我的第六章实数单元测试卷及答案

合集下载

数学第六章 实数单元测试附解析

数学第六章 实数单元测试附解析

数学第六章 实数单元测试附解析一、选择题1.任何一个正整数n 都可以进行这样的分解:n=p×q (p ,q 都是正整数,且p≤q ),如果p×q 在n 的所有分解中两个因数之差的绝对值最小,我们就称p×q 是n 的黄金分解,并规定:F(n)=p q ,例如:18可以分解为1×18;2×9;3×6这三种,这时F(18)=3162=,现给出下列关于F(n)的说法:①F(2) =12;② F(24)=38;③F(27)=3;④若n 是一个完全平方数,则F(n)=1,其中说法正确的个数有( ) A .1个 B .2个 C .3个 D .4个 2.一个正数a 的平方根是2x ﹣3与5﹣x ,则这个正数a 的值是( ) A .25B .49C .64D .813.设[x]表示最接近x 的整数(x≠n+0.5,n 为整数),则( ) A .132B .146C .161D .6664.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)5.2,估计它的值( ) A .小于1B .大于1C .等于1D .小于06.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个7.1的值( ) A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间8.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有( ) A .1个B .2个C .3个D .4个9.若4a =,且a +b <0,则a -b 的值是( ) A .1或7B .﹣1或7C .1或﹣7D .﹣1或﹣710.在下列实数中,无理数是( ) A .337B .πC .25D .13二、填空题11.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.12.已知M 是满足不等式36a -<<的所有整数的和,N 是满足不等式x ≤3722-的最大整数,则M +N 的平方根为________.13.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .14.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.15.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.16.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.17.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.18.若x <0323x x ____________. 1946________.20.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.三、解答题21.观察下列各式: (x -1)(x+1)=x 2-1 (x -1)(x 2+x+1)=x 3-1 (x -1)(x 3+x 2+x+1)=x 4-1 ……(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________.(2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________.(3)根据以上规律求1+3+32+…+349+350的结果.22.在有理数的范围内,我们定义三个数之间的新运算法则“⊕”:a ⊕b ⊕c =2a b c a b c --+++.如:(1)-⊕2⊕3=123(1)2352---+-++=.①根据题意,3⊕(7)-⊕113的值为__________; ②在651128,,,,0,,,,777999---这15个数中,任意取三个数作为a ,b ,c 的值,进行“a ⊕b ⊕c ”运算,在所有计算结果中的最大值为__________;最小值为__________.23.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究: 操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合; 操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题: ①3表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________; 操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.25.“比差法”是数学中常用的比较两个数大小的方法,即:0,?0,?0,?a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则; 192与2的大小 ∵1922194-= 161925<< 则4195<< ∴19221940-=> ∴1922>请根据上述方法解答以下问题:比较223-与3-的大小. 26.阅读理解.459253. ∴151<251的整数部分为1, 5152.解决问题:已知a 17﹣3的整数部分,b 17﹣3的小数部分. (1)求a ,b 的值;(2)求(﹣a )3+(b +4)2172=17.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】将2,24,27,n分解为两个正整数的积的形式,再找到相差最少的两个数,让较小的数除以较大的数进行排除即可.【详解】解:∵2=1×2,∴F(2)=12,故①正确;∵24=1×24=2×12=3×8=4×6,且4和6的差绝对值最小∴F(24)= 42=63,故②是错误的;∵27=1×27=3×9,且3和9的绝对值差最小∴F(27)=31=93,故③错误;∵n是一个完全平方数,∴n能分解成两个相等的数的积,则F(n)=1,故④是正确的.正确的共有2个.故答案为B.【点睛】本题考查有理数的混合运算与信息获取能力,解决本题的关键是弄清题意、理解黄金分解的定义.2.B解析:B【分析】根据一个正数的两个平方根互为相反数可得(2x﹣3)+(5﹣x)=0,可求得x,再由平方根的定义即可解答.【详解】解:由正数的两个平方根互为相反数可得(2x﹣3)+(5﹣x)=0,解得x=﹣2,所以5﹣x=5﹣(﹣2)=7,所以a=72=49.故答案为B.【点睛】本题考查了平方根的性质,理解平方根与算术平方根的区别及联系是解答本题的关键.3.B解析:B 【解析】分析:先计算出1.52,2.52,3.52,4.52,5.52,即可得出中有2个1,4个2,6个3,8个4,10个5,6个6,从而可得出答案. 详解:1.52=2.25,可得出有2个1; 2.52=6.25,可得出有4个2; 3.52=12.25,可得出有6个3; 4.52=20.25,可得出有8个4; 5.52=30.25,可得出有10个5; 则剩余6个数全为6.故=1×2+2×4+3×6+4×8+5×10+6×6=146. 故选:B.点睛本题考查了估算无理数的大小.4.D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2); P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2); P 3(1,-1)=P 1(P 2(2,-2))=(0,4); P 4(1,-1)=P 1(P 3(0,4))=(4,-4); P 5(1,-1)=P 1(P 4(4,-4))=(0,8); P 6(1,-1)=P 1(P 5(0,8))=(8,-8); ……P 2n-1(1,-1)=……=(0,2n ); P 2n (1,-1)=……=(2n ,-2n ). 因为2017=2×1009-1, 所以P 2017=P 2×1009-1=(0,21009). 故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.5.A解析:A 【分析】首先根据479<<可以得出23<<2的范围即可.【详解】<<,∵23-<<-,∴22232<<,∴021-的值大于0,小于1.2所以答案为A选项.【点睛】本题主要考查了无理数的估算,熟练找出无理数的整数范围是解题关键.6.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.7.B解析:B【分析】利用36<38<49得到671进行估算.【详解】解:∵36<38<49,∴67,∴51<6.故选:B.【点睛】本题考查了估算无理数的大小,熟练掌握运算法则是解本题的关键.8.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个. 故选C . 【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键.9.D解析:D 【分析】根据题意,利用绝对值的代数意义及二次根式性质化简,确定出a 与b 的值,即可求出-a b 的值.【详解】解:∵3a ==, 且a +b <0, ∴a =−4,a =−3;a =−4,b =3, 则a −b =−1或−7. 故选D . 【点睛】本题考查实数的运算,掌握绝对值即二次根式的运算是解题的关键.10.B解析:B 【分析】分别根据无理数、有理数的定义即可判定选择项. 【详解】解:337,13是有理数, π是无理数, 故选B . 【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.二、填空题11.、、、. 【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53; 如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;解析:53、17、5、1.【解析】解:∵y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)÷3=17;如果三次才输出结果:则x=(17-2)÷3=5;如果四次才输出结果:则x=(5-2)÷3=1;则满足条件的整数值是:53、17、5、1.故答案为:53、17、5、1.点睛:此题的关键是要逆向思维.它和一般的程序题正好是相反的.12.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤22的最大整数,∴N=2,∴M+N=±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.13..【详解】第一次:3×449+5=1352,第二次:,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5解析:8.【详解】第一次:3×449+5=1352,第二次:13522k,由题意k=3时结果为169;第三次:3×169+5=512,第四次:因为512是2的9次方,所以k=9,计算结果是1;第五次:1×3+5=8;第六次:82k,因为8是2的3次方,所以k=3,计算结果是1,此后计算结果8和1循环.因为201是奇数,所以第201次运算结果是8.故答案为8.14.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.15.1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果.【详解】解:根据题意得:x =3,y =2或x =3,y =﹣2,则x ﹣y =1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 解析:5【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.故答案为:5.点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.3【分析】利用平方根、立方根的定义求出x 与y 的值,即可确定的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴,,故答案为:3.【点睛】本题考查了平方根和立方根,熟解析:3【分析】利用平方根、立方根的定义求出x 与y 的值.【详解】解:根据题意的2a+1+3-4a=0,解得a=2,∴25,8x y ==-,∴=,故答案为:3.【点睛】本题考查了平方根和立方根,熟练掌握相关的定义是解题的关键.18.0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,∴,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是解析:0【分析】分别利用平方根和立方根直接计算即可得到答案.【详解】解:∵x<0,x x=-+=,故答案为:0.【点睛】本题只要考查了平方根和立方很的性质;平方根的被开方数不能是负数,开方的结果必须是非负数;立方根的符号与被开方的数的符号相同;解题的关键是正确判断符号.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键.三、解答题21.(1)x 7-1;(2)x n+1-1;(3)51312-. 【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)= 12×(x 50+1-1)=51312- 故答案为:(1)x 7-1;(2)x n+1-1;(3)51312-. 【点睛】 本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.22.(1)3(2)53(3)117-【分析】 (1)根据给定的新定义,代入数据即可得出结论;(2)分a-b-c≥0和a-b-c≤0两种情况考虑,分别代入定义式中找出最大值,比较后即可得出结论.【详解】解:①根据题中的新定义得:3⊕()7-⊕113=()()111137373332---++-+= ②当a-b-c≥0时,原式()12a b c a b c a =--+++=, 则取a 的最大值,最小值即可,此时最大值为89,最小值为67-; 当a-b-c≤0时,原式()12a b c a b c b c =-+++++=+, 此时最大值为785993b c +=+=,最小值为6511777b c ⎛⎫⎛⎫+=-+-=- ⎪ ⎪⎝⎭⎝⎭, ∵586113977>>->-∴综上所述最大值为53,最小值为117-. 【点睛】 本题考查了有理数的混合运算,读懂题意弄清新定义式的运算是解题的关键.23.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.24.(1)2 (2)①2--5,3(3)71937,,288【分析】(1)根据对称性找到折痕的点为原点O ,可以得出-2与2重合;(2)根据对称性找到折痕的点为-1,①设3表示的点与数a表示的点重合,根据对称性列式求出a的值;②因为AB=8,所以A到折痕的点距离为4,因为折痕对应的点为-1,由此得出A、B两点表示的数;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,所以设AB=a,BC=a,CD=2a,得a+a+2a=9,a=94,得出AB、BC、CD的值,计算也x的值,同理可得出如图2、3对应的x的值.【详解】操作一,(1)∵表示的点1与-1表示的点重合,∴折痕为原点O,则-2表示的点与2表示的点重合,操作二:(2)∵折叠纸面,若使1表示的点与-3表示的点重合,则折痕表示的点为-1,①设3表示的点与数a表示的点重合,则3-(-1)=-1-a,a=-2-3;②∵数轴上A、B两点之间距离为8,∴数轴上A、B两点到折痕-1的距离为4,∵A在B的左侧,则A、B两点表示的数分别是-5和3;操作三:(3)设折痕处对应的点所表示的数是x,如图1,当AB:BC:CD=1:1:2时,设AB=a,BC=a,CD=2a,a+a+2a=9,a=94,∴AB=94,BC=94,CD=92,x=-1+94+98=198,如图2,当AB:BC:CD=1:2:1时,设AB=a,BC=2a,CD=a,a+a+2a=9,a=94,∴AB=94,BC=92,CD=94,x=-1+94+94=72,如图3,当AB:BC:CD=2:1:1时,设AB=2a,BC=a,CD=a,a+a+2a=9,a=94,∴AB=92,BC=CD=94,x=-1+92+98=378,综上所述:则折痕处对应的点所表示的数可能是198或72或378.25.2233>-【分析】根据例题得到223(3)523--=-523.【详解】解:223(3)523--=-∵162325<,∴4235<<,∴223(3)5230-=->,∴2233>-.【点睛】此题考查实数的大小比较方法,两个实数可以利用做差法比较大小.26.(1)a=1,b17﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.。

