2.3 连续型随机变量的数学期望与方差ppt课件
合集下载
《数学期望与方差》课件
相关系数的计算公式
相关系数在统计学、金融等领域有广泛应用,如股票价格与市场指数的相关性分析、回归分析等。
相关系数的应用
数学期望的性质
数学期望具有线性性质、可加性质、可乘性质等,这些性质在概率论和统计学中有重要应用。
05
数学期望与方差的实例分析
总结词
数学期望和方差在投资组合的风险与回报分析中具有重要应用。
总结词
利用数学期望和方差可以对赌博游戏的概率进行分析。
详细描述
在赌博游戏中,玩家需要根据游戏规则和概率计算每种可能结果的数学期望和方差,以评估游戏的风险和潜在收益。通过比较不同赌博游戏的数学期望和方差,玩家可以做出更明智的决策。
数学期望
对于赌博游戏而言,数学期望计算的是长期玩家的平均收益。如果数学期望为正数,则表示长期玩家将获得正收益;如果数学期望为负数,则表示长期玩家将面临亏损。
方差
在赌博游戏中,方差反映了玩家实际收益与预期收益之间的波动范围。较小的方差表示实际收益相对稳定,而较大的方差则表示实际收益可能存在较大的波动。
01
02
03
04
总结词:数学期望和方差可用于预测市场的表现。
THANK YOU
数学期望和方差在某些情况下可以相互转化,如当随机变量服从正态分布时。
变量同时变动的情况,即一个变量增加或减少时,另一个变量也相应地增加或减少的概率。
协方差的概念
协方差 = E[(X-E[X])(Y-E[Y])],其中E[X]和E[Y]分别是X和Y的数学期望,X和Y是随机变量。
协方差的计算公式
协方差可以用于分析投资组合的风险,如果两个资产的收益率呈正相关,则它们的协方差为正;如果呈负相关,则协方差为负。
协方差的应用
1
相关系数在统计学、金融等领域有广泛应用,如股票价格与市场指数的相关性分析、回归分析等。
相关系数的应用
数学期望的性质
数学期望具有线性性质、可加性质、可乘性质等,这些性质在概率论和统计学中有重要应用。
05
数学期望与方差的实例分析
总结词
数学期望和方差在投资组合的风险与回报分析中具有重要应用。
总结词
利用数学期望和方差可以对赌博游戏的概率进行分析。
详细描述
在赌博游戏中,玩家需要根据游戏规则和概率计算每种可能结果的数学期望和方差,以评估游戏的风险和潜在收益。通过比较不同赌博游戏的数学期望和方差,玩家可以做出更明智的决策。
数学期望
对于赌博游戏而言,数学期望计算的是长期玩家的平均收益。如果数学期望为正数,则表示长期玩家将获得正收益;如果数学期望为负数,则表示长期玩家将面临亏损。
方差
在赌博游戏中,方差反映了玩家实际收益与预期收益之间的波动范围。较小的方差表示实际收益相对稳定,而较大的方差则表示实际收益可能存在较大的波动。
01
02
03
04
总结词:数学期望和方差可用于预测市场的表现。
THANK YOU
数学期望和方差在某些情况下可以相互转化,如当随机变量服从正态分布时。
变量同时变动的情况,即一个变量增加或减少时,另一个变量也相应地增加或减少的概率。
协方差的概念
协方差 = E[(X-E[X])(Y-E[Y])],其中E[X]和E[Y]分别是X和Y的数学期望,X和Y是随机变量。
协方差的计算公式
协方差可以用于分析投资组合的风险,如果两个资产的收益率呈正相关,则它们的协方差为正;如果呈负相关,则协方差为负。
协方差的应用
1
随机变量的数学期望 ppt课件
概率论与数理统计
第一节 数学期望
离散型随机变量的数学期望 连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习
ppt课件
2
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.
然而,在实际问题中,概率分布一般是较难 确定的. 而在一些实际应用中,人们并不需要知 道随机变量的一切概率性质,只要知道它的某些 数字特征就够了.
