}称为“次三角形”序列;对于“次三角形”序列{an},如果函数y?F(x)使1313bn?f(an)仍为一个“亚三角形”数列,则称y?f(x)是数列{an}的一个“保亚三角形函数(n?n),数字序列{CN}的第一n项的总和是Sn,C1?2022,5Sn?1?席席?10080,如果{CN}的项目n的最大值是G(x)?LGX是序列{CN}(参考数据:LG2×10.301,LG2022×3.304)(A)33(B)34(C)35(D)36的“次三角保留函数”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届高三数学(理科)一轮复习通关检测卷全国卷(一)【满分:150分】一、单项选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{}|6,30{|}A x x B x x x =∈≤=∈->N R ,则A B ⋂=( ) A.{}3,4,5,6B.6|}3{x x <≤C.{}4,5,6D.{}0|36x x x <<≤或2.设i 是虚数单位,若复数5i2i()a a +∈+R 是纯虚数,则a 的值为( ) A.3-B.3C.1D.1-3.已知奇函数()f x ,当0x >时,()f x 单调递增,且()10f =,若()10f x ->,则x 的取值范围为( )A.{}|012x x x <<>或B.{}0|2x x x <>或C.{}0|3x x x <>或D.{}1|1x x x <->或4.若非零向量,a b 满足|||=a b ,且()(32)-⊥+a b a b ,则a 与b 的夹角为( ) A.π4B.π2C.3π4D.π5.设O 为坐标原点,直线2x =与抛物线22(0)C y px p =>:交于D E ,两点,若OD OE ⊥,则C 的焦点坐标为( )A.(14)0, B.(12)0, C.(10), D.(20),6.在二项式2nx⎛+ ⎝的展开式中,已知第5项为常数项,则3x 项的系数为( )A.40B.60C.160D.2407.已知函数2()()sin()cos()0)f x x x x ϕϕϕϕ++++>的图象关于原点对称,则ϕ的最小值为( )A.π6B.π4C.π3D.π28.为响应国家脱贫攻坚的号召,某县抽调甲、乙、丙等六名大学生村官到,,A B C 三个村子进行扶贫,每个村子去两人,且甲不去A 村,乙和丙不能去同一个村,则不同的安排种数为( ) A.24B.36C.48D.729.若函数33()|3|e e x x f x x m --=-+++有唯一零点,则实数m 的值为( ) A.0B.-2C.2D.-110.如图,已知四棱锥S ABCD -的底面为等腰梯形,,1,2ABCD AD DC BC AB SA =====,且SA ⊥平面ABCD ,则四棱锥S ABCD -外接球的体积为( )B.8πC. 11.设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,过点F 且斜率为1-的直线l 与双曲线C 的两条渐近线分别交于,A B 两点,若3AB AF =-,则双曲线C 的离心率e 等于( )12.已知函数()ln e (0)x a f x x a x x a -=++-<,若()0f x ≥在[2,)x ∈+∞上恒成立,则实数a 的最小值为( )A.2e -B.e -C.D.e 2-二、填空题:本题共4小题,每小题5分,共20分.13.已知函数()2ln f x x a x =-,且曲线()y f x =在1x =处的切线与直线10x y ++=垂直,则a =_________.14.条件:24p x -<<,条件()():20q x x a ++<.若q 是p 的充分条件,则a 的取值范围是 ___ .15.已知在ABC 中,角,,A B C 所对的边分别为,,a b c ,若sin22sin sin 0b A a A B +=,2b =,c =则a =_________.16.如图,在正方体1111ABCD A B C D -中,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F .下列命题正确的为_______________.①存在点E ,使得11//AC 平面1BED F ; ②对于任意的点E ,平面11AC D ⊥平面1BED F ; ③存在点E ,使得1B D ⊥平面1BED F ;④对于任意的点E ,四棱锥11B BED F -的体积均不变.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答. (一)必考题:共60分.17. (12分)已知等差数列{},n n a S 为其前n 项和,且4415,362a S =-=-. (1)求数列{}n a 的通项公式;(2)若,nn n S b T n=为数列{}n b 的前n 项和,求n T 的最小值. 18. (12分)某工厂为提高对某零件的加工效率,决定对原有的相关技术进行革新,现经过该工厂研发人员的努力,研发出了两项技术.