人教版七年级数学下册《第六章实数》单元测试卷-附带答案

人教版七年级数学下册《第六章实数》单元测试卷-附带答案

人教版七年级数学下册《第六章实数》单元测试卷-附带答案(本试卷六个大题,23个小题。

满分120分,考试时间120分钟。

)学校:___________班级:___________姓名:___________考号:___________一、单项选择题(每小题3分,共18分.) 1.在实数√273,227,−√2,4π,0.102030……中,无理数有( )A .1个B .2个C .3个D .4个2.设a=√8,b=√283,c=3,则a ,b ,c 的大小关系为 ( )A .a<b<cB .a<c<bC .b<a<cD .c<b<a3.已知|5-a|+√b +6=0,则(a+b )2023的值为( )A .1B .-1C .±1D .-20234.已知a 的算术平方根是12.3,b 的立方根是-45.6,x 的平方根是±1.23,y 的立方根是456,则x 和y 可分别用含有a ,b 的式子表示为 ( )A .x=a100,y=1000b B .x=100a ,y=-b1000 C .x=a 100,y=-b1000D .x=a 100,y=-1000b5.某长方形的面积为36,且长是宽的3倍,则它的宽的值在如图所示的数轴上表示的大概位置是( )A .点AB .点C .点CD .点D6.在如图所示的方格中,每个小正方形的边长为1,如果把阴影部分剪拼成一个新的正方形,那么新的正方形的边长是 ( )A .2B .3C .√5D √6二、填空题(本大题共6小题,每小题3分,共18分)7.-√7的相反数是 . 8.√181的算术平方根是 .9.若将三个数-√2,√5,√10表示在如图所示的数轴上,则可能被墨迹覆盖的数是三个数中的 .10.写出一个无理数,使它与√2-1的和是有理数,该无理数可以是 . 11.已知√1.513=1.147,√15.13=2.472,√0.1513=0.5325,则√15103的值是 . 12.若√x +53-5=x ,则x 的值为 .三、解答题(本大题共5小题,每小题6分,共30分)13.(1)计算:|-6|+√16. (2)求实数x 的值:3x 2=12.14.计算:√1253+√-10003+√(-34)2. 15.计算:√-83+|√3-2|+√(-3)2.16.已知2a-1的平方根为±3,a+2b-1的立方根为2. (1)求a ,b 的值.(2)求a-2b 的算术平方根.17.已知在图1所示的5×5的方格中有两个边长为2的正方形.(1)将这两个正方形剪拼成一个大正方形,并在图2中画出示意图.(2)求(1)中拼出的大正方形的边长.(结果保留根号)图1 图2四、(本大题共3小题,每小题8分,共24分)18.下面是小贤同学探索√107的近似值的过程:∵面积为107的正方形边长是√107,且10<√107<11∴设√107=10+x,其中0<x<1,画出如图所示的示意图.∵图中S正方形=102+2×10x+x2,S正方形=107∴102+2×10x+x2=107.当x2较小时,省略x2,得20x+100≈107,得到x≈0.35,即√107≈10.35.仿照上述方法,探究√76的近似值.19.如图,已知实数-√5,-1,√5与3,其在数轴上所对应的点分别为点A,B,C,D.(1)求点C与点D之间的距离.(2)记点A与点B之间距离为a,点C与点D之间距离为b,求a-b的值.20.小明现有一块面积为900 cm2的正方形纸板,他准备用这块纸板自制一个书架装饰品,他设计了如下两种方案:方案一:沿着边的方向裁出一块面积为750 cm2的长方形纸板.方案二:沿着边的方向裁出一块面积为750 cm2的长方形纸板,且其长宽之比为3∶2.小明设计的两种方案是否可行?若可行,说明如何裁剪;若不可行,请说明理由.五、解答题(本大题共2小题,每小题9分,共18分)21.阅读材料:∵√4<√5<√9,即2<√5<3∴1<√5-1<2∴√5-1的整数部分为1∴√5-1的小数部分为√5-2.解决问题:(1)填空:√7的小数部分是.(2)已知a是√10的整数部分,b是√10的小数部分,求式子(b-√10)a-1的平方根.22.如图,这是一个无理数筛选器的工作流程图.(1)当x的值为16时,y的值为.(2)是否存在输入有意义的x的值后,却始终输不出y值?如果存在,写出所有满足要求的x的值;如果不存在,请说明理由.(3)如果输入x的值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x的值可能是什么情况.六、解答题(本大题共12分)23.依照平方根和立方根的定义,可给出四次方根、五次方根的定义:①如果x4=a(a≥0),那么x叫作a 的四次方根;②如果x5=a,那么x叫作a的五次方根.请依据以下两个定义解决下列问题:(1)求81的四次方根.(2)求-32的五次方根.(3)求式子中x的值:x4=16.参考答案1.C2.B3.B4.D5.C6.D7.√7 8.13 9.√5 10.答案不唯一,如:-√2 11.11.4712.-4或-5或-6 提示:∵√x +53-5=x ∵√x +53=x+5.∵立方根等于本身的数有1,-1,0 ∵x+5=1或x+5=-1或x+5=0 ∵x=-4或x=-6或x=-5. 故答案为-4或-5或-6.13.(1)解:原式=6+4 .......................................................................................................................................1分 =10. ...............................................................................................................................................................3分 (2)解:化简得x 2=4. ........................................................................................................................................2分 因为(±2)2=4,所以x=±2. ...............................................................................................................................3分 14.解:原式=5-10+34=-174. ..............................................................................................................................6分 15.解:原式=-2+2-√3+3 ...............................................................................................................................3分 =3-√3. ...........................................................................................................................................................6分 16.解:(1)∵2a-1的平方根是±3,∵2a-1=9,∵a=5. .........................................................................................1分 ∵a+2b-1的立方根是2 ∵a+2b-1=8,∵5+2b-1=8∵b=2. ............................................................................................................................................................3分 (2)把a=5,b=2代入a-2b得a-2b=5-2×2=1, ........................................................................................................................................4分 a-2b 的算术平方根是1. ...............................................................................................................................6分 17.解:(1)如图所示(答案不唯一,形状一致即可). ........................................................................................3分(2)∵S大正方形=22+22=8∵大正方形的边长为√8(或写成2√2).........................................................................................................6分18.解:∵82=64,92=81而64<76<81∵√64<√76<√81,即8<√76<9∵设√76=8+x,其中0<x<1,画出如图所示的示意图. .................................................................................4分∵图中S正方形=82+2×8x+x2,S正方形=76∵82+2×8x+x2=76.当x2较小时,省略x2,得16x+64≈76,得到x≈0.75∵√76≈8.75....................................................................................................................................................8分19.解:(1)3-√5. ...............................................................................................................................................3分(2)由题意可得,a=|-√5+1|=√5-1,b=3-√5, ..................................................................................................5分∵a-b=√5-1-(3-√5)=2√5-4...........................................................................................................................8分20.解:方案一可行. ........................................................................................................................................1分因为正方形的面积为900 cm2,所以正方形的边长为√900=30(cm).........................................................2分沿着一条边的方向裁一块面积为750 cm2的长方形所以750÷30=25(cm)故宽为25 cm, ...............................................................................................................................................3分因此裁出一个长为30 cm,宽为25 cm的长方形即可................................................................................4分方案二不可行. ..............................................................................................................................................5分理由:设长方形纸板的长为3x cm、宽为2x cm则3x·2x=750,................................................................................................................................................6分x2=125,x=√125所以长方形的长为3√125cm.因为121<125<144,所以11<√125<12所以33<3√125<36,即3√125>30.因此方案二不可行. ......................................................................................................................................8分21.解:(1)√7-2. ...............................................................................................................................................3分提示:∵4<7<9,∵2<√7<3∵√7的整数部分是2∵√7的小数部分是√7-2.(2)∵a是√10的整数部分,b是√10的小数部分∵9<10<16,∵3<√10<4∵a=3,b=√10-3, ............................................................................................................................................5分∵(b-√10)a-1=9...............................................................................................................................................7分∵9的平方根为±3∵(b-√10)a-1的平方根为±3...........................................................................................................................9分22.解:(1)√2. ..................................................................................................................................................3分(2)当x=0或1时,始终输不出y值.因为0和1的算术平方根分别是0和1,一直是有理数.................6分(3)当x<0时,开平方运算无法进行. ............................................................................................................9分23.解:(1)因为(±3)4=81,所以81的四次方根是±3.......................................................................................4分(2)因为(-2)5=-32,所以-32的五次方根是-2.................................................................................................8分(3)因为(±2)4=16,所以x=±2. ......................................................................................................................12分。

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

【3套精选】人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。

16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。

14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。

第6章 实数 人教版数学七年级下册单元测试(含答案)

第6章 实数 人教版数学七年级下册单元测试(含答案)

第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。

人教版初1数学7年级下册 第6章(实数)单元测试卷(含解析)

人教版初1数学7年级下册 第6章(实数)单元测试卷(含解析)

第六章实数单元测试一.选择题1.在下列各数中是无理数的有( )0.3030030003,,,﹣,,,3.14,2.010101…(相邻两个1之间有1个0),9.0123456…(小数部分由相继的正整数组成).A.3个B.4个C.5个D.6个2.﹣可以表示( )A.0.2的平方根B.﹣0.2的算术平方根C.0.2的负的平方根D.﹣0.2的平方根3.下列说法错误的是( )A.5是25的算术平方根B.1是1的一个平方根C.(﹣4)2的平方根是﹣4D.0的平方根与算术平方根都是04.若a,b(a≠b)是64的平方根,则+的值为( )A.8B.﹣8C.4D.05.一个正数的两个平方根分别是2a﹣5和﹣a+1,则这个正数为( )A.4B.16C.3D.96.下列判断正确的是( )A.B.﹣9的算术平方根是3C.27的立方根是±3D.正数a的算术平方根是7.若<﹣2,则a的值可以是( )A.﹣9B.﹣4C.4D.98.若a是的平方根,b是的立方根,则a+b的值是( )A.4B.4或0C.6或2D.69.若9﹣的整数部分为a,小数部分为b,则2a+b等于( )A.12﹣B.13﹣C.14﹣D.15﹣10.实数a,b在数轴上对应的点的位置如图所示,那么化简的结果( )A.2a+b B.b C.2a﹣b D.3b二.填空题11.﹣8的立方根是 ,的平方根是 .12.+()2= .13.比较大小:﹣ ﹣1.5.14.若将三个数,,表示在数轴上,其中能被如图所示的墨迹覆盖的数是 .15.已知,则(a﹣b)2= .16.如图网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 .17.已知x﹣2的平方根是±2,2x+y+7的立方根是3,则x+y的值为 .18.若的整数部分为2,则满足条件的奇数a有 个.19.给出表格:a0.00010.011100100000.010.1110100利用表格中的规律计算:已知,则a+b= .(用含k 的代数式表示)20.小明设计了一个如下图所示的电脑运算程序:(1)当输入x的值是64时,输出的y值是 .(2)分析发现,当实数x取 时,该程序无法输出y值.三.解答题21.求下列各式中的x:(1)4x2﹣81=0;(2)(x﹣1)3+4=.22.已知m﹣3的平方根是±6,,求m+n的算术平方根.23.已知一个正数m的平方根为2n+1和4﹣3n.(1)求m的值;(2)|a﹣3|++(c﹣n)2=0,a+b+c的立方根是多少?24.已知a是的整数部分,b是它的小数部分,求(﹣a)3+b2的值.25.一个底面为40cm×30cm的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?26.如图是由8个同样大小的正方体组成的魔方,其体积为8.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,该正方形的面积为 ,边长为 ;(3)若把长度等于AB的线段放到数轴上,使点A与﹣1重合,点B在点A的右边,设点B 表示的数为b,请计算b(b+2)的值.参考答案一.选择题1.解:无理数有,﹣,,9.0123456…(小数部分由相继的正整数组成),共4个;故选:B.2.解:﹣可以表示0.2的负的平方根,故选:C.3.解:A、因为=5,所以本说法正确;B、因为±=±1,所以1是1的一个平方根说法正确;C、因为±=±=±4,所以本说法错误;D、因为=0,=0,所以本说法正确;故选:C.4.解:∵a,b(a≠b)是64的平方根,∴a=8,b=﹣8;或a=﹣8,b=8.当a=8,b=﹣8时,+=2﹣2=0;当a=﹣8,b=8时,+=﹣2+2=0.∴+的值为0.故选:D.5.解:∵正数的两个平方根分别是2a﹣5和﹣a+1,∴(2a﹣5)+(﹣a+1)=0,解得a=4,∴2a﹣5=3,∴这个正数为32=9,故选:D.6.解:A.=4,此选项错误;B.9的算术平方根是3,此选项错误;C.27的立方根是3,此选项错误;D.正数a的算术平方根是,此选项正确;故选:D.7.解:因为<﹣2,所以a<﹣8,所以a的值可以是﹣9,故选:A.8.解:∵a是的平方根,即a为4的平方根,∴a=±2,∵b是的立方根,即b为8的立方根,∴b=2,∴当a=2,b=2时,a+b=4;当a=﹣2,b=2时,a+b=0.故选:B.9.解:∵3<<4,∴﹣4<﹣<﹣3,∴5<9﹣<6,又∵9﹣的整数部分为a,小数部分为b,∴a=5,b=9﹣﹣5=4﹣,∴2a+b=10+(4﹣)=14﹣,故选:C.10.解:实数a,b在数轴上对应的点的位置可知:a>0,b<0,且|a|>|b|,因此,b﹣a<0,a+b>0,所以,=a﹣b+a+b﹣b=2a﹣b,故选:C.二.填空题11.解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2;∵=4,∵±2的平方等于4,∴4的平方根等于±2;故答案为﹣2,±2.12.解:原式=3+2=5,故答案为:513.解:=3,(﹣1.5)2=2.25,∵3>2.25,∴﹣<﹣1.5.故答案为:<.14.解:由题意:被墨迹覆盖的数在1和3之间.∵﹣<﹣<﹣,∴﹣2<﹣<﹣1∴﹣被墨迹覆盖的数.∵<<,∴2<<3.∴是被墨迹覆盖的数.∵<<,∴3<<4.∴被墨迹覆盖的数.故答案为.15.解:∵,∴a﹣2=0,b+3=0,解得a=2,b=﹣3.∴(a﹣b)2=(2+3)2=25.故答案为:25.16.解:根据图形得:S阴影=2×2×2×+2×2×=4+2=6,则新正方形的边长为.故答案为:.17.解:∵x﹣2的平方根是±2,2x+y+7的立方根是3,∴x﹣2=4,2x+y+7=27,解得:x=6,y=8,则x+y=6+8=14.故答案为:14.18.解:因为=2,=3,而的整数部分为2,所以8<a<27,则满足条件的奇数a有:9,11,13,15,17,19,21,23,25,共有9个.故答案为:9.19.解:,则a+b=10.1k,故答案为:10.1k.20.解:(1)当x=64时,=8,=2,当x=2时,y=;故答案为:;(2)当x为负数时,不能计算,因为负数没有算术平方根;当x=0时,=0,=0,一直计算,0的算术平方根和立方根都是0,不可以是无理数,不能输出y值,当x=1时,=1,=1,一直计算,1的算术平方根和立方根都是1,不可以是无理数,不能输出y值,∴当实数x取0或1或负数时,该程序无法输出y值,故答案为:0或1或负数.三.解答题21.解:(1)4x2﹣81=0,则x2=,故x=±;(2)(x﹣1)3+4=(x﹣1)3=﹣4,则(x﹣1)3=﹣,故x﹣1=﹣,解得:x=﹣.22.解:∵m﹣3的平方根是±6,∴m﹣3=(±6)2,∴m=39,∵,∴3+4n=27,∴n=6,∴m+n的算术平方根为:.23.解:(1)正数m的平方根互为相反数,∴2n+1+4﹣3n=0,∴n=5,∴2n+1=11,∴m=121;(2)∵|a﹣3|++(c﹣n)2=0,∴a=3,b=0,c=n=5,∴a+b+c=3+0+5=8,∴a+b+c的立方根是2.24.解:∵3<a<4,∴a=3,b=﹣3,∴原式=(﹣3)3+(﹣3)2=﹣27+(10+9)=﹣27+10﹣6+9=.25.解:设铁桶的底面边长为xcm,则x2×10=40×30×20,x2=40×30×2,x=,x=.答:铁桶的底面边长是cm.26.解:(1)设魔方的棱长为x,则x3=8,解得:x=2;(2)∵棱长为2,∴每个小立方体的边长都是1,∴正方形ABCD的边长为:,∴S正方形ABCD=()2=2;故答案为2;.(3)∵正方形ABCD的边长为,点A与﹣1重合,∴点B在数轴上表示的数b为:﹣1﹣,∴b(b+2)=(﹣1﹣)(﹣1﹣﹣2 )=5+4.。

