立体几何(几何法)—线面角
专题一:立体几何中“线线角、线面角、面面角”的求法 课件
知识回顾
1. 异面直线所成角; 2. 直线与平面所成角; 3. 两平面所成角.
知识点一:线线角
关键:把空间角转化成平面角 步骤:①选点平移;
②定角; ③算角(解位线平移
知识点一:线线角
变式1. 已知四面体ABCD的各棱长均 相等,E、F分别为AB、CD的中点, 求AC与EF所成角的大小.
定义:以二面角的棱上任意一点为端点,
在两个面内分别作垂直于棱的两条射线,这两条 射线所成的角叫做二面角的平面角.
B
l
O
A
知识点三:面面角
方法:①定义法(点在棱上)
②三垂线法(点在一个平面内) 例3.在四面体ABCD中,平面ABD 平面BCD, ③射影法(找一个平面内对应的点 AB BD DA a, CD BD,DBC=30. 在另一个平面内的射影)
定义:过斜线AP上且斜足以外的一点P向平面引 垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平 面上的射影.平面的一条斜线和它在平面上的射影所 成的锐角,叫做这条直线和这个平面所成的角.
知识点二:线面角 关键:①找垂足 ②等体积法求高
例2.如图,设正方体ABCD A1B1C1D1的棱长为a, (1)求直线AB1与平面A1B1CD所成的角; (2)求直线AB与平面ACB1所成角的正弦值.
(1)求二面角A DC B的大小;
④垂面法(点在面外)
(2)求二面角A BC D的平面角的正切值.
⑤补形法
通过本节课的学习谈谈你的收获或感想:
作业:
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。
E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。
求直线1EC 与1FD 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。
思路二:平移线段C 1E 让C 1与D 1重合。
转化为平面角,放到三角形中,用几何法求解。
(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。
则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。
专题5:向量法做立体几何的线面角问题(解析版)
专题5:理科高考中的线面角问题(解析版)求直线和平面所成的角求法:设直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的夹角为ϕ, 则θ为ϕ的余角或ϕ的补角的余角.即有:cos s .in a u a u ϕθ⋅== 1.如图,在三棱锥A BCD -中,ABC 是等边三角形,90BAD BCD ∠=∠=︒,点P 是AC 的中点,连接,BP DP .(1)证明:平面ACD ⊥平面BDP ;(2)若6BD =,且二面角A BD C --为120︒,求直线AD 与平面BCD 所成角的正弦值.【答案】(1)见解析(2)22 【分析】(1)由ABC 是等边三角形,90BAD BCD ∠=∠=︒,得AD CD =.再证明PD AC ⊥,PB AC ⊥,从而和证明AC ⊥平面PBD ,故平面ACD ⊥平面BDP 得证. (2)作CE BD ⊥,垂足为E 连接AE .由Rt Rt ABD CBD ⊆,证得,AE BD ⊥,AE CE =结合二面角A BD C --为120︒,可得2AB =,23AE =,6ED =.建立空间直角坐标系,求出点的坐标则60,,03D ⎛⎫ ⎪ ⎪⎝⎭,3,0,13A ⎛⎫- ⎪ ⎪⎝⎭,向量36,,133AD ⎛⎫=- ⎪ ⎪⎝⎭,即平面BCD 的一个法向量(0,0,1)m =,运用公式cos ,m ADm AD m AD ⋅〈〉=和sin cos ,m AD θ=〈〉,即可得出直线AD 与平面BCD 所成角的正弦值.【详解】解:(1)证明:因为ABC 是等边三角形,90BAD BCD ∠=∠=︒,所以Rt Rt ABD CBD ≅,可得AD CD =.因为点P 是AC 的中点,则PD AC ⊥,PB AC ⊥,因为PD PB P =,PD ⊂平面PBD ,PB ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面ACD ,所以平面ACD ⊥平面BDP .(2)如图,作CE BD ⊥,垂足为E 连接AE .因为Rt Rt ABD CBD ⊆,所以,AE BD ⊥,AE CE =AEC ∠为二面角A-BD-C 的平面角.由已知二面角A BD C --为120︒,知120AEC ∠=︒.在等腰三角形AEC 中,由余弦定理可得3AC =.因为ABC 是等边三角形,则AC AB =,所以3AB =.在Rt △ABD 中,有1122AE BD AB AD ⋅=⋅,得3BD =, 因为6BD =所以2AD =. 又222BD AB AD =+,所以2AB =. 则23AE =,6ED =. 以E 为坐标原点,以向量,EC ED 的方向分别为x 轴,y 轴的正方向,以过点E 垂直于平面BCD 的直线为z 轴,建立空间直角坐标系E xyz -, 则6D ⎛⎫ ⎪ ⎪⎝⎭,3A ⎛⎫ ⎪ ⎪⎝⎭,向量361AD ⎛⎫=- ⎪ ⎪⎝⎭, 平面BCD 的一个法向量为(0,0,1)m =,设直线AD 与平面BCD 所成的角为θ,则2cos ,221m ADm AD m AD ⋅〈〉===-⨯,2sin |cos ,|2m AD θ=〈〉= 所以直线AD 与平面BCD 所成角的正弦值为22. 【点睛】本题考查面面垂直的证明和线面所成角的大小,考查空间想象力和是数形结合的能力,属于基础题.2.如图,直四棱柱ABCD –A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求AM 与平面A 1MD 所成角的正弦值.【答案】(1)见解析(2)105 【分析】要证线面平行,先证线线平行建系,利用法向量求解。
专题35 空间中线线角、线面角,二面角的求法-
专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。
线面角的求法总结
线面角的求法总结线面角是立体几何中的一个重要概念,指的是直线与平面之间的夹角。
在实际问题中,线面角的求法有多种方法,包括正投影法、平行线交线法、倾斜线投影法等。
下面将从这些不同的求法角度,总结线面角的求法方法。
一、正投影法正投影法是线面角的一种常用求法方法。
具体的求法步骤是:首先,以直线上的两点为基点,分别作两条垂直于平面的直线,将平面上的两个点投影到这两条垂直线上。
然后,连接两个投影点与基点,即可得到线面角。
简单来说,就是将线段的两个端点在平面上做垂线,再连接垂线与线段的两个端点所构成的三角形。
二、平行线交线法平行线交线法是另一种求解线面角的常用方法。
它适用于直线与平面的交点在平行线上的情况。
具体的求法步骤是:首先,找到平行于直线的两条线,并找出这两条线与交线的交点。
然后,以这两个交点为基点,分别作两条直线与交线相交,再连接交线两个端点与这两个交点,即可得到线面角。
