交流调压与直流斩波
交流调压及斩波电路课件
•交流调压及斩波电路
① 通断控制。即把晶闸管作为开关将负载与交流电 源接通几个周期(工频1周期为20 ms),然后在开断一 定的周期,改变通断时间比值达到调压的目的。这种晶闸 管起到一个通断频率可调的快速开关的作用。这种控制方 式电路简单,功率因数高,适用于有较大的时间常数的负 载,缺点是输出电压或功率调节不平滑。
② 相位控制。它是使晶闸管在电源电压每一周期中、 在选定的时刻内将负载与电源接通,改变选定的时刻可达 到调压的目的。
在交流调压中,相位控制应用较多,下面主要分析 相位控制的交流调压器,先阐述作为基础的单相交流调压 器。单相交流调压器的工•交作流调情压及斩况波电与路 它的负载性质有关。
一、电阻性负载
等于零,因此单相交流调
压器对电阻性负载,其电
I = U /R 压可调范围为0~U1,控制
负载R上的电流有效值 0
0
角α的移项范围为
0≤ α≤ π。
U1为输 入交流 电压的 有效值
功率因数 COS φ = [U0I0] / [U1I0] = U0/U1
•交流调压及斩波电路
二、电阻—电感负载
VT1 i0
•交流调压及斩波电路
二、用三对反并联晶闸管接成的
—— 三相三线交流调压电
路uU
~U
VT1 R
以电阻负载接成星形为例进行分析。由于 没有零线,每相电流必须和另一相构成回路,
uV VT4
N ~V
uW VT6
~W
VT3 R VT5 R
与三相全控桥整流电路一样,应采用宽脉冲或
O
双窄脉冲触发。设U是线电压的有效值,则三 相线电压分别为
U0 = [t1/T]E =
斩波器与交流调压器、逆变
晶闸管斩波器作为一种直流调 压装置.常用于直流电动机的调压 调速。目前,斩波器已广泛应用于 电力牵引方面,如地铁、电力机车、 城市电车、蓄电池电动车等。 晶闸管斩波器,主要有采用普 通晶闸管的逆阻型斩波器和采用逆 导型晶闸管的逆导型斩波器两种。 下面仅介绍逆阻型斩波器。
二、交流调压电路 交流调压器是接在交流电源与负载之 间的调压装置。晶闸管交流调压器,可以 通过控制晶闸管的通断,方便地调节输出 电压的有效值。在交流调压器中,晶闸管 元件一般为反并联的两只普通晶闸管或双 向晶闸管,并常采用以下两种控制方式。
逆变器根据其直流电源的滤波方式可分为电 压型和电流型两种。 电压型逆变器,其直流电源由电容滤波,可 近似看成恒压源;其输出的交流电压为矩形波, 输出的交流电流在电动机负载时近似为正弦波; 其抑制浪涌电压能力强,频率可向上或向下调节, 效率高,适用于不经常起动、制动和反转的拖动 装置。 电流型逆变器,其直流电源由电感滤波,可 近似看成恒流源,其输出的交流电流近似为矩形 波,输出的交流电压在电动机负载时近似为正弦 波;其抑制过电流能力强,适用于经常要求起动、 制动与反转的拖动装置。
上述两个条件必须同时具备才能实现有 源逆变。半控桥式晶闸管电路或有续流二极 管的电路,因它们不能输出负电压,也不允 许直流侧接上反极性的直流电源,故不能实 现有源逆变。
二、无源逆变 在工业生产中,常要求把直流电或某一固定 频率的交流电变换成一频率可变的交流电,供给 某些负载使用,这种变流技术称为变频技术。早 期采用旋转变频机组或离子器件组成的静止变频 器来实现变频,但它们存在体积大、效率低、噪 声大、响应时间长等缺点。晶闸管作为较理想的 无触点开关元件,具有体积小、管压降小、响应 时间短的优点,晶闸管组成的静止变频器已取代 了旧式变频装置,在各种工业领域获得广泛应用, 如感应加热的中频电源、交流电动机的变频调速 电源、不间断电源(UPS)等。
电力电子技术第6章 交流交流变流电路
~u
VT1
uo
R
(a) 电阻负载单相交流调压电路 u1 O uo O i
o
α
π +α
t
VT1
VT2
t
u
O
V T
t
t O School of Electronics Science and Technology 7/57 (b)电阻负载单相交流调压工作波形
6.1.1 单相交流调压电路
每个晶闸管均在对应的交流电压 过零点关断,晶闸管的控制触发 角为α,导通角为θ = π-α。负载电 压波形是电源电压波形的一部分, 负载电流(也即电源电流)和负 载电压的波形相同,晶闸管也只 在两个晶闸管均关断时才承受电 压。 定量分析:由此可知,当晶闸管 的控制触发角为α时,负载两端的
ui 0 uo 0
t
t
图6-1 (c)斩控式交流调压方案 6/57
School of Electronics Science and Technology
6.1.1 单相交流调压电路
1 相控式交流调压电路
VT2
相控式交流调压电路的工作情 况和负载性质有很大的关系, 下面就电阻性负载和电感性负 载分别讨论。 (1)电阻性负载 单相相控式 交流调压电路电阻性负载电路 图如图所示,加在该电路输入 端的电源为正弦交流电。在交 流电源的正负半周分别在ωt =α 和ωt =π +α 时刻触发晶闸管VT1 和VT2,从而得到负载两端的电 压、电流以及VT两端电压波形 如图所示。
■直接方式
◆交流电力控制电路:只改变电压、电流或对电路的通 断进行控制,而不改变频率的电路。
◆交流调压电路:在每半个周波内通过对晶闸管开通相位的控制,调节输 出电压有效值的电路。 ◆交流调功电路:以交流电周期为单位控制晶闸管的通断,改变通态周期数 和断态周期数的比,调节输出功率平均值的电路。 ◆交流电力电子开关:串入电路中根据需要接通或断开电路的晶闸管。
