5G关键技术资料
5G网络技术有哪些?20种5G关键技术详解
5G⽹络技术有哪些?20种5G关键技术详解前传和回传5 前传和回传技术回传(Backhaul)指⽆线接⼊⽹连接到核⼼⽹的部分,光纤是回传⽹络的理想选择,但在光纤难以部署或部署成本过⾼的环境下,⽆线回传是替代⽅案,⽐如点对点微波、毫⽶波回传等,此外,⽆线mesh⽹络也是5G回传的⼀个选项,在R16⾥,5G ⽆线本⾝将被设计为⽆线回传技术,即IAB(5G NR集成⽆线接⼊和回传)。
前传(Fronthaul)指BBU池连接拉远RRU部分,如C-RAN章节所述。
前传链路容量主要取决于⽆线空⼝速率和MIMO天线数量,4G前传链路采⽤CPRI(通⽤公共⽆线接⼝)协议,但由于5G⽆线速率⼤幅提升、MIMO天线数量成倍增加,CPRI⽆法满⾜5G时代的前传容量和时延需求,为此,标准组织正在积极研究和制定新的前传技术,包括将⼀些处理能⼒从BBU下沉到RRU单元,以减⼩时延和前传容量等。
⽆线接⼊⽹为了提升容量、频谱效率,降低时延,提升能效,以满⾜5G关键KPI,5G⽆线接⼊⽹包含的关键技术包括:C-RAN、SDR(软件定义⽆线电)、CR(认知⽆线电)、Small Cells、⾃组织⽹络、D2D通信、Massive MIMO、毫⽶波、⾼级调制和接⼊技术、带内全双⼯、载波聚合、低时延和低功耗技术等。
6 云⽆线接⼊⽹(C-RAN)云⽆线接⼊⽹(C-RAN),将⽆线接⼊的⽹络功能软件化为虚拟化功能,并部署于标准的云环境中。
C-RAN概念由集中式RAN发展⽽来,⽬标是为了提升设计灵活性和计算可扩展性,提升能效和减少集成成本。
在C-RAN构架下,BBU功能是虚拟化的,且集中化、池化部署,RRU与天线分布式部署,RRU通过前传⽹络连接BBU池, BBU池可共享资源、灵活分配处理来⾃各个RRU的信号。
C-RAN的优势是,可以提升计算效率和能效,易于实现CoMP(协同多点传输)、多RAT、动态⼩区配置等更先进的联合优化⽅案,但C-RAN的挑战是前传⽹络设计和部署的复杂性。
5g原理概念、关键技术及应用
5g原理概念、关键技术及应用5G是第五代移动通信技术的简称,是一种新一代的无线通信技术标准。
它具备更高的带宽、更快的传输速度、更低的延迟和更大的连接密度,为用户提供更加稳定和高质量的通信服务。
以下是5G原理概念、关键技术和应用的介绍:1. 原理概念:- 更高的频谱利用率:5G采用了更高的频率范围,能够在相同的频段上实现更高的数据传输速率。
- 基于软件定义网络(SDN)和网络功能虚拟化(NFV):5G网络不仅支持传统的基础设施,更能够灵活地适应不同的应用场景。
- 面向异构网络的融合:5G网络能够融合多种不同类型的网络,如无线网络、有线网络和物联网等,以实现更高效、更可靠的通信服务。
2. 关键技术:- 大规模的天线阵列:采用了更多的天线,能够提供更好的信号覆盖和更高的传输速率。
- 毫米波通信技术:利用更高的频率范围,能够提供更大的带宽和更高的传输速度。
- 低延迟通信技术:通过减少信号传输的时间延迟,能够实现更快的响应速度,适用于实时应用场景。
- 车联网通信技术:支持大规模的车辆连接,实现车辆之间的通信和与基础设施的交互,从而提升道路安全性和交通效率。
- 边缘计算技术:将计算资源放在网络边缘,减少数据的传输延迟,提高数据处理的效率。
3. 应用:- 超高清视频传输:5G网络能够提供更高的带宽和更快的传输速度,能够支持高清视频的实时传输。
- 车联网和自动驾驶:5G网络的低延迟和高可靠性,能够支持车辆之间的实时通信和与交通基础设施的互联互通。
- 物联网:5G网络能够连接大量的物联网设备,实现物物互联和实时数据的传输与分析。
- 增强现实与虚拟现实:5G网络的高带宽和低延迟,能够提供更好的用户体验,支持增强现实和虚拟现实应用的实时传输和处理。
总之,5G技术的发展将会推动各种新型应用的出现,并在未来的通信领域发挥重要作用。
5G的基本特点与关键技术
5G的基本特点与关键技术
5G是第五代移动通信技术的简称,它可以在更低的延迟、更大的容量和更快的数据传输速度等多个方面都能提供极好地网络条件,支持多种服务,它的基础是新的技术和新的信号传输技术,以及传输速度更快的技术结构。
1、高速:5G网络可以提供高达数百兆的速度,比现有的4G更快,可以满足高清视频流媒体服务、云计算等多种不同的应用需求。
2、容量大:5G网络的容量比4G网络大,可以支持更大的吞吐量,能够满足大量用户的同时使用。
3、低延迟:5G网络的延迟比4G网络低,从而支持高实时性应用,如自动驾驶等。
4、安全:5G网络提供了更强大的安全性,可以保护数据传输过程中的隐私安全,防止病毒和木马的侵入,从而保护网络的安全性。
此外,5G技术还具有可扩展性、低成本和普及性等优势,这些技术可以让更多的用户更广泛地使用5G网络服务,从而带来更多的经济和社会好处。
5G的关键技术主要包括:
1、空口有效利用率(ENU)技术:ENU技术可以改善信道利用率,从而提高信号传输的稳定性和覆盖范围。
2、多边形通信(M2M)技术:M2M技术是5G网络的关键技术。
5G移动通信关键技术
5G移动通信关键技术5G移动通信关键技术一、引言5G移动通信是指第五代移动通信技术,它是对当前4G技术的升级和进化。
本文将对5G移动通信的关键技术进行详细介绍。