简单来说,就是在平行线上找到与线段相交的两条线,将线段的两个端点与两个交点连线所构成的三角形。
三、倾斜线投影法倾斜线投影法是应用于倾斜线与平面的角的求法方法。
具体的求法步骤是:首先,判断倾斜线是否与平面相交,如果相交,则找到交点。
然后,以交点为基点,分别作两条垂直于平面的直线,并将交点投影到这两条垂直线上。
最后,连接两个投影点与交点,即可得到线面角。
简单来说,就是将倾斜线段的一个端点与交点连线,再以交点为顶点做一个角的投影。
四、线面角的特殊情况求解除了以上常用的求解线面角的方法外,还有一些特殊情况需要考虑。
例如,如果线段与平面平行,则线面角为无穷大;如果线段垂直于平面,则线面角为直角,即90度;如果线段在平面上,则线面角为0度。
这些特殊情况可以根据实际问题的需要灵活运用,以求解线面角。
总之,线面角的求法有多种方法,根据具体的问题和实际情况选择合适的方法进行求解。
正投影法、平行线交线法和倾斜线投影法是常用的求解方法,可以满足大多数情况下的求解需要。
浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想
浅谈线线角、线面角、面面角的定义方式北京市顺义区第九中学101300高中阶段在学习空间线、面位置关系的时候,会给出线线角、线面角及面面角的定义,本文以角形成的定义方式及蕴含的基本思想为主,进行研究。
1、直线与直线所成的角:(1)共面:同一平面内的两直线所成角,是利用两直线位置关系,平行、重合所成角为0度,如果相交就取交线所构成的锐角(或直角)。
(2)异面:如图所示,已知两条异面直线a和b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角)。
θ定义方式:是发生定义法(即构造定义方式)定义中的“空间中任取一点O”,意味着:角的大小与O 点选取的位置无关;通过平移把异面直线所成角转化成两相交直线,是将空间图形问题转化成平面图形问题的定义方式,体现了定义的纯粹性和完备性。
2、直线和平面所成的角:如图,一条直线和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角。
规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角。
3、面面所成的角:(1)在二面角的棱l上任取一点O,以该点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的角称为二面角的平面角.( 2)作二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角αaβ的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠ACB为二面角αmβ的平面角.4、线线、线面、面面所成角的定义方式线线、线面、面面所成角的定义方式是“属加种差定义法”。
第8章立体几何专题7 线面角的求解常考题型专题练习——【含答案】
线面角的求解【方法总结】1、线面角的范围:[0°,90°]2、线面角求法(一):先确定斜线与平面,找到线面的交点A为斜足;找线在面外的一点B,过点B向平面α做垂线,确定垂足O;连结斜足与垂足为斜线AB在面α上的投影;投影AO与斜线AB之间的夹角为线面角;把投影AO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。
注意:以上第二步过面外一点向平面做垂线的方法有一下几种:1)线在面外的一点B与平面上某点的连线正垂直于面α,无需再做辅助线;2)题中已知有与面α垂直的直线,过线在面外的一点B直接做此垂线的平行线;3)过线在面外的一点B做两垂直平面交线的垂线,利用面面垂直的性质证明OB⊥面α(这两个垂直平面一个是面α,另一个是过点B且与α垂直的平面)。
3、线面角求法(二)用等体积法,求出斜线PA在面外的一点P到面的距离,利用三角形的正弦公式进行求解。
114、线面角求法(三)利用空间向量进行求解,高二再学。
【巩固练习】1、已知正方体1111ABCD A B C D -的体积为162,点P 在正方形1111D C B A 上,且1,A C 到P 的距离分别为2,23,则直线CP 与平面11BDD B 所成角的正切值为( )A.2 B.3 C.12D.13【答案】A【解析】易知22AB =;连接1C P ,在直角1CC P ∆中,可计算22112C P CP CC =-=;又1112,4A P A C ==,所以点P 是11A C 的中点;连接AC 与BD 交于点O ,易证AC ⊥平面11BDD B ,直线CP 在平面11BDD B 内的射影是OP ,所以CPO ∠就是直线CP 与平面11BDD B 所成的角,在直角CPO ∆中,2tan 2CO CPO PO ∠== .2、把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为A.B.C.D.[来源网ZXXK]【答案】C【解析】如图所示,当平面平面时,三棱锥的体积最大,取的中点,则平面,故直线和平面所成的角为,则,所以,故选C.3、如图,在三棱锥P-ABC中,,PA AB⊥PC BC⊥,,AB BC⊥22,AB BC==5PC=,则PA与平面ABC所成角的大小为_______.【答案】45︒【解析】如图,作平行四边形ABCD,连接PD,由AB BC⊥,则平行四边形ABCD是矩形.由BC CD⊥,BC PC⊥,PC CD C=,∴BC⊥平面PCD,而PD⊂平面PCD,∴BC PD⊥,同理可得AB PD⊥,又AB BC B⋂=,∴PD⊥平面11ABCD .,PD CD PD AD ⊥⊥,PAD ∠是PA 与平面ABC 所成角.由2,5CD AB PC ===得1PD =,又1AD BC ==,∴45PAD ∠=︒.∴PA 与平面ABC 所成角是45︒.4、已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心O ,则AB 1与底面ABC 所成角的正弦值为( )A .23B .13C .33D .23【答案】A【解析】作1A H ⊥面ABC 于点H ,延长11B A 到D ,延长BA 到E 使得111B A A D =,,BA AE =如图则有11A EAB ,又因为1A O ⊥面ABC ,故1A EO ∠为所求角,且111sin AO A EO A E∠=。
高中数学必修二立体几何角的问题-教师版(含几何法和向量法)
立体几何线线、线面、面面所成角的问题几何法1、两异面直线及所成的角:不在同一个平面的两条直线,叫做异面直线,已知异面直线a,b,经过空间任一点O 作直线a '∥a ,b '∥b ,我们把a '与b '所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).如果两条异面直线所成的角是直角,我们就说这两条直线互相垂直.2、直线和平面所成的角:一条直线PA 和一个平面α相交,但不和这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A 叫做斜足。
过斜线上斜足以外的一点向平面引垂线PO ,过垂足O 和斜足A 的直线 AO 叫做斜线在这个平面上的射影。