第三章 直流斩波电路 ppt课件
ppt课件
4
负载电流为:
I 0 U 0 EM E EM
R
R
电源电流平均值为: I1 ton I 0 I 0
T
同乘以E:EI1=αEI0=U0I0 即输入功率等于输 出功率,因α小于1,可将降压变压器看作直流 降压变压器。
ppt课件
5
根据输出电压调制方式的不同,斩波电路有三种 控制方式:
常用的直流斩波电路包括:降压斩 波电路、升压斩波电路、升降压斩波电 路等,前两种电路应用广泛,而且是其 他斩波电路的基础。
ppt课件
1
3 . 1 基本斩波电路
3.1.1 降压斩波电路
斩波电路的基本用途是拖动直流电动机, 也可带蓄电池负载,总之负载中都有反电势。
电路如图,使用了一个全控型器件V,V采 用的是绝缘栅双极晶体管IGBT,二极管VD的 作用是V关断时进行续流的。
T
uLdt 0
0
当V导通时,uL=E; 当V关断时,uL=- u0,
于是 Eton= u0 toff 输出电压为:
U 0 ton E ton E E
toff
T ton
1
改变占空比α,当0<α<1/2 时为降压电路,当
1/2<α<1时为升压电路。
ppt课件
此外采用多重多相电路还可使电路的可靠性提高, 当一路出现故障时,其余单元可继续运行。
ppt课件
25
ppt课件
26
第四章 交流控制电路和交交变频电路
本章研究对交流电的调节电路。 交流控制电路是指改变交流电电压、电流 的电路; 交交变频电路是指改变交流电源频率的电 路,变频电路有交直交变频和矩阵式变频电路。
电力电子技术习题五(含答案)
练习题五1、交流调压电路的控制方式有哪些?2、什么叫过零触发方式?3、单相交流调压的特点有哪些?4、三相交流调压常用的有哪几种接线方式?5、什么叫直流斩波电路?适用场合有哪些?6、简述斩波器的两种工作方式。
7、开关器件的开关损耗大小同哪些因素有关?试以降压式斩波器为例,简要说明斩波器式直流变压器的转换效果。
答案:1、交流调压电路的控制方式:通断控制方式、相位控制方式2、过零触发:使晶闸管交流开关在端电压过零后触发,并借助于负载电流过零时低于维持电流而自然关断,使电路波形为正弦整周期形式,这种方式可以避免高次谐波的产生,减少开关对电源的电磁干扰。
在过零触发方式的基础上使晶闸管交流开关在整个工作过程中导通m周期,关断n周期,以导通周期和关断周期之比改变输出电压,达到对负载调工的目的。
3、①带电阻性负载时,负载电流波形与单相桥式可控整流交流侧电流波形一致,改变控制角可以改变负载电压有效值,达到交流调压的目的。
②带电感性负载时,不能用窄脉冲触发,否则当α<φ时,会发生一个晶闸管无法导通的现象,电流出现很大的直流分量,会烧坏熔断器或晶闸管。
③带大电感性负载时,最小控制角αmin=φ,所以α的移相范围为φ~180°,而带电阻性负载时移相范围为0°~180°。
4、接线方式:星形连接带中性线的三相交流调压电路、晶闸管与负载连接成内三角形的三相交流调压电路、晶闸管反并联的三相三线交流调压电路。
5、直流斩波电路:把固定的直流电压变换成可变直流电压的电路称之为直流斩波电路。
这种电路广泛应用于开关电源及直流电动机驱动装置中,如不间断电源、无轨电车、地铁、蓄电池供电的无级变速机动车及电动汽车传动控制。
6、①脉宽调制工作方式:维持T不变,改变ton;②频率调制工作方式:维持ton不变,改变T。
7、硬开关在开关转换过程中,由于电压、电流均不为零,出现了电压、电流重叠,会导致开关转换损耗的产生。
同时,由于电压和电流变化过快,也会使波形出现明显的过冲,产生开关噪声。
直流斩波电路设计
一、设计项目与要求1、输入直流电压U i=60V,R=8Ω;2、输出电压范围为0-100V,试选用合适斩波电路;3、计算占空比α=23%和α=59%时,负载两端输出电压和电流;4、画出α=23%和α=59%时斩波电路的电压电流波形分析图;5、IGBT的工作特性分析。
二、电路原理图设计2.1主电路的设计斩波电路:将直流电变为另一固定电压或可调电压的直流电。
也称为直流-直流变换器(DC/DCConverter)。
一般指直接将直流电变为另一直流电,不包括直流-交流-直流。
升降压斩波斩波电路结构Boost型升降压斩波变换器的特点是输出电压可以低于电源电压,也可以高于电源电压,是将降压斩波和升压斩波电路结合的一种直接变换电路。
主要由功率开关、二极管、储能电感、输出滤波电容等组成。
本次课题是在输入直流电压为60V时,想要输出电压的范围为0-100V,故而要选择的斩波电路应为升降压斩波斩波电路。
图1升降压斩波电路原理图2.2触发电路设计斩波器触发电路由三部分组成,图2为斩波器触发电路的原理图。
第一部分为由幅值比较电路U1和积分电路U2组成一个频率和幅值均可调的锯齿波发生器。
电位器RP1用来调节锯齿波的上下位置,电位器RP2用来调节锯齿波的频率,频率从100到700Hz可调。
由于晶闸管的开关速度及LC振荡频率所限,所以在斩波实验中我们一般选用200Hz这一范围。
第二部分是比较器部分。
比较器U3输入的一路是锯齿波信号,另一路是给定的电平信号,输出为前沿固定后沿可调的方波信号。
改变输入的电平信号的值,则相应改变了输出方波的占空比。
第三部分是比较器产生的方波送到4098双单稳电路U4,单稳电路则在方波的前沿和后沿分别产生两个脉冲,如图4所示,其后沿脉冲随方波的宽度变化而移动,前沿脉冲相位则保持不变,输出的脉冲经三极管放大通过脉冲变压器输出。