二、物理层技术1.天线技术a.Massive MIMO技术b.波束赋形技术2.调制与编码技术a.非正交多址技术b.大带宽信道编码技术3.多天线与波束赋形技术a.多输入多输出技术b.束束成形技术4.嗅探技术a.频谱感知技术b.随机访问技术三、网络层技术1.网络架构a.软件定义网络b.网络切片技术2.连接管理a.无线功率控制技术b.近场通信技术3.路由与转发a.链路状态路由技术b.多路径转发技术四、传输层技术1.无线传输a.多天线传输技术b.中继传输技术2.传输控制a.动态资源分配技术b.高可靠性传输技术五、应用层技术1.多媒体通信a.高清视频传输技术b.超高清音频传输技术2.物联网通信a.物联网接入技术b.物联网安全技术3.车联网通信a.智能车辆通信技术b.高精度定位技术六、安全与隐私保护1.加密技术a.对称加密技术b.非对称加密技术2.认证与授权a.数字身份认证技术b.访问控制技术3.隐私保护a.数据脱敏技术b.匿名通信技术附件:1.相关研究论文和报告2.5G测试数据和分析结果3.联系人及机构信息法律名词及注释:1.电信法:指中华人民共和国颁布的关于电信业务及电信运营的法律法规。
2.通信管理局:指国家互联网信息办公室所属的中央行政管理机构。
3.个人信息保护法:指中华人民共和国颁布的关于保护个人信息的法律法规。
5G移动通信的关键技术
5G移动通信的关键技术在当今数字化快速发展的时代,5G 移动通信技术的出现犹如一场通信领域的革命,给我们的生活带来了前所未有的改变。
从超高清视频的流畅播放,到智能工厂中设备的精准控制,再到远程医疗手术的成功实施,5G 技术的身影无处不在。
而这一切的实现,离不开一系列关键技术的支撑。
首先,毫米波技术是 5G 移动通信的重要基石之一。
相比于传统的移动通信频段,毫米波频段拥有更丰富的频谱资源。
这意味着可以实现更高的数据传输速率,满足人们对于高速网络的迫切需求。
然而,毫米波也存在着一些挑战,比如信号传播损耗大、易受障碍物阻挡等。
为了解决这些问题,通信工程师们采用了波束成形技术,通过调整天线阵列的辐射方向,将信号能量集中在特定的方向上,从而增强信号的覆盖范围和传输质量。
大规模多输入多输出(MIMO)技术也是 5G 中的关键一环。
在 5G 基站中,大量的天线被部署,通过同时发送和接收多个数据流,大大提高了频谱效率和系统容量。
想象一下,就好像在一条道路上,原本只有一条车道,现在一下子增加了好多条车道,车辆(数据)的通行效率自然大幅提升。
而且,MIMO 技术还能有效地抵抗信号衰落,提高通信的可靠性。
除了上述两种技术,超密集组网(UDN)也是 5G 实现广泛覆盖和高容量的重要手段。
通过在较小的地理区域内部署大量的微小基站,可以弥补宏基站覆盖的不足,提供更均匀、更优质的信号覆盖。
微小基站的部署密度越高,网络容量就越大,用户体验也就越好。
但这也带来了一些问题,比如基站之间的干扰协调、切换管理等,需要先进的算法和技术来解决。
同时,网络切片技术为 5G 满足不同应用场景的需求提供了可能。
不同的行业和应用,对网络的性能、可靠性、安全性等有着不同的要求。
网络切片技术就像是将一个物理网络切割成多个逻辑上独立的虚拟网络,每个网络切片都可以根据特定的需求进行定制化配置,从而为诸如工业互联网、智能交通、智能家居等不同的应用提供专属的服务。
列举5g中的关键技术
列举5g中的关键技术5G关键技术随着信息技术的迅速发展,移动通信技术也在不断进步。
作为第五代移动通信技术,5G具有更高的速度、更低的延迟和更多的连接能力,为人们提供了更加智能和便捷的通信体验。
在5G中,有许多关键技术的应用,下面将列举其中的五个。
1. 大规模天线阵列技术大规模天线阵列技术是5G网络的关键技术之一。
传统的移动通信系统主要使用单个天线进行数据传输,而大规模天线阵列技术则可以同时使用多个天线进行数据传输,从而极大地提高了网络容量和覆盖范围。
这种技术可以通过波束赋形来实现精确的信号传输,有效地减少了信号干扰,提高了数据传输的可靠性和速度。
2. 毫米波技术毫米波技术是5G网络中的另一个关键技术。
相比于之前的移动通信技术,5G采用了更高频率的毫米波段,可以提供更大的带宽和更高的数据传输速率。
然而,毫米波信号的传输距离较短,易受到障碍物的影响。
为了解决这个问题,5G引入了波束赋形技术和中继技术,可以使毫米波信号在传输过程中更加稳定可靠。
3. 软件定义网络技术软件定义网络技术是5G网络的核心技术之一。
传统的移动通信网络通常需要通过硬件设备进行配置和管理,而软件定义网络技术可以将网络的控制平面和数据平面进行分离,使网络的配置和管理更加灵活和智能化。
这种技术可以根据不同的应用场景和服务需求,对网络进行动态调整和优化,提高网络的性能和效率。
4. 网络切片技术网络切片技术是5G网络的重要技术之一。
网络切片可以将一块物理网络划分为多个逻辑网络,每个逻辑网络都可以满足不同的应用需求和服务质量要求。
这种技术可以为不同的应用场景提供定制化的网络服务,例如工业控制、智能交通和虚拟现实等。
通过网络切片技术,5G网络可以提供更加灵活和可靠的通信服务。
5. 边缘计算技术边缘计算技术是5G网络的另一个关键技术。
传统的移动通信网络主要依靠云计算中心进行数据处理和存储,但是由于数据量庞大和时延要求,云计算中心往往无法满足实时性的要求。
5G系统的关键技术及其国内外发展现状
5G系统的关键技术及其国内外发展现状1.毫米波通信:毫米波通信是5G系统的关键技术之一,能够提供更高的频谱效率和数据传输速率。
目前,全球各地都在积极开展毫米波通信的研究和实验,尤其是在频率管理和波束成形技术方面取得了一些重要进展。
同时,各国都在积极建设毫米波通信基站,用于5G系统的部署。
2.超密集网络:超密集网络是指将大量的小基站部署在一个有限的区域内,以提高系统容量和覆盖范围。
目前,全球各国都在加大对超密集网络技术的研究和实验力度,包括研究网络间的干扰管理、功率控制以及网络优化算法等。
3. 多天线技术:多天线技术通过使用多个天线来提高信号接收的质量和容量。
全球各地的研究机构和企业纷纷进行多天线技术方面的研究和实验,包括大规模MIMO(Massive MIMO)和波束成形技术等。
4.大规模天线系统:大规模天线系统是指将大量的天线部署在基站上,以提高系统的容量和覆盖范围。
目前,全球各地都在加大对大规模天线系统技术的研究和实验力度,包括研究系统级天线设计、信道估计和天线选址等问题。
