压水堆核电站组成

合集下载

简述压水堆核电站的原理流程及作用

简述压水堆核电站的原理流程及作用

简述压水堆核电站的原理流程及作用
压水堆核电站是一种常见的核电站类型,其原理流程如下:
1. 核反应堆:压水堆核电站采用铀核燃料进行核裂变反应。

铀燃料经过加工制成小颗粒的燃料元件,装入核燃料组件中放置在核反应堆中。

2. 反应堆压力容器:核反应堆由反应堆压力容器包裹,其主要作用是容纳核燃料,维持反应堆内部的高压状态,以及承受核反应过程中产生的热量和中子辐射。

3. 热水循环:核燃料在反应堆中进行核裂变反应时会释放出大量的热量,这些热量通过循环的高压水冷却剂来吸收。

冷却剂在反应堆压力容器内部形成循环,将核燃料释放的热量带出反应堆。

4. 蒸汽发生器:冷却剂经过吸热后,进入蒸汽发生器。

在蒸汽发生器中,冷却剂与外部循环的非放射性水流进行热交换,将冷却剂的热量转移到非放射性水中,使之蒸发为高温高压蒸汽。

5. 蒸汽涡轮机:由于高温高压蒸汽的压力能量,通过蒸汽涡轮机将热能转化为机械能。

蒸汽涡轮机驱动发电机旋转,产生电能。

6. 冷却水循环:蒸汽在蒸汽涡轮机中释放部分能量后,通过凝汽器冷凝,转化为水。

凝汽器中冷却水从外部环境吸收热量,使蒸汽得以冷凝为水。

冷凝后的水再次进入蒸汽发生器,参与循环。

压水堆核电站的主要作用是通过控制核反应堆中的核裂变反应来产生高温高压的蒸汽,然后利用蒸汽驱动汽轮发电机组产生电能。

同时,核电站还能提供稳定可靠的电力供应,减少对传统化石燃料的依赖,降低碳排放,实现清洁能源和可持续发展。

此外,核电站还可以用于核科学研究、医疗放射性同位素生产等多个领域。

核反应堆结构-4

核反应堆结构-4

控制棒导向管 : 在标准的17×17燃料组件中,导向管占据24个栅元, 它们为控制棒插入和抽出提供导向的通道,导向管 由一整根锆-4合金管子制成.其下段在第一和第二 格架之间直径缩小,在紧急停堆时,当控制棒在导 向管内接近行程底部时,它将起缓冲作用,缓冲段 的过渡区呈锥形,以避免管径过快变化,在过渡区 上方开有流水孔,在正常运行时有一定的冷却水流 入管内进行冷却,而在紧急停堆时水能部分地从管 内流出,以保证控制棒的冲击速度被限制在棒束控 制组件最大的容许速度之内,又使缓冲段内因减速 而产生的最大压力引起导向管的应力不超过最大许 用应力.缓冲段以下在第一层格架的高度处,导向 管扩径至正常管径,使这层格架与上面各层格架以 相同的方式与导向管相连.
导向管与下管座的连接借助其螺纹塞头来实现,螺 纹塞头的端部带有一个卡紧的薄圆环,用胀管工具 使圆环机械地变形并镶入管座内带凹槽的扇形孔中; 螺纹塞头旋紧在合金端塞的螺孔中将导向管锁紧在 下管座中. 组件重量和施加在组件上的轴向载荷,经导向管传 递,通过下管座分部到堆芯下栅格板上.燃料组件 在堆芯中的正确定位由对角线上两个支撑脚上的孔 来保征,这两个孔和堆芯下栅格板上的两个定位销 相配合,作用在燃料组件上的水平载荷通过定位销 传送到堆芯支承结构上.
核燃料组件的"骨架"结构
前面已经讲到17×17型压水堆核燃料组件是由 包括定位格架,控制棒导向管,中子通量测量管, 上管座和下管座所组成的"骨架"结构和核燃料元 件组成. 定位格架 作用:燃料组件中,燃料棒沿长度方向由八层格架 夹住定位,这种定位使棒的间距在组件的设计寿期 内得以保持.格架的加紧力设计成既使可能发生的 振动减到最小,又允许有不同的热膨胀滑移,也不 致引起包壳的超应力. 结构外形:格架由锆-4合金条带制成,呈17×17正 方栅格排列,条带的交叉处用电子束焊双边点焊连 接,外条带比内条带厚,内条带的端部焊在条带上, 外条带端部由三道焊缝连接;使格架能在运输及装 卸操作过程中很好地保护燃料棒.

压水堆核电站组成资料

压水堆核电站组成资料

压水堆核电站组成上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。

2-1 压水堆主要部件2-1-1 堆芯堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。

因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。

压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。

用富集度为2%—4.4%的低富集铀为燃料。

所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。

燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。

棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。

图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。

图2-1(a) 压水堆堆芯横剖面图图2-1(b) 压水堆燃料组件燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。

烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。

燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。

燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。

定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。

堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。

第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。

第一个运行周期的长度一般为1.3—1.9年。

以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。

(完整版)第三章压水堆核电站

(完整版)第三章压水堆核电站

2020/8/18
11
一、厂址选择
(3)水源和水文条件:一般要求百年一遇最 小流量也能满足电厂正常远行的要求。冷却
核岛:通常将一回路及核岛辅助系统、专设安全设 施和厂房称为核岛。压水堆核电站核岛中的四大部 件是蒸汽发生器、稳压器、主泵和堆芯。
常规岛:二回路及其辅助系统和厂房称之。
沸水堆核电厂原理图
2020/8/18
2
(1)一回路系统
压水堆核电厂反应堆冷却剂系统一般有二至四条并联 在反应堆压力容器上的封闭环路(见图)。
具体允许徘放量,需根据放射性物质的毒性、厂址的环境稀释 能力、居民点离电厂的距离和居民的饮食习惯来决定。
设计上要求核电厂在极限事故工况下的放射性物质释放量不应 达到对居民健康和安全造成超过我国国家核安全局关十核电厂 厂址选择所规定的严重危害后果的程度。
2020/8/18
10
一、厂址选择
2.厂址的自然条件和技术要求
2020/8/18
6
大亚湾核电厂的开式循环水系统
形式:为开式单元制系统。每台机组有2台容量为50% 的循环水泵。它们对应于2条独立的系列A和B的循环 水回路。经循环水泵升压后,每个系列分成3条支路进 入3台凝汽器。图
每台凝汽器水室被分割为两个独立水室,每台水泵与3 台凝汽器的一半连接形成独立的回路。循环水离开凝 汽器后经6个循环水支管分别汇入A、B系列的排水渠, 每条排水渠有一个独立的虹吸井、,循环水经虹吸井 流入明渠归大海。
2020/8/18
9
一、厂址选择
1.核电厂放射性特性
反应堆燃料棒运行时的破损率、反应堆冷却剂系统的泄漏率和 放射性废物处理系统的净化能力等决定了电厂在正常运行时放 射性的排放量。
如果放射性废气排故量很大,电厂就不宜建在城镇居 民中心附近;如果废水放射性排故量很大,电厂废水 就不能直接向江河湖海中排放。

压水堆核电站控制(第一章)

压水堆核电站控制(第一章)

反应性阶跃变化大小与反应堆周期的关系 压水堆动力学模型 华北电力大学核科学与工程学院
当反应性的变化ρ接近β时,由缓增变为陡增。对应反应堆周期 T=1/ ω 1急剧减小。
压水堆动力学模型 华北电力大学核科学与工程学院 反应性大阶跃变化下中子密度响应
当反应性变化大于β后,反应堆周期接近零,反应堆功率急 剧上升失去控制,出现“瞬发临界事故”。
华北电力大学核科学与工程学院 n/n0
瞬变项
华北电力大学核科学与工程学院 反应性小阶跃变化下中子密度响应 反应性扰动开始的瞬间,中子密度迅速增长决定于瞬发中子,反 应堆周期 ,这种现象称为瞬跳;很快缓发中子发挥作用, 按指数规律增长。
中子密度以反应堆周期
华北电力大学核科学与工程学院
压水堆动力学模型 华北电力大学核科学与工程学院 反应性大阶跃变化下中子密度响应 当反应性ρ为一个很大的阶跃扰动时,按上述类似方法可得:
华北电力大学核科学与工程学院 点堆动力学模型:把反应堆看成没有空间度量的一个“点”, 即反应堆内各点的中子通量密度只随时间变化,与空间位置 无关。 有效增殖系数Keff :某一代参与裂变反应的中子数除以上 一代参与裂变反应的中子数。 中子一代时间(Neutron life time) l :上一代中子产生数量 相同的下一代中子的所需的时间。 平均一代中子时间:一个中子由于裂变被另一个中子代替 的平均时间。 Λ =l/ Keff 反应性:表征链式反应介质或系统偏离临界程度的参数。
华北电力大学核科学与工程学院
华北电力大学核科学与工程学院
华北电力大学核科学与工程学院
压水堆动力学模型 华北电力大学核科学与工程学院 反应性小阶跃变化下中子密度响应
平衡点处: 缓发中子先驱核产生率= 缓发中子先驱核消失率

核电设备

核电设备
16
三.规范标准
1.采用规范标准的原则
-中国的法规、条例和规定必须遵照执行 -结合国情,参照大亚湾核电站使用的法国RCC 系列标准和其他国家标准 -适当采用中国国家标准和核工业标准
2.实际规范标准应用情况 2.
(1)国家颁布的法律、法规、条例规定。如环 境保护法、锅炉压力容器安全监察暂行条例、 核安全法规和导则等。 (2)法国规范标准 ① RCC系列 RCC-P、 RCC-M、 RCC-E、 RCC-G、 RCC-I、 17 RCC-C、
11
(2)电气设备的安全分级 若电气设备和部件涉及安全功能和事故后保护公 众的系统,则定为IE级。 未列入IE级的设备用NC表示 四种电气设备鉴定程序 -标准鉴定程序 -K3鉴定程序 -K2鉴定程序 -K1鉴定程序
12
4.抗震分级
(1)所有与安全有关的机械和电气设备,包括 安全1、2、3级和LS级机械设备及IE级电气设 备都有抗震要求,定为抗震1类设备 (2)部分设备和部件虽无核安全要求,但按其 重要性必须验证其抗震能力的也可定为抗震1 类 (3)抗震1类的机械设备和部件分三类: -1I类:在安全停堆地震(SSE)下必须保持结 构完整性和密闭性 -1F类:在安全停堆地震(SSE)下要求保持功 能的专设安全设施及其支承系统的非能动部件 -1A类:在安全停堆地震下要求完成动作确保事 故后安全功能的能动设备
14
6.质量保证等级
(1)质量保证等级分为:Q1、Q2和Q3级,无质 量保证要求的为QNC级。 (2)各级要求: Q1-遵照HAF003和相应导则中的全部要求,制 定实施质保大纲,满足合同等采购文件中的质 保要求。 Q2-遵照HAF003和相应导则中的绝大部分要求, 制定和实施质保大纲程序(质保手册),并满 足合同等采购文件中的质保要求。 Q3-制定和实施质保工作程序和细则,并满足合 同等采购文件中的质保要求。