平面的一条斜线和它在平面内的摄影所成的锐角,叫做这条直线和这个平面所成的角。
一条直线垂直于平面,我们就说它们所成的角是直角。
一条直线和平面平行,或在平面内,我们说它们所成的角是00.3、二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
在二面角βα--l 的棱l 上任取一点O ,以点O 为垂足,在半平面α和β内分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的∠AOB 叫做二面角的平面角。
二面角的大小可以可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。
常见角的取值范围:① 异面直线所成的角⎥⎦⎤ ⎝⎛20π,,直线与平面所成的角⎥⎦⎤⎢⎣⎡20π,,二面角的取值范围依次[]π,0② 直线的倾斜角[)π,0、到的角[)π,0、与的夹角的取值范围依次是⎥⎦⎤⎢⎣⎡20π,4、点到平面距离:求点到平面的距离就是求点到平面的垂线段的长度,其关键在于确定点在平面内的垂足,当然别忘了转化法与等体积法的应用. 向量法1、两异面直线及所成的角:设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.2、直线和平面所成的角:设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.3、二面角:设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.4、点到平面距离:点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.例题例1.长方体ABCD -A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为( )A.1010B.3010C.21510D.31010 解析:建立空间直角坐标系如图.则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2).BC 1→=(-1,0,2),AE →=(-1,2,1),cos 〈BC 1→,AE →〉=BC 1→·AE →|BC 1→|·|AE →|=3010.所以异面直线BC 1与AE 所成角的余弦值为3010.答案:B例 2.已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角. 证明:在ADE ∆中,222AD AE DE =+,∴AE DE ⊥ ∵PA ⊥平面ABCD ,DE ⊂平面ABCD ,∴PA DE ⊥又PA AE A ⋂=,∴DE ⊥平面PAE (2)DPE ∠为DP 与平面PAE 所成的角在Rt PAD ∆,PD =Rt DCE ∆中,DE =在Rt DEP ∆中,2PD DE =,∴030DPE ∠=例3.如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD . (1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.证明:(1)ABD ∆为等边三角形且G 为AD 的中点,∴BG AD ⊥ 又平面PAD ⊥平面ABCD ,∴BG ⊥平面PAD(2)PAD 是等边三角形且G 为AD 的中点,∴AD PG ⊥ 且AD BG ⊥,PG BG G ⋂=,∴AD ⊥平面PBG ,PB ⊂平面PBG ,∴AD PB ⊥(3)由AD PB ⊥,AD ∥BC ,∴BC PB ⊥ 又BG AD ⊥,AD ∥BC ,∴BG BC ⊥∴PBG ∠为二面角A BC P --的平面角在Rt PBG ∆中,PG BG =,∴045PBG ∠=例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为( D ) A.3 B.22C.32λ D.55练习:1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点,(1)求证:EFGH 是平行四边形;(2)若BD=AC=2,EG=2。
线线角,线面角
点O可任选,一般取特殊位置,如线段的中点或端点等。
探究:
(1)如果两条平行直线中的一条与某一条直线 垂直,那么,另一条直线是否也与这条直线垂直? 即a∥b,若a⊥c,则b⊥c c
ab
(2)垂直于同一条直线的两条直线是否平行?
下面我们来探究更一般的角的问题
平移法: 即根据定义,以“运动” 的观 点,用“平移转化”的方法,使 之成为相交直线所成的角。
O
小结归纳
2.计算直线与平面所成角采用的思想: 空间角转化为平面角
3.解题技巧: 线线角找平行
线面角找射影
小结归纳
1. 直线与平面所成角的计算步骤
作
证
构
出
明
造
所
所
三
求
作
角
的
的
形
空
角
并
间
符
求
角
合
角
“一作” “二证” “三算”
【课外延伸】
1.已知四棱锥P-ABCD的底面是边长为2的 正方形,PD⊥底面ABCD, PD=AD, E为 AB的中点。求:(1)异面直线PB与CE 所成 角的余弦值(2)直线DC与平面PBC所成角
2
AD= ,因此cos∠ANDN=D2 NA2 AD2 30 .
2ND NA
10
5
斜线
如图,过斜线上斜足以外的
斜足
一点向平面引垂线PO,过垂
足O和斜足A的直线AO叫做
斜线在这个平面上的射影. 平面的一条斜线和它在平面 射影
垂线
垂足
上的射影所成的锐角,叫做
这条直线和这个平面所成的
角。规定: 一条直线垂直于平面,我们说它所成的
异面直线所成角θ的取值范围:(0,90]
立体几何中的向量方法线面角课件
D1
C1 ② 传统法
A1
B1
O
D A
C B
课堂小结:
1.异面直线所成角:
cos |cos CD, AB |
2.直线与平面所成角:
sin | cos n, AB |
C
D
A D1
B
A
n
B O
证明: 如图建立空间直角坐标系 B-xyz
设 AB=1,则 B(0,0,0),
E12,0,0,F0,0,12,C1(0,1,1),
所以E→F=-12,0,12,B→C1=(0,1,1).
1
cos〈E→F,B→C1〉=
2 22×
=12,〈E→F,B→C1〉=60° 2
所以直线 EF 和 BC1 所成角的大小为 60°.
练习:如图,在三棱锥 V-ABC 中,顶点 C 在空间直角坐标系 的原点处,顶点 A,B,V 分别在 x 轴,y 轴,z 轴上,D 是线 段 AB 的中点,且 AC=BC=2,∠VDC=θ.当 θ=π3时,
求异面直线 AC 与 VD 所成角的余弦值.
解:由于 AC=BC=2,D 是 AB 的中点,
范围:
0,
2
C
D 思考:空间向量的夹角与
A D1 异面直线的夹角有什么关系? B
设直线CD的方向向量为a,AB的方向向量为b
a
b
结论:
a,b
aa,b
b
| ab
|
cos
ab
1.若异面直线l1的方向向量与l2的方向向量
A 的夹角为150°,则l1与l2夹角( )
A.30° B.150°C.30°或150° D.以上均不对
所以 C(0,0,0),A(2,0,0),B(0,2,0),D(1,1,0).