(完整版)七年级数学下册第六章实数测试题及答案

(完整版)七年级数学下册第六章实数测试题及答案

第六章实数单元测试题一、选择题(每小题 3分,共30分)1.下列各式中无意义的是()4.1的立方根是(642 C. 2,7 3 D. 3 27.已知 3 1.51 =1.147,3 15.1 =2.472,30.151 =0.532 5 ,贝U 3 1510 的值是(A.C.心2 1D.x 2 2x2.在下列说法中:8的平方根是土 ,8 ;-3 是9的一个平方根;4-的平方根是9④0.01的算术平方根是 0.1 :⑤..a 4 其中正确的有(A.1 个B.2 个 2.下列说法中正确的是(A.立方根是它本身的数只有 C.平方根是它本身的数只有C.3 )D.4B. D.算数平方根是它本身的数只有 1和 绝对值是它本身的数只有 1和0 A.2 B.C.D.5.现有四个无理数6,,7,其中在实数--2+1与'.3+1之间的有 A.1 个 B.2 C.3 个 D.4 6.实数-7 ,-2,-3的大小关系是(A.24.72B.53.25C.11.47D.114.78. 若a 、3b | VF|,c辿2)3,则a,b,c的大小关系是()A. a b cB. c a bC. b a cD. c b a9. 已知x是169的平方根,且2x 3y x2,则y的值是()143A.11B. ± 11C. ± 15D.65 或310. 大于2\5且小于3-.2的整数有()A.9个B.8 个C .7 个D.5 个二、填空题(每小题3分,共30分)11. - 5绝对值是 ________ , - 5的相反数是.12. ,81的平方根是___________ , 3 64 的平方根是___________ ,-343的立方根是_________-256的算术平方根是13.比较大小: (1) .10 2 ;( 3)"01—;(4) .. 2 2.1014.当 时,3 2x x 2 3 5x 4有意义。

七年级数学人教版下册《第6章 实数》 单元测试卷及答案

七年级数学人教版下册《第6章 实数》 单元测试卷及答案

人教版七年级下册数学《第6章实数》单元测试一、选择题(本大题共10小题,共40分)1. 下列式子正确的是( )A. √36=±6B. √(−7)23=−√723C. √(−3)33=−3D. √(−5)2=−52. 下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a 2的算术平方根是a ;④算术平方根不可能是负数;⑤(π−4)2的算术平方根是4−π,其中正确的个数是( )A. 2个B. 3个C. 4个D. 5个3. 要使√(a −1)33=a −1成立,那么a 的取值范围是( )A. a ≤1B. a ≤−1C. a ≥1D. 一切实数4. 任意给定一个负数,利用计算器不断进行开立方运算,随着开立方次数增加,结果越来越趋向( )A. 0B. 1C. −1D. 无法确定5. 在实数3π,−78,0,√2,−3.14,√9,√33,0.151 551 555 1…中,无理数有( ) A. 2个 B. 3个 C. 4个 D. 5个6. |3.14−π|−π的值是( ) A. 3.14−2π B. 3.14 C. −3.14 D. 无法确定7. 下列不等式中,错误的是( ) A. −7<−5 B. 5>3 C. 1+a 2>0 D. a >−a8. 若|a −12|+(b +1)2=0,则√4a ×2√−b 的值是( )A. 2√2B. 2√6C. √3D. 4√3 9. 下列说法中正确的是( )A. ∵3的平方是9,∴9的平方根是3B. ∵−5的平方是25,∴25的负的平方根是−5C. ∵任何数的平方都是正数,∴任何数的平方根都是正数D. ∵负数的平方是正数,∴负数的平方根都是正数10. 下列说法正确的是( ) ①a 的倒数是1a ;②m 的绝对值是m ;③无理数都是无限小数;④实数可以分为有理数和无理数.A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)11. 已知数轴上A 、B 两点之间的距离为√3,点A 对应的数是2,那么B 对应的数是______ .12. 若√a +b −3+√ab +4=0,则√a 2−2ab +b 2的值为______ .13. 化简|3−√10|+(2−√10)= ______ .14. 设√11的小数部分为b ,则b(b +6)的值是______ .15. √7−2的相反数是______ .16. 观察思考下列计算过程:因为112=121,所以√121=11;同样,因为1112=12321,所以√12321=111,则√1234321= ______ ,可猜想√123456787654321= ______ .三、计算题(本大题共4小题,共38分)17. 求下列各式中的未知数x 的值:(1)2x 2−8=0; (2)(x +1)3=−64; (3)25x 2−49=0; (4)−(x −3)3=8.18. 已知5+√6的小数部分是a ,4−√6的小数部分是b ,求a +b 的值.19. 若a 是(−2)2的平方根,b 是√16的算术平方根,求a 2+2b 的值.20. 当a =10时,求√(a −4)2−√(a −11)2的值,有甲、乙同学分别这样解答:甲:原式=√(10−4)2−√(10−11)2,=10−4−(10−11),=7.乙:原式=|a −4|−|a −11|,当a =10时,a −4=10−4=6>0,a −11=10−11=−1<0,所以,原式=a −4−(a −11)=7.以上两人解答对吗?为什么?四、解答题(本大题共2小题,共18分) 21. 把下列各数填在相应的括号内:√36,√15,37,π,−3.14,0,3.1⋅3⋅,0.1010010001…(每两个1之间多一个0).有理数:{______ …};无理数:{______ …};实数:{______ …}.22.23. 如图,数轴的正半轴上有A ,B ,C 三点,表示1和√3的对应点分别为A ,B ,点B 到点A 的距离与点C 到原点的距离相等,设点C 所表示的数为x .(1)x 的值为______;(2)求x(x +2)的值,并写出x(x +2)的平方根.答案和解析1.【答案】C【解析】解:A 、√36=6,故本选项错误;B 、√(−7)23=√493=√723,故本选项错误;C 、√(−3)33=−3,故本选项正确;D 、√(−5)2=√25=5,故本选项错误;故选:C .根据立方根和算术平方根的定义分别对每一项进行分析,即可得出答案.本题主要考查了立方根和算术平方根,熟练掌握立方根和算术平方根的定义是解题的关键.2.【答案】A【解析】解:根据算术平方根概念可知:负数没有算术平方根,故此选项错误;0的算术平方根是0,故此选项错误;当a <0时,a 2的算术平方根是−a ,故此选项错误;算术平方根不可能是负数,故此选项正确;(π−4)2的算术平方根是4−π,故此选项正确.所以正确的有2个.故选:A .根据算术平方根的概念即可判断.本题考查了算术平方根,熟记定义是解题的关键.3.【答案】D【解析】解:∵要使√(a −1)33=a −1成立,∴必须a −1为一切实数,即a 为任何实数,故选:D .根据正数有一个正的立方根,负数有一个负的立方根,0的立方根是0即可得出a −1为一切实数,求出即可. 本题考查了对立方根的应用,注意:正数有一个正的立方根,负数有一个负的立方根,0的立方根是0. 4.【答案】C【解析】解:∵负数的立方根仍是负数,且两个负数绝对值大的反而小,∴结果越来越趋向−1.故选:C .由于负数的立方根仍是负数,且两个负数绝对值大的反而小,由此即可得到结果.此题主要考查了立方根的定义及性质.立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根式0.5.【答案】C【解析】解:−78,0,−3.14,√9是有理数,3π,√2,√33,0.151 551 555 1…是无理数,共有4个,故选:C .分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.6.【答案】C【解析】解:|3.14−π|−π,=π−3.14−π,=−3.14.故选:C .首先根据绝对值的性质:正数的绝对值是它的本身,负数的绝对值是它的相反数,即可去掉绝对值符号,即可化简求值.本题主要考查了绝对值的性质,正确根据绝对值的性质去掉绝对值符号是解决本题的关键.7.【答案】D【解析】解:A、−7<−5,故选项正确;B、5>3,故选项正确;C、由任何一个数的平方都是非负数,可知a2≥0,再由不等式的性质,可知1+a2≥1+0>0,故选项正确;D、当a为0或负数时,a≤−a,故选项错误.故选:D.A、B、C、D根据正数大于0,负数小于0实数大小比较的方法,结合不等式的性质,逐一进行判断即可.此题主要考查了实数大小比较的方法以及不等式的性质.本题需注意字母表示数具有任意性,D中字母a可表示一个任意的数.8.【答案】A【解析】解:∵|a−12|+(b+1)2=0,∴a−12=0,b+1=0,∴a=12,b=−1,∴√4a×2√−b=√4×12×2√1=2√2.故选:A.根据非负整数的性质得到a−12=0,b+1=0,则a=12,b=−1,然后把它们代入计算即可.本题考查了实数的运算:先进行乘法运算,再进行乘除运算,然后进行加减运算;有括号先算括号.也考查了非负整数的性质.9.【答案】B【解析】解:A、∵±3的平方是9,∴9的平方根是±3,故选项错误;B、∵−5的平方是25,∴25的负的平方根是−5,故选项正确;C、∵任何数的平方不一定正数,其中0的平方就是0,故选项错误;D、由于负数没有平方根,故选项错误.故选:B.A、B、C、D都利用平方根的定义判定即可.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.【答案】B【解析】解:a的倒数是1a ,当a=0时该结论不成立,故说法错误;m的绝对值是|m|,当m≥0时m的绝对值是m,当m<0时m的绝对值是−m,故说法错误;无理数都是无限不循环小数,故说法正确;实数可以分为有理数和无理数,故说法正确.故选:B.①根据0没有倒数即可判定;②由于正数的绝对值是它本身,负数的绝对值是其相反数,由此即可判定;③由于无理数是无限不循环小数,由此即可判定;④根据实数的分类即可判定.本题考查倒数、绝对值、有理数、无理数、实数的概念.“0没有倒数”需要特别注意;绝对值的性质“正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0”;实数分为有理数和无理数.11.【答案】2+√3或2−√3【解析】解:设B点对应的数是x,∵数轴上A、B两点之间的距离为√3,点A对应的数是2,∴|x−2|=√3,解得x=2+√3或x=2−√3.故答案为:2+√3或2−√3.设B点对应的数是x,再根据两点间的距离公式求出x的值即可.本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.12.【答案】5【解析】解:∵√a +b −3+√ab +4=0,∴{a +b −3=0ab +4=0, 解得{a =4b =−1, ∴√a 2−2ab +b 2=√(a −b)2=|a −b|=|4+1|=5,故答案为5.根据非负数的性质列出方程求出a 、b 的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.【答案】−1【解析】解:原式=−(3−√10)+2−√10=−3+√10+2−√10=−1.故答案为−1.利用绝对值的意义得到原式=−(3−√10)+2−√10,然后去括号、合并即可.本题考查了实数的运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.14.【答案】2【解析】解:∵3<√11<4,∴b =√11−3,∴b(b +6)=(√11−3)×(√11−3+6)=√11−3)×(√11+3)=11−9=2.故答案为:2.求出√11的范围,即可求出b 的值,最后代入求出即可.本题考查了估算无理数大小和二次根式的混合运算的应用,关键是求出b 的值.15.【答案】2−√7【解析】解:根据相反数的定义可知,√7−2的相反数是2−√7.无理数的相反数和有理数的相反数的意义相同,在一个数前面放上“−”,则该数的相反数,由此即可求解. 本题考查了实数相反数的意义,实数相反数的意义与有理数相反数的意义相同.16.【答案】1111;11111111【解析】解:∵11112=1234321,∴√1234321=1111,∵111111112=123456787654321,∴√123456787654321=11111111,故答案为:1111;11111111.根据给出的算式可以发现最中间是几,其算术平方根是几个1的平方进行解答即可.本题考查的是算术平方根的概念和数字的变化规律,根据给出的算式找出规律、根据规律正确解答是解题的关键. 17.【答案】解:(1)方程整理得:x 2=4,开方得:x =±2;(2)开立方得:x +1=−4,解得:x =−5;(3)方程整理得:x 2=4925,开方得:x =±75;(4)开立方得:x −3=−2,解得:x =1.【解析】各方程整理后,利用平方根或立方根定义开方(开立方)即可求出解.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.18.【答案】解:∵√4<√6<√9,∴2<√6<3,∴5+√6的小数部分是a ,则a =5+√6−7=−2+√6,∵4−√6的小数部分是b ,∴b =4−√6−1=3−√6,∴a +b 的值为:−2+√6+3−√6=1.【解析】首先得出√6的取值范围,进而分别得出a ,b 的值,即可得出答案.此题主要考查了估计无理数的方法,得出a ,b 的值是解题关键.19.【答案】解:根据题意知a =±√(−2)2=±2,b =√√16=√4=2,则原式=(±2)2+2×2=4+4=8.【解析】根据平方根和算式平方根得出a 、b 的值,再代入计算可得.本题主要考查平方根和算术平方根,解题的关键是掌握平方根和算术平方根的定义.20.【答案】解:甲错误原式=10−4−(11−10)=6−1=5,故甲错误;乙错误原式=a −4−(11−a)=a −4−11+a=5,故乙错误.【解析】根据2=a (a ≥0),可得甲的答案;根据绝对值都是非负数,可得乙的答案.本题考查了算术平方根,注意算术平方根是非负数,绝对值是非负数. 21.【答案】√36,37,−3.14,0,3.1.3., √15,π,0.1010010001…(每两个1之间多一个0), √36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0),【解析】解:有理数{√36,37,−3.14,0,3.1.3.,…}; 无理数{√15,π,0.1010010001…(每两个1之间多一个0),…}; 实数:{√36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0),…}.故答案为:√36,37,−3.14,0,3.1.3.;√15,π,0.1010010001…(每两个1之间多一个0); √36,√15,37,π,−3.14,0,3.1.3.,0.1010010001…(每两个1之间多一个0).整数和分数统称为有理数;无理数是无限不循环小数;有理数和无理数统称为实数.根据对应定义解答即可. 本题主要考查实数的分类,掌握有理数与无理数的概念是解决本题的关键. 22.【答案】√3−1【解析】解:(1)∵点A.B 分别表示1,√3,∴AB =√3−1,即x =√3−1;故答案为:√3−1;(2)∵x =√3−1,∴x(x +2)=(√3−1)(√3−1+2)=(√3−1)(√3+1)=3−1=2,∵2的平方根是±√2,∴x(x +2)的平方根为±√2.(1)根据数轴上两点间的距离求出AB 之间的距离即为x 的值;(2)把x 的值代入所求代数式进行计算即可.本题考查的是实数与数轴,熟知实数与数轴上的点是一一对应关系是解答此题的关键.。