为了更好地对这两项研发成果的优劣进行比较,决定将原有工厂的40位员工随机地分为2组,第一组采用代号为“甲”的研发技术对零件进行加工,第二组采用代号为“乙”的研发技术对零件进行加工,对工人采用新技术后1小时内完成加工的零件个数进行了统计,绘制了如图的茎叶图.(1)请大致判断哪种研发技术对零件的加工效果更佳,并从统计学的角度给出3点你判断的理由.(2)若将1小时内完成加工的零件个数超过80的工人记为优秀,否则记为良好,请完成下面的列联表,并判断能否有90%的把握认为两种研发技术的效率有明显差异?附:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19. (12分)如图,已知Rt ABC 中,点D 为斜边AB 的中点,沿CD 把ACD 折起来,使点A 落到点'A 处,点M 为BD 的中点.(1)连接'A B ,则线段'A B 上是否存在一点N ,使MN 平面'A CD ,若存在,请说明理由;(2)若AC BC ==,当三棱锥'B A CD -的体积最大时,求二面角'C A B D --的余弦值.20. (12分)已知椭圆2222:1(0)x y C a b a b+=>>,左、右焦点分别为1F ,2F ,过点1F 的直线交椭圆于,A B 两点.(1)若以1AF 为直径的动圆内切于圆229x y +=,求椭圆的长轴长;(2)当1b =时,问:在x 轴上是否存在定点T ,使得TA TB ⋅为定值?说明理由. 21. (12分)已知函数()()()ln 1f x x ax a =+-∈R . (1)讨论函数()f x 的单调性.(2)若()()2112g x x x a f x =--+-,设()1122,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-. (二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22. [选修4 – 4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,直线l 的参数方程为,1x t y t =⎧⎨=-+⎩(t 为参数).以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 2tan (0)a a ρθθ=>.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设(1,0)P ,直线l 与曲线C 相交于,M N 两点,若,,PM MN PN 成等比数列,求实数a 的值.23. [选修4 – 5:不等式选讲](10分) 已知函数()54f x x x =-++.(1)求不等式()12f x ≥的解集;(2)若关于x 的不等式()13210a f x ---≥恒成立,求实数a 的取值范围.答案以及解析一、单项选择题 1.答案:C解析:{}260,1,2,3,4,5,6,30|{03|}{|}{}A x x B x x x x x x =∈≤==∈->=<>N R 或,{}4,5,6A B ∴⋂=.故选C. 2.答案:D解析:()()()5i 2i 5i2i 12i 2i 2i a a a -+=+=++++-.因为该复数为纯虚数,所以10a +=,解得1a =-.故选D. 3.答案:A 解析:函数()f x 为奇函数,且0x >时()f x 单调递增,0x ∴<时()f x 也单调递增.由(1)0f =,得(1)(1)0f f -=-=.(1)0f x ->,1,(1)(1)x f x f >⎧∴⎨->⎩①或1,(1)(1).x f x f <⎧⎨->-⎩②解不等式组①,得2x >,解不等式组②,得01x <<.x ∴的取值范围为{}|012x x x <<>或.故选A. 4.答案:A解析:设a 与b 的夹角为θ,由()(32)-⊥+a b a b ,得()(32)0-⋅+=a b a b ,所以223||2||0-⋅-=a a b b ,即223||||||cos 2||0θ-⋅⋅-=a a b b .由|||=a b ,得2228||||cos 2||03θ-=b b b ,所以cos θ=.又因为0πθ≤≤,所以π4θ=.故选A. 5.答案:B解析:将直线方程与抛物线方程联立,可得y =±(2D ,(2E -,,由OD OE ⊥,可得440OD OE p ⋅=-=,解得1p =,所以抛物线C 的方程为22y x =,其焦点坐标为102⎛⎫⎪⎝⎭,.故选B. 6.