线线角和线面角
线线角和线面角[重点]:确定点、斜线在平面内的射影。
[知识要点]:一、线线角1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角.2、范围:(0,]3. 向量知识:对异面直线AB和CD(1);(2) 向量和的夹角<,>(或者说其补角)等于异面直线AB和CD的夹角;(3)二、线面角1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,).2、直线在平面内或直线与平面平行,它们所成角是零角;直线垂直平面它们所成角为,3、范围: [0,]。
4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中:(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。
5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。
6、向量知识(法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角.[例题分析与解答]例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角.分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.解:∵,,∴∵AB⊥BC,BB1⊥AB,BB1⊥BC,∴∴又∴∴所以异面直线BA1与AC所成的角为60°.点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的大小(用反三角函数表示)解法一:(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,∵AD⊥AB,∴AB⊥平面PAD,∴AB⊥PD,又AE⊥PD,∴PD⊥平面ABE,∴BE⊥PD.(2)解:设G、H分别为ED、AD的中点,连BH、HG、GB(图(1))易知,∴BH//CD.∵G、H分别为ED、AD的中点,∴HG//AE则∠BHG或它的补角就是异面直线AE、CD所成的角,而,,,在ΔBHG中,由余弦定理,得,∴.∴异面直线AE、CD所成角的大小为.解法二:如图(2)所示建立空间直角坐标系A-xyz,则,,,,,(1)证明:∵∴∴∴(2)解:∵∴∴异面直线AE、CD所成角的大小为例3.如图,在正方体ABCD-A1B1C1D1中,,求BE1与DF1所成角的余弦值.解:以D为坐标原点,为x,y,z轴,建立空间直角坐标系D-xyz,设正方体的棱长为4,则D(0,0,0),B(4,4,0),E1(4,3,4), F1(0,1,4).则,∴,∵.∴∴BE1与DF1所成角的余弦值为点评:在计算和证明立体几何问题中,若能在原图中建立适当的空间直角坐标系,把图形中的点的坐标求出来,那么图形有关问题可用向量表示.利用空间向量的坐标运算来求解,这样可以避开较为复杂的空间想象。
2024年高考数学复习培优讲义专题15---几何法求二面角,线面角(含解析)
专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
这是空间向量求解的巨大优点,也是缺点,就这么共存着。
其实不建系而直接计算真的很比较锻炼空间想象的能力,方法上也更灵活一些,对于备考的中档学生来说,2种方法都要熟练掌握。
方法介绍一、定义法:交线上取点 等腰三角形共底边时作二面角步骤第一步:在交线l上取一点O第二步:在α平面内过O点作l的垂线OA第三步:在β平面内过O点作l的垂线OB∠AOB即为二面角,余弦定理求角αβl OAB二、三垂线法(先作面的垂直)—后续计算小使用情况:已知其中某个平面的垂线段第二步:过垂直B作l的垂线OB∠AOB即为二面角且△AOB为直角三角形,邻比斜三、作2次交线的垂线作二面角步骤第一步:作AO⊥l第二步:作OB⊥l连接AB,∠AOB即为二面角,余弦定理求角四、转换成线面角作二面角步骤第一步:作AO⊥l第二步:作AB⊥β(找不到垂足B的位置用等体积求AB长)连接AB,∠AOB即为二面角△AOB为直角三角形,邻比斜五、转换成线线角—计算小,也是法向量的原理提问:什么时候用?若α平面存在垂线AB,且β平面存在垂线AC则α平面与β平面的夹角等于直线AC与AB的夹角αβlOABαβlOABβαOABCαβlOAB六、投影面积法——面积比(三垂线法进阶)将cos θ=边之比∣面积之比,从一维到二维,可多角度求出两面积,最后求解如图△ABC 在平面α上的投影为△A 1BC , 则平面α与平面ABC 的夹角余弦值1cos A BCABCθ=△△即cos θ=投影原S S补充:即使交线没有画出来也可以直接用例题:一题多解2023汕头二模T20如图在正方体ABCD -A 1B 1C 1D 1中,PQ 是所在棱上的中点.1C 1CD ABA B 1αBCAA 1D(1)求平面APQ 与平面ABCD 夹角的余弦值 (2)补全截面APQ2023全国乙卷数学(理)T9——由二面角求线面角P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1P C 1DABA B 1P C 1CDABA B 1PC 1DABA B 11.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D −−为150︒,则直线CD 与平面ABC 所成角的正切值为( )A .15B .25C .35D .252021·新高考1卷·T20——由二面角求线段长2.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1的等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D −−的大小为45︒,求三棱锥A BCD −的体积.题型一 定义法1.如图,在三棱锥S—ABC 中,SC ⊥平面ABC ,点P 、M 分别是SC 和SB 的中点,设PM=AC =1,∠ACB =90°,直线AM 与直线SC 所成的角为60°.(1)求证:平面MAP ⊥平面SAC . (2)求二面角M—AC—B 的平面角的正切值;2.(湛江期末)如图,在三棱锥P -ABC 中,PA ⊥平面ABC ,点M ,N 分别是PB ,AC 的中点,且MN ⊥A C . (1)证明:BC ⊥平面PA C .(2)若PA =4,AC =BC =22,求平面PBC 与平面AMC 夹角的余弦值.(几何法比较简单)3.如图1,在平行四边形ABCD 中,60,2,4A AD AB ∠=︒==,将ABD △沿BD 折起,使得点A 到达点P ,如图2.重点题型·归类精讲(1)证明:平面BCD⊥平面P AD;(2)当二面角D PA B−−的平面角的正切值为6时,求直线BD与平面PBC夹角的正弦值.题型二三垂线法4.(佛山期末)如图,四棱锥P-ABCD中,AB∥CD,∠BAD=90°,12PA AD AB CD===,侧面PAD⊥底面ABCD,E为PC的中点.(1)求证:BE⊥平面PCD;(2)若PA=PD,求二面角P-BC-D的余弦值.5.如图,在四棱锥P -ABCD 中,△P AD 是以AD 为斜边的等腰直角三角形,,,224,23BC AD CD AD AD CD BC PB ⊥====∥ (2023广州一模T19)(1) 求证:AD PB ⊥;(2)求平面P AB 与平面ABCD 交角的正弦值.6.如图,在三棱锥A BCD −中,平面ABD ⊥平面BCD ,AB AD =,O 为BD 的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为2的等边三角形,点E 在棱AD 上,2DE EA =且二面角E BC D −−的大小为60,求三棱锥A BCD −的体积.7.(2023·浙江·统考二模)如图,在三棱柱111ABCA B C 中,底面ABC ⊥平面11AA B B ,ABC 是正三角形,D 是棱BC 上一点,且3CD DB =,11A A A B =.(1)求证:111B C A D ⊥;(2)若2AB =且二面角11A BC B −−的余弦值为35,求点A 到侧面11BB C C 的距离.8.如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,ABC 和ACD 均为正三角形,4AC =,3BE =.(1)在线段AC 上是否存在点F ,使得BF ∥平面ADE ?说明理由; (2)求平面CDE 与平面ABC 所成的锐二面角的正切值.