将上述两脉冲分别送至主晶闸管及辅助晶闸管,其中方波前沿触发脉冲G1、K1接主晶闸管VT1,而后沿触发脉冲G2、K2接辅助晶闸管VT2。
第五章 交流调压电路与斩波电路
。
交流调压与斩波电路 压力检测方法及仪表
19
(2) 电感性负载的功率因数角为
arctan wL
R arctan 2.3 2.3 4
最小控制角为
min
4
故控制角的范围为 π/4≤α≤π。
最大电流发生在 αmin=φ=π/4处,负载电流为正弦波,其 有效值为
Io Uo R (wL)
交流调压与斩波电路 压力检测方法及仪表
1
•
基本方式:
交流电力 控制电路 只改变电压,电流 或控制电路的通 断,而不改变频率 的电路。
交流调压电路 相位控制
在每半个周波内通过对晶闸管开通相位 的控制,调节输出电压有效值的电路。
交流调功电路 通断控制
以交流电的周期为单位控制晶闸管的 通断,改变通态周期数和断态周期数的 比,调节输出功率平均值的电路。
2 1 2 2
阻抗角
9
交流调压与斩波电路 压力检测方法及仪表
因为ω t=α +θ 时,io=0。将此条件代入式
2U io [sin(wt ) sin( )e tan ] Z
可求得导通角θ 与控制角α 、负载阻抗角φ 之间的定量关系表达式为
tan
wt
sin( ) sin( )e
交流调压与斩波电路 压力检测方法及仪表
12
VT1
3) 当α <φ 时,导通角θ >π 。 电源接通后,在电源的正半周,若先触发VT1,
若采用窄脉冲触发:若触发脉冲的宽度小于a+θ -(a+π )=θ -π 时,
当VT1的电流下降为零关断时,VT2的门极脉冲已经消失,VT2无法导通。 到了下个周期,VT1又被触发导通重复上一周期的工作,
交流调压电路和直流斩波电路
5.2.2 交流电力电子开关
概念 把晶闸管反并联后串入交流电路中,代替电 路中的机械开关,起接通和断开电路的作用。 优点 响应速度快,无触点,寿命长,可频繁控制通断。 与交流调功电路的区别
并不控制电路的平均输出功率。 通常没有明确的控制周期,只是根据需要控 制电路的接通和断开。 控制频度通常比交流调功电路低得多。
交流调压电路在每个电源周期都对输出电压波形 进行控制。
交流调功电路是将负载与交流电源接通几个周期, 再断开几个周期,通过通断周波数的比值来调节负 载所消耗的平均功率。
3-30
5.2.1 交流调功电路
电阻负载时的工作情况
控制周期为M倍电源 周期,晶闸管在前N 个周期导通,后M- N个周期关断。
负载电压和负载电流 (也即电源电流)的
Reactor—TCR)
a 移相范围为90°~
180°。
控制a 角可连续调节流
过电抗器的电流,从而 调节无功功率。
图4-11 晶闸管控制电抗器(TCR)电路
配以固定电容器,就可在从容性到感性的范围内连续
调节无功功率,称为静止无功补偿装置(Static Var
Campensator—SVC),用来对无功功率进行动态补偿,
流或控制电路
(触发角)
的通断,而不改 交流调功电路 通断控制
变频率的电路。
(周期的通断)
变频电路
交交变频 直接
改变频率的电路 交直交变频 间接
3-2
5.1 交流调压电路
应用
1 灯光控制(如调光台灯和舞台灯光控制)。 2 异步电动机软起动。(低压大电流启动) 3 异步电动机调速。 4 供用电系统对无功功率的连续调节(补偿)。 5 在高压小电流或低压大电流直流电源中,
电力电子技术直流斩波电路
a) Sepic斩波电路
输入输出关系:
b) Zeta斩波电路
Uo
ton toff
E ton T ton
E 1
E图3-6(S3e-p4ic9斩)波电路和Zeta斩波电路
电源电压与输出电压极性相同
23
3.1.4 Sepic斩波电路和 ZeVt处a斩于波通Z态电期e路间t原a,理斩电源波E经电开关路
i
i
1
2
续旳时间tx,即 ton
tx
1 me ln
1 m
I
20
O
t
onttt1来自x2t
t
off
T
c)
tx<t0ff
图3-3 用于直流电动机回馈能 量旳升压斩波电路及其波形
m
1 e b 1 e
--------电流断续旳条件
16
升降压斩波电路和Cuk斩波电路
1)升降压斩波电路 (buck -boost Chopper)
分V处于通态和处于断态 初始条件分电流连续和断续
7
一样能够从能降量传压递斩关系波出发电进路行旳推导 假定L为无穷大,负载电流Io维持不变(详见P101-102) 电源只在V处于通态时提供能量,为 EIoton 在整个周期T中,负载消耗旳能量为 RIo2T EM IoT
一周期中,忽视损耗,则电源提供旳能量与负载消耗旳能量相等。
V向电感L1贮能。
V关断后,L1-VD-C1构成振
荡回路, L1旳能量转移至C1,
能量全部转移至C1上之后,VD
b) Zeta斩波电路
关断,C1经L2向负载供电。
输入输出关系:
Uo
1
E
图3-6 Sepic斩波电路 和 Zeta斩波电路 (3-50)
8 斩波器
(2)定宽调频法 (又称为脉冲频率调制(PFM)方式),其特点是保持晶闸管导通的
时间τ 不变,通过改变晶闸管触发频率f来改变输出直流平均电
压。
图3—10直流斩波器输出电压波形 a)定频调宽b)定宽调频c)调频调宽
(3)调频调宽法 (这种方法又称为混合调制):其特点是同时改变晶闸管的触 发频率f和导通时间τ ,来改变直流平均电压。
交流电力控制器