答案:D解析:在二项式2nx⎛+ ⎝的展开式中,第5项为41444462C (2)C 2n n n n n x x x ----⎛⎫= ⎪⎝⎭⋅,因为第5项为常数项,所以60n -=,即6n =,所以展开式的通项1366622166C (2)C 2rrr r r r r T x x x ----+⎛⎫== ⎪⎝⎭.令3632r -=,得2r =,所以3x 项的系数为246C 2240⨯=. 7.答案:C 解析:因为221()()sin()cos()2cos ()12sin()cos()2f x x x x x x x ϕϕϕϕϕϕ⎤=++++=+-+⨯++=⎦1πsin 2()2()sin 2223x x x ϕϕϕ⎛⎫+++=++ ⎪⎝⎭的图象关于原点对称,所以π2π,3k k ϕ+=∈Z ,解得ππ62k ϕ=-+,由0ϕ>可得1k =时,ϕ取得最小值,最小值为π3.故选C. 8.答案:C解析:由题知,甲不去A 村,乙和丙不能去同一个村,则当甲、乙、丙3人在不同村,且甲不在A 村时,有321223C A A 24=种安排方式;当甲和乙在同一个村且不在A 村时,有111223C C C 12=种安排方式;当甲和丙在同个村且不在A 村时,有111223C C C 12=种安排方式,故总共有24121248++=种安排方式. 故选C. 9.答案:B解析:依题意,(3)||e e ,x x f x x m -+=+++,故函数(3)f x +为偶函数,则函数(3)f x +的图象关于y 轴对称,故函数()f x 的图象关于直线3x =对称,故(3)0f =,即2m =-,经检验,33()|3|e e 2x x f x x --=-++-仅有1个零点3x =,故选B.10.答案:D解析:取AB 的中点1O ,连接11,O C O D ,则1CD O A ,∴四边形1ADCO 是平行四边形,11O C ∴=.同理11O D =.11111,O A O B O C O D O ∴===∴是等腰梯形ABCD 的外心.取BS 的中点O ,连接1,,,OA OC OD O O ,则1O OSA .SA ⊥平面ABCD ,1O O ∴⊥平面ABCD .又2AB SA ==,OA OB OC OD ∴===.又,,SA AB OA OS ⊥∴=∴点O 是四棱锥S ABCD -的外接球的球心.在Rt SAB中,12,2AB SA OA BS ==∴=34π3V ∴=⨯=球故选D. 11.答案:D解析:设双曲线2222:1(0,0)x y C a b a b-=>>的右焦点0(),F c ,则过点F 且斜率为1-的直线l 的方程为()y x c =--,渐近线方程是b y x a =±.由y c x b y x a =-⎧⎪⎨=-⎪⎩,得,acbc B a b a b ⎛⎫- ⎪--⎝⎭,由y c xb y x a =-⎧⎪⎨=⎪⎩,得,ac bc A a b a b ⎛⎫ ⎪++⎝⎭,所以222222,abc abc AB a b a b ⎛⎫=- ⎪--⎝⎭,,bcbc AF a b a b ⎛⎫=- ⎪++⎝⎭.由3AB AF =-,得222222,3,abc abc bcbc a b a b a b a b ⎛⎫⎛⎫-=-- ⎪ ⎪--++⎝⎭⎝⎭,则2223abc bc a b a b =-⋅-+,即53b a =,则c,则c e a ==,故选D. 12.答案:B解析:由()0f x ≥在[2,)x ∈+∞上恒成立,得ln ln e e a a x x x x ----≥在[2,)x ∈+∞上恒成立.易知当[2,),0x a ∈+∞<时,01,0e 1a x x -<<<<.令函数()ln (01)g t t t t =-<<,则1()10,(')g t g t t =->单调递增,故有e a x x -≥,则log e ln x x xa x-≥=-在[2,)x ∈+∞上恒成立.令()(2)ln xF x x x=-≥,则21l )('n (ln )x F x x -=,令)'(0F x =,则e x =,易知()F x 在[)2,e 上单调递增,在[e,)+∞上单调递减,所以max ()(e)e F x F ==-,所以e a ≥-,故实数a 的最小值为e -.故选B. 二、填空题 13.答案:1解析:对函数()2ln f x x a x =-求导,得)'(2af x x=-,则 (1)'2f a =-.因为曲线()y f x =在1x =处的切线与直线10x y ++=垂直,所以21a -=,解得1a =.14.答案:[]4,2-解析:设集合{}|24A x x =-<<,()(){}|20B x x x a =++<, 因为q 是p 的充分条件,所以B A ⊆.①当2a =时,(){}2|20B x x =+<=∅,显然B A ⊆. ②当2a ≠时,因为B A ⊆,所以{}|2B x x a =-<<-,所以42a a -≤⎧⎨->-⎩,42a a ≥⎧⎨<⎩,即42a -≤<.