5.网络切片:网络切片是将物理网络划分为多个虚拟网络,以满足不同应用场景的需求。
目前,全球各地的运营商和设备供应商都在积极研究网络切片技术,包括研究切片的资源分配、业务隔离以及切片管理等问题。
6.虚拟化和云化:虚拟化和云化是将网络功能转移到云端进行管理和运行的技术。
目前,全球各国都在积极推进网络虚拟化和云化技术的研究和实验,以提高网络的灵活性和可扩展性。
7.物联网技术:5G系统的另一个关键技术是物联网技术,能够实现大规模设备的互联和数据的交换。
目前,全球各地都在加大对物联网技术的研究和应用力度,包括研究物联网的传感器网络、通信协议以及数据安全和隐私保护等问题。
总体而言,全球各国对5G系统的关键技术都非常关注,并且在研究和实验方面都取得了一些重要的进展。
国内外研究机构、运营商和设备供应商都在积极合作,加快推动5G系统的商用化进程。
我国5G移动通信的关键技术与发展趋势
我国5G移动通信的关键技术与发展趋势5G移动通信是指第五代移动通信技术,是对4G移动通信技术的进一步发展和升级。
5G移动通信具有更高的传输速率、更低的延迟、更大的网络容量和更好的连接稳定性,为用户提供了更好的通信体验。
以下是我国5G移动通信的关键技术和发展趋势。
一、关键技术1. 空分复用技术:5G移动通信采用空分复用技术,将频谱资源划分成多个小区,每个小区可以与多个终端设备进行通信,从而提高了频谱利用率和网络容量。
2. 多输入多输出技术:5G移动通信利用多个天线进行传输和接收,实现多输入多输出技术,可以提高数据传输速率和信号质量,降低通信的延迟。
3. 高频段通信技术:5G移动通信采用更高的频段进行通信,例如毫米波通信技术,可以提供更高的传输速率和更大的网络容量,但它的覆盖范围相对较小,需要更多的基站进行覆盖。
4. 边缘计算技术:5G移动通信利用边缘计算技术,将传输和处理任务从云端移动到网络边缘设备,可以减少数据传输的时延,提高网络响应速度。
5. 虚拟化网络技术:5G移动通信利用虚拟化网络技术,将网络功能虚拟化,可以根据不同的网络需求和业务场景灵活配置和管理网络资源,提高网络的灵活性和可扩展性。
二、发展趋势1. 高速率和大容量:5G移动通信将继续提高传输速率和网络容量,实现更高质量的视频传输、云游戏和虚拟现实等应用,满足用户对高速和大容量的需求。
2. 低延迟和高可靠性:5G移动通信将努力降低通信的延迟,实现毫秒级的响应速度,以满足对实时交互和远程控制的需求。
5G移动通信也将提高网络的可靠性,保证通信的稳定性。
3. 网络切片:5G移动通信将引入网络切片技术,将网络资源按照不同的业务需求进行切分和分配,从而满足不同应用场景的需求,提供定制化的网络服务。
4. 物联网应用:5G移动通信将促进物联网的发展,实现万物互联。
通过5G网络连接各种智能设备和传感器,实现智能家居、智慧城市等应用。
5. 跨行业合作:5G移动通信将与其他行业进行深度融合,提供定制化的通信解决方案。
5G原理概述及关键技术
5G原理概述及关键技术5G(第五代移动通信技术)是一种新一代的无线通信技术,旨在提供更高的数据传输速率、更低的延迟和更可靠的网络连接。
以下是5G的原理概述及关键技术的详细说明。
5G技术的原理概述:1.高频段利用:5G采用了更高的频段来传输数据,例如毫米波频段(30-300GHz)和超高频频段(3-30GHz)。
这些高频段具有更大的带宽和更快的传输速度,但传输距离较短,需要更多的基站来提供覆盖。
2.多入多出(MIMO)技术:5G利用了MIMO技术,通过使用多个天线来传输和接收数据。
这样可以增加系统的容量,提高频谱效率和传输速度。
3. 大规模多输入多输出(Massive MIMO):5G中的Massive MIMO可以利用数十个或数百个天线,实现更高的容量和数据传输速度。
这种技术可以在相同的频谱资源下服务更多的用户,同时提供更好的网络覆盖。
4.波束成形技术:5G利用波束成形技术来使得无线信号更加准确地到达目标设备,从而提高信号质量和覆盖范围。
通过相控阵技术,基站可以将无线信号聚焦到特定的区域,从而减少干扰和扩大覆盖范围。
5. 高密度网络(HetNet):5G中采用了更多的小型基站,如微基站、蜂窝小区和低功耗广域网(LPWA)基站。
这些小型基站可以提供更好的网络容量和覆盖范围,并支持更多的用户连接。
6.软件定义网络(SDN)和网络功能虚拟化(NFV):SDN和NFV技术可以使网络更加灵活和可编程。
通过将网络功能虚拟化为软件模块,并使用SDN来建立和管理网络流量,可以更高效地使用网络资源,并根据需求快速调整网络配置。
7.边缘计算:5G可以通过在网络边缘(如基站或边缘服务器)上进行计算和存储,减少了与云服务器的通信延迟,并为低时延应用提供更好的支持。
8.虚拟多路径:5G可以通过利用多个传输路径来提高网络的可靠性和安全性。
当一个路径受到干扰或中断时,系统可以自动切换到其他路径,确保用户的无缝连接。
9. 超小区:5G中引入了超小区(Ultra-dense networks),意味着更多的基站被部署在相同的区域内,以提供更强的信号覆盖和更高的网络容量。
5G移动通信的关键技术及发展趋势分析
5G移动通信的关键技术及发展趋势分析1. 引言1.1 1. 5G移动通信的定义5G移动通信是指第五代移动通信技术,是一种新一代的移动通信技术标准,旨在提供比当前4G技术更快的数据传输速度、更低的延迟和更大的网络容量。
与4G相比,5G具有更高的数据传输速率和更低的网络延迟,使得用户可以更快地下载和上传数据,实现更加流畅的在线体验。
5G移动通信的出现将极大推动物联网、智能交通、智慧城市等领域的发展,为人们的生活和工作带来革命性的变化。
通过更快的数据传输速度和更可靠的网络连接,5G技术可以实现更高效的数据传输和更快速的信息交流,从而提高人们的工作效率和生活品质。
5G移动通信技术将成为未来通信领域的重要推动力量,引领着数字化社会的发展。