分布为pij , i,j=1,2, …,则
E(Z) E[g(X ,Y )]
g(xi , y j ) pij
j1 i1
(2) 如果X、Y是连续型随机变量,联合概
率密度为f(x,y),则
E(Z ) E[g( X ,Y )] g( x, y) f ( x, y)dxdy
ppt课件
24
例4.6 设 ( X , Y ) 的分布律为
概率
1/6 3/6 2/6
一旅客8:20到车站,求他候车时间的数学期望.
ppt课件
12
解:设旅客的候车时间为X (以分计),其分布率为
X 10 30 50 70 90
pk 3 6
上表中例如
2 11 13 12 6 66 66 66
P{X 70} P(AB) P( A)P(B) 1 3 66
ppt课件
32
例10 设二维连续型随机变量(X ,Y)的概率密度为
f
( x,
y)
Asin( x
y)
0 x
2
0
其它
(1)求系数A, (2)求E( X ), E( XY ).
解:(1)由于
f
( x,
y)dxdy
第一节 数学期望
离散型随机变量的数学期望 连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习
ppt课件
2
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.
然而,在实际问题中,概率分布一般是较难 确定的. 而在一些实际应用中,人们并不需要知 道随机变量的一切概率性质,只要知道它的某些 数字特征就够了.
分布为pij , i,j=1,2, …,则
E(Z) E[g(X ,Y )]
g(xi , y j ) pij
j1 i1
(2) 如果X、Y是连续型随机变量,联合概
率密度为f(x,y),则
E(Z ) E[g( X ,Y )] g( x, y) f ( x, y)dxdy
ppt课件
24
例4.6 设 ( X , Y ) 的分布律为
概率
1/6 3/6 2/6
一旅客8:20到车站,求他候车时间的数学期望.
ppt课件
12
解:设旅客的候车时间为X (以分计),其分布率为
X 10 30 50 70 90
pk 3 6
上表中例如
2 11 13 12 6 66 66 66
P{X 70} P(AB) P( A)P(B) 1 3 66
ppt课件
32
例10 设二维连续型随机变量(X ,Y)的概率密度为
f
( x,
y)
Asin( x
y)
0 x
2
0
其它
(1)求系数A, (2)求E( X ), E( XY ).
解:(1)由于
f
( x,
y)dxdy
第一节数学期望ppt
0
0
xe x e x dx 1 e x 1
0
0
0
概率论
3) 正态分布 N(, 2)
概率论
X ~ f (x)
1
( x )2
e , 2 2 x
2
E( X ) x
1
( x )2
Z是一维随机变量,则
(1) 若( X ,Y )是二维连续型,
概率密度为f ( x, y), 则有:
E(Z ) E[g(X ,Y )] g(x, y) f (x, y)dxdy
(2) 若( X ,Y )是二维离散型,
概率分布为P{ X xi ,Y y j } pij (i, j 1, 2,
一般是比较复杂的 .
概率论
2. 定理: 设Y是随机变量X的函数: Y=g(X) (g是连续函数)
(1) 当X为离散型时,它的分布律为P(X= xk)=pk,
(k 1,2,),若 g( xk ) pk绝对收敛,则有
k 1
E( X ) xk pk
k 1
(2) 当X为连续型时,它的密度函数为 f (x), 若
pk (1 p)nk
n!
pk (1 p)nk
k1 k !(n k)!
k1 (k 1)!(n k)!
n
np
(n 1)!
pk1 (1 p)n1(k1)
k1 (k 1)!(n k )!
n1
令l k 1 np
C
l n1
p
l
(1
p)n1l
g( x) f ( x)dx绝对收敛,则有
连续型随机变量的数学期望与方差
(1)D( )
E[
E( )]2
[x
E( )]2
p( x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
例2 随机变量的概率密度函数
6x(1 x),当0 x 1
p(x)
0
当x 0或x 1时
求随机变量的方差。
12
4、方差的性质 设 k ,b,c均为常数,则有
E( ) xp(x)dx
15
2、数学期望的性质
(1)EaX b aEX b
(2)EaX aEX
(3)EX b EX b
(4)Eb b
(5)EX Y EX EY
(6)E( f ( )) f (x)p(x)dx
(6)E f ( ) f (xk )PK
k
16
(二)连续型随机变量ξ取值的方差
(1)D(c) 0
(2)D(k ) k 2D( ) (3)D( b) D( )
(4)D(k b) k 2D( )
13
下页
三、练习
• 课本第90页 第6题
14
四、小结 (一)连续型随机变量ξ取值的数学期望
1、连续型随机变量的数学期望的定义 p(x) 设连续型随机变量 的密度函数为
若积分 xp(x绝)d对x 收敛,则 的数学期望为:
x0 x1 x2 L xn
xi xi1 xi
b i
【xi
,
xi
)
+1
y p(x)
o
x0b0 x1 xi bi xi1
xn x
6
连续型随机变量ξ的概率分布
ξ 【x0 , x1)【x1, x2)
数学期望与方差ppt课件
频率 nk n
2 13 15 10 20 30 90 90 90 90 90 90
试问:该射手每次射击平均命中靶多少环?