综上可知,[]4,2a ∈- .15.答案:25解析:由正弦定理可得2sin sin cos 2sin sin sin 0B A A A A B +=,因为sin sin 0A B ≠,故sin cos 0A A +=,故tan 1A =-.因为()0,πA ∈,故3π4A =.故2222ccos 20a b c b A =+-=,故a =16.答案:①②④解析:①当E 为棱1CC 上的中点时,此时F 也为 棱1AA 上的中点,此时11//AC EF ,满足11//AC 平面1BED F ,故①正确.②连接1BD (图略),则1B D ⊥平面11A C D .因为1BD ⊂平面1BED F ,所以平面11AC D ⊥平面1BED F ,故②正确.③1BD ⊂平面1BED F ,不可能存在点E ,使得1B D ⊥平面1BED F ,故③错误.④四棱锥11B BED F -的体积等于1111D BB F D BB E V V --+,设正方体的棱长为1.∵无论,E F 在何点,三角形1BB E 的面积为111122⨯⨯=为定值,三棱锥11D BB E -的高111D C =,保持不变,三角形1BB F 的面积为111122⨯⨯=为定值,三棱锥11D BB F -的高为111D A =,保持不变,∴四棱锥11B BED F -的体积为定值,故④正确.故答案为①②④. 三、解答题17.答案:(1)设等差数列{}n a 的公差为d , 则4141153,243436,2a a d S a d ⎧=+=-⎪⎪⎨⨯⎪=+⨯=-⎪⎩解得121,21.a d ⎧=-⎪⎨⎪=⎩2123122n a n n ∴=-+-=-. (2)由(1)可知2123(22)2222n n n n n S ⎛⎫-+- ⎪-⎝⎭==, 222n n S n b n -∴==. 1111(1)2222121,222112n n S a n n b b b ++---=-====-, ∴数列{}n b 是首项为212-,公差为12的等差数列. ()2212122(43)1434322224422n n n n n b b n n T n -⎛⎫-+ ⎪⎡⎤+-⎛⎫⎛⎫⎝⎭∴====--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.*n ∈N ,∴当21n =或22n =时,n T 有最小值212221(2143)23142T T ⨯-===-. 18.答案:(1)代号为“甲”的研发技术效果更佳.理由1:第一组采用代号为“甲”的研发技术1小时内完成加工的零件个数多在80以上,而第二组采用代号为“乙”的研发技术1小时内完成加工的零件个数在80以下的明显更多. 理由2:第一组采用代号为“甲”的研发技术1小时内完成加工的零件个数的平均数为82.4,第二组采用代号为“乙”的研发技术1小时内完成加王的零件个数的平均数为78.25. 理由3:第一组采用代号为“甲”的研发技术1小时内完成加工的零件个数的中位数为838483.52+=,第二组采用代号为“乙”的研发技术1小时内完成加工的零件个数的中位数为787978.52+=. (2)列联表如下:所以240(131179) 1.616 2.70620202218K ⨯-⨯=≈<⨯⨯⨯,故没有90%的把握认为两种研发技术的效率有明显差异. 19.答案:(1)线段'A B 上存在一点N ,使MN 平面'A CD .理由如下:如图,取'A B 的中点N ,连接MN ,则'MN A D ,又'A D ⊂平面'A CD ,MN ⊄平面'A CD , 故MN平面'A CD .(2)在Rt ABC中,AC BC ==,8AB ∴==, 则'4CD AD DB A D ====.当点'A 到平面BCD 的距离最大时,三棱锥'A BCD -的体积最大,即平面'A CD 与平面BCD 垂直时体积最大,此时'A D BD ⊥,'A D ⊥底面BCD .以D 点为坐标原点,DB 所在直线为x 轴,DC 所在直线为y 轴,'DA 所在直线为z 轴建立空间直角坐标系,如图所示,则(0,0,0),(4,0,0),(0,4,0),'(0,0,4)D B C A ,(4,0,4),''(0,4,4)A B A C ∴=-=-,设平面'CA B 的法向量为(, , )x y z =n , 则'0'0A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,440,440,x z y z -=⎧∴⎨-=⎩令1z =,得1x y ==,则()1,1,1=n .又(0,4,0)DC =是平面'DBA 的一个法向量,cos ,DC DC DC ⋅∴〈〉===⋅n n n∴二面角'C A B D --. 20.答案:(1)设1AF 的中点为M .