其快速的数据传输速率和低延迟特性将为广大用户提供更好的网络体验,推动各行各业的创新和发展。
5G移动通信的定义可以说是开启了一个全新的数字化时代,将为人类社会带来更广阔的发展空间。
1.22. 5G移动通信的重要性5G移动通信的重要性在当今社会日益增长。
随着人们对高速、稳定的网络连接的需求不断增加,5G技术的出现成为了不可或缺的一部分。
5G移动通信不仅可以提供比4G更快的数据传输速度,更能支持更多设备同时连接网络,实现物联网、智能城市等领域的快速发展。
在未来的社会生活中,5G移动通信将扮演着至关重要的角色,影响着人们的日常生活、工作、教育等各个方面。
对于各个国家和地区来说,积极推进5G移动通信技术的发展成为了当务之急。
只有不断创新、拓展5G技术的应用范围,才能更好地满足人们对网络连接的需求,推动数字化、智能化的发展进程。
5G移动通信的重要性日益凸显,将成为未来各个行业的发展基石。
2. 正文2.1 1. 5G移动通信的关键技术5G移动通信的关键技术包括多个方面的技术创新和突破。
以下几个关键技术是5G移动通信的核心:1. 大规模MIMO技术:大规模MIMO是5G移动通信的关键技术之一,通过利用大量的天线和智能信号处理算法,可以实现更高的信道容量和更好的覆盖范围。
5G基本原理及关键技术介绍
5G基本原理及关键技术介绍5G(第五代移动通信技术)是指当前和未来的移动通信技术,它提供了比4G更快的速度、更低的延迟和更大的网络容量。
它不仅可以满足人类对高速移动通信的需求,还可以连接更多的设备,并为物联网(IoT)和智能城市等应用提供支持。
以下是关于5G基本原理和关键技术的介绍。
1.更高的频率和更广的带宽:5G采用毫米波频段,其频率范围从30GHz到300GHz,相比于4G的频段(6GHz到20GHz),5G可以提供更大的带宽。
这使得它可以处理更多的数据,实现更高的数据传输速率。
2.大规模的MIMO技术:多输入多输出(MIMO)是5G的关键技术之一,它使用多个天线进行数据传输和接收。
相比于4G的MIMO技术,5G的MIMO技术具有更多的天线和更高的阶数,可以提供更高的数据吞吐量和更好的信号覆盖。
3.载波聚合技术:5G利用载波聚合技术将多个频带组合在一起传输数据,从而提高数据传输速率。
这种技术能够同时利用低频和高频信号,以达到更高的速度和更好的覆盖范围。
4.网络切片技术:网络切片是将网络资源划分成不同的虚拟网络,以满足不同应用的需求。
5G的网络切片技术可以为不同应用提供特定的网络性能和功能,从而更好地支持物联网、智能交通、远程医疗等各种应用场景。
5.低延迟通信:5G采用了边缘计算的技术,将计算和存储资源放在网络边缘,使得数据可以更快地处理和传输,从而实现低延迟通信。
这对于需要实时响应的应用,如自动驾驶和远程手术等至关重要。
6.软件定义网络(SDN)和网络功能虚拟化(NFV):5G利用SDN和NFV技术将网络控制和管理功能从硬件设备中分离出来,通过软件来实现,从而提高网络的灵活性和可扩展性。
这使得网络可以根据需求进行快速配置和优化,从而提供更好的服务质量和用户体验。
7.安全和隐私保护:5G引入了更强大的安全机制来保护用户的数据和隐私。
它使用了更复杂的加密算法和身份验证方法,并提供了更严格的访问控制机制,以防止数据泄露和网络攻击。
5G八大关键技术
5G八大关键技术一、超高频率频谱(mmWave)技术5G网络的超高频率技术,也叫毫米波(mmWave)技术,是5G网络中的关键技术之一。
在高频段进行通信,传输速率最高可以达到数十Gbps,可以满足高流量、低时延等对网络性能的高要求。
然而,由于物理特性使然,这一技术的信号传播距离较短,容易被障碍物遮挡等问题,需要大量芯片和天线技术的支持。
二、大规模天线阵列(Massive MIMO)技术大规模天线阵列技术也是5G网络的关键技术之一。
该技术采用了大量天线来进行数据通信,能够提高网络容量,进一步提高数据传输速度。
同时,该技术采用了算法优化来减少不必要的信号干扰和能耗,有助于提升网络稳定性和节能效果。
三、网络切片(Network Slicing)技术网络切片技术通过对不同应用数据流的优化,将网络切割成多个虚拟网络切片,以满足不同应用的网络需求。
这种技术可以实现网络资源的有效共享,同时还可以容易地区分和管理不同的应用场景,为大量物联网设备的连接提供更加高效、安全、可靠的网络服务。
四、低时延(Ultra-Low Latency)技术低时延技术是指在通过网络传输数据时,数据传输的延迟时间越来越短。
这种技术可以让硬件设备和云服务之间的通信速度更快,满足对实时性和互动性要求更高的应用场景,如VR视频、智能工厂等。
五、边缘计算(Edge Computing)技术边缘计算技术指的是将CPU、存储和网络能力在更接近数据源的端点进行处理,以提高计算速度和数据处理效率。
这种技术可以大大减少网络传输的累赘,同时还有助于保护用户隐私和提高数据安全的可控性。
六、虚拟化(Virtualization)技术虚拟化技术是基于软件实现的技术,在完全隔离的虚拟化环境中,可运行独立的操作系统和应用程序。
这种技术可以实现网络资源的有效管理和利用,同时降低硬件成本和维护的时间和精力。
七、网络安全技术网络安全技术是5G网络中的另一项关键技术。
它包括身份验证、安全加密、反欺诈、网络隐私保护等多种技术手段,以保障5G网络和终端设备在数据传输过程中的安全性、可靠性和可控性。
5G无线传输的关键技术
5G无线传输的关键技术随着物联网、自动驾驶、智能城市等应用的迅猛发展,5G无线传输已经成为未来科技发展的重要趋势。
5G技术的成功应用需要一系列的技术支持,其中包括以下关键技术:1. 大数据处理技术由于5G网络的带宽更高、传输速度更快,将会产生更大量的数据。
要处理这些海量数据需要使用更加高效的大数据技术,如数据挖掘、数据分析等技术,以实现网络的快速响应和资源优化分配。