2
解
平均射中环数
射中靶的总环数 射击次数
0 2 113 2 15 3 10 4 20 5 30 90
0 2 1 13 2 15 3 10 4 20 90 90 90 90 90
P{ X xk } pk , k 1,2, .
若级数 xk pk 绝对收敛, 则称级数 xk pk
k 1
k 1
为随机变量 X 的数学期望, 记为 E( X ). 即
E( X ) xk pk .
k 1
5
2.连续型随机变量数学期望的定义
设连续型随机变量 X 的概率密度为 f ( x),
若积分
第一节 数学期望
一、数学期望的概念 二、数学期望的性质 三、随机变量函数的数学期望 四、小结
1
一、数学期望的概念
ห้องสมุดไป่ตู้
引例 射击问题
设某射击手在同样的条
件下,瞄准靶子相继射击90次, (命中的环数是一个随机变量). 射中次数记录如下
命中环数 k 0 1 2 3 4 5
命中次数 nk 2 13 15 10 20 30
k
k
4. 设 X, Y 是相互独立的随机变量, 则有
E( XY ) E( X )E(Y ).
说明 连续型随机变量 X 的数学期望与离散型随 机变量数学期望的性质类似.
14
数学期望在医学上的一个应用
An application of Expected Value in Medicine 考虑用验血的方法在人群中普查某种疾病。集体做法是每 10个人一组,把这10个人的血液样本混合起来进行化验。如果 结果为阴性,则10个人只需化验1次;若结果为阳性,则需对 10个人在逐个化验,总计化验11次。假定人群中这种病的患病 率是10%,且每人患病与否是相互独立的。试问:这种分组化 验的方法与通常的逐一化验方法相比,是否能减少化验次数?
第三节课,第一章2. §2.3.连续型随机变量概念§2.4 数字特征
1
x α dx
1 α 1 x C α 1
2
3 1
0.9
1 0.972 0.028
7
答: 供电量不足的概率为0.028 .
典型问题——求概率密度中参数 例2. 设连续型随机变量 X 的概率密度 (x)为:
cx 2 0 x 1 ,求常数c的值. ( x) 其他 0
即:E(C) = C , D(C) = 0
(2) 变量和的期望与方差等于它们期望与方差的和;
即:E(X+Y) = E(X)+E(Y) , D(X+Y) = D(X)+D(Y) (3)常量因子可以提到期望外面. 即:E(kX) = kE(X) (4)常量因子平方可以提到方差外面. 即:D(kX) = k2D(X)
例5. 若 D( X ) 2, 则D(2 X 5) __
解: 随机变量的期望与方差的性质
D( 2 X 5) D(2 X ) D(5)
(2)2 D( X ) 0 4 2 8
18
作
业:
74页2.01、2.02、2.04、2.05、2.06、2.08 题 74页2.09题、 2.10题、 2.14题、 2.16题、2.17题
方差D(X)等于X平方的数学期望减数学期望平方.
80 13 2 80 169 D( X ) ( ) 16 6 16 36
14
典型问题—求连续型随机变量的参数 例3. 设连续型随机变量 X 的概率密度为 a bx2 0 x 1 3 ( x) ,若数学期望E ( X ) 5 其他 0 求: 常数 a, b的值 解: 因为有两个未知参数, 所以需要建立两个方程 根据概率密度 (x)性质 ( x )dx 1
常见的连续型随机变量
第五节 常见的连续型随机变量
7
例 1(续)
所以,
PB P10 X 15 P25 X 30
P40 X 45 P55 X 60
15
1 dx 30
1
45
dx
1
60
dx
1
dx
10 60
25 60
40 60
55 60
1 3
.