核电站简介和物项分级

核电站简介和物项分级

到目前为止,核电站的燃料元件、泵、蒸汽发生器、稳压 器、压力容器的设计,正向标准化、系列化的方向发展。 核电站的研究工作,主要是为了进一步提高其安全性和经 济性。有关各国在这方面都有庞大的研究计划,并开展广 泛的国际合作。民用压水堆核电站从它诞生以后,一直是 最安全的工业部门之一,它已经成为一种成熟的堆型。
冷却剂从蒸汽发生器的管内流过后,经过一回路循环泵又 回到反应堆。一回路循环泵又称主泵。包括压力容器、蒸 汽发生器、泵、稳压器的整个系统,是一回路的压力边界。 它们都安置在如图4-6的安全壳内,称之为核岛。 蒸汽发生器内有很多管子(见图4-7)。管子外为二回路 的水。一回路的水流过蒸汽发生器管内时,将携带的热量 传给二回路里的水,从而使二回路水变成280℃左右、6~ 7MPa的高温蒸汽。所以在蒸汽发生器里,-回路与二回路 的水在互不接触的情况下,通过管壁发生了热交换。蒸汽 发生器是分隔并连结一、二回路的关键设备。从蒸汽发生 器出来的高温蒸汽,通过高压汽轮机后,一部分变成了水 滴。经过汽水分离器时水滴被分离出去,剩余的蒸汽进入 低压汽轮机继续膨胀,推动叶轮转动。。
反应堆堆芯
堆芯组成
堆芯由燃料组件、控制棒组件和堆芯相关组件等构成。 大亚湾核电厂堆芯由157个尺寸相同、截面为正方形的燃料组件排列 而成 初次(首炉)装料时,堆芯有三种不同富集度的燃料组件,并分区 布置,即:52个富集度为3.1%的燃料组件组成第3区,放在堆芯四周; 52个富集度为2.4%的燃料组件\混合交错布置, 53个富集度为1.8%的燃料组件∕组成第2和第1区 (见图2 堆芯 燃料组件布置)
容器内径/mm 法兰外径/mm 进、出口接管之间的最大距离/mm 法兰到底封头全高/mm
3989 4674 6378 10335 13208

核电设备培训讲义(3)

核电设备培训讲义(3)
44
(4)承压设备的形位公差
①容器园筒节和锥形筒节
-椭圆度小于(D+1250)/200或D/100中的较小值 (D公称直径)
-直筒段的圆心偏差:当壁厚小于10mm时,不 应超过钢板厚度5%再加3mm
②容器封头的形位公差:最大与最小的内径之差 应小于(D+1250)/200或(D+300)/100 (取两 式中较小值)
②奥氏体不锈钢成形的注意点 -工具需清洗除油
-热成形应在低燃油炉、电炉或燃气炉内在中性 或氧化气氛中加热
-避免与碳钢接触 -在热弯前或弯后、热处理前应按规定洗涤除油 ③2级和3级热交换器管的弯管尺寸公差 -壁厚减薄不应大于直径最小壁厚10% -算弯值曲的部7分%椭圆度不超过(d最大-d最小)/dN×100计
17
③各有关专业按RCC要求编制的专用通用技术条 件。如安全壳钢衬里用6mm厚20HR钢板技术 条件,IE级电气设备抗震鉴定试验技术条件
④根据RCC-M编制的安装技术要求
18
3.不同标准的处理情况
(1)问题的由来: -多国采购 -部分外商只能执行ASME (2)解决办法:
- RCC-M与ASME作比较,主要区别在:材料,
BOP共有110个子项,其中PX子项包括海水循环 泵,海水蝶阀,鼓形滤网及水闸门等。
8
二.设备分级
1.设备分级目的
(1)保证执行安全功能的设备的可靠性。 安全功能包括: -反应堆紧急停堆和维持反应堆在安全停堆状态 -堆芯和安全壳厂房的冷却(中期和长期冷却) -放射性物质的封存和限制向环境的排放 (2)按分级规定不同的设计、制造和检验要求,
(2)法国规范标准 ① RCC系列 RCC-P、 RCC-M、 RCC-E、 RCC-G、 RCC-I、16

压水堆核电站的组成及总布置

压水堆核电站的组成及总布置

压水堆核电站的组成及总布置(1)反应堆厂房–该厂房主要布置核反应堆和反应堆冷却剂系统及部分核岛辅助系统、专设安全设施系统。

从结构上来讲,反应堆厂房由筏板基础,带钢衬里的圆筒形预应力钢筋混凝土安全壳及其内部结构组成。

安全壳内径37m,屏蔽墙厚0.9m,总高59.4m,设计压力0.52Mpa (绝对压力)。

反应堆厂房内部结构布置如下:–·-3.5m放置堆芯仪表系统、安注系统、余热排出系统热交换器、化容控制系统的再生热交换器、安全壳连续通风系统及反应堆坑通风系统的风机。

