图像融合算法的分析与比较

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:图像拼接技术一直是计算机视觉、图像处理和计算机图形学的热点研究方向。图像融合算法是图像拼接过程中非常重要的一个步骤,本文介绍了几种常用图像融合算法,并且结合实验对它们的进行了分析和比较。

关键词:图像融合;图像拼接

一、引言图像拼接(image stitching)技术是由于摄像设备的视角限制,不可能一次拍出很大图片而产生的。图像拼接技术可以解决由于相机等成像仪器的视角和大小的局限,不可能一次拍出很大图片而产生的问题。它利用计算机进行自动匹配,合成一幅宽角度图片,因而在实际使用中具有很广泛的用途,同时对它的研究也推动了图像处理有关的算法研究。图1 图像拼接流程图图像拼接技术的基本流程如图1-1所示,首先获取待拼接的图像,然后是图像配准和图像融合,最终得到拼接图。图像拼接技术主要包括两个关键环节,即图像配准和图像融合。图像配准主要指对参考图像和待拼接图像中的匹配信息进行提取,在提取出的信息后寻找图像间的变换模型,然后由待拼接图像经变换模型向参考图像进行对齐,变换后图像的坐标将不再是整数,这就涉及到重采样与插值的技术。图像拼接的成功与否主要是图像的配准。待拼接的图像之间,可能存在平移、旋转、缩放等多种变换或者大面积的同色区域等很难匹配的情况,一个好的图像配准算法应该能够在各种情况下准确找到图像间的对应信息,将图像进行匹配。图像融合的任务就是把配准后的两幅图像根据对准的位置合并为一幅图像。由于两幅相邻图像之间存在重叠区域,因此,采用配准算法可以实现图像的对齐。然而图像拼接的目的是要得到一幅无缝的拼接图像[1]。所谓无缝,就是说在图像拼接结果中,不应该看到两幅图像在拼接过程中留下的痕迹,即不能出现图像拼接缝隙。由于进行拼接的两幅图像并不是在同一时刻采集的,因此,它们不可避免地会受到各种不定因素的影响。由于这些无法控制的因素的存在,如果在图像整合过程结束之后,只是根据该过程中所得到的两幅相邻图像之间的重叠区域信息,将两幅图像简单的叠加起来,那么,在它们的结合部位必然会产生清晰的拼接缝隙,这也就达不到图像拼接所要求的无缝的要求。如何处理图像整合过程中无法解决的拼接缝隙问题,实现真正意义上的无缝拼接,正是图像融合过程中所要解决的问题。对于重叠部分,如果只是简单的取第一幅图像或第二幅图像的数据进行叠加,会造成图像的模糊和拼接的痕迹,这是不能容忍的。图像融合就是要消除图像光强或色彩的不连续性。它的主要思想是让图像在拼接处的光强平滑过渡以消除光强的突变。二、常见的图像融合算法 1、平均值法令,,分别表示第一幅图像、第二幅图像和融合图像在点处的像素值,则融合图像中各点的像素值按式(4-1)确定。 (1) 式(4-1)中,表示第一幅图像中未与第二幅图像重叠的图像区域,表示第一幅图像与第二幅图像重叠的图像区域,表示第二幅图像中未与第一幅图像重叠的图像区域。取两幅图像的平均值的算法速度很快,但效果一般不能令人满意,在融合部分有明显的带状感觉,用眼睛能够观察出区别。本文以左图像所在的坐标系为参考坐标空间,将右图像经过变换矩阵向参考图坐标进行映射,由于双线性插值法在计算效率和精度方面可以达到一个很好的平衡,因此在变换过程中本文采用双线性插值。然后采用平均值法对图像重叠区进行融合,得到图2(a)和图2(b)。从图中可以看出由于采用本文的配准方法拼接出来的图像在拼接点处结合得很好,但是由于重叠区域采用了简单的平均值法来进行融合,有明显的拼缝。 (a) 校园广场图片(b)足球场图片图2 采用平均值法来对图像进行融合 2、重叠区线性过渡为了消除重叠区的拼缝问题,目前采用较多的是重叠区线性过渡的方法. 实现的具体方法是假设重叠区域宽度为l。取过渡因子是()。两幅图像重叠区的x轴和y轴最大和最小值分别为、和、,则过渡因子,重叠区的像

素值为 ( 2) ,分别为图a和b相对应的像素值。

相关文档
最新文档