交流电力控制器最常见的基本电路是将一对晶闸 管反并联或用一个双向晶闸管与负载串联,然后 接到交流电源上,通过对晶闸管的控制可实现对 负载的交流电压和功率的控制。 根据用途不同选择相位控制、通断周期控制(周 波控制)和过零点通断控制(通断控制)的三种 不同控制方式,便构成了三种不同的交流电力控
wt wt
u
o
L
a =0时刻仍定在电源电压u1
过零的时刻,阻感负载下 稳态时a的移相范围应为j ≤ a ≤π。
wt
wt
wt
在ωt = a时刻开通VT1,负载电流应满足如下方程式 和初始条件
L io
解方程得
d io dt
w t a
Rio 0
2U 1 sin w t
io
a wt 2U 1 tg j sin(w t j ) sin140
量,可将a和
θ的关系用曲
/(° )
100
线表示
移相范围: a=j~π
60
20 0 20 60 100 ) a /(° 140 180
阻感负载单相交流调压电路在开通角为a时,负 载电压有效值Uo为
1 a 2 Uo a ( 2U1 sin w t ) d (w t ) U1
极性如图3-11a所示,为下一个工作周期做好了准备。然 后,再重复上述(2)、(3)的过程。
交流调压电路和直流斩波电路
电路的基本原理和应用
交流调压电路的基本原理
通过控制交流电源的相位或幅值,实现对交流负载的电压调 节。在电力系统中,交流调压电路常用于无功补偿、调节电 压幅值等。
直流斩波电路的基本原理
通过快速地开断和闭合开关,将恒定的直流电源电压斩切成 一系列的脉冲电压,再通过滤波电路得到平均值可调的直流 电压。在电动汽车、不间断电源等领域,直流斩波电路被广 泛应用于电池管理、能量回收等。
交流调压电路的原理
通过改变交流电源的 电压幅度,实现对交 流负载电压的控制。
通过改变交流电源的 频率,实现对交流负 载功率的控制。
通过改变交流电源的 相位,实现对交流负 载电流的控制。
交流调压电路的分类
1 2
相控式交流调压电路
通过控制开关元件的通断时间,实现对交流电压 的调节。
斩控式交流调压电路
总结
04
交流调压电路和直流斩波电路的重要性
高效能源转换
交流调压电路和直流斩波电路在电力电子领域中发挥着关键作用, 能够实现高效能源转换,降低能源损失。
灵活控制
这两种电路能够实现对电压、电流和功率的快速、精确控制,满 足各种不同的应用需求。
节能环保
通过优化能源转换和控制方式,交流调压电路和直流斩波电路有 助于实现节能减排,推动绿色环保发展。
01
通过周期性地开启和关闭开关,将恒定的直流电源电压斩成一 系列的脉冲电压。
02
通过改变开关的开启和关闭时间,可以调节输出电压的平均值。
斩波电路的基本工作原理是利用快速开关元件,将输入的直流
03
电压斩成幅值可变的脉冲电压序列。
直流斩波电路的分类
降压斩波电路
用于降低电源电压,常用于电机速度控制和电池充电。
简述交流调压电路与交流调功电路的异同
交流调压电路与交流调功电路是电子电路中常见的两种电路类型,它们分别在交流电源的调节和功率调节方面发挥着重要作用。
本文将从工作原理、应用场景和特点等方面对交流调压电路和交流调功电路进行详细的比较与分析,希望能为读者对这两种电路有一个更清晰的认识。
1. 工作原理交流调压电路是指通过对交流输入电压进行调节,输出稳定的交流电压的电路。
其主要工作原理是利用稳压管、变压器、电容器等元件对输入电压进行整流、滤波和调节,从而使输出电压保持在一个稳定的水平。
常见的交流调压电路包括全波整流稳压电路、半波整流稳压电路等。
而交流调功电路则是通过对交流输入功率进行调节,实现对输出负载的功率控制。
其主要工作原理是利用可控硅、变压器等元件对输入功率进行调节,从而实现对输出负载的功率控制。
常见的交流调功电路包括调压调功电路、斩波调功电路等。
2. 应用场景交流调压电路主要用于需要稳定交流电压供电的场合,如家用电器、办公设备、工业自动化设备等。
它能够有效地解决交流电源波动、噪声等问题,保证设备正常稳定运行。
交流调功电路主要用于需要对交流功率进行调节的场合,如电动机调速、照明光源调光等。
它能够实现对输出负载的精确功率控制,满足不同场合对功率的需求。
3. 特点比较交流调压电路的特点主要表现在稳定性和波动性方面。
它能够实现对输出电压的稳定控制,减小输入电压的波动对设备的影响。
而交流调功电路的特点主要表现在功率控制和效率方面。
它能够实现对输出功率的精确控制,提高系统的能效比。
在实际应用中,需要根据具体的需求来选择合适的电路类型。
总结来看,交流调压电路和交流调功电路在工作原理、应用场景和特点上存在一定的区别。
在实际应用中,需要根据具体的需求来选择合适的电路类型,以实现最佳的效果。
希望本文能够帮助读者对这两种电路有一个更清晰的认识。
交流调压电路与交流调功电路是电子电路领域中常见的两种电路类型,它们在工作原理、应用场景和特点等方面各有不同。
在本文中,我们将进一步扩展讨论这两种电路的工作原理和应用,并深入探讨它们在实际工程中的应用以及各自的优劣势。
晶闸管斩波技术和交流调压
工作过程:
电压波形:
ug1
触发脉冲周期
T
ug2
t
主副脉冲间隔
t
t
uM
t
习题:
一、1,2,3,9~14
二、2,7~11
三、1,6
t
简单逆阻型斩波器的特点
电路简单成本低,R2存在损耗。 采用强迫换流形式,换流电容不能太小。 斩波器调压方式可以人为选择。
四、实例1————脉宽可调的逆阻型斩波器
US
US:直流电源。 L3:M的厉磁绕组
VT1:主晶闸管
M:直流串励电动机(负载)VT2VD1VD2L1L2C组成VT1的关断电路 VD3:提供M的续流通路.