–·±0.00m放置余热排出系统泵、稳压器卸压箱、安全壳的过滤净化系统过滤器、各系统管道、应急人员气闸门。

–·4.65m主要为三套蒸汽发生器、主泵和稳压器的支承楼板的隔间,放置在本层的还有安全壳过滤净化系统的风机和反应堆压力容器顶盖存放地,压力容器也通过该层。

–·8.00m层为反应堆换料水池楼板层,堆内构件存放及燃料组件倒换装置也放置在该层,进入安全壳的人员闸门也在此标高。

–·20.00m层为反应堆操作大厅,有设备闸门通入。

–·反应堆压力容器占有从-3.50至8.20m的堆本体中心净空间。

M310加改进型反应堆本体由压力容器、堆芯、堆内构件、堆内测量仪表和控制棒驱动机构等设备组成。

–·各层之间的交通由楼梯与电梯联系。

反应堆在运行期间,一般人员不得进入;事故检修和停堆检修时,人员可经由空气闸门进入;设备闸门为安装大件设备时的进入通道,运行时封闭。

–以下简要对堆内构件进行补充说明。

(2)核辅助厂房–由1、2号机组共用,主要布置核辅助系统及设备,厂房面积74×46m,高22m。

布置(层高变化较大,仅介绍几个重要的层间)有如下系统和设备:–·±0.00m主要有上充泵、硼回收系统、废物处理系统、设备冷却水系统、电气用房。

–·5.00~8.00m主要为硼回收系统的气体分离器和蒸发器间,过滤器及除盐装置间,废气处理系统的气体衰变箱隔间、化容控制系统设备间、阀门操作间等。

压水堆核电站的工作原理

压水堆核电站的工作原理

压水堆核电站的工作原理
压水堆核电站是一种常见的核电站类型,其工作原理如下:
1. 核燃料的使用:压水堆核电站使用低浓缩铀(U-235)作为
核燃料。

铀矿石被加工成浓缩的铀燃料棒,然后装入核反应堆。

2. 反应堆:核反应堆是核电站的核心部分,它包含大量的燃料棒(通常有数千个),并由冷却剂包围。

冷却剂一般是水。

3. 燃料棒中的核裂变:核燃料在核反应堆中被中子激活,引发核裂变反应,产生大量的热量。

4. 热量传递:核裂变带来的热量将被传递给循环系统,以便产生蒸汽。

5. 蒸汽产生:核反应堆中的热量使循环系统中的水变为高温高压的蒸汽。

6. 蒸汽驱动涡轮机:蒸汽进一步流入涡轮机,蒸汽流通过涡轮使其旋转。

7. 发电机运转:涡轮机旋转带动发电机运转,将机械能转化为电能。

8. 冷却剂循环:经过涡轮机后,蒸汽会被冷凝成水,并通过冷却剂循环系统重新注入核反应堆。

9. 安全控制:核电站配备了多重安全系统,以确保核反应过程的安全性,如反应堆冷却、核裂变链式反应的控制等。

总结起来,压水堆核电站的工作原理是通过核裂变产生热能,将燃料棒中的热量传递给循环系统中的水,使其转化为高温高压的蒸汽,然后利用蒸汽驱动涡轮机运转发电机,最终产生电能。

同时,核电站配备多层安全系统以确保反应的安全进行。

压水堆核电站

压水堆核电站
结构:包括汽 轮机、发电机、 冷凝器等部件
04
特点:高效、 可靠、环保, 是核电站的核
心设备之一
核安全文化
安全原则
安全第一:确保核 电站的安全是首要
任务
预防为主:采取预 防措施,避免事故
发生
责任明确:明确各 级人员的安全责任
持续改进:不断改 进安全管理,提高
安全水平
Байду номын сангаас
培训教育:加强员 工培训,提高安全
压水堆核电站
演讲人
目录
01. 基本构成 02. 核安全文化
基本构成
反应堆
1 反应堆类型:压水堆核电站的反应堆类型为轻水反应堆。 2 燃料:核燃料,如铀235等。 3 冷却剂:轻水,如普通水。 4 控制棒:用于控制反应堆的链式反应速度。 5 安全壳:用于保护反应堆,防止辐射泄漏。 6 蒸汽发生器:用于将反应堆产生的热量转化为蒸汽,推动汽轮机发电。
蒸汽发生器
作用:将核反应堆产生的热量转 化为蒸汽
结构:主要由管束、壳体和传热 管组成
工作原理:通过核反应堆产生的热 量加热传热管内的水,产生蒸汽
安全措施:设有安全阀、压力表等 安全装置,确保设备安全运行
汽轮发电机
01
作用:将核能 转化为电能
02
原理:利用蒸 汽推动汽轮机 旋转,带动发
电机发电
03
培训方式: 理论授课、 实际操作、 模拟演练等
培训对象: 核电站员工、 管理人员、 技术人员等
培训频率: 定期进行, 确保员工掌 握最新安全 知识和技能
谢谢
意识
信息公开:及时公 开核电站的安全信 息,接受社会监督
安全措施
1 建立完善的安全管理体系 2 定期进行安全检查和评估 3 加强员工培训和应急演练 4 确保设备安全可靠,定期进行维护和升级 5 建立有效的信息沟通和报告机制 6 加强与政府和公众的沟通和合作,提高公众对核安全的认识和信心