第五节 常见的连续型随机变量
8
例2
设随机变量 服从区间 3, 6上的均匀分布,求方程
上的均匀分布.
第五节 常见的连续型随机变量
6
例 1(续)
其密度函数为
f
x
1 60
0
0 x 60
其它 .
令 B 被带往甲地 .
开往甲地汽车的到达时间:
7:00, 7:15, 7:30, 7:45, 8:00; 开往乙地汽车的到达时间:
7:10, 7:25, 7:40, 7:55, 8:10.
k!
k 0, 1, , n, .
设随机变量T 的分布函数为 FT t .
则当 t 0 时, FT t 0 ;
第五节 常见的连续型随机变量
18
例 4(续)
当 t 0时, FT t PT t 1 PT t
1 P在长度为 t 的时间间隔内随机事件 A 没发生
1 PX 0 1 et .
4x2 4 x 2 0
有实根的概率.
解:
由于随机变量 服从区间 3, 6上的均匀分布,所以
的密度函数为
f
x
1 9
0
3 x6
其它 .
第五节 常见的连续型随机变量
9
例 2(续)
概率论与数理统计PPT课件第四章数学期望与方差
回归分析
在回归分析中,数学期望和方差 等统计指标用于描述因变量和自 变量之间的关系,以及预测未来
的趋势。
假设检验
在假设检验中,数学期望和方差等 统计指标用于比较两组数据或样本 的差异,判断是否具有显著性。
方差分析
方差分析利用数学期望和方差等统 计指标,分析不同组别或处理之间 的差异,确定哪些因素对数据变化 有显著影响。
质量控制
统计分析
在统计分析中,方差分析是一种常用 的统计方法,通过比较不同组数据的 方差,可以判断它们是否存在显著差 异。
在生产过程中,方差用于度量产品质 量波动的程度,通过控制产品质量指 标的方差,可以提高产品质量稳定性。
03
期望与方差的关系
期望与方差的关系式
期望值是随机变量取值的平均数 ,表示随机变量的“中心趋势”
方差的性质
方差具有可加性
当两个随机变量相互独立时,它们组 合而成的随机变量的方差等于它们各 自方差的线性组合。
方差与期望值的关系
方差与期望值之间存在一定的关系, 如方差等于期望值减去偏差的平方和 再求平均值。
方差的应用
风险评估
在金融和经济学中,方差被用来度量 投资组合的风险,通过计算投资组合 中各个资产的方差和相关系数,可以 评估投资组合的整体风险。
期望与方差的拓展
期望与方差在金融中的应用
金融风险评估
利用数学期望和方差计算 金融资产的风险,评估投 资组合的风险和回报。
资产定价
利用数学期望和方差等统 计指标,对金融资产进行 定价,确定其内在价值。
保险精算
通过数学期望和方差等统 计方法,评估保险产品的 风险和回报,制定合理的 保费和赔付方案。
期望与方差在统计学中
期望与方差在其他领域的应用
在回归分析中,数学期望和方差 等统计指标用于描述因变量和自 变量之间的关系,以及预测未来
的趋势。
假设检验
在假设检验中,数学期望和方差等 统计指标用于比较两组数据或样本 的差异,判断是否具有显著性。
方差分析
方差分析利用数学期望和方差等统 计指标,分析不同组别或处理之间 的差异,确定哪些因素对数据变化 有显著影响。
质量控制
统计分析
在统计分析中,方差分析是一种常用 的统计方法,通过比较不同组数据的 方差,可以判断它们是否存在显著差 异。
在生产过程中,方差用于度量产品质 量波动的程度,通过控制产品质量指 标的方差,可以提高产品质量稳定性。
03
期望与方差的关系
期望与方差的关系式
期望值是随机变量取值的平均数 ,表示随机变量的“中心趋势”
方差的性质
方差具有可加性
当两个随机变量相互独立时,它们组 合而成的随机变量的方差等于它们各 自方差的线性组合。
方差与期望值的关系
方差与期望值之间存在一定的关系, 如方差等于期望值减去偏差的平方和 再求平均值。