VT2 、R2 、C组成 VT1的关断电路
关断电路的作用:使导通的晶闸管阳极电压 过零或承受反压而关断。
工作过程:
电压波形:
ug1
触发脉冲周期
T
定频调宽法
t
ug2
主副脉冲间隔
t
固定晶闸管VT1触发脉 冲周期,改变两脉冲的 时间间隔。 定宽调频法
t
uR1
uR2
t
固定两脉冲的时间间隔, 改变晶闸管VT1触发脉 冲周期。
US
o
ud
US
Ud
t
t1
o
TUdtt2源自udUS Ud T1
o
ud
US
t
t
o
T2
Ud
t
t
3. 调宽调频法
同时调节晶闸管的导通时间和触 发频率,改变输出直流平均电压。
4. 输出电压大小
t Ud US T
t 通断比: T
t为晶闸管导通时间;
T为晶闸管触发脉冲周期。
晶闸管斩波技术和交流调压
晶闸管斩波技术的优点
响应速度快、效率高、调节范围广。缺点:电路复杂、对控制精度要求
高。
02
交流调压技术的优点
电路简单、调节方便、对负载影响小。缺点:响应速度慢、调节范围有
限。
03
优缺点比较总结
晶闸管斩波技术具有快速响应、高效率和调节范广的优点,但电路复
杂、对控制精度要求高;交流调压技术具有电路简单、调节方便和负载
交流调压在无功补偿中的应用
交流调压原理
01
通过改变晶闸管触发角来调节交流电压的大小,实现无功补偿。
应用优势
02
可动态补偿无功功率,提高功率因数,降低线路损耗,改善电
能质量。
实际案例
03
某电力系统中采用交流调压技术进行无功补偿,有效降低了线
路损耗和电压波动,提高了供电可靠性。
其他应用案例
斩波技术在电机控制中的应用
输标02入题
未来,随着可再生能源和分布式电源的广泛应用,晶 闸管斩波技术和交流调压技术在智能电网和能源管理 领域的应用将更加广泛。
01
03
此外,随着工业自动化和智能制造的发展,晶闸管斩 波技术和交流调压技术在电机控制和工业电源管理方
面的应用也将不断深化。
04
同时,随着电动汽车和充电设施的普及,晶闸管斩波 技术和交流调压技术在电动汽车充电控制和能源管理 方面的应用也将得到进一步拓展。
为了满足高效节能的需求,许多领域 开始采用晶闸管斩波技术与交流调压 技术进行电能控制和调节。
晶闸管简介
晶闸管是一种大功率半导体器件,具有单向导电性,可以通过控制其导通角来调节 输出电压或电流。
晶闸管在斩波器和交流调压器中作为主要的电力电子器件,通过调节其导通和关断 时间来控制输出电压或电流的波形和幅值。
交流调压的控制
一、概述在工业生产及日用电气设备中,有不少交流供电的设备采用控制交流电压来调节设备的工作状态,如加热炉的温度、电源亮度、小型交流电机的转速等。
这样就需要设计一种交流调压电路来控制,其基本原理是把两个晶闸管反并联后串联在交流电路中,通过对晶闸管的控制就可以控制交流电力。
在每一个周波内通过对晶闸管开通相位的控制,可以方便地调节输出电压的有效值,这种电路称为交流调压电路。
用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。
采用晶闸管作为开关元件的典型单相交流调压电路如图1所示。
常用通断控制或相位控制方法来调节输出电压。
交流调压电路也广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软起动,也用于异步电动机调速。
在供用电系统中,这种电路还常用于对无功功率的连续调节。
此外,在高压小电流或低压大电流中,也常采用交流调压电路调节变压器一次电压。
如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,同时,低电压大电流直流电源需要很多晶闸管并联。
这都是十分不合理的。
采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。
这样的电路体积小、成本低、易于设计制造。
交流调压是指把一种交流电变成另一种同频率,不同电压交流电的变换。
按所变换的相数不同交流调压电路可分为单相交流调压电路和三相交流调压电路。
前者是后者的基础。
与自耦变压器调压方法相比,交流调压电路控制方便,调节速度快,装置的重量轻、体积小,有色金属消耗也少。
交流斩波调压技术作为一种高性能交流调压技术,符合电力电子技术高频化、高效化以及低污染发展趋势,将逐步取代晶闸管相控交流调压,新器件的发展将加速这一进程。
其丰富的控制种类,多样的电子开关组合,为不同使用要求提供高性价比产品,是一种经济型交流调压技术。
与单位功率因数、串联电压源等高性能交流调压技术相比,其开关应力及容量要求较大,为进一步提高开关变换效率,如何从系统综合角度考虑减小开关的应力,降低开关损耗,减少驱动复杂性,提高变换效率将成为一个研究新发现。
直流斩波电路的性能研究_5
目录一、buck斩波电路工作原理 (1)二、硬件调试 (3)2.1、电源电路 (3)2.1.1 工作原理: (3)2.2 buck斩波电路 (5)2.3、控制电路 (6)2.4、驱动电路 (7)2.5 过压保护电路 (9)2.5.1 主电路器件保护 (9)2.5.2 负载过压保护 (9)2.5.3 过流保护电路 (10)2.6 元器件列表 (12)三、总结 (12)四、参考文献 (13)一、buck斩波电路工作原理直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。