2. MIMO技术MIMO(Multiple-Input Multiple-Output)技术是一种重要的多天线技术,能够在发射端和接收端分别使用多个天线,从而提高无线信号的传输速率和可靠性。
在5G网络中,可以通过MIMO技术在相同的频率和带宽下更高效地传输数据。
3. 可分离式天线技术可分离式天线技术是一种折叠式天线设计,可以使移动设备的天线被彻底隐藏在内部,并在需要时展开。
这种技术可以提供更灵活的天线配置选项,既能够优化网络性能,又能够提高设备的美观性和舒适性。
4. 超密集网络技术超密集网络技术是指在相同的频率和带宽下,通过在相同的区域内安装更多的基站,以提高网络的覆盖范围和传输速率。
这种技术在城市等高密度人口区域中的网络覆盖和信号质量方面有着较大的优势。
5. 面向终端用户的网络设计技术面向终端用户的网络设计技术可以根据用户的实时需求和网络拓扑结构优化网络资源的使用,提高用户的网络体验和满意度。
在5G网络中,这种技术可以通过网络的灵活配置和强大的自适应性来实现。
总之,5G网络的应用需要多种技术的完美结合,才能实现高速、高效、安全的通信。
随着技术的不断创新和进步,5G无线传输将会给我们的生活带来更多的便利和创新。
5G的关键技术分析和典型场景应用
5G的关键技术分析和典型场景应用随着移动通信技术的发展,5G成为了当前的热门话题之一。
作为第五代移动通信技术,5G不仅具备更快的传输速度,更重要的是其关键技术和典型场景应用为我们的生活和工作带来了巨大的改变和便利。
本文将对5G的关键技术进行分析,并介绍几个典型的场景应用。
一、关键技术分析1. 大规模多天线技术大规模多天线技术是5G的重要技术之一,它通过增加基站和终端设备上的天线数量,提高了信号的容量和覆盖范围。
这项技术可以有效降低功耗,提升网络的吞吐量和可靠性。
2. 高频段利用技术为了满足日益增长的数据传输需求,5G采用了高频段的频谱资源。
高频段的利用技术包括波束成形、空分复用和多用户MIMO等,可以显著提高网络的传输速度和网络容量。
3. 超密集组网技术超密集组网技术是5G网络的关键技术之一,它通过增加基站的密度,提高了网络的覆盖范围和容量。
与之前的移动通信技术相比,5G的基站数量将大大增加,形成了一个更加密集的网络。
二、典型场景应用1. 智能交通5G的高速率和低延迟特性使得智能交通成为可能。
通过5G技术,车辆间可以实现高效的通信,从而提高交通安全和交通效率。
此外,5G网络还可以实现交通信号灯的智能控制,减少交通拥堵和交通事故的发生。
2. 工业互联网5G技术在工业互联网中的应用也非常广泛。
通过5G网络,工厂内的设备可以实现高速率的连接和数据传输,实现自动化生产和智能监控。
这将大大提高工业生产的效率和质量,推动工业互联网的发展。
3. 远程医疗远程医疗是5G的又一个重要应用场景。
通过5G网络,医生和患者可以实现远程诊断和远程治疗,大大缩短了医疗服务的时间和空间距离。
此外,借助5G的高速率和低延迟特性,医疗设备可以进行高清视频传输,提高医疗服务的质量。
4. 增强现实和虚拟现实5G的高速率和低延迟特性为增强现实和虚拟现实的应用提供了有力的支持。
通过5G网络,用户可以获得更加流畅和真实的虚拟体验,如虚拟游戏、虚拟旅游等。
移动通信5G关键技术
移动通信5G关键技术移动通信5G关键技术一、引言移动通信领域正迎来一次重大技术革新,即第五代移动通信技术(5G)。
本文将对5G的关键技术进行详细介绍,包括以下章节:二、毫米波通信技术1.毫米波通信概述2.毫米波通信的特点与优势3.毫米波通信的挑战与解决方案三、大规模MIMO技术1.大规模MIMO概述2.大规模MIMO的原理与特点3.大规模MIMO的应用场景四、网络切片技术1.网络切片概述2.网络切片的关键技术与实现方式3.网络切片的应用场景与优势五、低时延通信技术1.低时延通信的需求与挑战2.低时延通信的关键技术与实现方式3.低时延通信的应用场景与影响六、智能边缘计算技术1.智能边缘计算概述2.智能边缘计算的优势与挑战3.智能边缘计算的关键技术与应用场景七、安全与隐私保护技术1.5G安全与隐私保护需求2.5G安全与隐私保护的关键技术与实现方式3.5G安全与隐私保护的挑战与解决方案八、附录本文档涉及附件:附件一.5G关键技术相关论文列表附件二.5G网络切片实验数据报告九、法律名词及注释1.5G:第五代移动通信技术的简称。
2.毫米波通信:利用毫米波进行通信的技术,工作频段在30 GHz至300 GHz之间。
3.MIMO:多输入多输出的缩写,指一种利用多个天线实现高速数据传输的技术。
4.网络切片:将物理网络资源划分为多个独立的逻辑子网络的技术。
5.低时延通信:指通信系统的传输时延较低的技术。
6.边缘计算:将数据处理与计算能力分布到网络边缘的一种计算模式。
7.5G安全与隐私保护:指在5G网络中对通信内容和用户隐私进行保护的技术和措施。
5G无线传输的关键技术
5G无线传输的关键技术5G是第五代移动通信技术,是当前最先进的无线传输技术。
5G的出现将革新移动通信领域,实现更快速、更可靠的无线传输。
5G的关键技术主要包括以下几个方面。
1. 高频毫米波技术:毫米波是一种高频率的无线电波,具有较高的传输速率和较大的通信容量。
5G主要使用毫米波进行无线传输,可以实现更高的数据传输速率,提供更大的网络容量。
2. 大规模多天线技术:5G采用大规模多输入多输出(MIMO)技术,通过利用大量天线进行无线传输,提高信号质量和传输速率。
这种技术可以实现更高的数据吞吐量和更好的网络覆盖。
3. 超密集组网技术:5G利用超密集组网技术来提高网络覆盖和容量。
通过在城市和人口密集区域部署大量的小型基站,可以提供更好的网络连接质量和用户体验。
4. 载波聚合技术:5G可以同时利用多个频段进行数据传输,通过载波聚合技术将多个频段的信号进行合并,提高传输速率和网络容量。