方差的应用
风险评估
在金融和经济学中,方差被用来度量 投资组合的风险,通过计算投资组合 中各个资产的方差和相关系数,可以 评估投资组合的整体风险。
期望与方差的拓展
期望与方差在金融中的应用
金融风险评估
利用数学期望和方差计算 金融资产的风险,评估投 资组合的风险和回报。
资产定价
利用数学期望和方差等统 计指标,对金融资产进行 定价,确定其内在价值。
保险精算
通过数学期望和方差等统 计方法,评估保险产品的 风险和回报,制定合理的 保费和赔付方案。
期望与方差在统计学中
期望与方差在其他领域的应用
高中数学统计学 PPT课件 图文
• 将一个一般的转换为标准正态分布 • 计算概率时 ,查标准正态概率分布表
• 对于负的 x ,可由 (-x)1 x得到
• 对于标准正态分布,即X~N(0,1),有
• P (a X b) b a • P (|X| a) 2 a 1
• 对于一般正态分布,即X~N( , ),有
• 方差为 D ( X ) = npq
【例】某农庄饲养100只家禽,其中有5只鹅,现 从中任取一只,有放回地抽样3次。求在所抽取 的3只家禽中恰好有2只鹅的概率
解:设 X 为所抽取的3只家禽中鹅的数目,则 X~B ( 3 , 0.05),根据二项分布公式有
P X 2 C 3 2 (0 .0)2 5 (0 .9)3 5 2 0 .0071
x!
— 给定的时间间隔、长度、面积、 体积内事件出现的平均数
e = 2.71828 x —给定的时间间隔、长度、面积、体
积内事件出现的次数
泊松概率分布的期望和方差
• 泊松分布的数学期望为 E(X)=
• 方差为 D(X)=
泊松分布
——实例3.2.6
【例】假定某人饲养了一群鸡,母鸡在周一产蛋的 个数X服从泊松分布,假设周一产蛋的平均数为2.5 个。试求
• f(x)不是概率
请多加注意啊!
概率密度函数
密度函数 f(x)表示X 的所有取值 x 及其频数f(x)
频数
f(x)
(值, 频数)
x
a
b
值
概率密度函数
在平面直角坐标系中画出f(x)的图形,则对于任何实数
x1 < x2,P(x1< X x2)是该曲线下从x1 到 x2的面积
概率是曲线下的面积, 哈哈!
方差为:D(X) 6 xi E(X)2pi i1
• 对于负的 x ,可由 (-x)1 x得到
• 对于标准正态分布,即X~N(0,1),有
• P (a X b) b a • P (|X| a) 2 a 1
• 对于一般正态分布,即X~N( , ),有
• 方差为 D ( X ) = npq
【例】某农庄饲养100只家禽,其中有5只鹅,现 从中任取一只,有放回地抽样3次。求在所抽取 的3只家禽中恰好有2只鹅的概率
解:设 X 为所抽取的3只家禽中鹅的数目,则 X~B ( 3 , 0.05),根据二项分布公式有
P X 2 C 3 2 (0 .0)2 5 (0 .9)3 5 2 0 .0071
x!
— 给定的时间间隔、长度、面积、 体积内事件出现的平均数
e = 2.71828 x —给定的时间间隔、长度、面积、体
积内事件出现的次数
泊松概率分布的期望和方差
• 泊松分布的数学期望为 E(X)=
• 方差为 D(X)=
泊松分布
——实例3.2.6
【例】假定某人饲养了一群鸡,母鸡在周一产蛋的 个数X服从泊松分布,假设周一产蛋的平均数为2.5 个。试求
• f(x)不是概率
请多加注意啊!
概率密度函数
密度函数 f(x)表示X 的所有取值 x 及其频数f(x)
频数
f(x)
(值, 频数)
x
a
b
值
概率密度函数
在平面直角坐标系中画出f(x)的图形,则对于任何实数
x1 < x2,P(x1< X x2)是该曲线下从x1 到 x2的面积
概率是曲线下的面积, 哈哈!