第六章 实数单元测试及答案

第六章 实数单元测试及答案

第六章 实数单元测试及答案一、选择题1.一列数1a , 2a , 3a ,…… n a ,其中1a =﹣1, 2a =111a -, 3a =211a -,……, n a =111n a --,则1a ×2a ×3a ×…×2017a =( )A .1B .-1C .2017D .-20172.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍 C倍 D .2m 倍3.下列命题中,真命题是( )A .实数包括正有理数、0和无理数B .有理数就是有限小数C .无限小数就是无理数D .无论是无理数还是有理数都是实数4.下列说法中正确的个数有( )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数;④相反数等于本身的数是0;⑤绝对值等于本身的数是正数;A .2个B .3个C .4个D .5个5.若a ,b均为正整数,且a >b <+a b 的最小值是( ) A .3 B .4 C .5 D .66.有下列四种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③平方根等于它本身的数为0和1;④没有最大的正整数,但有最小的正整数;其中正确的个数是( )A .1B .2C .3D .47.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( )A .1或﹣1B .-5或5C .11或7D .-11或﹣7830b -=)A .0B .±2C .2D .49.下列各数中3.14,0.1010010001…,﹣17,2π有理数的个数有()A .1个B .2个C .3个D .4个10.已知m 是整数,当|m ﹣40|取最小值时,m 的值为( ) A .5 B .6 C .7 D .8二、填空题11.若x +1是125的立方根,则x 的平方根是_________.12.若()2320m n ++-=,则m n 的值为 ____.13.估计51-与0.5的大小关系是:51-_____0.5.(填“>”、“=”、“<”) 14.观察下列各式:(1)123415⨯⨯⨯+=;(2)2345111⨯⨯⨯+=;(3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.15.比较大小:512-__________0.5.(填“>”“<”或“=”) 16.已知31.35 1.105≈,3135 5.130≈,则30.000135-≈________.17.已知a 、b 为两个连续的整数,且a <19<b ,则a +b =_____.18.如图,直径为1个单位长度的半圆,从原点沿数轴向右滚动一周,圆上的一点由原点O 到达点'O ,则点'O 对应的数是_______.19.若一个正数的平方根是21a +和2a +,则这个正数是____________.20.若x ,y 为实数,且|2|30x y ++-=,则(x+y) 2012的值为____________.三、解答题21.先阅读然后解答提出的问题:设a 、b 是有理数,且满足2322+=-a b b a 的值.解:由题意得(3)(20-++=a b ,因为a 、b 都是有理数,所以a ﹣3,b+2也是有理数,2是无理数,所以a-3=0,b+2=0,所以a=3,b=﹣2, 所以3(2)8=-=-a b .问题:设x 、y 都是有理数,且满足225y 1035x y -+=+x+y 的值.22.阅读下面文字:对于5231591736342⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭可以如下计算: 原式()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦ ()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++-⎡⎤ ⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦ 1014⎛⎫=+- ⎪⎝⎭ 114=- 上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭ (2)235120192018201720163462⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭ 23.阅读理解: 计算1111234⎛⎫+++ ⎪⎝⎭×11112345⎛⎫+++ ⎪⎝⎭﹣111112345⎛⎫++++ ⎪⎝⎭×111234⎛⎫++ ⎪⎝⎭时,若把11112345⎛⎫+++ ⎪⎝⎭与111234⎛⎫++ ⎪⎝⎭分别各看着一个整体,再利用分配律进行运算,可以大大简化难度.过程如下: 解:设111234⎛⎫++ ⎪⎝⎭为A ,11112345⎛⎫+++ ⎪⎝⎭为B , 则原式=B (1+A )﹣A (1+B )=B+AB ﹣A ﹣AB=B ﹣A=15.请用上面方法计算: ①11111123456⎛⎫+++++ ⎪⎝⎭×111111234567⎛⎫+++++ ⎪⎝⎭-1111111234567⎛⎫++++++ ⎪⎝⎭×1111123456⎛⎫++++ ⎪⎝⎭②111123n ⎛⎫++++ ⎪⎝⎭111231n ⎛⎫+++ ⎪+⎝⎭-1111231n ⎛⎫++++ ⎪+⎝⎭11123n ⎛⎫+++ ⎪⎝⎭. 24.你能找出规律吗?(1= ,= ;= ,= .“<”).(2)请按找到的规律计算:;(3)已知:a,b= (可以用含a ,b 的式子表示).25.阅读理解.23.∴11<21的整数部分为1,12.解决问题:已知a﹣3的整数部分,b﹣3的小数部分.(1)求a ,b 的值;(2)求(﹣a )3+(b +4)22=17.26.阅读下列解题过程:为了求23501222...2+++++的值,可设23501222...2S =+++++,则2345122222...2S =+++++,所以得51221S S -=-,所以5123505121:1222...221S =-+++++=-,即;仿照以上方法计算:(1)2320191222...2+++++= .(2)计算:2320191333...3+++++(3)计算:101102103200555...5++++【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】因为1a =﹣1,所以2a =11111112a ==---(),3 a =21121112a ==--,4 a =3111112a ==---,通过观察可得:1 a ,2a ,3a ,4 a ……的值按照﹣1,1 2, 2三个数值为一周期循环,将2017除以3可得372余1,所以2017a 的值是第273个周期中第一个数值﹣1,因为每个周期三个数值的乘积为: 11212-⨯⨯=-,所以1a ×2a ×3a ×…×2017a =()()372111,-⨯-=-故选B. 2.C解析:C【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R ,增加前的半径为r ,根据题意得:πR 2=mπr 2,∴,故选:C .【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】直接利用实数以及有理数、无理数的定义分析得出答案.【详解】A 、实数包括有理数和无理数,故此命题是假命题;B 、有理数就是有限小数或无限循环小数,故此命题是假命题;C 、无限不循环小数就是无理数,故此命题是假命题;D 、无论是无理数还是有理数都是实数,是真命题.故选:D .【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键.4.A解析:A【分析】分别利用绝对值的定义、无理数、有理数的定义、相反数的定义分别进行判断即可得出答案.【详解】①0是绝对值最小的有理数;根据绝对值的性质得出,故此选项正确;②无限小数是无理数;根据无限循环小数是有理数判断,故此选项错误;③数轴上原点两侧的数互为相反数;根据到原点距离相等的点是互为相反数,故此选项错误;④相反数等于本身的数是0;根据相反数的定义判断,故此选项正确;⑤绝对值等于本身的数是正数;还有0的绝对值也等于本身,故此选项错误.∴正确的个数有2个故选:A.【点睛】本题主要考查了绝对值的定义、无理数、有理数的定义、相反数的定义等知识,熟练掌握其性质是解题关键.5.B解析:B【分析】的范围,然后确定a、b的最小值,即可计算a+b的最小值.【详解】23.∵a a为正整数,∴a的最小值为3.12.∵b b为正整数,∴b的最小值为1,∴a+b的最小值为3+1=4.故选B.【点睛】本题考查了估算无理数的大小,解题的关键是:确定a、b的最小值.6.C解析:C【分析】根据实数的定义,实数与数轴上的点一一对应,平方根的定义可得答案.【详解】①数轴上有无数多个表示无理数的点是正确的;;2③平方根等于它本身的数只有0,故本小题是错误的;④没有最大的正整数,但有最小的正整数,是正确的.综上,正确的个数有3个,故选:C.【点睛】本题主要考查了实数的有关概念,正确把握相关定义是解题关键.7.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y 的值即可.【详解】解:∵|x |=2,y 2=9,且xy <0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A .【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.8.C解析:C【分析】由算术平方根和绝对值的非负性,求出a 、b 的值,然后进行计算即可.【详解】解:根据题意,得a ﹣1=0,b ﹣3=0,解得:a =1,b =3,∴a +b =1+3=4,∴2.故选:C .【点睛】本题考查了算术平方根和绝对值的非负性,解题的关键是正确求出a 、b 的值.9.C解析:C【分析】直接利用有理数的定义进而判断得出答案.【详解】解:3.14,0.1010010001…,-17 ,2π 3.14,-17=-2共3个.故选C .【点睛】此题主要考查了有理数,正确把握有理数的定义是解题关键. 10.B解析:B【分析】根据绝对值是非负数,所以不考虑m 为整数,则m 取最小值是0,又0的绝对值为0,令0m=,得出m=m的整数可得:m =6.【详解】解:因为m取最小值,m∴=,∴=,m解得:m=240m=,∴<<,且m更接近6,67m∴当6m=时,m有最小值.故选:B.【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x+1=,解得:x=4∴x的平方根是±2故答案为:±2【点睛】本题考查立方根和平方根,注意一个正解析:±2【分析】先根据立方根得出x的值,然后求平方根.【详解】∵x+1是125的立方根∴x=4∴x的平方根是±2故答案为:±2本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.12.【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,m n =(-3)2=9.故答案为9.【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.>【解析】∵ . , ∴ , ∴ ,故答案为>.解析:>【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】观察各式得出其中的规律,再代入12n=求解即可.【详解】由题意得()31n n=⨯++将12n=代入原式中12151181a==⨯+=故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】∵,∵-2>0,∴>0.故>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于解析:>【分析】首先把两个数采用作差法相减,根据差的正负情况即可比较两个实数的大小.【详解】12>0,∴22>0.>0.5.故答案为:>.【点睛】此题考查实数大小比较,解题关键在于掌握比较两个实数的大小,可以采用作差法、取近似值法等.16.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】≈5.130≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.17.9【分析】首先根据的值确定a、b的值,然后可得a+b的值.【详解】∵<,∴4<<5,∵a<<b,∴a=4,b=5,∴a+b=9,故答案为:9.【点睛】本题主要考查了估算无理数的解析:9【分析】a 、b 的值,然后可得a +b 的值.【详解】<∴45,∵a b ,∴a =4,b =5,∴a +b =9,故答案为:9.【点睛】本题主要考查了估算无理数的大小,关键是正确确定a 、b 的值. 18.【分析】点对应的数为该半圆的周长.【详解】解:半圆周长为直径半圆弧周长即故答案为:.【点睛】本题考查数轴上的点与实数的关系.明确的长即为半圆周长是解答的关键. 解析:12π+【分析】点O '对应的数为该半圆的周长.【详解】解:半圆周长为直径+半圆弧周长 即12π+ 故答案为:12π+.【点睛】 本题考查数轴上的点与实数的关系.明确OO '的长即为半圆周长是解答的关键. 19.1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1解析:1【分析】一个正数有两个平方根,它们互为相反数,由此即可列式2a+1+a+2=0,求出a 再代回一个根再平方即可得到该正数.【详解】由题意得2a+1+a+2=0,解得a=-1,∴a+2=1,∴这个正数是22(2)11a +==,故答案为:1.【点睛】此题考查平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.7或-1.【分析】根据题目中给出的方法,对所求式子进行变形,求出x 、y 的值,进而可求x+y 的值.【详解】解:∵2210x y -=+∴()22100x y --+-=,∴2210x y --=0-=0∴x=±4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1∴x+y 的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.22.(1)14-(2)124- 【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】 (1)115112744362⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭()115112744362⎛⎫=--+-+--+- ⎪⎝⎭ 104⎛⎫=+- ⎪⎝⎭ 14=- (2)原式()235120192018201720163462⎛⎫=-+-++-+-+ ⎪⎝⎭ 124⎛⎫=-+- ⎪⎝⎭124=- 【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.23.(1)17;(2)11n +. 【解析】【分析】①根据发现的规律得出结果即可;②根据发现的规律将所求式子变形,约分即可得到结果.【详解】(1)设1111123456⎛⎫++++ ⎪⎝⎭为A ,111111234567⎛⎫+++++ ⎪⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=17; (2)设11123n ⎛⎫+++ ⎪⎝⎭为A ,111231n ⎛⎫+++ ⎪+⎝⎭为B , 原式=(1+A )B ﹣(1+B )A=B+AB ﹣A ﹣AB=B ﹣A=11n +. 【点睛】 考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(1)6,6,20,20,=,=;(2)①10,②4;(3)2a b【分析】(1)0,0a b =≥≥,据此判断即可.(2=10===,4===,据此解答即可.(3)根据a =b =2a b ==,据此解答即可.【详解】解:(1236=⨯=6==;4520=⨯=20==.==故答案为:6,6,20,20,=,=;(210===;4===;(3)∵a =b =2a b ==, 故答案为:2a b .【点睛】 本题考查算数平方根,掌握求一个数算术平方根的方法为解题关键.25.(1)a =1,b ﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a =1,b 4;(2)(﹣a )3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a )3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.26.(1)202021-;(2)2020312-;(3)201101554-. 【分析】仿照阅读材料中的方法求出所求即可.【详解】解:(1)根据2350511222...221+++++=-得:2320191222...2+++++=202021-(2)设2320191333...3S =+++++,则234202033333...3S =+++++,∴2020331S S -=-, ∴2020312S -= 即:2020232019311333 (32)-+++++= (3)设232001555...5S =+++++,则23420155555...5S =+++++,∴201551S S -=-,∴201514S -= 即:20123200511555 (5)4-+++++= 同理可求⸫10123100511555 (5)4-+++++= ∵1011021032002320023100555...51555...5)(1555...5)++++=+++++-+++++( 201101201101101102103200515155555 (5444)---∴++++=-= 【点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.。