压水堆核电站工作原理

压水堆核电站工作原理

压水堆核电站工作原理
压水堆核电站(PWR)是一种重要的核反应堆系统,它是利用水作为中子反应媒介来产生核能的。

这种核电站经常被称为“汽轮发电机”,因为它是由蒸汽产生动力来驱动汽轮发电机发电,从而生产电能的。

压水堆核电站的基本原理是:由核反应堆提供的热能,通过循环的冷却剂(水)来移动,从而使压力增加,从而使水热能变成动能,把水中的热量转换为动能,转换成机械能,进而变成电能。

压水堆核电站的主要部件有核反应堆、汽蒸发器和汽轮发电机。

核反应堆是核电站中最重要的部分,它是核电站的热源,是产生电能的核动力装置。

核反应堆中发生核裂变,产生的热量可以把水变成蒸汽,使其增压,从而驱动汽轮机发电。

汽蒸汽器是将水加热到一定的温度,从而蒸发形成蒸汽,并将其导入汽轮发电机,从而获得动力的装置。

汽轮发电机是将发动机的机械能转变成电能而发电的装置。

压水堆核电站的工作过程可以概括为:核裂变产生热量,使水蒸发,从而使水中的热量转换为动能,动能转换为机械能,把机械能转换为电能,最后通过变压器将电能转换成高压电后输出到家庭用电。

- 1 -。

《900MW压水堆核电站系统与设备》运行教程320讲义RCP

《900MW压水堆核电站系统与设备》运行教程320讲义RCP

添加标题
启动主泵:将冷却剂送入反应堆核心
添加标题
升温升压:逐渐提高反应堆温度和压力
添加标题
启动汽轮机:利用蒸汽产生电力
添加标题
启动蒸汽发生器:将热量传递给蒸汽发生器
添加标题
并网发电:将产生的电力输送到电网
正常运行流程
添加标题
添加标题
添加标题
添加标题
启动操作:按照规程进行启动操作
启动准备:检查设备状态,确认安全措施
核电站特点:核电站具有高效、清洁、安全等优点,能够提供稳定的电力供应,是现代能源的重要组成部分。
核电站发展历程:从早期的核潜艇、核武器到现代的商用核电站,核能技术的发展经历了漫长而曲折的过程。
核电站的发展历程
国内外核电站的发展现状与趋势
核电站的起源与早期发展
现代核电站的兴起与技术进步
核电站的未来发展前景与挑战
辐射安全标准与法规
辐射防护措施与设备
化学安全与防护
化学物质的储存和管理:确保化学物质的安全储存和管理,防止泄漏和误操作。
化学物质的运输和运输:采取适当的措施,确保化学物质的运输和运输过程中的安全。
化学物质的处置和排放:遵守相关法规和标准,确保化学物质的处置和排放符合环保要求。
化学事故的应急处理:制定应急预案,配备必要的应急设备和人员,及时有效地处理化学事故。
机械安全与防护
机械安全设计:确保机械设备的结构、功能和操作安全,防止意外事故的发生。
防护装置:配备有效的防护装置,如防护罩、防护栏、安全阀等,以减少机械伤害的风险。
定期维护与检查:对机械设备进行定期维护和检查,确保其正常运行,及时发现并处理潜在的安全隐患。
操作规程:制定严格的机械操作规程,确保操作人员熟悉设备性能,遵守安全操作规程,减少人为因素导致的事故。

900MW压水堆核电站系统和设备运行教程

900MW压水堆核电站系统和设备运行教程

电动主给水泵 系统(APA)
--保持SG水位的必要性 --SG的给水 --SG的排污7—46.7T/H
一回路水入口
排污
一回路水出口
蒸 汽 发 生 器 主 要 参 数
参数
资料仅供数参考 值
一次侧: 设计压力
17.2 MPa(abs)
设计温度
343 ℃
运行压力
15.5 MPa(abs)
反应堆冷却剂温度(最佳估算)
冷却剂在堆芯的流动 资料仅供参考
--总流量 48580m3/h ; --总流量的6.5% 的旁通流量; --堆芯的压头损 失1.5bar,压力 容器的压头损失 3bar;
压 力 容 器 泄 漏 的 探 测
--瞬态允许〈20L/H;
资料仅供参考
--探测泄漏的两种方法,
温度计和水位计。
内密封环
外密封环

每一台饱和式蒸汽发生器按照满负荷运行时传
递二分之一的反应堆热功率设计。




给水

理 冷水柱

资料仅供参考
二回路蒸汽 集水箱
水-汽混合物
一回路水 热源 热水柱
资料仅供参考
设 备 描 述
SG 水 位 调 节
资料仅供参考
蒸汽出口
水位 调节
水位 测量
给 水 流 量 蒸汽流量信
信号

给水
给水流量控制 系统(ARE)
资料仅供参考
设备描述
资料仅供参考
压 力 容 器
压水堆纵剖面
资料仅供参考
--1个排气孔640VP --30支热电偶 --33束控制棒 --56根紧固螺栓 --121组燃料组件 --38个堆内核测通道

中广核内部资料核电站基础复习题汇总(简化)

中广核内部资料核电站基础复习题汇总(简化)