方差为:D(X) 6 xi E(X)2pi i1
《连续型随机变量》课件
02
对于连续型随机变量的最大值,其概率分布函数为F(x)=1−e−λxtext{F}(x) = 1 - e^{-lambda x}F(x)=1−e−λx,其中λlambdaλ是随机变量的密度函数。
03
对于连续型随机变量的最小值,其概率分布函数为F(x)=1−e−λ(−x)text{F}(x) = 1 - e^{-lambda (-x)}F(x)=1−e−λ(−x)。
THANKS
感谢观看
最大值和最小值在决策分析中的应用
01
在风险管理中,连续型随机变量的最大值和最小值具有重要的应用价 值。
02
通过分析最大值和最小值的概率分布、数学期望和方差,可以帮助决 策者更好地理解潜在的风险和机会,从而做出更明智的决策。
03
在金融领域,连续型随机变量的最大值和最小值可用于评估投资组合 的风险和回报,以及制定风险管理策略。
连续型随机变量的最小值的数学期望 E(Xmin)=−∞∑x=0xP(X<x)text{E}(X_{min}) = infty sum_{x=0} x P(X < x)E(Xmin)=−∞∑x=0xP(X<x)。
连续型随机变量的最小值的方差 Var(Xmin)=−∞∑x=0[x2P(X<x)−E2(Xmin)]text{ Var}(X_{min}) = -infty sum_{x=0} [x^2 P(X < x) E^2(X_{min})]Var(Xmin)=−∞∑x=0[x2P(X<x)− E2(Xmin)]。
03
连续型随机变量的期望和方差
期望的定义和计算
定义
连续型随机变量的期望值是所有可能取值的加权和,其中每个取值的权重等于该 取值出现的概率。
概率论与数理统计数学期望与方差专项PPT课件
9
第9页/共66页
定理:设Y是随机变量X的函数:Y g(X )g是连续函数,
X 是离散型随机变量,它的分布律为:
P( X xk ) pk , k 1, 2,
若 g(xk )pk绝对收敛,则有E(Y ) E[g( X )] g(度为f (x)
服
从
同
一
指
数
分
布,
其
概
率密
度
为
: f (x)
1
e
x
x0
0
若将这2个电子装置串联联接
0
x0
组成整机,求整机寿命N(以小时计)的数学期望。 是
解 :X k
(k
1,
2)
的分布函数F ( x)
1
e
x
x0
0
x0
串联情况下,N min X1, X2 ,故N的分布函数为:
指 数 分 布 的
密
Fmin (x)
dx
1
x
1 x
2
3 x4
y3
dy
1
3 2x4
[
1 2y2
] |x1
x
dx
3 4
(
1
1 x6
1 x2
)dx
3 4
(
1 5
1)
3 5
考虑:先求E(Y )
yfY
(
y)dy,这里
你算对了吗?哪个更容易呢? 第14页/共66页
fY
(
y)
1 y
y
3 2x3 y2
3 2x3 y2
dx dx
0
2
2
2
sin (0 1) 0.25 sin (11) 0.2 sin (0 2) 0.15
数学期望和方差.ppt
第四章 数学期望和方差
(2) 二项分布
X的取值为0,1,…,n. 且
P(X=k)=
n
Cnk
pk
(1-p)n-k,
k= 0, 1, …, n.
E(X) kC n kpk(1p)nk
k0
n
k
n!
pk(1p)nk
k1 k!(nk)!
nn p(n 1 )!p k 1 (1 p )(n 1 ) (k 1 )
k 1 e
k 1 ( k 1)!
k e k0 k!
(4)几何分布
第四章 数学期望和方差
X的可能取值为1,2,…, 且 P(X=k)= qk-1 p, k= 1,2,…. p+q=1.
第四章 数学期望和方差
E (X ) kkp kpk q 1p kq k 1
第四章 数学期望和方差
解:设X为停止检查时,抽样的件数,则X 的可能取值为1,2,…,n,且
P{Xk} q qn k 1 1,p,
k1,2,,n1; kn.