5. 网络切片技术:5G可以将网络切割成多个独立的虚拟网络,每个虚拟网络可以根据不同的应用需求进行优化配置。
这种技术可以为不同的应用场景提供个性化的网络服务。
6. 低延迟通信技术:5G通过优化网络架构和传输协议,实现更低的信号延迟。
这种低延迟通信技术可以满足对实时交互和高可靠性的应用需求,例如自动驾驶和远程医疗等。
7. 虚拟化网络技术:5G利用虚拟化网络技术来实现网络资源的灵活配置和管理。
通过将网络功能虚拟化,可以提高网络的灵活性和可扩展性,降低网络运营成本。
5G无线传输的关键技术包括高频毫米波技术、大规模多天线技术、超密集组网技术、载波聚合技术、网络切片技术、低延迟通信技术和虚拟化网络技术。
这些技术的应用将推动无线通信技术向前发展,为人们提供更高速、更可靠的无线传输服务。
5g原理概念、关键技术及应用
一、5G原理概念随着科技的不断发展,5G技术已成为人们关注的热点话题。
那么,什么是5G呢?5G是第五代移动通信技术的简称,是对移动通信技术的一次重大技术革新,它将为人们带来更快的网络速度、更稳定的网络连接以及更广泛的应用场景。
简而言之,5G是未来通信技术的发展趋势,是通信领域的一次革命性进步。
二、关键技术1. 毫米波技术:5G的关键之一是毫米波技术,它能够运输大量数据,实现更高的网络速度。
毫米波技术的使用将改变通信行业的格局,为人们提供更加便捷的通信服务。
2. 大规模MIMO技术:大规模MIMO技术是指在同一个基站上设置更多天线,以增加信号的传输和接收效率。
这项技术将能够在高速移动和高密集的用户场景下提供更好的通信服务。
3. 软件定义网络(SDN):5G网络的另一个关键技术是软件定义网络,它可以提高网络的灵活性和可编程性,从而更好地适应不同的应用需求。
三、应用1. 智能家居:随着5G的普及,智能家居将得到更加广泛的应用。
人们可以通过5G网络实现更加智能化的家居生活,包括智能家电、智能音响、智能摄像头等设备可以通过5G网络实现更加便捷的控制。
2. 工业互联网:5G技术将为工业互联网带来更大的发展空间。
通过5G网络,工业设备可以实现更加稳定、高效的通信,提高生产效率和产品质量。
3. 医疗健康:5G技术在医疗健康领域的应用也将得到广泛推广。
医院、诊所可以通过5G网络实现远程医疗、远程检测等服务,提高医疗资源的利用效率。
4. 自动驾驶:自动驾驶汽车是未来交通领域的发展趋势,而5G技术将为自动驾驶汽车提供更加稳定和快速的数据传输,提高车辆的安全性和稳定性。
四、结语5G技术作为未来通信技术的重要发展方向,将为人们的生活和工作带来革命性的变化。
通过不断的技术创新和应用拓展,相信5G技术将会成为通信领域的重要支柱,为社会的发展和进步做出更大的贡献。
五、5G的挑战与未来发展1. 网络安全挑战:随着5G技术的广泛应用,网络安全问题备受关注。
5G移动通信的关键技术及发展趋势分析
5G移动通信的关键技术及发展趋势分析随着科技的不断发展,5G移动通信已经成为当前无线通信领域最为热门的技术,也是未来智能化、互联网化的重要支撑。
为了更好地了解5G技术的发展趋势以及关键技术,下面将对5G移动通信的关键技术及发展趋势进行分析。
一、关键技术1、大规模MIMO技术:这是5G通信领域的重点技术之一,它可以提升基站的容量和覆盖范围。
通过大规模MIMO技术,可以支持更多的用户、更高的数据传输速率和更好的网络容量,为5G通信提供强大的技术支撑。
2、毫米波技术:毫米波通信技术是5G通信的另一个重要技术。
由于毫米波信号的频率较高,会遇到更多的阻挡,因此需要通过高度方向性天线传输信号,以保证信号传输的稳定性和可靠性。
3、超密集网络技术:超密集网络技术是指在有限的频谱资源和场地条件下,实现网络连接更加紧密、更加高效的网络技术。
在5G通信中,超密集网络技术可以提高网络的容量和覆盖范围,同时降低网络成本,提高用户的体验。
4、网络切片技术:网络切片技术是5G通信中创新性的技术,它可以将网络资源进行切片,实现针对不同应用场景的定制化服务。
通过网络切片技术,可以为不同的应用场景提供差异化服务,以满足不同的需求。
二、发展趋势1、多层次移动网络架构:在5G技术中,多层次移动网络架构将成为发展趋势,针对不同的应用场景,将搭建不同的网络架构,以满足不同层次的服务需求。
2、网络虚拟化技术:网络虚拟化技术是一种比较成熟的技术,它可以将物理网络资源虚拟化为多个虚拟网络资源,以实现网络资源的灵活配置和管理。
在5G通信中,网络虚拟化技术将得到广泛应用,以实现网络资源的高效利用。
3、商业化应用场景的逐步推广:5G通信技术在商业化应用场景中具有非常高的潜力,其应用范围涵盖了智能汽车、智慧城市、工业物联网等多个领域。
随着5G技术的逐步推广,商业化应用场景将得到快速发展。
4、智能化及互联网化的发展趋势:5G技术的发展将推动智能化及互联网化的进一步发展。
5G八大关键技术
5G八大关键技术随着科技的迅速发展,我们进入了5G时代。
5G技术的出现,为我们带来了前所未有的高速、低延迟、大容量等特性,这是4G所无法实现的。
那么,5G技术的八大关键技术是什么呢?下面就来详细介绍一下。
1.毫米波(mmWave)技术毫米波技术是指借助于无线频段中的毫米波(30~300GHz)进行通信的技术。
这种技术有着极其高的频率,高达10Gbps以上的数据传输速率,让我们在下载、上传等方面拥有了更快的速度和更高的带宽。
不过,毫米波信号相对较弱,不能有效地穿透障碍物,因此需要进一步研究如何推广该技术。
2.大规模天线阵列(Massive MIMO)技术大规模天线阵列技术是指在基站、用户终端等设备上使用多根天线来进行信号接收和发送的技术。
这种技术可以大幅提高信号传输速度和质量,同时还可以有效地降低传输功耗,达到更长的续航时间。
大规模天线阵列技术也是5G技术中一个非常重要的组成部分。