压水堆基础培训复习题绪论1、简述压水堆核电站基本组成及工作原理?基本组成:以压水堆为热源的核电站。

主要由核岛(NI)、常规岛(CI)、电站配套设施(BOP)三大部分组成。

工作原理:(一)工作过程:核电厂用的燃料是铀235。

用铀制成的核燃料在“反应堆”的设备内发生裂变而产生大量热能,再用处于高压力下的水(冷却剂)把热能带出,在蒸汽发生器内产生蒸汽,蒸汽推动汽轮机带着发电机一起旋转,电就源源不断地产生出来,并通过电网送到四面八方。

一回路冷却剂循环:反应堆蒸汽发生器冷却剂泵反应堆二回路工质循环:蒸汽发生器汽轮机凝汽器凝、给水泵蒸汽发生器(二)压水堆核电站将核能转变为电能的过程,分为四步,在四个主要设备中实现的。

1、反应堆:将核能转变为热能(高温高压水作慢化剂和冷却剂);2、蒸汽发生器:将一回路高温高压水中的热量传递给二回路的给水,使其变为饱和蒸汽,在此只进行热量交换,不进行能量的转变;3、汽轮机:将饱和蒸汽的热能转变为高速旋转的机械能。

4、发电机:将汽轮机传来的机械能转变为电能。

能量传递过程为:裂变能→热能→传递→机械能→电能。

2、厂房及房间的识别符号如何定义?(P 3-5)厂房的识别定义:厂房的识别一般用3个符号来表示。

第一个符号为数字,表示机组识别,即该厂房是属于那个机组的,或两个机组共用的,还是不属于任何机组,而是属于工地系统的,第二、三个符号为两个英文字母,其中第一个字母表示厂房,第二个字母表示该厂房之区域。

房间的识别定义:房间的识别一般用三个数字符号来表示,第一个数字表示楼层,第二、三个数字表示房号。

3、设备的识别符号如何定义?设备识别用9个符号来表示。

这9个符号又分为两个大组,前4个符号为功能组符号,表示该设备属于哪台机组,哪个系统。

后5个符号为设备组符号,表示是什么设备及设备的编号。

(L—字母,N—数字)I-第一章1、压水型反应堆由哪几大部分组成?反应堆由堆芯、压力容器、堆内构件和控制棒驱动机构等四部分组成。

我国压水堆核电站主要设备及原理完整文档

我国压水堆核电站主要设备及原理完整文档

我国压水堆核电站主要设备及原理完整文档(可以直接使用,可编辑完整文档,欢迎下载)压水堆核电站主要设备及原理压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高压反应容器。

容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控制棒的插入深度。

堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。

它由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组成。

堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反应堆,再通过一套动力回路将热能转变为电能。

压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核能转变为蒸汽的动能,进而转变为电能。

该动力装置由一回路系统,二回路系统及其他辅助系统和设备组成。

原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量带至蒸汽发生器。

蒸汽发生器一次侧再把热量传递给管子外面的二回路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却水又重新流回堆芯。

这样不断地循环往复,构成一个密闭的循环回路。

一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵机组、稳压器及主管道等。

一回路示意图稳压器结构图冷却剂主泵结构图二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压蒸汽,然后推动汽轮机,带动发电机发电。

做功后的乏汽在冷凝器内冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生器,再变成高压蒸汽推动汽轮发电机作功发电。

这样构成第二个密闭循环回路。

二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。

汽轮发电机机组是二回路系统的主要设备。

它由饱和汽轮机、发电机、冷凝器和中间汽水分离加热器组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压水堆核电站组成上一条新闻核安全名词解释下一条新闻核电站的控制调节与安全保护enterlsb转载|栏目:电力规范| 2007-08-06 23:12:09.42 | 阅读433 次压水堆核电站由压水堆、一回路系统和二回路系统三个主要部分组成。