其中 q1p,于是
n1
E(X) kqk1pnqn1
k1
第四章 数学期望和方差
n1
E(X) kqk1(1q)nqn1
k 1 (k 1 )(n ! k )!
n1
npCn k1pk(1p)(n1)k np
k0
第四章 数学期望和方差
(3)泊松分布
X的可能取值为0,1,2,…,且
P(Xk)ke,k0,1,2,,
k!
k
E(X) kk p k
k0
《数学期望与方差》课件
二项分布期望
对于二项分布,可以直接使用公式计算期望 值。
方差的计算技巧
定义法
根据方差的定义,利用概率和数学公 式进行计算。
性质法
利用方差的非负性、方差的加法性质 和方差的常数性质简化计算。
随机变量函数的方差
通过随机变量函数的概率分布计算方 差。
二项分布方差
对于二项分布,可以直接使用公式计 算方差值。
Excel计算
在Excel中,可以使用"DEVSQ"函数来计算方差,该函数会自动处理数据点的数 量和每个数据点与均值之差的平方。
方差的应用
数据分析
方差可以用来分析数据的分散程度,从而了解数据的稳定 性、可靠性等方面的情况。
质量控制
在生产过程中,方差可以用来衡量产品质量的一致性和稳 定性,通过控制生产过程中各种因素的影响,降低产品质 量的波动。
风险评估
在金融和投资领域,方差被用来评估投资组合的风险,通 过计算投资组合收益率的方差和标准差等指标,投资者可 以了解投资组合的风险情况。
社会科学研究
在社会学、心理学、经济学等社会科学研究中,方差可以 用来分析调查数据的分散程度,从而了解群体内部的差异 和分布情况。
数学期望与方差的
03
关系
数学期望与方差的联系
方差的期望值性质
Var(E(X|Y))=E(Var(X|Y))。
方差的非负性质
Var(X)≥0,当且仅当X是常数 时等号成立。
期望与方差的性质和定理在实际问题中的应用
在金融领域,期望和方差用于评估投资 组合的风险和预期收益。通过计算期望 收益和方差,投资者可以了解投资组合
的预期表现和风险水平。
在统计学中,期望和方差用于描述数据 的集中趋势和离散程度。例如,在计算 平均数和标准差时,期望和方差是重要
对于二项分布,可以直接使用公式计算期望 值。
方差的计算技巧
定义法
根据方差的定义,利用概率和数学公 式进行计算。
性质法
利用方差的非负性、方差的加法性质 和方差的常数性质简化计算。
随机变量函数的方差
通过随机变量函数的概率分布计算方 差。
二项分布方差
对于二项分布,可以直接使用公式计 算方差值。
Excel计算
在Excel中,可以使用"DEVSQ"函数来计算方差,该函数会自动处理数据点的数 量和每个数据点与均值之差的平方。
方差的应用
数据分析
方差可以用来分析数据的分散程度,从而了解数据的稳定 性、可靠性等方面的情况。
质量控制
在生产过程中,方差可以用来衡量产品质量的一致性和稳 定性,通过控制生产过程中各种因素的影响,降低产品质 量的波动。
风险评估
在金融和投资领域,方差被用来评估投资组合的风险,通 过计算投资组合收益率的方差和标准差等指标,投资者可 以了解投资组合的风险情况。
社会科学研究
在社会学、心理学、经济学等社会科学研究中,方差可以 用来分析调查数据的分散程度,从而了解群体内部的差异 和分布情况。
数学期望与方差的
03
关系
数学期望与方差的联系
方差的期望值性质
Var(E(X|Y))=E(Var(X|Y))。
方差的非负性质
Var(X)≥0,当且仅当X是常数 时等号成立。
期望与方差的性质和定理在实际问题中的应用
在金融领域,期望和方差用于评估投资 组合的风险和预期收益。通过计算期望 收益和方差,投资者可以了解投资组合
的预期表现和风险水平。
在统计学中,期望和方差用于描述数据 的集中趋势和离散程度。例如,在计算 平均数和标准差时,期望和方差是重要
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、标准差的定义
D( )
11
3、方差的常用的计算公式
(1)D(
)
E[
E(
)]2
[x
E(
)]2
p( x)dx
根据数学期望(6)E( f ( ))
f (x)p(x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
12
3、方差的常用的计算公式
1、方差的定义
D( ) E[ E( )]2
(刻画了随机变量ξ与其均值 E(的) 平均偏离程度)
2、标准差的定义
D( )
18
3、方差的常用的计算公式
(1)D( )
E[
E( )]2
[x
E( )]2
p( x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