题型三 作2次交线的垂线9.在三棱锥S ABC −中,底面△ABC 为等腰直角三角形,90SAB SCB ABC ∠=∠=∠=︒. (杭州二模) (1)求证:AC ⊥SB ;(2)若AB =2,22SC =,求平面SAC 与平面SBC 夹角的余弦值.题型四 找交线10.如图,在四棱锥P -ABCD 中,底面ABCI )是平行四边形,∠ABC =120°,AB =1,BC =2,PD ⊥C D . (1)证明:AB ⊥PB ;(2)若平面PAB ⊥平面PCD ,且102PA =,求直线AC 与平面PBC 所成角的正弦值. (广东省二模T19)题型五 转换成线线角湖北省武汉市江汉区2023届高三上学期7月新起点考试11.在直三棱柱111ABC A B C −中,已知侧面11ABB A 为正方形,2BA BC ==,D ,,E F 分别为AC ,BC ,CC 1的中点,BF ⊥B 1D .(1)证明:平面B 1DE ⊥平面BCC 1B 1;(2)求平面BC 1D 与平面1B DE 夹角的余弦值六、 题型六 投影面积法12.(2022·惠州第一次调研)如图,在四棱锥P -ABCD 中,已知//AB CD ,AD ⊥CD ,BC BP =,CD =2AB=4,△ADP 是等边三角形,E 为DP 的中点.(1)证明:AE ⊥平面PCD ;(2)若2,PA =求平面PBC 与平面PAD 夹角的余弦值13.(2022深圳高二期末)如图(1),在直角梯形ABCD 中,AB //CD ,AB ⊥BC ,且12,2BC CD AB ===取AB 的中点O ,连结OD ,并将△AOD 沿着OD 翻折,翻折后23AC =M ,N 分别是线段AD ,AB 的中点,如图(2).(1)求证:AC⊥OM.(2)求平面OMN与平面OBCD夹角的余弦值.专题3-1几何法求二面角,线面角立体几何空间向量求解过程,丧失了立体几何求解的乐趣,无形中也降低了学生的空间想象能力。
立体几何-空间角求法题型(线线角、线面角、二面角)
空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。
空间角是线线成角、线面成角、面面成角的总称。
其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。
空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。
空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。
下面举例说明。
一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。
E 、F 分别是线段AB 、BC 上的点,且EB FB 1。
求直线EC i 与FD i 所成的角的余弦值。
思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。
思路二:平移线段C i E 让C i 与D i 重合。
转化为平面角,放到 三角形中,用几何法求解。
(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。
则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。
在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。
立体几何知识点 方法分类讲解
1.用向量知识来探讨空间的垂直与平行问题,关键是找出或求出问题中涉及的直线的方向向量和平面的法向量,通过讨论向量的共线或垂直,确定线面之间的位置关系。
对于垂直问题,一般是利用进行证明;对于平行问题,一般是利用共线向量和共面向量定理进行证明.2.用向量方法求夹角(线线夹角、线面夹角、面面夹角),其一般方法是将所求的角转化为求两个向量的夹角或其补角,而求两个向量的夹角则可以利用向量的夹角公式。
3.空间中各种距离一般都可以转化为点点距、点线距、点面距,其中点点距、点线距最终都可用空间向量的模来求解,而点面距则可由平面的法向量来求解。
设n是平面的法向量,AB是平面的一条斜线,交平面于A,则点B到平面的距离为。
知识点一:平面的法向量定义:已知平面,直线,取的方向向量,有,则称为为平面的法向量。
注意:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量。
已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量。
知识点二:用向量方法判定空间中的平行关系空间中的平行关系主要是指:线线平行、线面平行、面面平行。
(1)线线平行设直线,的方向向量分别是,,则要证明,只需证明,即。
(2)线面平行①设直线的方向向量是,平面的向量是,则要证明,只需证明,即。
②根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量。
③根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可。
(3)面面平行①由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可。
②若能求出平面,的法向量,,则要证明,只需证明。
知识点三:用向量方法判定空间的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直。
第2讲 立体几何中的空间角问题
(2)求直线DF与平面DBC所成角的正弦值.
解 方法一 如图(2),过点O作OH⊥BD,交直线BD于点H,连接CH.
由ABC-DEF为三棱台,得DF∥CO,
所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.
由BC⊥平面BDO,得OH⊥BC,又BC∩BD=B,
故OH⊥平面DBC,
所以∠OCH为直线CO与平面DBC所成角.
(2)(2021·温州模拟)如图,点M,N分别是正四面体ABCD的棱AB,CD上 的点,设BM=x,直线MN与直线BC所成的角为θ,则 A.当ND=2CN时,θ随着x的增大而增大 B.当ND=2CN时,θ随着x的增大而减小 C.当CN=2ND时,θ随着x的增大而减小
√D.当CN=2ND时,θ随着x的增大而增大
又∵AA1∥B1B,∴BB1⊥BM. 又BM∩BC=B,BM,BC⊂平面BMC, ∴BB1⊥平面BMC, 又CM⊂平面BMC,∴BB1⊥CM.
(2)求直线BM与平面CB1M所成角的正弦值.
解 方法一 作BG⊥MB1于点G,连接CG. 由(1)知BC⊥平面AA1B1B,得到BC⊥MB1, 又BC∩BG=B,BC,BG⊂平面BCG,
MN= x2-3x+7,
所以在△MNE 中,cos θ=2
4-x x2-3x+7
=12 1+x2-9-3x5+x 7(x∈[0,3]),
令 f(x)=x2-9-3x5+x 7,
则 f′(x)=5xx22--31x8+x-782<0,
所以f(x)在定义域内单调递减,即x增大,f(x)减小,即cos θ减小,从而θ 增大,故D正确,C错误.
所以在△FNM中, cos θ=2 x25--3xx+7=21
1+x21-8-3x7+x 7(x∈[0,3]),
几何法求二面角、线面角与距离(高三一轮复习)
数学 N
— 26 —
思维点睛►
几何法求距离的转化方法 (1)利用线面、面面平行转化:利用线面距、面面距的定义,转化为直线或平面 上的一点到平面的距离; (2)通过换底转化:一般是在三棱锥中,利用等体积法求三棱锥的高,即求顶点 到平面的距离; (3)利用中点转化:如果条件中具有线段的中点,则可将中点到平面的距离转化 为线段的端点到平面的距离.
角度1 轨迹问题 例1 如图, AB是与平面α交于点A的斜线段,点C满足|BC|=λ|AC|(λ>0),且 在平面α内运动,给出以下几个命题:①当λ=1时,点C的轨迹是拋物线;②当λ=1 时,点C的轨迹是一条直线;③当λ=2时,点C的轨迹是圆;④当λ=2时,点C的轨 迹是椭圆;⑤当λ=2时,点C的轨迹是双曲线.其中正确的命题是________.(填序 号)
数学 N
— 29 —
又因为AB=3,BC=4,则AC=5,故在Rt△C1AC中,C1C=AC×tan
30°=
53 3
,在长方体ABCD-A1B1C1D1中,
平面ABCD到平面A1B1C1D1的距离即为棱C1C的
长,即平面ABCD到平面A1B1C1D1的距离为5
3
3 .