新人教版初中数学七年级下册第六章《实数》单元测试及答案

新人教版初中数学七年级下册第六章《实数》单元测试及答案

人教版七年级数学下册章末质量评估第六章实数人教版七年级数学下册第六章实数单元检测卷一、选择题1. 若一个数的算术平方根等于它的相反数,则这个数是( D )A.0 B. 1C.0或1 D . 0或± 12.以下各式建立的是 ( C )A.=-1B.=± 1C.=- 1D.=± 13.与最靠近的整数是 ( B )A. 0B. 2C. 4D. 54.. 若x- 3 是 4 的平方根,则x 的值为( C)A. 2B.±2C.1或5 D. 165.以下说法中,正确的个数有( A )①两个无理数的和是无理数;②两个无理数的积是有理数;③无理数与有理数的和是无理数;④有理数除以无理数的商是无理数.A.1个B.2个C.3个D.4个6.以下选项中正确的选项是(C)A. 27 的立方根是± 3B.的平方根是± 4C. 9 的算术平方根是3D.立方根等于平方根的数是17.. 用计算器计算44.86 的值为 ( 精准到 0.01)( C )A. 6.69 B.6.7 C.6.70 D.± 6.708.一个底面是正方形的水池,容积是11.52m 3,池深 2m,则水池底边长是( C ) A. 9.25m B.13.52m C.2.4m D.4.2m9. 比较 2, ,的大小 , 正确的选项是( C )A.2<<B.2<<C.<2<D.<<210. 假如一个实数的算术平方根等于它的立方根,那么知足条件的实数有 (C)A .0 个B . 1 个 om]C .2 个D . 3 个二、填空题11. 3 的算术平方根是 ____ 3____.12. (1) 一个正方体的体积是 216cm 3,则这个正方体的棱长是____6________cm ;(2) 表示 _______9_____ 的立方根;13. 已知 a , b 为两个连续整数,且 a< 15<b ,则 a + b 的值为 7 .14. 已知一个有理数的平方根和立方根相同,则这个数是 ______0______ .15.实数 1- 2的相反数是2 - ,绝对值是 2- .113____3, 415. 0________.16.写出 9到 23之间的全部整数: 三、解答题17. 求以下各数的平方根和算术平方根:(1)1.44 ;解: 1.44 的平方根是 ± 1.44 =±1.2 ,算术平方根是1.44 = 1.2.169(2) 289;169169 13 169 13 解: 289的平方根是 ±289= ±17, 算术平方根是289=17.92(3)( - 11) .解: (-9 )2 的平方根是±(-9)2=±9 ,算术平方根是(-9 )2=9.[]1111111111 18.已知一个正数x 的两个平方根分别是3-5m和 m- 7,求这个正数x 的立方根.由已知得 (3 - 5m)+ (m- 7)=0 ,-4m- 4=0,解得: m=-1.因此 3- 5m=8, m- 7=- 8.2因此 x=( ±8) =64.19.计算:(1)2+3 2-5 2;(2)2(7- 1) +7;431(3) 0.36 ×÷;1218(4)|3-2| +| 3-2| -| 2-1| ;34(5)1-0.64 --8+-|7- 3|.25解: (1)原式=(1+3-5)×2=- 2.(2)2(7-1)+7= 27- 2+7=37- 2.2 1(3)原式= 0.6×11÷2人教版七年级数学下册第六章实数章末综合测试卷一.选择题(共10 小题)1.以下式子,表示 4 的平方根的是()A.4B.42C. -4D.±42.若a是无理数,则a 的值能够是()1A.4B. 1C. 2D.93.已知实数a, b 在数轴上对应的点如下图,则以下式子正确的选项是()A. -a<-b B. a+b<0C. |a|<|b|D.a-b>04.实数 3的大小在以下哪两个整数之间,正确的选项是()A.0和1B.1和2C.2和3D.3和 45.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10B. 10,11C. 11,12D.12,136.在 -3、 0、 6、 4 这四个数中,最大的数是()A. -3B. 0C. 6D.47.以下说法正确的选项是()A.立方根等于它自己的实数只有0 和 1B .平方根等于它自己的实数是 0C . 1 的算术平方根是± 1D .绝对值等于它自己的实数是正数8.已知 a , b 为两个连续整数,且 a< 13<b,则 a+b 的值为()A .9B . 8C . 7D .69.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .110.有以下说法:①实数与数轴上的点一一对应; ②2- 7的相反数是 7-2;③在1和3 之间的无理数有且只有2, 3, 5, 7这4个;④ 2+3x-4x2是三次三项式;⑤绝对值等于自己的数是正数; 此中错误的个数为()A .1B . 2C . 3D .4二.填空题(共 6 小题)11. 4 的算术平方根是 ,-64 的立方根是 .12.若 m 为整数,且 5<m<10,则 m=13.某个正数的平方根是 x 与 y,3x-y 的立方根是 2,则这个正数是 .14.已知实数 a 、 b 都是比 2 小的数,此中 a 是整数, b 是无理数,请依据要求,分别写出一个 a 、 b 的值: a=, b=.15.如图,在数轴上点A ,B 表示的数分别是1,-2,若点B ,C 到点A 的距离相等,则点C所表示的数是.16.如图,长方形内有两个相邻的正方形, 面积分别为 4 和 3 ,那么暗影部分的面积为 .三.解答题(共 7 小题)17.求 x 的值:(1)2x 2-32=0;(2)(x-1)3=2743-64|+(-3)23 12518.计算:-|-27919.已知 2 的平方等于 a,2b-1 是 27 的立方根 , ± c-2表示 3 的平方根.( 1)求 a,b,c 的值;( 2)化简对于 x 的多项式: |x-a|-2(x+b)-c, 此中 x < 4.20.正数 x 的两个平方根分别为 3-a 和 2a+7.( 1)求 a 的值;( 2)求 44-x 这个数的立方根.21.定义新运算:对随意实数a 、b ,都有 a △ b=a 2-b 2,比如: (3△ 2)=32 -22=5,求 (1△ 2)△ 4的值.22.如图甲,这是由8 个相同大小的立方体构成的魔方,整体积为 64cm 3.( 1)这个魔方的棱长为 cm;( 2)图甲中暗影部分是一个正方形ABCD,求这个正方形的边长;(3)把正方形 ABCD 搁置在数轴上,如图乙所示,使得点A 与数1 重合,则 D 在数轴上表示的数为.23.有两个大小完整相同的长方形 OABC 和 EFGH 重合放在一同,边 OA 、 EF 在数轴上, O 为数轴原点(如图 1),长方形 OABC 的边长 OA 的长为 6 个坐标单位.( 1)数轴上点 A 表示的数为.( 2)将长方形 EFGH 沿数轴所在直线水平挪动①若挪动后的长方形 EFGH 与长方形 OABC 重叠部分的面积恰巧等于长方形OABC 面积的1 ,则3挪动后点 F 在数轴上表示的数为.②若出行 EFGH 向左水平挪动后, D 为线段 AF 的中点,求当长方形EFGH 挪动距离 x 为什么值时, D、 E 两点在数轴上表示的数是互为相反数?答案:1.D2.C3.C4.B5.B6.D7.B8.C9.A10.C11.2,-412.313.414.1,15.2+16.2-317. 解:( 1)∵ 2x2-32=0,∴2x2=32,则 x2=16,因此 x=±4 ;(2)∵(x-1)3=27,∴x-1=3,则 x=4.18.2 5解:原式=3-4+3- 3=-2.19.解:( 1)由题意知 a=22=4,2b-1=3 ,b=2;c-2=3, c=5;(2)∵ x<4,∴|x-a|-2 ( x+b)-c=|x-4|-2 ( x+2) -5=4-x-2x-4-5=-3x-5.20. 解:( 1)∵正数 x 的两个平方根是3-a 和 2a+7,∴3-a+ (2a+7)=0,解得: a=-10( 2)∵ a=-10, ∴ 3-a=13, 2a+7=-13. ∴这个正数的两个平方根是± 13,∴这个正数是 169. 44-x=44-169=-125 , -125 的立方根是 -5.21. 解:( 1△ 2)△ 4 =( 12-22)△ 4=( -3)人教版七年级数学下册第六章实数章末能力测试卷一.选择题(共 10 小题)1.计算: 27 =()A .3B .± 3C .3 3D .332 3, π,此中,无理数共有() 2.以下实数 0,,3A .1 个B .2 个C .3 个D .4 个22)3.若 a =4,b =9,且 ab<0,则 a-b 的值为(A . -2B .± 5C .5D .-54.假如一个实数的平方根与它的立方根相等,则这个数是()A .0B .正实数C .0和1D .15.给出以下说法:① -2 是 4 的平方根;②9 的算术平方根是9;③327 =-3;④ 2 的平方根是2 .此中正确的说法有()A .0 个B .1 个C .2 个D .3 个6.以下变形正确的选项是( )A . 17=±4B . 3 27 =±3C . ( 4)2 =-4D . ± 121 =± 119 37.一个数的立方根是 4 ,这个数的平方根是( )A .8B . -8C .± 8D .± 48.实数 a 、 b 在数轴上的对应点的地点如下图,则正确的结论是( ) A . b>-2B . -b<0C . -a>bD .a>-b9.在数 -3,-(-2),0, 9 中,大小在 -1 和 2 之间的数是()A . -3B . -(-2)C .0D . 910.如图将 1、2 、3 、 6 按以下方式摆列.若规定(m,n)表示第 m 排从左向右第n 个数,则 (5,4)与 (15,8)表示的两数之积是( )A .1B . 2C . 6D .3 2二.填空题(共 6 小题)11.4的平方根是, 1 的立方根是,16 的算术平方根是.912. 16 的算术平方根与 -8 的立方根之和是.13.一个正方体,它的体积是棱长为 2cm 的正方体的体积的 8 倍,则这个正方体的棱长是cm .14.对于正实数 a , b 作新定义: a ⊙ b=2 ab, 若 25 ⊙ x 2=4,则 x 的值为 .15.|15 4|=.16.数轴上从左到右挨次有 A 、B 、C 三点表示的数分别为a 、b 、 10, 此中 b 为整数,且满足|a+3|+|b-2|=b-2, 则 b-a=.三.解答题(共7 小题)4 | 364 |( 3)2 3 12517.计算:27918.求以下各式中x 的值:2(1)9x -4=0;(2)(3x-1)3 +64=0.31和 a+13,求这个数的立方根.19.已知一个数的两个平方根分别是220.已知 -8 的平方等于a, b 的平方等于121,c 的立方等于 -27,d 的算术平方根为5.(1)写出 a,b,c,d 的值;(2)求 d+3c 的平方根;(3)求代数式 a-b2+c+d 的值.21.有一个边长为 9cm 的正方形和一个长为 24cm 、宽为 6cm 的长方形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少厘米?22.已知表示a, b 两个实数的点在数轴上的地点如下图,化简|a-b|+|a+b|.23.阅读达成问题:数轴上,已知点A、 B、 C.此中, C 为线段 AB 的中点:AB 的长为,C 点表示的数(1)如图,点 A 表示的数为 -1,点 B 表示的数为3,则线段为;(2)若点 A 表示的数为 -1,C 点表示的数为2,则点 B。