(1)D(c) 0
(2)D(k ) k 2D( ) (3)D( b) D( )
(4)D(k b) k 2D( )
14
下页
三、练习
• 课本第90页 第6题
15
四、小结 (一)连续型随机变量ξ取值的数学期望
1、连续型随机变量的数学期望的定义 p(x) 设连续型随机变量 的密度函数为
若积分 xp(x绝)d对x 收敛,则 的数学期望为:
(1)D( )
E[
E( )]2[x NhomakorabeaE( )]2
p( x)dx
(2)方差的简便计算公式
D( )=E( 2) E(2 )
x2 p(x)dx
x p( x)dx
例2 随机变量的概率密度函数
6x(1 x),当0 x 1
p(x)
0
当x 0或x 1时
求随机变量的方差。
13
4、方差的性质 设 k ,b,c均为常数,则有
设连续型随机变量 的密度函数为 p(x)
若积分 xp(x绝)d对x 收敛,则 的数学期望为:
E( ) xp(x)dx
例1 随机变量的概率密度函数
p(
x)
6x(1 x),当0 x 1
0
当x 0或x 1时
求随机变量的数学期望。
9
2、数学期望的性质
(1)EaX b aEX b
(2)EaX aEX
19
4、方差的性质 设 k ,b,c均为常数,则有
(1)D(c) 0
(2)D(k ) k 2D( ) (3)D( b) D( )
(4)D(k b) k 2D( )
20
下页
五、作业
• 课本第90页 第5题
21
(2)方差的简便计算公式
D( )=E( 2) E(2 )
5
4、方差的性质
(1)D(c) 0
(3)D( b) D( )
(2)D(k ) k 2D( ) (4)D(k b) k 2D( )
6
二、新课
(一)连续型随机变量ξ取值的数学期望
设连续型的概率密度函数y p(x)
在x轴上取很密的分点: y
η
b0
b1
L
P p(b0 )x0 p(b1)x1
L
bn1
p(bn 1 )xn 1
n
E 与E 很接近,E = bi p(bi )xi
i 1
n
nn ,maxxi0 lim 如果 bi p(bi )xi的极限存在 n
i 1
bi p(bi )xi
xp(x)dx
E
i1
8
1、连续型随机变量的数学期望的定义
(3)EX b EX b
(4)Eb b
(5)EX Y EX EY
(6)E( f ( )) f (x)p(x)dx
(6)E f ( ) f (xk )PK
k
10
(二)连续型随机变量ξ取值的方差
1、方差的定义
D( ) E[ E( )]2
(刻画了随机变量ξ与其均值 E(的) 平均偏离程度)
k
2
2、数学期望的性质
(1)EaX b aEX b (2)EaX aEX (3)EX b EX b
(4)Eb b X b P1
(5)EX Y EX EY
(6)E f ( ) f (xk )PK 3 k
(二)离散型随机变量取值的方差 1、方差的定义
D( ) E[ E( )]2
E( ) xp(x)dx
16
2、数学期望的性质
(1)EaX b aEX b
(2)EaX aEX
(3)EX b EX b
(4)Eb b
(5)EX Y EX EY
(6)E( f ( )) f (x)p(x)dx
(6)E f ( ) f (xk )PK
k
17
(二)连续型随机变量ξ取值的方差
x0 x1 x2 L xn
xi xi1 xi
b i
【xi
,
xi
)
+1
y p(x)
o
x0b0 x1 xi bi xi1
xn x
7
连续型随机变量ξ的概率分布
ξ 【x0 , x1)【x1, x2)
L
P p(b0 )x0 p(b1)x1
L
【xn1, xn)
p(bn 1 )xn 1
离散型随机变量η的概率分布表:
(刻画了随机变量ξ与其均值 E(的) 平均偏离程度)
2、标准差的定义 D( )
4
随 3、方差的常用的计算公式
机 变 量
x1
x2
[ E( )]2 [x1 E( )]2 [x2 E( )]2
P
p1
p2
··· xn
···[xn E( )]2
··· pn
(1)D( ) E[ E( )]2 [x1 E( )]2 P1 [x2 E( )]2 P2 [xn E( )]2 Pn
2020年4月3日星期五
1
一、复习
(一)离散型随机变量取值的数学期望
1、数学期望的定义
X x1 x2 ··· xk ···
P p1 p2 ··· pk ···
EX x1 p1 x2 p2 xk pk
说明:(1)E(X)它反映了离散型随机变量取值的平均水平。
(2)当k 时, xk pk 收敛,E(X) 才存在。