2-1 压水堆主要部件2-1-1 堆芯堆芯结构是反应堆的核心构件,在这里实现核裂变反应,核能转化为热能;同时它又是强放射源。

因此堆芯结构的设计是反应堆本体结构设计的重要环节之一。

压水堆堆芯由若干个正方形燃料组件组成,这些组件按正方形稠密栅格大致排列成一个圆柱体。

用富集度为2%—4.4%的低富集铀为燃料。

所有燃料组件在机械结构和几何形状上完全一致,以简化装卸料操作和降低燃料组件制造成本。

燃料组件采用17×17根棒束,其中除少数插花布置的控制棒导向管外都是燃料棒。

棒束外面无组件盒,以减少中子俘获损失和便于相邻组件水流的横向交混。

图2—1(a)表示压水堆堆芯横剖面图,图2—1(b)表示压水堆燃料组件。

图2-1(a) 压水堆堆芯横剖面图图2-1(b) 压水堆燃料组件燃料棒的芯体由烧结的二氧化铀陶瓷芯块叠置而成。

烧结二氧化铀的耐腐蚀性、热稳定性和辐照稳定性都好,能保证为经济性所要求的>50000MW.d/tu的单棒最大燃耗深度。

燃料棒包壳采用吸收中子少的锆合金以降低燃料富集度。

燃料棒全长2.5—3.8M,用6—11个镍基合金或锆合金制的定位格架固定其位置。

定位格架燃料组件全长按等距离布置以保持燃料棒间距并防止由水力振动引起的横向位移。

堆芯一般分为三区,在初始堆芯中装入三种不同富集度的燃料,将最高富集度的燃料置于最外区,较低富集度的两种燃料按一定布置方式装入中区和内区,以尽量展平中子通量。

第一个运行周期由于全部都是新燃料而比后备反应性在运行周期间将随着可燃物的消耗逐渐释放出来。

第一个运行周期的长度一般为1.3—1.9年。

以后每年换一次料,将1/3或1/4堆芯用新燃料替换,同时将未燃尽的燃料组件作适应的位置倒换以求达到最佳的径向中子通量分布,倒换方案由燃料管理设计程序制定。

通常将新燃料装入最外区,将辐照过的燃料移向中心,称由外向内换料方案。

由于辐照过燃料组件的放射性水平极高,所有装卸料操作均在水屏蔽层以下进行。

为换料一般需要停堆3—4周,可利用这个时间进行汽轮发电机组及其它设备的检修,压力容器和蒸汽发生器在役检查工作。

为了确保燃料元件的安全,在运行中要严格限制核电站的负荷变化速率〈每分钟5%额定功率〉,用化学与容器控制系统和取样系统对冷却剂水质进行净化,PH值、氧、氢、氯、氟、硼、酸、锂-7等含量的控制及监测,并加强对燃料包壳完整性的监督。

2-1-2 控制棒组件控制棒组件是核反应堆控制部件,用它控制反应堆的核裂变反应速率,启动和停堆,调整反应堆的功率,在事故工况下依靠它快速下插使反应堆在极短时间内紧急停堆,以保证反应堆安全。

压水堆除由于反应性负温度系数带来的自身调节性能以外,采用控制棒、溶解的化学毒物(硼酸)和可燃毒物来进行功率调节和控制。

用细直径棒束型控制棒组件代替粗控制棒是一个很大的改进。

它消除了水隙造成的局部中子通量密度峰,省掉了控制棒的跟随挤水棒,使压力容器总高度大为缩短。

控制吸收棒材料是碳化硼或银铟镉合金,包壳材料用不锈钢或因科镍。

控制棒组件的驱动机构都装在压力容器的顶盖上,用电力使控制棒按规定速率在堆芯内提出或插入;如遇事故情况需要紧急停堆时,夹持控制棒组件的电磁离合器的激励电流被切断,所有控制棒便在重力或加上弹簧的作用下快速插入堆芯。

控制棒通常用来提供改变功率,带负荷时温度变化和汽包含量变化以及停堆所需的短期或快速反应性控制。

长期缓慢的反应性变化如由于氙中毒、燃料燃耗、裂变产物积累、从冷态起动等,用化学补偿予以调节。

压水堆的化学补偿控制是用改变水中硼酸浓度的方法来实现的。

这样,在大部分运行时间内,可将控制棒几乎完全提出,减小了局部功率不均匀系数。

压水堆采用的可燃毒物有两类:(1)与燃料分开的离散型可燃毒物,包括装有硼硅酸盐玻璃管的不锈钢包壳棒,装有氧化铝-碳花硼环状芯块的内腔通水的锆合金套管,及装有碳花硼-锆弥散体的锆合金包壳棒等品种;(2)与燃料结合在一起的一体化可燃毒物,包括涂敷于燃料芯块表面的硼花锆涂层。

硼硅酸盐玻璃管的主要缺点是不锈钢包壳和运行周期末残留硼吸收中子较多,影响了中子经济性,以及其结构形式限制了使用的灵活性,不利于最佳换料方案的实施。

2-1-3 控制棒驱动机构控制棒驱动机构是反应堆的重要动作部件,通过它的动作带动控制棒组件在堆芯内上下抽插,以实现反应堆的启动,功率调节,停堆和事故情况下的安全控制。

因此,它是确保反应堆安全可控的重要部件。

压水堆核电站的控制棒驱动机构,通常有长棒控制机构和短棒控制机构两种。

长控制棒驱动机构的动作要求为:在正常运行情况下要求控制棒的移动速度缓慢,,每秒钟的行程约为1 0毫米;在快速停堆或事故情况时要求驱动机构在得到事故停堆讯号后,即能自动脱开,控制棒组件靠自重快速插入堆芯。

从得到讯号到控制棒完全插入堆芯的紧急停堆时间一般不超过2秒钟。

短控制棒驱动机构不参与反应堆的启动,停堆和调节功率,而专用来抑制反应堆在运行过程中由于氙浓度变化引起堆芯轴向功率分布的畸变和抑制氙振荡现象,以保证堆芯运行安全。

由于反应堆在运行过程中各种内外因素均会引起反应堆的反应性变化,故控制棒动作频繁。

要求控制棒驱动机构在反应堆运行过程中进行近百万次的动作而不发生故障,同时,考虑到反应堆装换料时,驱动机构的轴应能使控制棒组件适应远距离装拆,加上压水堆的高压密封要求,这给控制棒驱动机构的设计和制造提出了较高的要求。

目前常见的驱动机构有磁阻马达式、磁力提升式、液压驱动型及齿轮齿条等各种形式。

国外压水堆核电站约有60%以上的长控制棒驱动机构采用销爪式磁力提升机构。

它具有磨损少、寿命长、控制简单、制造方便及使用安全可靠等优点。

短控制棒驱动机构采用磁阻马达驱动机构。

2-1-4 压力容器压水堆压力容器呈圆筒形,尺寸和重量较大,是核电站中的重型设备。

如1000MW核电站所用的压力容器总高度约13m,内径约4m,壁厚约20cm,重量约400~500t。

其结构由筒体和可拆卸的顶盖构成,两者用法兰和密封垫环相连接。

压力容器采用锰-钼-镍系列的低合金钢作为母材,内壁与冷却剂接触处均堆焊了3—8mm厚的奥式体不锈钢衬里以减轻腐蚀和防止冷却剂被放射性腐蚀产物过度污染。

压力容器内装有堆芯、控制棒组件和堆内构件,靠堆内构件保证燃料组件和控制棒组件的精确定位,承受堆芯的全部重量,及把静动载荷传到容器法兰上,最终经由外部承受件传给厂房结构。