3.网络切片技术网络切片技术是5G网络中非常重要的技术之一,它能够将整个网络划分为不同的小型网络段,从而使网络资源能够更有效地被管理和利用。
比如,我们可以将一个5G网络切分成为多个虚拟网络,每个虚拟网络可以有不同的带宽、速率等参数。
4.新型调制与编码技术新型调制与编码技术是为了应对更加复杂、高质量的通讯而发展的技术。
它可以让网络在传输数据时变得更加能够适应不同的环境和应用场景,从而有效地提高传输质量。
5.物联网(IoT)技术物联网技术是指通过互联网将多个设备连接起来形成一个巨大的网络,让这些设备能够进行互相通信和互相控制的技术。
5G技术将大量应用在物联网场景中,例如智能城市、智能家居等。
6.传感器技术传感器技术是将物理量转换为可供数字设备使用的数字信号的技术。
传感器技术与物联网技术十分相似,都需要通过网络将感知设备与其他设备进行连接,以实现各种功能。
7.人工智能技术人工智能技术是目前科技界非常热门、非常火爆的技术之一。
5G技术在应用中也已经开始涉及到人工智能技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5G关键技术简述**:***学号2016210138目录目录 (2)一、研究的背景及意义 (3)二、5G的演进路线及发展现状 (4)三、5G网络的优势及创新点 (5)四、5G的七大关键技术 (5)1、非正交多址接入技术(Non-Orthogonal Multiple Access,NOMA) (6)1.1串行干扰删除(SIC) (6)1.2 功率复用 (7)2、滤波组多载波技术(FBMC) (8)3、毫米波(Millimeter Waves ,mm Waves) (9)3.1 毫米波小基站:增强高速环境下移动通信的使用体验 (10)3.2 基于毫米波的移动通信回程 (10)4、大规模MIMO技术(3D /Massive MIMO) (11)5、认知无线电技术(Cognitive radio spectrum sensing techniques) (13)6、超密度异构网络(ultra-dense Hetnets) (14)7、多技术载波聚合(multi-technology carrier aggregation) (16)五、5G未来前景 (17)六、参考文献 (18)一、研究的背景及意义自2009年5月27日瑞典电信运营商Telia宣布启用世界上第一个4 G (LTE:Long Term Evolution)试商用网络以来,4G网络的部署已在全球全面开花。
根据GSA的最新报告,截至2014年第2季度,全球111个国家已经部署了300多张LTE网络(其中41张为TD-LTE网络),用户总数达到2.45亿,市面上的LTE终端达1900款。
2013年12月4日,工信部正式向三大电信运营商发放4G牌照,中国移动、中国联通、中国电信均获得TD-LTE牌照。
此举标志着中国这一世界上最大的移动通信市场正式进入4G时代。
在短短一年间,中国移动的4G基站数达到了70万个,4G用户即将达到7000万。
从统计数据来看,4G网络的发展速度远超当年的3G网络,是移动通信史上发展速度最快的技术体制,中国的加入将进一步刷新这一发展速度。
有两个主要因素决定着面向下一代移动通信系统的技术研发工作需要提上日程。
一方面是通信技术自身持续发展的需要:随着4G标准的全面商用,标志着以4G标准为目标的技术研发告一段落,而技术的发展是不会止步的,持续不断的创新技术需要在下一代移动通信系统中体现它的价值。
另一方面是由持续增长的用户需求决定的:智能手机的高速发展引发了互联网从固定桌面快速向移动终端转移的革命,并带来了无线数据流量的指数级增长。
过去5年中,中国移动的数据流量增长了80多倍。
同时物联网的引入及快速发展,不仅对无线通信网络的容量提出了要求,更对无线通信网络能够提供的连接数有数量级的提高要求。
业界普遍预测,到2020年,移动通信网络的容量需求是目前网络的10 00倍,连接数将是10~100倍。
2012年年初, ITU启动了名为“IMT for 2020 and beyond”的项目,目标瞄准下一代移动通信标准,并初步给出了时间规划。
第一步会在两到三年的时间内完成两份面向未来通信系统的建议稿,分别是ITU-R M.[IMT.VISION]及ITU-R M.[IMT Future Technology Trend]。
基于此,目前业界对下一代移动通信系统统一称为IMT-2020。
世界各个国家和地区积极响应ITU的规划,制定了相应的科研规划及经费资助计划,组织企业、科研院校等进行科研攻关。
部分早期的研究成果通过5G白皮书的形式发表,包括需求分析、应用场景研究及技术发展趋势判断等。
二、5G的演进路线及发展现状目前,4G已经进入规模商用阶段,5G是继4G后新一代的移动通信技术,从移动通信发展现状以及技术、标准与产业的演进趋势来看,未来5G移动通信技术的演进存在三条重要的演进路线,分别为以LTE/LTE-Advanced为代表的蜂窝演进路线;WLAN演进路线和革命性演进路线。
首先,LTE/LTE-Advanced已经是事实上的全球统一的4G标准,并将会在5G阶段继续演进。
在产业化方面,LTE在全球范围内的商用化进程不断加快。
标准化方面,3GPP R12版本的标准化工作正在对小小区增强技术、新型多天线技术、终端直通技术、机器间通信等新技术开展研究和标准化工作。
随着更多的先进技术融入到LTE/LTE-Advanced技术标准中,给蜂窝移动通信带来了强大的生命力和发展潜力。
其次,无线局域网(WLAN)是当今全球应用最为普及的宽带无线接入技术之一,拥有良好的产业和用户基础,巨大的市场需求推动了WLAN技术的发展,大量的非授权频段也给WLAN技术提供了巨大的发展空间。