第六章实数单元测试卷及答案

第六章实数单元测试卷及答案

)2、下列实数 3π ,-,0, 2,-3.15, 9, 3 3 中,无理数有(2D. - 2 与 22 倍 125 的立方根是______ .2的倒数是______.根;④ ( ) 2 的平方根是 ± 2 5 .正确的是______________(写序号).2 ,则 x 为________。

( 第六章实数单元同步测试卷一、选择题(每小题 3 分,共 30 分)1、下列语句中正确的是()A.49 的算术平方根是 7B.49 的平方根是-7C.-49 的平方根是 7D.49 的算术平方根是 ± 778A.1 个B.2 个C.3 个D.4 个3、 - 8 的立方根与 4 的算术平方根的和是 ( )A. 0B. 4C. ± 2D. ± 44、下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数; 4)无理数可以用数轴上的点来表示,共有( )个是正确 的。

A. 1 B. 2 C. 3 D. 45、下列各组数中互为相反数的是()A.- 2 与 (-2) 2B.- 2 与 3 - 8 C.- 2 与 -16、圆的面积增加为原来的 n 倍,则它的半径是原来的()A. n 倍;B. nC. n 倍D. 2n 倍.7、实数在数轴上的位置如图,那么化简 a - b - a 2 的结果是()A. 2a - bB. bC. - bD. - 2a + b8、若一个数的平方根是它本身,则这个数是()A 、1B 、-1C 、0D 、1 或 09、一个数的算术平方根是 x ,则比这个数大 2 的数的算术平方根是()A. x 2 + 2B 、 x + 2 C. x 2 - 2 D. x 2 + 210、若 3 x + 3 y = 0 ,则 x 和y 的关系是()A. x = y = 0B. x 和y 互为相反数C. x 和y 相等D. 不能确定二、填空题(每小题3分,共 30 分)11、 (-4) 2的平方根是______, 36 的算术平方根是______ , - 812、 3 - 8 的相反数是______, -π13、若一个数的算术平方根与它的立方根相等,那么这个数是 .14、下列判断:① - 0.3 是 0.09 的平方根;② 只有正数才有平方根;③ - 4 是 - 16 的平方2515、如果 a 的平方根是 ±3 ,则 3 a - 17 = .16、比较大小: 3 2 2 517、满足 - 2 < x < 5 的整数 x 是 .18、用两个无理数列一个算式,使得它们和为有理数______.19、计算: 1 - x + x - 1 + x 2 - 2 = ______ .20、小成编写了一个如下程序:输入 x → x 2→立方根→倒数→算术平方根→ 1三.解答题(共 90 分):21. 把下列各数填人相应的集合内:(10 分)整数集合{ … }负分数集合{ …}正数集合{ …}有理数集合{ …}无理数集合{ …}22、(10 分)求 x(1) (2 x - 1) 2 = 4 (2) 3( x + 2) 3 - 81 = 0(1)2 -3 + 2 2(2) (-2) 3⨯ (-4) 2+ 3 (-4) 3⨯ (- )2 - 3 27(23、(10 分)计算1227、(10 分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216 立方厘米,求这本书的高度.24、(10 分)已知 2a + b 2 + b 2 - 9 = 0 ,求 a + b 的值.28、(10 分)已知 2a ﹣1 的平方根是±3,3a+b ﹣9 的立方根是 2,c 是 的整数部分,求a+2b+c 的值.25、(10 分)若 9 的平方根是 a,b 的绝对值是 4,求 a+b 的值?29、(10 分)如图,有高度相同的 A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水,小颖把 A 、B 两只杯子中的水全部倒进 C 杯中,C 杯恰好装满,小颖测量得 A 、B 两只杯子底面圆的半径分别是 3 厘米和 4 厘米,你能求出 C 杯底面的半径是多少吗?26、 10分)例如∵ 4 < 7 < 9, 即 2 < 7 < 3 ,∴ 7 的整数部分为 2 ,小数部分为 7 - 2 ,如果 2 小数部分为 a , 3 的小数部分为 b ,求 a + b + 2 的值.A B C5 12.2, - 2 或x = - 2 ⑵x=14 -32 或- 2 解析:由题意知, 2a + b 2 ≥ 0 b 2 - 9 ≥ 0 ,所以2a + b 2 = 0, b 2 - 9 = 0 ,可得b = ±3, a = - ,故①当 a = - ,b = 3 时, a + b = - ②当 a = - ,b = -3 时, a + b = -2 .参考答案一、选择1.A2.C3.A4.B5. B6.C7.C8.D9.D 10.B二、填空24. ± 7 或 ± 125. 2 + 3 解析:因为 1 < 2 < 2 ,所以 2 的整数部分是 1 ,小数部分为 2 - 1 ;1 < 3 <2 ,所以3 的整数部分为 1,小数部分为 3 - 1 ,所以可得a +b + 2 = 2 - 1 + 3 - 1 +2= 2 + 3 .11. ± 4, 6,- 2 2π 26.1.5 ㎝ 解析:设书的高度为 x ㎝,由题意可得13.1,014.①④ 15.4 解析: a = (±3) 2 , a = 81; 3 a - 17 = 3 81 - 17 = 4 .16.<17.-1,0,1,218. 2 - 1,1 - 2(只要符合题意即可).19.-120. ± 8(4 x ) 3 = 216,4 x = 6, x = 1.527.5 ㎝ 解析:设圆柱的高为 h ,C 杯的底面半径为 r ㎝,由题意得: π ⨯32 ⨯ h + π ⨯ 42 ⨯ h = π ⨯ r 2 ⨯ h ,可得 r = 5 .21.⑴ x = 3122.⑴ 3 + 2 解析:原式= 3 - 2 + 2 2 = 3+ 2⑵-36解析:原式=-8×4+(-4)×1=-32-1-3=-3623.- 3159 9 3 9 15 2 2 2 2。

人教版七年级下册数学第六章实数 单元测试训练卷含答案

人教版七年级下册数学第六章实数 单元测试训练卷含答案

22.方案一可行.
因为正方形胶合板的面积为 4 m2,所以正方形胶合板的边长为 4=2(m).
如图所示,沿着 EF 裁剪,因为 BC=EF=2 m,所以只要使 BE=CF=3÷2=1.5(m)就满足条
件.
方案二不可行.理由如下: 设所裁长方形装饰材料的长为 3x m、宽为 2x m. 则 3x·2x=3,
11. 1- 2 的相反数是_______,绝对值是_________.
12. 我们可以利用计算器求一个正数 a 的算术平方根,其操作方法是按顺序进行按键输入:
3 a = .小明按键输入 3 1 6 = 显示结果为 4,则他按键输入
3 1 6 0 0 = 显示结果应为____. 13. 计算:| 2- 3|+ 2=________. 14. 一个正数的平方根分别是 x+1 和 x-5,则 x=________. 15. 有两个正方体纸盒,已知小正方体纸盒的棱长是 5 cm,大正方体纸盒的体积比小正方体 纸盒的体积大 91 cm3,则大正方体纸盒的棱长是__ __cm. 16. 现有两个大小不等的正方体茶叶罐,大正方体茶叶罐的体积为 1 000 cm3,小正方体茶叶 罐的体积为 125 cm3,将其叠放在一起放在地面上(如图),则这两个茶叶罐的最高点 A 到地 面的距离是________cm.
()
A.2 倍 B.3 倍
C.4 倍 D.5 倍
7. 实数 a,b 在数轴上对应点的位置如图所示,则化简 (a-1)2- (a-b)2+b 的结果
是( )
A.1
B.b+1
C.2a
D.1-2a
8. 制作一个表面积为 30 cm2 的无盖正方体纸盒,则这个正方体纸盒的棱长是( )
A. 6 cm B. 5 cm

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)

七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。

七年级数学(下)第六章《实数》单元测试题含答案

七年级数学(下)第六章《实数》单元测试题含答案
11. 的平方根是, 的算术平方根是.
12.比较大小: (填“>”“<”“=”).
13.已知 + ,那么 .
14.在 中,________是无理数.
15. 的立方根的平方是________.
16.若 的平方根为 ,则 .
17._____和_______统称为实数.
18.若 、 互为相反数, 、 互为负倒数,则 =_______.
因为 ,所以 的算术平方根为
因为 所以 平方根为
因为 ,所以 的算术平方根为
23.解:因为 ,所以 的立方根是 .
因为 所以 的立方根是 .
因为 ,所以 的立方根是 .
因为 ,所以 的立方根是 .
24.解:因为 ,所以源自,即 ,所以 .故 ,
从而 ,所以 ,
所以 .
25.解:可知 ,由于 ,
所以 .
C.如果一个数有立方根,则它必有平方根
D.不为0的任何数的立方根,都与这个数本身的符号同号
8.下列各式成立的是( )
A. B. C. D.
9.在实数 , , , , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10.在-3,- ,-1,0这四个实数中,最大的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
4.当 时, 的值为( )
A. B. C. D.
5.下列关于数的说法正确的是()
A.有理数都是有限小数
B.无限小数都是无理数
C.无理数都是无限小数
D.有限小数是无理数
6.与数轴上的点具有一一对应关系的数是()
A.实数B.有理数C.无理数D.整数
7.下列说法正确的是( )
A.负数没有立方根

(完整版)人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

(完整版)人教版初中数学七年级下册第六章《实数》单元测试题(含答案)