压力容器的冷却剂进口接管和出口接管位于法兰下面,堆芯之上。

由进口接管进来的水经过容器壁与堆芯-吊篮之间的环行通道往下流入下腔室,然后转换向上流,通过堆芯和上腔室,经出口接管流出。

压力容器作为保证燃料元件冷却的关键设备和防止放射性外逸的第二道屏障,对核安全至关重要。

它在高温高压和强辐射、强腐蚀的条件下须能可靠的工作40~60年。

由于强放射性,使它成为核电站中不可更换的设备,因此必须限制和监督其受到的快中子辐照损伤。

除了设置辐照监管定期取出母材和焊缝样品作实验,及定期为压力容器的重要部位进行在役检查外,近年来为减少压力容器接受的快中子注量以延长它的寿命,趋向于采用由内向外的低中子泄漏换料方案。

2-1-5 安全壳包容整个一回路的安全壳是防止放射性物质逸入环境的最后一道屏障,它必须经受住失水事故时一回路水全部喷放汽化所产生的最高压力和温度,以及地震、旋风、飞机坠落撞击、来自内部和外部的飞射物撞击等各种静态和动态载荷而不丧失其保护功能。

图2-2表示一座压水堆的安全壳。

图2-2 压水堆的安全壳剖面图因为需要靠容积来缓和压力的升高,压水堆安全壳通常做得容积较大,对于1000MW的压水堆,安全壳直径约为40m,高度约为60m,用厚约1m的钢筋混凝土或预应力钢筋混凝土制成,内表面覆盖了厚6mm的钢衬里以保证密封性,设计压力约为0.4—0.5MP。

运行过程中要定期进行泄漏率试验,在设计压力下每24小时的泄漏量不得超过壳内自由容积的0.1%—0.5%。

2-2 一回路系统及主要设备压水堆核电站的一回路系统的主要设备有:蒸汽发生器、冷却剂主循环泵、稳压器及主管道等。

由于一回路系统是在高温高压和带放射性条件下工作,因此对这些设备的设计、制造和维修有较高的要求,这些设备也是核电站的关键设备。

2-2-1 蒸汽发生器蒸汽发生器是一回路冷却剂把从反应堆获得的热量传给二回路工质使其变为蒸汽的热交换的设备。

压水堆核电站所用的蒸汽发生器有三种主要类型:(1)产生饱和蒸汽的立式倒置U形管束(自然循环)蒸汽发生器,在其管束上面的汽泡内装有汽水分离器和蒸汽干燥器,可把出口蒸汽的湿度减小到0.25%以下。

传热管材料早先采用奥式体不锈钢,因应力腐蚀严重,现均改用因科镍-600,因科镍-690或因科洛-800;(2)产生微过热蒸汽的立式直管束直流型(强迫循环)蒸汽发生器,它不需要装汽水分离器,可实现最大约28℃的蒸汽过热度,比自然循环蒸汽发生器提高热效率约3%。

但对二回路水质和传热管材的抗腐蚀性能要求较苛刻,有因为热容量小,对热流自动控制的要求很高。

这种蒸汽发生器现在很少采用;(3)产生饱和蒸汽的卧式U形管束(自然循环)蒸汽发生器,是由前苏联单独开发成功的,现用于俄罗斯和东欧各国的VVER压水堆,其出口蒸汽的湿度小于0.2%。

主要优点是以立式圆筒形厚壁集流管代替水平管板,使传热管束根部汽水流动通畅,避免了由于淤渣沉积和腐蚀介质浓缩引起的传热管应力腐蚀破裂现象,因此,传热管材料虽一直使用奥式体不锈钢,仍保持良好的运行记录;主要缺点是体积庞大,重量大,由于铁路运输的限制,单台蒸汽发生器对应的电功率不能超过约250MW。

蒸汽发生器是压水堆核电站中仅次于压力容器的重型设备,其内部几千根薄壁传热管是一回路与二回路的传热界面,也是主系统压力边界的一部分,一有泄漏便影响安全,而工作条件苛刻。

运行中须严格控制二回路水质,进行在线监测和定期取样分析。

二回路水中的杂质会产生游离氢氧根,其过程浓集将导致传热管晶间应力腐蚀。

对不同的管材要采用不同的二回路化学水处理方法以保证相应的水质。

对用海水冷却的核电站须防止海水漏入二回路,要对凝结水进行全流量或部分流量的净化,连续添加化学药剂并连续排污。

2-2-2 反应堆冷却剂泵反应堆冷却剂泵用于唧送高温高压的反应堆冷却剂,使其强迫循环流动,连续不断地把反应堆中产生的热能传送到蒸汽发生器,以保证一回路系统的正常工作。

反应堆冷却剂泵是核动力装置的重要设备之一,也是一回路主系统中唯一高速旋转的设备。

反应堆冷却剂泵有两种类型:一种是屏蔽泵;一种是轴封泵。

相关文档
最新文档