直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。
习惯上,DC-DC变换器包括以上两种情况。
直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,Cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。
一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。
利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。
利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。
直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。
全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET 的优点,具有良好的特性。
目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。
所以,此课程设计选题为:设计使用全控型器件为电力MOSFET的降压斩波电路。
主要讨论电源电路、降压斩波主电路、控制电路、驱动电路和保护电路的原理与设计。
1.1主电路工作原理图1.1 BUCK斩波电路电路图直流降压斩波主电路使用一个Power MOSFET IRF640N控制导通。
整流、逆变、斩波、交交变换四种功率变换器
论述整流、逆变、斩波、交交变换四种功率变换器的工作原理,包含电路结构,控制思想,工作波形,输入输出关系,谐波分析等方面内容。
整流、逆变、斩波、交交功率变换器是能将电力从交流转换为直流、直流转换为直流、直流转换为交流、交流转换为交流(交流控制器),变频率交流转换为交流(周波变换器)的四种类型的电力电子变换器。
变换器被广泛用于加热和灯光控制,交流和直流电源,电化学过程,直流和交流电极驱动,静态无功补偿,有源谐波滤波等等。
一、整流功率变换器的工作原理整流器的主要应用是把交流电源转为直流电源。
常见的有二极管整流变换器和晶闸管整流变换器。
二极管整流器不提供任何一种控制输出电流和电压数值的手段。
为了适用于工业过程,输出值必须在一定范围内可以控制。
通过应用机械的所谓有载抽头变换器可以完成这种控制。
作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。
通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。
通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。
因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。
其原理图1如下。
晶闸管(Thyristor)是晶体闸整流管的简称,又称作可控硅整流器(Silicon Controlled Rectifier——SCR),以前被简称为可控硅。
由于其能承受的电压和电流容量仍然是目前电力电子器件中最高的,而且工作可靠,因此在大容量的应用场合仍然具有比较重要的地位。
可控硅是四层三端结构元件,共有三个PN结,其等效图解如图2所示当阳极A加上正向电压时,BG1和BG2管均处于放大状态。
此时,如果从控制极G输入一个正向触发信号,BG2便有基流ib2流过,经BG2放大,其集电极电流ic2=β2ib2。
因为BG2的集电极直接与BG1的基极相连,所以ib1=ic2。
此时,电流ic2再经BG1放大,于是BG1的集电极电流ic1=β1ib1=β1β2ib2。
直流斩波器的作用
一、概述电力电子电路的基本作用是进行电能的变换与控制,即将一定形式的输入电能变换成另外一种形式的电能输出,从而满足不同负载的要求。
电能的形式可以分为交流和直流两种类型,因此根据输入、输出的不同形式,可将电力电子电路分为四大类型,即AC-DC变换器、DC-AC变换器、DC-DC变换器、AC-AC变换器,本章主要介绍其中的DC-DC 变换器,有时也称为直流斩波器。
直流斩波器的作用直流斩波器是一种把一定形式的直流电压变换成负载所需的直流电压的变流装置。
它通过周期性地快速开通、关断,把输入电压斩成一系列的脉冲电压,改变脉冲列的脉冲宽度或频率可以调节输出电压的平均值,因此直流斩波器的基本作用是进行直流电压的变换,即调压作用。
直流斩波器除了可以调节直流电压外,还可以进行调阻和调磁。
由直流斩波器和一个固定电阻相并联,通过直流斩波器的斩波作用,可以调节并联等效电阻的阻值,这一过程称为调阻。
若将直流斩波器串联在电机的励磁回路中,通过斩波作用调节励磁电流,从而调节电机的磁场大小,这一过程称为调磁。
因此,直流斩波器具有调压、调阻和调磁的作用。
直流斩波器的应用领域由于直流斩波器具有调压、调磁等作用,因此它的应用领域之一是直流电机的调速。