数学 N
— 30 —
拓展培优 立体几何中的动态问题
数学 N
— 5—
针对训练
1.已知正方体ABCD-A1B1C1D1,则D1A与平面ABCD所成的角为( A )
A.45°
B.60°
C.90°
D.135°
解析 如图,正方体ABCD-A1B1C1D1,
数学 N
— 6—
DD1⊥平面ABCD,则∠D1AD是直线D1A与平面ABCD所成的角, 在Rt△ADD1中, ∠ADD1=90°,AD=DD1,因此∠D1AD=45°, 所以D1A与平面ABCD所成的角为45°.
027:选修2-1 3.2.3 利用法向量解决立体几何中的线面角问题和求点到平面的距离问题
选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题班级 姓名一、目标导引1.会利用法向量解决立体几何中的线面角; 2.会求点到平面的距离问题. 二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= = .【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.11【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值.C1题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A , n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = = .例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.A1【课时作业027】班级 姓名 作业等级A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值.【答案:63】12.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.【答案:155】3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.(答案k=1)5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.(答案32)1选修2-1 第三章 空间向量与立体几何§3.2.3 利用法向量解决立体几何中的线面角,求点到平面的距离问题一、目标导引1.利用法向量解决立体几何中的线面角;2.求点到平面的距离问题二、教学过程题型一 利用法向量解决立体几何中的线面角 【知识准备】如图,已知PA 为平面α的一条斜线,n 为平面α的一个法向量,过P 作平面α的垂线PO ,连结OA 则PAO ∠为斜线PA 和平面α所成的角,记为θ,则有 ,OP AP θ+<>= ,由此,在Rt AOP ∆中,sin |sin(,)|2OP AP πθ=-<>= =【注意】直线与平面所成的角的范围是θ∈例1 如图所示,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. ①证明:AB ⊥A 1C ;②若平面ABC ⊥平面AA 1B 1B ,AB =CB ,求直线A 1C 与平面BB 1C 1C 所成角的正弦值. ①证明 取AB 的中点O ,连接OC ,OA 1,A 1B . ∵CA =CB ,∴OC ⊥AB . 由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形,∴OA 1⊥AB .∵OC ∩OA 1=O , ∴AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .②解 由①知OC ⊥AB ,OA 1⊥AB .又平面ABC ⊥平面AA 1B 1B ,交线为AB ,OC ⊂平面ABC , 所以OC ⊥平面AA 1B 1B ,故OA ,OA 1,OC 两两垂直.以O 为坐标原点,OA ,OA 1,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Oxyz .设AB =2,则A (1,0,0),A 1(0,3,0), C (0,0,3),B (-1,0,0),则BC →=(1,0,3),BB 1→=AA 1→=(-1,3,0), A 1C -→=(0,-3,3). 设n =(x ,y ,z )是平面BB 1C 1C 的法向量,则⎩⎪⎨⎪⎧n ·BC →=0,n ·BB 1→=0,即⎩⎨⎧x +3z =0,-x +3y =0,可取n =(3,1,-1).故cos 〈n ,A 1C -→〉=n ·A 1C -→|n ||A 1C -→|=-105,∴A 1C 与平面BB 1C 1C 所成角的正弦值为105.【变式1】在正三棱柱ABC -A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,求AD 与平面AA 1C 1C 所成角的正弦值解析 取AC 的中点E ,连接BE ,则BE ⊥AC ,以B 为坐标原点,BE ,BB 1所在直线分别为x 轴,z 轴,建立如图所示的空间直角坐标系Bxyz ,则A ⎝⎛⎭⎫32,12,0,D (0,0,1),B (0,0,0),E ⎝⎛⎭⎫32,0,0,则AD →=⎝⎛⎭⎫-32,-12,1,BE →=⎝⎛⎭⎫32,0,0. ∵平面ABC ⊥平面AA 1C 1C ,平面ABC ∩平面AA 1C 1C =AC ,BE ⊥AC ,BE ⊂平面ABC , ∴BE ⊥平面AA 1C 1C ,∴BE →=⎝⎛⎭⎫32,0,0为平面AA 1C 1C 的一个法向量.设AD 与平面AA 1C 1C 所成角为α,∵cos 〈AD →,BE →〉=-64,∴sin α=|cos 〈AD →,BE →〉|=64.题型二 利用法向量求点到平面的距离问题【知识准备】设P 是平面α外一点,P A 是α的一条斜线,交平面α于点A ,n 是平面α的法向量,那么向量PA 在n 方向上的正射影长OP 就是点A 到平面α的距离h ,在Rt AOP ∆中,OP = =例2 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,求点A 到平面EFG 的距离.解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Dxyz , 则A (2,0,0),E (0,2,1),F (1,0,2),G (2,1,0).所以AG →=(0,1,0),GE →=(-2,1,1),GF →=(-1,-1,2).设n =(x ,y ,z )是平面EFG 的法向量,点A 到平面EFG 的距离为d , 则⎩⎪⎨⎪⎧n ·GE →=0,n ·GF →=0,所以⎩⎪⎨⎪⎧ -2x +y +z =0,-x -y +2z =0,所以⎩⎪⎨⎪⎧x =z ,y =z .令z =1,此时n =(1,1,1),所以d =|AG →·n ||n |=13=33,即点A 到平面EFG 的距离为33.A 级 学业水平达标1.在正方体ABCD -A 1B 1C 1D 1中,求直线BC 1与平面A 1BD 所成的角的正弦值. 【答案:63】解析 以D 为坐标原点,DA →,DC →,DD 1→所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系Dxyz .设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),C 1(0,1,1),A (1,0,0),∴BC 1→=(-1,0,1),AC 1→=(-1,1,1),A 1B -→=(0,1,-1), A 1D -→=(-1,0,-1).∴AC 1→·A 1B -→=1-1=0,AC 1→·A 1D -→=1-1=0.∴AC 1⊥A 1B ,AC 1⊥A 1D .又A 1B ∩A 1D =A 1,且A 1B ,A 1D ⊂平面A 1BD ,∴AC 1⊥平面A 1BD . ∴AC 1→是平面A 1BD 的一个法向量.∴cos 〈BC 1→,AC 1→〉=BC 1→·AC 1→|BC 1→||AC 1→|=1+12×3=63.2.正三角形ABC 与正三角形BCD 所在的平面互相垂直,求直线CD 与平面ABD 所成角的正弦值.解析:取BC 的中点O ,连接AO ,DO ,建立如图所示的空间直角坐标系O -xyz .设BC =1,A ⎝⎛⎭⎫0,0,32,B ⎝⎛⎭⎫0,-12,0,C ⎝⎛⎭⎫0,12,0,D ⎝⎛⎭⎫32,0,0,所以BA ―→=⎝⎛⎭⎫0,12,32, BD ―→=⎝⎛⎭⎫32,12,0,CD ―→=⎝⎛⎭⎫32,-12,0. 