第六章《实数》检测题一、选择题(每题只有一个正确答案)1. 4 的平方根是( ).A. 2B. 2C. 2D. 22.以下运算正确的选项是( )A.9 =±3B. | ﹣3|= ﹣ 3C. ﹣ 92=﹣ 3D. ﹣ 3 =93. 在实数 22 ,3 ,3,39 , 3.14 中,无理数有72A. 2 个B. 3 个C. 4 个D. 5 个4.预计13 1 的值在()A. 2 和 3 之间B. 3 和 4 之间C. 4 和 5 之间D. 5 和 6 之间5.假如一个实数的平方根与它的立方根相等,则这个数是())A. 0 和 1B. 正实数C. 0D. 16.关于实数 a ,b ,给出以下 4 个判断:①若 a b ,则 a b ;②若 a b ,则 ab ;③若 x 2 81 ,则 x9 ;④若 m5 ,则 m 225 ,此中正确的判断有()A. 4 个B. 3 个C. 2 个D. 1 个7.64 的立方根等于()A. 8B. 4C. 2D. )2 8.以下说法不正确的选项是 ( )2A.1的平方根是 ±1B. - 5 是 25 的一个平方根44C. 0.9 的算术平方根是0.3D. 327 39.若 a 2 23b 的全部可能值为(5 , b 35 ,则 a).A. 0B. 10C. 0 或 10D. 0 或 1010.若将三个数-3 ,7 ,11 表示在数轴上,此中能被如下图的墨迹覆盖的数是( )A. -3B.7C.11D. 7 和 1111.以下运算中,正确的个数是()① 125=1 5;②22 =﹣ 22 =﹣ 2;③1 111 ④4 =±4;⑤21441216 4 423125 =﹣5.A. 0 个B. 1 个C. 2 个D. 3 个12.用算器探究:已知按必定律摆列的20 个数: 1, 1 ,1,⋯,1,2319 1.假如从中出若干个数,使它的和<1,那么取的数的个数最多是()20A. 4 个B. 5 个C. 6 个D. 7 个二、填空13.算:(1 )1(5)03.214. 9 的平方根是 ____ )的立方根2)15.已知 a<19 <b,且a,b两个整数,a+b=__.16.若 x,y 数,且 |x 2|+ ( y+1)2 =0,x y的是__.17.察下边的律 :0.02 0.1414 ,0.20.4472,2 1.414 ,20 4.472 ,20014.14 ,2000 44.7220000;⑵ 若0.30.5477 ,3 1.732 ,0.03.三、解答12018.算:2017319.算:0(1)12 3 263322 .21( 2)2 3 3 2 2 3 3 2 2( 3)2 18 - 41+ 3 32( 4)(8- 5 3)×6 82732(6) a a22( 5)2a4a a a1b2b a21 a 1a120.求x的值:( 1)(x-1)2=9;(2) 8x3-27= 021.已知某正数的两个平方根分别是2a)7和 a+4)b) 12的立方根为﹣ 2)))1求 a)b 的值;))2求 a+b 的平方根.22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为 3:2.他不知可否裁得出来,正在忧愁.李明见了说:“别忧愁,必定能用一块面积大的纸片裁出一块面积小的纸片.”你赞同李明的说法吗?张华能用这块纸片裁出切合要求的纸片吗?参照答案1. C 2. C 3. B 4.C 5. C 6. D 7. C 8.C 9. C 10. B 11. B 12. A 13. 2 14. ± 3 ) 8)15. 916. 317. 141.4 ) 0.1732. 18. 9. 19.解:( 1)原式 = 2 3231 4 = 3 5 ;223 22( 2)原式 = 3 =4× 3- 9 × 2 =12 –- 618; =( 3)原式 =6 2 - 2 +12==17 2;2 (6-1+12) 2( 4)原式 =8 × 6 - 5 3 × 6 =8×6 - 5 3?6 = 4 - 15 2 ; 27 27 3 8a 3 16a 28a 3b 2a( 5)原式 = -6 ÷b 2= -b 6×3 = -4 ;b16a2ba 1 aa 1a 121a 1 a =a 1.( 6)原式 =? ?= a 1 a 1 a 1 21 a 2a1 a20.1x 129,x 13 或 x 13.x 1 4 , x 22.2 8x 327.x 3278x327 38.221.( 1) a 1 , b 4 ;( 2) 522.不一样意李明的说法解:设面积为 300 平方厘米的长方形的长宽分为3x 厘米, 2x 厘米,则 3x?2x=300,x 2=50,解得 x= 52 ,而面积为 400 平方厘米的正方形的边长为20 厘米,因为15 2 > 20,因此用一块面积为 400 平方厘米的正方形纸片, 沿着边的方向裁不出一块面积为 300 平方厘米的长方形纸片,使它的长宽之比为3: 2.试题分析:解:不一样意李明的说法.设长方形纸片的长为3x( x> 0)cm,则宽为2x cm,依题意得: 3x?2x=300,6x2=300,x2 =50,∵ x> 0,∴ x=50 =5 2,∴长方形纸片的长为15 2cm,∵ 50> 49,∴ 5 2 >7,∴ 15 2 >21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不可以用这块纸片裁出切合要求的长方形纸片.。

人教版七年级下册数学第六章实数-测试题含答案

人教版七年级下册数学第六章实数-测试题含答案

人教版数学七年级下册第六章《实数》测试卷一、单选题1.下列说法错误的是()A .5是25的算术平方根B .1是1的一个平方根C .(-4)2的平方根是-4D .0的平方根与算术平方根都是02)A .9B .±9C .±3D .33.14的算术平方根是()A .12±B .12-C .12D .1164的值约为()A .3.049B .3.050C .3.051D .3.0525.若a 是(﹣3)2()A .﹣3BC 或﹣D .3或﹣36.在22π72-,六个数中,无理数的个数为()A .4B .3C .2D .17.正方形ABCD 在数轴上的位置如图所示,点D、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A .点CB .点DC .点AD .点B8.已知﹣2,估计m 的值所在的范围是()A .0<m<1B .1<m<2C .2<m<3D .3<m<49.的相反数是()A .2-B .22C .D .10.判断下列说法错误的是()A .2是8的立方根B .±4是64的立方根C .-13是-127的立方根D .(-4)3的立方根是-4二、填空题11.若a 2=(-3)2,则a=________。

12________.13=-7,则a =______.14______15.在实数220,-π13,0.1010010001…(相邻两个1之间依次多一个0)中,有理数的个数为B ,无理数的个数为A ,则A -B =_____.16.若两个连续整数a、b 满足a b <<,则a b +的值为________三、解答题17.若|a|=4,b =34,求a -b +c 的值18.如果一个正数m 的两个平方根分别是2a -3和a -9,求2m -2的值.19.(1)(3x+2)2=16(2)12(2x﹣1)3=﹣4.20.求下列各式的值:;21.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)OA=,BD=;(2)|1﹣(﹣4)|表示哪两点的距离?(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=,当BP=4时,x=;当|x﹣3|+|x+2|的值最小时,x的取值范围是.22.将一个体积为0.216m3的大立方体铝块改铸成8个一样大的小立方体铝块,求每个小立方体铝块的表面积.参考答案1.C【解析】一个正数的平方根有两个,是成对出现的.【详解】(-4)22.D【解析】根据算术平方根的定义求解.【详解】,又∵(±3)2=9,∴9的平方根是±3,∴9的算术平方根是3.3.故选:D .【点睛】考核知识点:算术平方根.理解定义是关键.3.C【解析】分析:根据算术平方根的概念即可求出答案.本题解析:∵211()24=,∴14的算术平方根为12+,故选C.4.B【解析】首先根据数的开方的运算方法,然后根据四舍五入法,把结果精确到0.001即可,求出≈3.050.故选B .5.C【解析】分析:由于a 是(﹣3)2的平方根,则根据平方根的定义即可求得a 的值,进而求得代数式的值.详解:∵a 是(﹣3)2的平方根,∴a =±3,.故选C .点睛:本题主要考查了平方根的定义,容易出现的错误是误认为平方根是﹣3.6.B【解析】【分析】根据无理数的概念解答即可.【详解】π2,是无理数.故选B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B【解析】【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B .【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.8.B【解析】分析:根据被开方数越大算术平方根越大,不等式的性质,可得答案.,得:3<4,3﹣2﹣2<4﹣2,即1<m <2.故选B .点睛:本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题的关键.9.D【解析】【分析】根据相反数的定义,即可解答.【详解】,故选D.【点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.10.B【解析】根据立方根的意义,由23=8,可知2是8的立方根,故正确;根据43=64,可知64的立方根为4,故不正确;根据(﹣13)3=﹣127,可知﹣13是﹣127的立方根,故正确;根据立方根的意义,可知(﹣4)3的立方根是﹣4,故正确.故选:B.点睛:此题主要考查了立方根,解题关键是明确一个数的立方等于a,那么这个数就是a的立方根,由此判断即可.11.±3【解析】【分析】利用a2=(-3)2求得a2的值,再求a的平方根即可.【详解】a2=(-3)2=9,a=±3,故答案为:±3【点睛】本题考查了平方根的概念.关键是两边平方,根据平方根的意义求解.12【解析】【分析】,再求出3的算术平方根即可.【详解】,3.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.13.-343【解析】解:∵3(7)343-=-,∴a =-343.故答案为-343.14.0【解析】【分析】原式各项利用立方根定义计算后,利用有理数减法法则计算即可得到结果.【详解】原式=0.3﹣0.2﹣0.1=0.故答案为0.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.15.-1【解析】【分析】根据无理数、有理数的定义即可得出A 、B 的值,进而得出结论.2,﹣π,0.1010010001…(相邻两个1之间多一个0)是无理数,故A =3.013,是有理数,故B =4,∴A -B =3-4=-1.故答案为:-1.【点睛】本题考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.16.5【解析】【分析】,求出a 、b 的值,即可求出答案.【详解】∵23,∴a =2,b =3,∴a +b =5.故答案为5.【点睛】本题考查了估算无理数的大小的应用,.17.17或9.【解析】【分析】根据绝对值的性质,可得a ,根据实数的运算,可得答案.【详解】a 4=,得a 4=或a 4=-,4c 16==,,当a 4=时a b c 431617-+=-+=,当a 4=-时a b c 43169-+=--+=.故a b c -+的值为17或9.本题考查了实数的性质,利用绝对值的性质得出a 的值是解题关键.18.48【解析】【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m,再求出2m-2的值.【详解】解:∵一个正数的两个平方根分别是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a=4,∴这个正数为(2a-3)2=52=25,∴2m-2=2×25-2=48;故答案为48.【点睛】本题考查平方根.19.(1)x 1=23,x 2=﹣2;(2)x=﹣12.【解析】【分析】运用开平方、开立方的方法解方程即可.【详解】(1)(3x +2)2=16;开平方得:3x +2=±4,移项得:3x =﹣2±4,解得:x 123=,x 2=﹣2.(2)312142x -=-().两边乘2得:(2x ﹣1)3=﹣8,开立方得:2x ﹣1=﹣2,移项得:2x =﹣1,解得:x 12=-.【点睛】本题考查了立方根和平方根,解题的关键是根据开方的方法求解.20.(1)-10;(2)4;(3)-1.【解析】【分析】利用立方根定义计算即可得到结果.【详解】(1)原式=﹣10;(2)原式=﹣(﹣4)=4;(3)原式=﹣9+8=-1.【点睛】本题考查了立方根,熟练掌握立方根的定义是解答本题的关键.21.(1)4,5;(2)点A与点C间的距离;(3)|x+2|;2或﹣6;﹣2≤x≤3.【解析】【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离的几何意义解答;(3)根据两点间的距离公式填空.【详解】(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为5,|x+3|,﹣2或4.4,1.【点睛】本题考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.22.每个小立方体铝块的表面积为0.54m2.【解析】试题分析:设小立方体的棱长是xm,得出方程8x3=0.216,求出x的值即可.试题解析:解:设小立方体的棱长是xcm,根据题意得:8x3=0.216,解得:x=0.3则每个小立方体铝块的表面积是6×(0.3)2=0.54(m2),答:每个小立方体铝块的表面积是0.54m2.点睛:本题考查了立方根的应用,关键是能根据题意得出方程.。