直流电机的转速取决于电枢电压及磁场的大小,通过直流斩波器的调压作用,可以调节电机的电枢电压,达到调速的目的。
另外,通过直流斩波器的调磁作用,可以调节电机的磁场及励磁电流,也可以达到调速的目的。
直流电机调速在地铁、城市无轨电车、电动汽车等运输车辆上得到了广泛的应用。
直流斩波器的另一应用领域是直流供电电源。
在各种应用场合中,不同用电设备所需要的直流供电电压的等级不同,采用直流斩波器可以将单一的、不稳定的直流输入电压变换成负载所需要的稳定的、不同电压等级的直流供电电压,因为直流斩波器工作在开关状态,因此这种类型的直流供电电源也称为开关电源。
开关电源在计算机、通信等各个领域也得到了广泛的应用。
另外,由于直流斩波器的工作方式是把输入直流电压斩波成为高频脉冲电压,将此脉冲电压通过高频变压器隔离后再进行滤波,可以得到与输入电压相互隔离的直流输出电压,从而使直流斩波器应用在输入、输出之间需要隔离的场合中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.系统原理图
•图4-26
4.3 晶闸管交-交变频器
交-交变频电路是不通过中间环节而把工频交流电直接变 换成不同频率交流电的变频电路,故又称为直接变频器或 周波变换器。因为没有中间直流环节,仅用一次变换就实 现了变频,所以效率较高。
目前,自关断型变频器受自关断器件容量的限制,功率还 不能做得很大。强制关断型功率受到换相电容的换相能力 限制,同样功率不能做得很大。而普通晶闸管容量大,价 格便宜,自然换相可靠,所以对于大功率变频器来说,一 般采用由普通晶闸管组成的、采用自然换相方式的变频器 。所以,交-交变频器大多数由普通晶闸管元件构成。
交流调压控制常用相位控制。它是使晶闸管在电 源电压每一周期中、在选定的时刻将负载与电源接 通,改变选定的时刻可达到调压的目的。
4.1.1、单相交流调压电路
1、单相调压电路的结构和工作原理(电阻性负载)
•(1)电路结构和工作原理波形
•图41 •(2)仿真与实验波形
•
•(a) α=30˚
•
•(b) α=60˚
交流调压与直流斩波
本章要点
交流开关、交流调功和交流电压调节的基本工作原 理和应用电路分析;
相位控制和通断控制的概念; 不同负载时,单相和三相交流调压电路的结构、工
作原理、波形分析; 单相和三相交-交变频电路的电路结构、工作原理。
4.1、晶闸管交流调压器
交流调压电路常由晶闸管组成,用于调节输出电 压的有效值。晶闸管交流调压器具有体积小、重量 轻的特点。输出是交流电压,但不是正弦波形,谐 波分量大,功率因数也较低。
时晶闸管导通角θ的大小,不但与控制角α有关,
而且与负载阻抗角φ有关。两只晶管门极的起
始控制点分别定在电源电压每个半周的起始点,
α的最大范围是
。
•(3)仿真与实验波形
•
•(a) α=30˚
•(b) α=60˚
•图44
•
•(c) α=90˚
•图45
•(d) α=120˚ •单相交流调压器带阻-感性负载不同控制角时的仿真和实验波形
。从实验可知,当三相交流调压电路带电感性负 载时,同样要求触发脉冲为宽脉冲,而脉冲移相 范围为:0≤α≤150º 。随着α增大则输出电压减小 。
4.1.3、晶闸管交流调功器和交流开关
交流电力控制电路只改变交流电压、电流的幅值或对交流电 路进行通断控制,而不改变交流电的频率。它包括交流开关 、交流调功和交流调压等;交流电力控制电路主要采用通断 控制或相位控制方式。交流开关和交流调功主要采用通断控 制,而交流调压通常采用相位控制。
4.2、晶闸管交流调压、调压、开关电路应用
4.2.1、晶闸管交流调压器应用电路
晶闸管交流调压电路广泛用于工业加热、灯光控制、感应电 动机调压调速以及电焊、电解、电镀的交流侧调压等场合。
•1、触发二极管触 发的交流调压电路
•图4-18
• 3、KC06触发器触发的晶闸管交流调压电路
• 2、单结晶体管触发的交流调压电路
单相交流调压可归纳以下三点:
① 带电阻性负载时,负载电流波形与单相桥式 可控整流交流侧电流波形一致,改变控制角α可 以改变负载电压有效值。
② 带电感性负载时,不能用窄脉冲触发,否则 当α<φ时会发生有一个晶闸管无法导通的现象, 电流出现很大的直流分量。
③ 带电感性负载时,α的移相范围为φ ~180度 ,带电阻性负载时移相范围为0 ~180度。
4.3.1 单相交-交变频电路
1、基本结构和工作原理
单相交-交变频电路由两组反并联 的晶闸管整流器构成。
•(1)方波型交-交变频器
•图4-27
•图4-28
(2)正弦波型交-交变频器
正弦波型交-交变频器的主电路与方波型相同,但 其输出电压的平均值按正弦规律变化,克服了方波 型变频器输出波形谐波成分大的缺点。
1)通断控制。即把晶闸管作为开关,将负载与交流电源接通 几个周期,然后再断开一定周期,通过改变通断时间比值达 到调压目的。这种控制方式电路简单,功率因数高,适用于 较大时间常数的负载;缺点是输出电压或功率调节不平滑。
2)相位控制。它使晶闸管在电源电压每一周期内选定的时刻 将负载与电源接通,改变选定的导通时刻就可达到调压的目 的。
每相负载上的电压已不是正弦波,但正、负半周对 称。因此,输出电压中只有奇次谐波,以三次谐波