设平面ABD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BA ―→=0,n ·BD ―→=0,所以⎩⎨⎧12y +32z =0,32x +12y =0,取x =1,则y=-3,z =1,所以n =(1,-3,1),所以cos 〈n ,CD ―→=32+325×1=155,因此直线CD 与平面ABD 所成角的正弦值为155.3.如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BC ,A 1D 1的中点.(1)求直线A 1C 与DE 所成角的余弦值;【答案:1515】(2)求直线AD 与平面B 1EDF 所成角的余弦值;【答案:33】(3)求平面B 1EDF 与平面ABCD 所成锐二面角的余弦值.【答案:66】解 以A 为坐标原点,分别以AB ,AD ,AA 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Axyz . 则A 1(0,0,a ),C (a ,a,0),D (0,a,0),E ⎝⎛⎭⎫a ,a2,0, (1) A 1C -→=(a ,a ,-a ),DE →=⎝⎛⎭⎫a ,-a 2,0,∴cos 〈A 1C -→,DE →〉=A 1C -→·DE →|A 1C -→||DE →|=1515,故A 1C 与DE 所成角的余弦值为1515.(2)连接DB 1,∵∠ADE =∠ADF ,∴AD 在平面B 1EDF 内的射影在∠EDF 的平分线上.又B 1EDF 为菱形,∴DB 1为∠EDF 的平分线,故直线AD 与平面B 1EDF 所成的角为∠ADB 1.由DA →=(0,-a,0),DB 1→=(a ,-a ,a ),∴cos 〈DA →,DB 1→〉=DA →·DB 1→|DA →||DB 1→|=33,又直线与平面所成角的范围是⎣⎡⎦⎤0,π2, (3)由已知得ED →=⎝⎛⎭⎫-a ,a 2,0, EB 1→=⎝⎛⎭⎫0,-a 2,a ,平面ABCD 的一个法向量为m =AA 1→=(0,0,a ).设平面B 1EDF的一个法向量为n =(1,y ,z ),由⎩⎪⎨⎪⎧n ·ED →=0,n ·EB 1→=0,得⎩⎪⎨⎪⎧y =2,z =1,∴n =(1,2,1),∴cos 〈n ,m 〉=m ·n |m ||n |=66,∴平面B 1EDF与平面ABCD 所成锐二面角的余弦值为66. B 级 应试能力达标4.如图,在四棱柱ABCD -A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC=6k (k >0).(1)求证:CD ⊥平面ADD 1A 1; (2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.[解] (1)证明:取CD 的中点E ,连接BE .∵AB ∥DE ,AB =DE =3k , ∴四边形ABED 为平行四边形,∴BE ∥AD 且BE =AD =4k . 在△BCE 中,∵BE =4k ,CE =3k ,BC =5k , ∴BE 2+CE 2=BC 2,∴∠BEC =90°,即BE ⊥CD .又BE ∥AD ,∴CD ⊥AD . ∵AA 1⊥平面ABCD ,CD ⊂平面ABCD ,∴AA 1⊥CD .又AA 1∩AD =A ,∴CD ⊥平面ADD 1A 1.(2)以D 为坐标原点,DA ―→,DC ―→,DD 1―→的方向分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1),∴AC ―→=(-4k,6k,0),AB 1―→=(0,3k,1),AA 1―→=(0,0,1).设平面AB 1C 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AC ―→·n =0,AB 1―→·n =0,即⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,可得平面AB 1C 的一个法向量为n =(3,2,-6k ).设AA 1与平面AB 1C 所成的角为θ,则sin θ=|cos 〈AA 1―→,n 〉|=|AA 1―→·n ||AA 1―→|·|n |=|-6k |36k 2+13=67,解得k =1.故k 的值为1. 5.如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AB ∥CD ,AD =CD =1,∠BAD =120°,∠ACB =90°.(1)求证:BC ⊥平面P AC ;(2)若二面角D -PC -A 的余弦值为55,求点A 到平面PBC 的距离.解:(1)证明:∵P A ⊥底面ABCD ,BC ⊂平面ABCD ,∴P A ⊥BC ,∵∠ACB =90°,∴BC ⊥AC ,又P A ∩AC =A , ∴BC ⊥平面P AC .(2)设AP =h ,取CD 的中点E ,则AE ⊥CD ,∴AE ⊥AB .又P A ⊥底面ABCD ,∴P A ⊥AE ,P A ⊥AB ,故建立如图所示的空间直角坐标系,则A (0,0,0),P (0,0,h ),C ⎝⎛⎭⎫32,12,0,D ⎝⎛⎭⎫32,-12,0,B (0,2,0),PC ―→=⎝⎛⎭⎫32,12,-h ,DC ―→=(0,1,0),设平面PDC 的法向量n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·PC ―→=0,n 1·DC ―→=0,即⎩⎪⎨⎪⎧32x 1+12y 1-hz 1=0,y 1=0,取x 1=h ,∴n 1=⎝⎛⎭⎫h ,0,32.由(1)知平面P AC 的一个法向量为BC ―→=⎝⎛⎭⎫32,-32,0,∴|cos 〈n 1,BC ―→〉|=32h h 2+34×3=55,解得h =3, 同理可求得平面PBC 的一个法向量n 2=(3,3,2),所以,点A 到平面PBC 的距离为 d =|AP ―→·n 2||n 2|=234=32.。
异面直线的夹角-线面角(含答案)
异面直线的夹角-线面角(含答案)空间角1、异面直线所成角的求法一是几何法,二是向量法。
异面直线所成的角的范围:]2,0(π几何法求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解。
基本思路是选择合适的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点。
常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。
例1在正方体ABCD A B C D ''''-中,E 是AB 的中点,(1)求BA /与CC /夹角的度数. (2)求BA /与CB /夹角的度数.(3)求A /E 与CB /夹角的余弦值.例2:长方体ABCD —A 1B 1C 1D 1中,若AB=BC=3,AA 1=4,求异面直线B 1D 与BC 1所成角的余弦值。
直接平移:常见的利用其中一个直线a 和另一个直线b 上的一个已知点,构成一个平面,在此平面内做直线a 的平行线。
解法一:如图④,过B 1点作BE ∥BC 1交CB 的延长线于E 点。
则∠DB 1E 就是异面直线DB 1与BC 1所成角,连结DE 交AB 于M ,DE=2DM=35,cos∠DB1E=734解法二:如图⑤,在平面D1DBB1中过B点作BE∥DB1交D1B1的延长线于E,则∠C1BE就是异面直线DB1与BC1所成的角,连结C1E,在△B1C1E中,∠C1B1E=135°,C1E=35,cos∠C1BE=734170课堂思考:1.如图,PA 矩形ABCD,已知PA=AB=8,BC=10,求AD与PC所成角的余切值为。
DC1B1A1CD2.在长方体ABCD- A1B1C1D1中,若棱B B1=BC=1,AB=3,求D B和AC所成角的余弦值.例3 如图所示,长方体A1B1C1D1-ABCD中,∠ABA1=45°,∠A1AD1=60°,求异面直线A1B与AD1所成的角的度数.课堂练习如图空间四边形ABCD中,四条棱AB,BC,CD,DA及对角线AC,BD均相等,E为AD的中点,F为BC中,(1)求直线AB和CE 所成的角的余弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
立体几何(几何法)—线面角例1(本小题满分12分)(注意:在试题卷上作答无效
.........)