目前,IEEE已经启动了下一代WLAN标准“High-efficiency WLAN”的研究,将进一步提升运营商业务能力,推动WLAN技术与蜂窝网络的融合。
此外,我们还应当特别关注可能出现的革命性5G技术。
从蜂窝移动通信的演进路线来看,每一代演进都有革命性技术出现,从2G的GSM 到3G的CDMA,再到4G的OFDM,那么,5G是否会出现新一代的革命性技术,而这种革命性技术是否需要与LTE演进采用不同的技术路线,进而产生新一代的空中接口技术,将成为我们重点关注的内容。
从目前网络技术发展现状来看,4G是现阶段使用最多的技术,但是整个业界已经开始了对5G的研讨和研发,5G简单的来说是形成人与物和物与物之间的高速连接,实现整个网络,终端,无线和业务的进一步融合。
5G可以说是人在感知方面的获取和控制能力更强,5G的服务对象是将公众用户向行业用户拓展,网络也将更智能和更加的广泛。
从目前的研究现状来看,欧盟于2012年启动METIS项目,正式开始研究5G技术,现阶段METIS共有8个工作组进行相应横向课题研究,目标是为建立5G移动和无线通信系统奠定基础,为未移动通信和无线技术达成共识,目前已经在5G的概念和关键技术上获得了较为统一的认识。
韩国从2013年开始研发5G技术,成立了5G Forum,积极推动6GHz以上频段为未来IMT频段,韩国计划以2020年实现该技术的商用为目标,全面研发5G移动通信核心技术。
日本于2013年成立了ARIB 研究所,开始正式对5G进行研究,计划在2020年东京奥运会上推出5G服务,日本研究者认为5G代表着接入网容量增加1000倍,通过使用大量高频频谱,再加上大规模MIMO技术来实现容量的增加,可以说未来5G将会是人们通信生活的核心。
三、5G网络的优势及创新点第一,全新应用。
5G网络的普及将使得包括虚拟现实和增强现实这些技术成为主流。
其中,增强现实可以将包括出行方向、产品价格或者对方名字等信息投射在用户视野中,比如可以投射在汽车的前挡风玻璃上。
虚拟现实则可以在用户视野内创造出一个完全虚拟的场景,而无论是虚拟现实还是增强现实,都对数据获取速度有着极高的要求。
第二,即时满足。
4G网络下的最快下载速度大约是每秒150MB,但5G网络的最快下载速度则达到了每秒10GB。
换句话说,我们仅需4秒钟就可以下载完《银河护卫队》,而4G网络下则需要6分钟。
第三,瞬时响应。
除了可以在单位时间内传输更多数据以外,5G 还可以大幅缩短数据开始传输前的等待时间。
我们在4G网络观看视频前等待数秒并不是什么太大的问题,但如果在自动驾驶汽车行驶时碰到数据延迟就完全不能接受了。
具体来说,就目前4G网络而言,该网络通常需要15-25毫秒的时间将数据传输给可能发生碰撞的车辆,然后车辆才会开始紧急制动。
但在未来的5G网络下,这一数据的传输时间将仅为1毫秒。
四、5G的七大关键技术为什么需要5G?不是因为通信工程师们突然想改变世界,而炮制了一个5G。
是因为先有了需求,才有了5G。
什么需求?未来的网络将会面对:1000倍的数据容量增长,10到100倍的无线设备连接,10到100倍的用户速率需求,10倍长的电池续航时间需求等等。
坦白的讲,4G网络无法满足这些需求,所以5G就必须登场。
但是,5G不是一次革命。
5G是4G的延续,相信5G在核心网部分不会有太大的变动,5G的关键技术集中在无线部分。
虽然5G最终将采用何种技术,目前还没有定论。
本文收集了7大关键技术,分别对这些技术作简要介绍。
1、非正交多址接入技术(Non-Orthogonal Multiple Access,NOMA)NOMA不同于传统的正交传输,在发送端采用非正交发送,主动引入干扰信息,在接收端通过串行干扰删除技术实现正确解调。
与正交传输相比,接收机复杂度有所提升,但可以获得更高的频谱效率。
非正交传输的基本思想是利用复杂的接收机设计来换取更高的频谱效率,随着芯片处理能力的增强,将使非正交传输技术在实际系统中的应用成为可能。
NOMA的思想是,重拾3G时代的非正交多用户复用原理,并将之融合于现在的4G OFDM技术之中。
从2G,3G到4G,多用户复用技术无非就是在时域、频域、码域上做文章,而NOMA在OFDM的基础上增加了一个维度——功率域。
新增这个功率域的目的是,利用每个用户不同的路径损耗来实现多用户复用。
如表1所示:在NOMA中的关键技术:串行干扰删除、功率复用。
1.1串行干扰删除(SIC)在发送端,类似于CDMA系统,引入干扰信息可以获得更高的频谱效率,但是同样也会遇到多址干扰(MAI)的问题。
关于消除多址干扰的问题,在研究第三代移动通信系统的过程中已经取得很多成果,串行干扰删除(SIC)也是其中之一。
NOMA在接收端采用SIC接收机来实现多用户检测。
串行干扰消除技术的基本思想是采用逐级消除干扰策略,在接收信号中对用户逐个进行判决,进行幅度恢复后,将该用户信号产生的多址干扰从接收信号中减去,并对剩下的用户再次进行判决,如此循环操作,直至消除所有的多址干扰。
如图1所示:1.2 功率复用SIC在接收端消除多址干扰(MAI),需要在接收信号中对用户进行判决来排出消除干扰的用户的先后顺序,而判决的依据就是用户信号功率大小。
基站在发送端会对不同的用户分配不同的信号功率,来获取系统最大的性能增益,同时达到区分用户的目的,这就是功率复用技术。
发送端采用功率复用技术。
不同于其他的多址方案,NOMA 首次采用了功率域复用技术。
功率复用技术在其他几种传统的多址方案没有被充分利用,其不同于简单的功率控制,而是由基站遵循相关的算法来进行功率分配。
在发送端中,对不同的用户分配不同的发射功率,从而提高系统的吞吐率。
另一方面,NOMA 在功率域叠加多个用户,在接收端,SIC 接收机可以根据不同的功率区分不同的用户,也可以通过诸如Turbo 码和LDPC 码的信道编码来进行区分。
这样,NOMA 能够充分的利用功率域,而功率域是在4G系统中没有充分利用的。