所占比重最大。由于这种线路没有零线,故无三次
谐波通路,减少了三次谐波对电源的影响。
(2)三相调压电路在电感性负载时的工作情况
三相交流调压电路在电感性负载下的情况要比 单相电路复杂得多,很难用数学表达式进行描述
•图4-24
3、晶闸管交流开关在电动机控制中的应用
1)电动机的正反转控制 2)电动机的反接制动与能耗制动
•图4-25
4.2.4 晶闸管三相交流调压应用实例
KJF系列双向晶闸管调压调速装置
1.主要技术指标
1)控制对象:三相异步电动机、交流输入三相50Hz,进 线电压380V
2)装置功率:小于40kW 3)调速范围:5:1左右,对力矩电机可达10:1 4)稳态精度:静态误差不大于2.5%~5.5% 5)控制电压:0~8V 6)交流输出:交流三相电压连续可调 该调压装置既能对异步电动机实现无级平滑调速,也能作
2、晶闸管与负载连成内三角形的三相交流调压电路
•图48
•电路优点:因晶闸管串接在三角形内部,流过的是相电流, 在同样线电流情况下,管子的容量可降低,另外线电流中无3 的倍数次谐波分量。缺点是:只适用于负载是三个分得开的单 元的情况,其应用范围有一定的局限性。
3、晶闸管接于Y形负载中性点的三相交流调压电路
•图4-17
• 过零触发输出电压波形
设在Tc内导通的周波数为n,每个周波的周期为T, 输出电压有效值是 则调功器的输出功率是
Pn —设定周期Tc内全部周波导通时装置输出的功率 。 Un—设定周期Tc内全部周波导通时,装置输出的电 压有效值 n—在设定周期Tc内导通的周波数 改变导通周波数n即可改变电压和功率。
4.1.2、三相交流调压电路
1、负载Y形连接带中性线的三相交流调压电路
•图47
它由3个单相晶闸管交流调压器组合而成,其公 共点为三相调压器中线,每一相可以作为一个单 相调压器单独分析,其工作原理和波形与单相交 流调压相同。
在晶闸管交流调压电路中,每相负载电流为正 负对称的缺角正弦波,它包含有较大的奇次谐波 电流,3次谐波电流的相位是相同的,中性线的电 流为一相3次谐波电流的三倍,且数值较大,这种 电路的应用有一定的局限性。
•图4-11
三相全波星形无中线调压电路α=0º时的波形
② 控制角α=30º
各相电压过零30º后触发相应晶闸管。以U相为例 ,uU过零变正30º后发出VT1的触发脉冲ug1,uU过 零变负30º后发出VT4的触发脉冲ug2 。
归纳α=30º时的导通特点如下:每管持续导通150º ;有的区间由两个晶闸管同时导通构成两相流通 回路,也有的区间三个晶闸管同时导通构成三相 流通回路。
在各相的正半周正向晶闸管导通,而负半周反向 晶闸管导通,所以负载上获得的调压电压仍为完 整的正弦波。 α=0º时如果忽略晶闸管的管降压, 此时调压电路相当于一般的三相交流电路,加到 其负载上的电压是额定电源电压。下图为U相负 载电压波形。
归纳α=0º时的导通特点如下:每管持续导通180º ;每60º区间有三个晶闸管同时导通。
2、晶闸管交流开关
晶闸管交流开关的基本原理是将两只反并联的 普通晶闸管串入交流电路中,替代传统的机械开 关对电路进行通断控制。晶闸管交流开关是一种 快速、理想的交流开关。它总是在电流过零时关 断,在关断时不会因负载或线路电感储存能量而 造成暂态过电压和电磁干扰,因此特别适用于操 作频繁、可逆运行及有易燃气体、多粉尘的场合 。
1、晶闸管交流调功器 使晶闸管交流开关在端电压为零或零附近瞬间接
通,利用管子电流小于维持电流使管子自行关断, 就可使电路波形为正弦整周期形式,这样可以避免 高次谐波的产生。这种触发方式称为过零触发或零 触发。交流零触发开关对外界的电磁干扰最小。 实现功率调节的方法如下:在设定的周期TC内, 用零电压开关接通几个周波然后断开几个周波,改 变晶闸管在设定周期内的通断时间比例,可调节负 载上的交流平均电压,即可达到调节负载功率的目 的。这种装置也称为调功器或周波控制器。
在正组桥整流工作时,使控制角α从
,
输出的平均电压由低到高再到低变化。而在正组桥
逆变工作时,使控制角α从
,就可
以获得平均值可变的负向逆变电压。
•图4-29
正弦型交-交变频器的输出电压波形
2、输出正弦波形的获得方法
常用的方法是余弦交点法,该方法的原则是:触发角的 变化和切换应使得整流输出电压的瞬时值与理想正弦电 压的瞬时值误差最小。
•图49
•要求负载是三个分得开的单元,从图中电流波形可见,输 出电流出现正负半周波形不对称,但其面积是相等的,所以 没有直流分量。此电路使用元件少,触发线路简单,但由于 电流波形正负半周不对称,存在偶次谐波,对电源干扰较大 。
4、三对反并联晶闸管连成三相三线交流调压电路
•图4-10
对触发脉冲电路的要求是: ① 三相正(或负)触发脉冲依次间隔120度,而
•图42
•
•(c)α=90˚
•
•图42
•(d) α=120˚ •单相交流调压器带电阻性负载不同控制角时的仿真和实验波形
2、单相调压电路的结构和工作原理(阻-感负载 )•(1)电路结构和工作原理波
形
•图43
(2)电感性负载的工作情况
当电源电压反向过零时,由于负载电感产生感应
电动势阻止电流变化,故电流不能立即为零,此
每一相正、负触发脉冲间隔180度。 ② 为了保证电路起始工作时能两相同时导通,