如图,四棱锥P ABCD
-中,底面ABCD为菱形,PA⊥底面
ABCD
,AC=2
PA=,E是PC上的一点,2
PE EC
=。
(Ⅰ)证明:PC⊥平面BED;
(Ⅱ)设二面角A PB C
--为90o,求PD与平面PBC所成角的大小。
【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所以BD⊥AC,又P A⊥底面ABCD,所以PC⊥BD.
设AC∩BD=F,连结EF.因为AC=22,
P A=2,PE=2EC,故
PC=23,EC=23
3
,FC=2,
从而PC
FC =6,AC
EC
= 6.
因为PC
FC =AC
EC
,∠FCE=∠PCA,所以
△FCE∽△PCA,∠FEC=∠P AC=90°,由此知PC⊥EF.
D
PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB , 故AG ⊥平面PBC ,AG ⊥BC .
BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD =
P A 2+AD 2=2 2.
设D 到平面PBC 的距离为d .
因为AD ∥BC ,且AD ⊄平面PBC ,BC ⊂平面PBC ,故AD ∥平面PBC ,AD 两点到平面PBC 的距离相等,即d =AG = 2.
设PD 与平面PBC 所成的角为α,则sin α=d PD =12. 所以PD 与平面PBC 所成的角为30°.
方法二:(1)以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz .
设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ⎝ ⎛⎭⎪⎫
423
,0,23,B (2,
-b,0).
于是PC →=(22,0,-2),BE →=⎝ ⎛⎭⎪⎫23,b ,23,DE →=⎝ ⎛⎭⎪⎫23,-b ,23,从而PC →·BE
→=0,
PC →·DE →=0,故PC ⊥BE ,PC ⊥DE .
又BE ∩DE =E ,所以PC ⊥平面BDE . (2)AP
→=(0,0,2),AB →=(2,-b,0). 设=(x ,y ,z )为平面P AB 的法向量,则·AP →=0,·AB →=0,
即2z =0且2x -by =0, 令x =b ,则=(b ,2,0).
设=(p ,q ,r )为平面PBC 的法向量,则 ·PC →=0,·BE
→=0, 即22p -2r =0且2p 3+bq +2
3r =0,
令p =1,则r =2,q =-2b ,=⎝ ⎛⎭
⎪⎫1,-2
b ,2.
因为面P AB ⊥面PBC ,故·=0,即b -2
b =0,故b =2,于是=(1,-1,2),DP
→=(-2,-2,2), cos 〈,DP →
〉=n ·DP →|n ||DP →|=12,
〈,DP →〉=60°.
因为PD 与平面PBC 所成的角和〈,DP
→〉互余, 故PD 与平面PBC 所成的角为30°.
例2(2012高考天津文科17)(本小题满分13分)
如图1-4,在四棱锥P -ABCD 中,底面ABCD 是矩形,AD ⊥PD ,BC =1,
PC=23,PD=CD=2.
(1)求异面直线P A与BC所成角的正切值;
(2)证明平面PDC⊥平面ABCD;
(3)求直线PB与平面ABCD所成角的正弦值.
图1-4
【答案】解:(1)如图所示,在四棱锥P-ABCD中,因为底面ABCD是矩形,所以AD=BC且AD∥BC,又因为AD⊥PD,故∠P AD为异面直线P A与BC所成的角.
=2.
在Rt△PDA中,tan∠P AD=PD
AD
所以,异面直线P A与BC所成角的正切值为2.
(2)证明:由于底面ABCD是矩形,故AD⊥CD,又由于AD⊥PD,CD∩PD =D,因此AD⊥平面PDC,而AD⊂平面ABCD,所以平面PDC⊥平面ABCD.
(3)在平面PDC内,过点P作PE⊥CD交直线CD于点E,连接EB.
由于平面PDC⊥平面ABCD,而直线CD是平面PDC与平面ABCD的交线,故PE⊥平面ABCD.由此得∠PBE为直线PB与平面ABCD所成的角.
在△PDC 中,由于PD =CD =2,PC =23,可得∠PCD =30°. 在Rt △PEC 中,PE =PC sin30°= 3.
由AD ∥BC ,AD ⊥平面PDC ,得BC ⊥平面PDC ,因此BC ⊥PC . 在Rt △PCB 中,PB =
PC 2+BC 2=13.
在Rt △PEB 中,sin ∠PBE =PE PB =3913.
所以直线PB 与平面ABCD 所成角的正弦值为39
13.
例3(2012高考浙江文20)(本题满分15分)如图1-5,在侧棱垂直底面的四棱
柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1E 与直线AA 1的交点.
(1)证明:(i)EF ∥A 1D 1; (ii)BA 1⊥平面B 1C 1EF ;
(2)求BC 1与平面B 1C 1EF 所成的角的正弦值.
图1-5
【答案】解:(1)证明:(ⅰ)因为C 1B 1∥A 1D 1,C 1B 1⊄平面A 1D 1DA ,所以C 1B 1∥平面A 1D 1DA ,
又因为平面B 1C 1EF ∩平面A 1D 1DA =EF , 所以C 1B 1∥EF ,
所以A1D1∥EF.
(ⅱ)因为BB1⊥平面A1B1C1D1,
所以BB1⊥B1C1.
又因为B1C1⊥B1A1,
所以B1C1⊥平面ABB1A1,
所以B1C1⊥BA1.
,
在矩形ABB1A1中,F是AA1的中点,tan∠A1B1F=tan∠AA1B=2
2
即∠A1B1F=∠AA1B,
故BA1⊥B1F,
所以BA1⊥平面B1C1EF.
(2)设BA1与B1F交点为H,连结C1H.
由(1)知BA1⊥平面B1C1EF,所以∠BC1H是BC1与面B1C1EF所成的角.在矩形AA1B1B中,AB=2,AA1=2,得BH=4
.
6
,得
在直角△BHC1中,BC1=25,BH=4
6
sin∠BC1H=BH
BC1=30
15
,
所以BC1与平面B1C1EF所成角的正弦值是30
15.。