第六章《实数》单元测试卷

第六章《实数》单元测试卷

第六章《实数》单元测试卷(全卷共四个大题,满分150分,考试时间120分钟)一.选择题(每小题4分,共48分)1.在0,2π,3.14151617…,16 )A .1B .2C .3D .42 ) A .3B .3-C .3±D .53.0.49的算术平方根的相反数是( ) A .0.7-B .0.7±C .0.7D .04.下列等式成立的是( )A 7=±B 7=-C .37=- D .(27=-5.下列说法正确的是( ) A .一个数的算术平方根一定是正数 B .1的立方根是1±C 5=±D .2是4的平方根6.若2a =,则( ) A .10a -<<B .01a <<C .12a <<D .23a <<7.下列说法正确的是( ) A .有理数与数轴上的点一一对应 B .任意一个无理数的绝对值都是正数C .两个整数相除,如果永远都除不尽,那么结果一定是一个无理数D 是一个近似值,不是准确值8.代数式()21m +)0m ≥,21x + 2 )A .1个B .2个C .3个D .4个9.若M =,12N =,则M ,N 的大小关系是( ) A .M N > B .M N <C .M N =D .无法比较10.如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若点E 在数轴 上,(点E 在点A 的右侧)且AB AE =,则E 点所表示的数为( )AB .1+C D 211.实数a 、b 在数轴上对应点的位置如图,则a b - )A .2a b -B .2b a -C .bD .b -12()230y +=,则()2019x y +等于( )A .1-B .1C .20193-D .20193二.填空题(每小题4分,共16分) 13.若264x =,则x = .14.若5+5a ,b ,则a b += .152= .16.任何实数a ,可用[]a 表示不超过a 的最大整数,如[]44=,2=,现对69进行如下操作:69【2】=1,这样对69只需进行3次操作后变为1.(1)对200进行 次操作后变为1;(2)对正整数p 只进行三次操作后的结果是1,则p 的最大值是 .三.解答题(每小题8分,共16分) 17.计算:(134+ (2(2122++.18.求下列各式中的x 的值:(1)381250x +=; (2)()2390x --=.四.解答题(每小题10分,共70分)19.已知31a -的立方根是2,2a b -的平方根是3±,求a b -的值.20.已知:一个数有两个平方根,分别是3a +和212a -,求这个数.21是无理数,而无理数是无限不循环小数,因22212<<,∴12.于是可以1的小数部分,又例如:∵22223<<,即23的整数部分是22.请解答下列问题:(1的整数部分是 ,小数部分是 .(2)已知a 是3的整数部分,b 是其小数部分,求a b -的值.222160y -=. (1)求x 、y 的值;(223.若一个正数的两个平方根分别是21m -和2m -,n 是8的立方根,c 的整数部 分,求m n c ++的算术平方根.24.观察如图1所示图形,每个小正方形的边长为1.(1)则图中阴影部分的面积是 ,边长是 .(2)已知x 为阴影正方形边长的小数部分,y 求:①x ,y 的值: ②()2x y +的算术平方根.25.操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示1-的点重合,则表示2-的点与表示 的点重合;(2)折叠纸片,使表示1-的点与表示3的点重合,回答以下问题: ①表示5的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为13(A 在B 的左侧),且A 、B 两点经折叠后重合,此时点A 表示的数是 ;点B 表示的数是 .③ 的点重合;(3)已知数轴上P ,Q 两点表示的数分别为1-和3,有一只电子小蜗牛从P 点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P 的距离是到点Q 的距离的2倍?《实数》单元测试卷答案(全卷共四个大题,满分150分,考试时间120分钟)一.选择题(每小题4分,共48分)1.在0,2,3.14151617…,6)A.1B.2C.3D.4【答案】D【解答】解:在0,2π,3.14151617…,16这些数中,无理数有,2π,3.14151617,共4个.故选:D.2)A.3B.C.D.5【答案】A【解答】解:∵239=,3=,故选:A.3.0.49的算术平方根的相反数是()A.B.C.0.7D.0【答案】A【解答】解:0.490.7=,则0.49的算术平方根的相反数为:0.7-.故选:A.4.下列等式成立的是()A B C.D.【答案】C【解答】77=≠±,故选项A不成立;77==≠-,故选项B不成立;3-3±0.7-0.7±7=±7=-37=-(27=-,故选项C 成立;(277=≠-,故选项D 不成立;故选:C .5.下列说法正确的是( ) A .一个数的算术平方根一定是正数 B .1的立方根是 CD .2是4的平方根【答案】D【解答】A 、0的平方根是0,0不是正数,故本选项不符合题意; B 、1的立方根是1,故本选项不符合题意; C 5=,故本选项不符合题意; D 、2是4的平方根,故本选项符合题意. 故选:D .6.若,则( )A .B .C .D . 【答案】B【解答】23,∴021<, 即, 故选:B .7.下列说法正确的是( ) A .有理数与数轴上的点一一对应 B .任意一个无理数的绝对值都是正数C .两个整数相除,如果永远都除不尽,那么结果一定是一个无理数D 是一个近似值,不是准确值 【答案】B【解答】解:A .实数与数轴上的点一一对应,因此选项A 不符合题意; B .任意一个无理数的绝对值都是正数,因此选项B 符合题意;37=-1±5=±2a =10a -<<01a <<12a <<23a <<01a <<C .两个整数相除,结果可能是循环小数,而循环小数是有理数,因此选项C 不符合题意; D.是一个无理数,是准确值,不是近似值,因此选项D 不符合题意.故选:B .8.代数式,中一定是正数的( )A .1个B .2个 C .3个D .4个【答案】B【解答】解:∵当1m =-时,()210m +=, ∴()210m +≥; 当0m≥0≥,210x +>20>0,∴代数式,, 中一定是正数的有:,,共2个.故选:B . 9.若,,则M ,N 的大小关系是( ) A . B .C .D .无法比较【答案】A 【解答】解:111234244--==, ∵109>, 3, 30>,∴304>, ∴1142>. ()21m +)0m ≥21x +2()21m +)0m ≥21x +221x +214M =12N =M N >M N <M N =∴. 故选:A .10.如图,面积为5的正方形的顶点A 在数轴上,且表示的数为1,若点E 在数轴 上,(点E 在点A 的右侧)且,则E 点所表示的数为( )AB .C .D【答案】B【解答】解:∵正方形的面积为5,且AD AE =,∴AD AE ==∵点A 表示的数是1,且点E 在点A 右侧, ∴点E 表示的数为.故选:B .11.实数a 、b 在数轴上对应点的位置如图,则 )A .B .C .D .【答案】C【解答】解:根据题意得:0a b <<, ∴0a b -<,∴()()a b a b a b a a b -=--=---=.故选:C .12,则等于( )A .B .1C .D .【答案】AM N >ABCD AB AE =1+22+2ABCD 1+a b -2a b -2b a -b b -()230y ++=()2019x y +1-20193-20193【解答】,∴2x=,3y=-,∴=()201923-=.故选:A.二.填空题(每小题4分,共16分)13.若264x=,则x=.【答案】8±【解答】解:∵()2864±=,∴8x=±.故答案为:8±.14.若5+5a,b,则a b+=.【答案】1【解答】解:∵34,∴859+<,152-<,∴583a==,514b=-=,∴341a b+=+=.故答案为:1.152=.【答案】9【解答】2()230y+=()2019x y+1-=423+=9故答案为:916.任何实数a ,可用表示不超过a 的最大整数,如,,现对69进行如下操作:69】=1,这样对69只需进行3次操作后变为1.(1)对200进行次操作后变为1;(2)对正整数p 只进行三次操作后的结果是1,则p 的最大值是. 【答案】3;255【解答】解:(1)第一次操作:14=,第二次操作后:3=.第三次操作后:1=.故答案为:3; (2)最大的是255,∵15=,3=,1=,而16=,4=,2=,1=, 即只需进行3次操作后变为1的所有正整数中,最大的正整数是255, 故答案为:255.三.解答题(每小题8分,共16分) 17.计算:(1 (2.【答案】(1)2-;(2)4【解答】解:(1)原式()343+- =13- =2-;[]a []44=2=234(2122++(2)原式=213+=4.18.求下列各式中的x 的值:(1); (2).【答案】(1)52x =-;(2)16x =,20x = 【解答】解:(1)∵∴38125x =-∴31258x -=解得,52x =-;(2)∵ ∴()239x -= ∴33x -=±,解得,16x =,20x =.四.解答题(每小题10分,共70分)19.已知31a -的立方根是2,2a b -的平方根是3±,求a b -的值. 【答案】6【解答】解:由题意得,33128a -==,()2239a b -=±=. ∴3a =,3b =-. ∴()336a b -=--=.20.已知:一个数有两个平方根,分别是3a +和212a -,求这个数. 【答案】36【解答】解:∵一个数有两个平方根分别是3a +和212a -, ∴32120a a ++-=, 解得3a =, ∴3336a +=+=,381250x +=()2390x --=381250x +=()2390x --=∴这个数是2636=.21是无理数,而无理数是无限不循环小数,因的小数部分我们不可能全部写出来,∵,∴.于是可以的小数部分,又例如:∵,即的整数部分是2.请解答下列问题: (1的整数部分是,小数部分是 .(2)已知a是的整数部分,b 是其小数部分,求的值. 【答案】(1)44;(2)7 【解答】解:(1)∵45,44; 故答案为:44; (2)∵23, ∴536+<,∴的整数部分5a =,小数部分352b =+=, ∴)527a b -=-=22. (1)求x 、y 的值; (2是有理数还是无理数,并说明理由.【答案】(1)2x =,4y =±;(2)见解析 【解答】解:(1. ∴280x y -=,2160y -=, ∴2x =,4y =±;22212<<12122223<<2323a b -3+2160y -=2160y -=(24===,4是有理数;==是无理数,是有理数或无理数.23.若一个正数的两个平方根分别是和,n 是8的立方根,c的整数部 分,求的算术平方根. 【答案】2【解答】解:∵一个正数的两个平方根分别是和, ∴2120m m -+-=, 解得:1m =-, ∵n是8的立方根, ∴2n =, ∵91116<<, ∴34, 的整数部分是3, ∴3c =,∴1234m n c ++=-++=, ∴的算术平方根为2.24.观察如图1所示图形,每个小正方形的边长为1. (1)则图中阴影部分的面积是 ,边长是 . (2)已知x 为阴影正方形边长的小数部分,y 求:①x ,y 的值: ②的算术平方根.21m -2m -m n c ++21m -2m -m n c ++()2x y +【答案】(1)13(2)①3x =,3y =;【解答】解:(1)设阴影部分面积为1554232512132⨯-⨯⨯⨯=-=, ∵阴影部分为正方形,∴阴影部分的面积为13故答案为:13(2)①∵34,3,即3x =,又∵34,3, 即3y =,故3x =,3y =; ②当3x =,3y =时,())223313x y +=+=.所以25.操作探究:已知在纸面上有一数轴(如图所示),(1)折叠纸片,使表示1的点与表示1-的点重合,则表示2-的点与表示 的点重合;(2)折叠纸片,使表示1-的点与表示3的点重合,回答以下问题: ①表示5的点与表示 的点重合;②若数轴上A 、B 两点之间的距离为13(A 在B 的左侧),且A 、B 两点经折叠后重合,此时点A 表示的数是 ;点B 表示的数是 .()2x y +③ 的点重合;(3)已知数轴上P ,Q 两点表示的数分别为1-和3,有一只电子小蜗牛从P 点出发以每秒2个单位的速度向右移动,运动多少秒时,它到点P 的距离是到点Q 的距离的2倍?【答案】(1)2;(2)①3-;②112-,152;③2;(3)4秒或43秒 【解答】解:(1)∵表示1的点与表示1-的点重合, ∴纸片是沿着0点进行折叠的, ∴表示2-的点与表示2的点重合, 故答案为:2;(2)①∵表示1-的点与表示3的点重合, 又∵1312-+=, ∴纸片是沿着表示1的点进行折叠的, ∴表示5的点与表示3-的点重合, 故答案为:3-;②设点A 表示的数是x ,则点B 表示的数是13x +, ∵A 、B 两点经折叠后重合,∴1312x x ++=, 解得112x =-,∴11151322-+=,∴点A 表示的数是112-,点B 表示的数是152, 故答案为:112-,152;③∵纸片是沿着表示1的点进行折叠的,2-的点重合,故答案为:2;(3)设运动时间为t 秒,小电子小蜗牛运动的点表示的数为x , ∴12x t =-+,∵它到点P 的距离是到点Q 的距离的2倍, ∴123x x +=-,解得7x =或53x =, 当53x =时,5213t -=,解得43t =,当7x =时,217t -=,解得4t =, ∴运动4秒或43秒时,它到点P 的距离是到点Q 的距离的2倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章实数单元同步测试卷
一、选择题(每小题3分,共30分)
1.下列语句中正确的是()的算术平方根是7 的平方根是-7
的平方根是7 的算术平方根是
2.下列实数中,无理数有()
个个个个
3.的立方根与的算术平方根的和是 ( )
A. B. C. D.
4.下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示,共有()个是正确的.
A. B. C. D.
5.下列各组数中互为相反数的是()
A. 与B. 与C. 与D.与
6.圆的面积增加为原来的倍,则它的半径是原来的
()
A. 倍;
B.
C. 倍
D. 倍.
7.实数在数轴上的位置如图,那么化简的结果是()
A. B. C. D.
8.若一个数的平方根是它本身,则这个数是
()
A、1
B、-1
C、0
D、1或0
9.一个数的算术平方根是x,则比这个数大的数的算术平方根是()
A. B 、 C. D.
10.若,则的关系是()
A. B. 互为相反数 C. 相等 D. 不能确定
一、填空题(每小题3分,共30分)
11.的平方根是_______,的算术平方根是______ ,的立方根是________ .
12.的相反数是______,的倒数是______.
13.若一个数的算术平方根与它的立方根相等,那么这个数是 .
14.下列判断:①是的平方根;②只有正数才有平方根;③是的平方根;④的平方根是.正确的是______________(写序号).
15.如果的平方根是,则= .
16.比较大小:
17.满足的整数是 .
18.用两个无理数列一个算式,使得它们和为有理数______.
19.计算:.
20.小成编写了一个如下程序:输入→→立方根→倒数→算术平方根→,则为
______________ .
三.解答题(共60分):
21.(8分)求
(1)(2)
22.(8分)计算
(1)(2)
23.(8分)已知,求的值.
24.若9的平方根是a,b的绝对值是4,求a+b的值
25.(10分)例如∵即,∴的整数部分为,小数部分为,如果小数部分为,的小数部分为,求的值.
26.(8分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.
27.(10分)如图,有高度相同的A、B、C三只圆柱形杯子,A、B两只杯子已经盛满水,小颖把A、B两只杯子中的水全部倒进C杯中,C杯恰好装满,小颖测量得A、B两只杯子底面圆的半径分别是3厘米和4厘米,你能求出C杯底面的半径是多少吗 A B C
参考答案
一、选择
5. B
二、填空
11. ,
,0
14.①④解析:,;.
16.<
,0,1,2
18. (只要符合题意即可).
20.
21.⑴⑵x=1
22.⑴解析:原式==
⑵-36 解析:原式=-8×4+(-4)×-3
=-32-1-3=-36
- 解析:由题意知,,所以,可得,故①当,时,②当,时,.
24.或
25. 解析:因为,所以的整数部分是1,小数部分为;,所以的整数部分为1,小数部分为,所以可得
++2=.
解析:设书的高度为㎝,由题意可得
㎝解析:设圆柱的高为h,C杯的底面半径为r㎝,
由题意得:,可得.。

相关文档
最新文档