在12AF F 中,由中位线定理得()2111112222OM AF a AF a AF ==-=-. 当两个圆相内切时,两个圆的圆心距等于两个圆的半径差,即1132OM AF =-,所以3a =,所以椭圆的长轴长为6. (2)存在.理由如下:由1,c b e a ====,得c =3a =.所以椭圆的方程为2219x y +=.当直线AB 的斜率存在时,设直线AB 的方程为(y k x =+,()()1122,,,A x y B x y .由2299,(x y y k x ⎧+=⎪⎨=+⎪⎩,得()2222917290k x x k +++-=. 因为0∆>恒成立,所以21212272991k x x x x k -+==+.所以(221212291k y y kx x k -=++=+. 设()0,0T x ,则()()101202,,,TA x x y TB x x y =-=-.所以()()2220002121200122971991xk x TA TB x x x x x x y y k +++-⋅=-+++=+.当()2200097199x x ++=-,即09x =-时,TA TB ⋅为定值207981x -=-.当直线AB 的斜率不存在时,不妨设13A ⎛⎫- ⎪⎝⎭,13B ⎛⎫-- ⎪⎝⎭.当T ⎛⎫ ⎪ ⎪⎝⎭时,21173381TA TB ⎛⎫⎫⋅=⋅-=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,为定值.综上所述,在x轴上存在定点T ⎛⎫ ⎪ ⎪⎝⎭,使得TA TB ⋅为定值781-. 21.答案:(1)由题意得,函数()f x 的定义域为()1-+∞,,()11f x a x '=-+. 当0a ≤时,()101f x a x '=->+, ∴函数()f x 在()1-+∞,上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在()1-+∞,上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,121x x a ∴+=+,121x x =,211x x ∴=. 32a ≥,111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x ⎛⎫=-- ⎪⎝⎭.设()221112ln 022h x x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭,则()()22331210x h x x x x x-'=--=-<, ∴函数()h x 在10,2⎛⎤ ⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭. 32a ∴≥时,()()12152ln 28x g x g -≥-成立.22.答案:(1)直线l 的普通方程为10x y --=.由cos 2tan a ρθθ=得222cos 2sin ,cos 2sin a a ρθθρθρθ=∴=.2cos ,sin ,2(0)x y x ay a ρθρθ==∴=>.由tan θ有意义可知cos 0,cos 0x θρθ≠∴=≠,∴曲线C 的直角坐标方程为22(0,0)x ay x a =≠>.(2)由(1,0)P ,直线l 的普通方程为10x y --=,可知点P 在直线l 上,故可设直线l的参数方程为1,x y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). 将该方程代入曲线C 的直角坐标方程22(0,0)x ay x a =≠>中,得2)20t a t +-+=. 设,M N 两点对应的参数分别为12,t t ,则12121),2t t a t t +=-=.,,PM MN PN 成等比数列,2PM PN MN ∴⋅=,21212t t t t ∴⋅=-,即()21212124t t t t t t =+-,2108(1)a ∴=-,解得1a =.0,1a a >∴=23.答案:(1)原不等式等价于5,5412x x x >⎧⎨-++≥⎩或45,5412x x x -≤≤⎧⎨-++≥⎩或4,5(4)12,x x x <-⎧⎨--+≥⎩解得132x ≥或x ∈∅或112x ≤-. ∴不等式的解集为1311|22x x x ⎧⎫≥≤-⎨⎬⎩⎭或. (2)不等式13()210a f x ---≥恒成立等价于13min ()21a f x -≥+, 即()13min 5421a x x --+++≥.()()54549x x x x -++≥--+=,当且仅当()()540x x --+≤,即45x -≤≤时,等号成立.13921a -∴≥+,则133a -≤,解得23a ≥-,∴实数a 的取值范围是2,3⎡⎫-+∞⎪⎢⎣⎭.。