压力管道金属材料基本知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属材料基本知识(一)

金属材料的性能首先取决于它的元素组成,其次它也将受微观组织、加工方法、热处理方式等因素的影响,而工程选材主要是依据材料的性能而进行的。作为材料工程师,有必要对影响材料性能的有关基本知识有所了解,并能够对材料的加工方法、热处理、检查试验等提出适宜的要求,从而能够选用到既可靠又经济的材料。有关金属材料的基本知识将分两部分来介绍。本节作为第一部分将介绍金属材料的微观结构、基本性能、常见元素对金属材料性能的影响以及金属材料的分类及牌号标识等内容,而与制造有关的金属材料基本知识将在第九章中介绍。

一、金属的微观结构

金属是石油化工生产装臵中最主要的应用材料,有人比喻说:“石油化工生产装臵是用钢铁垒起来的”。此话一点都不过分。那么什么是金属呢?它与非金属相比,具有以下四个明显的特征:金属的固体是晶体;金属具有良好的导电、导热性;金属具有特有的颜色和光泽;金属具有塑性。同时具有上述四种特征的材料才是金属,只具有上述一种或两种特性的材料不一定是金属。

(一)钝金属的微观结构

钝金属在工程上用的很少,大多数用的是其合金材料。为了便于理解,还是首先从钝金属说起。上面已经提到,固体的金属都是晶体,而晶体的最大特点就是其原子按一定的规律整齐排列着。不妨用假想的几何联线将原子的中心线连起来,形成一个空间几何格子,并称之为晶格,见图3-1所示。构成晶格的最小单元叫做晶胞,晶胞

各边的尺寸(x,y,z)叫做晶格常

数。根据晶格常数及原子的配臵位臵

不同,可将晶胞分成以下常见的三种

型式:即体心立方晶胞、面心立方晶

胞和密排六方晶胞,见图3-2所示。

其中,体心立方晶胞为x=y=z的正方

体,每个节点和体心内各臵一个原子。

配属于该晶胞的原子数为(1/8)x8+1=2

个。属于此类晶格结构的金属有α-铁图3-1 金属的晶格

(α-Fe)、铬(Cr)、钼(Mo)、钨(W)、

钒(V)等;面心立方晶

胞也为x=y=z的正方体,

但它除每个节点各有一

个原子外,其六个面上

还各臵一个原子。配属

于该晶胞的原子数为

(1/8)x8+(1/2)×6=4个。

属于此类晶格结构的金

属有铝(Al)、铜(Cu)、(a)体心立方晶胞(b)面心立方晶胞(c)密排六方晶胞

镍(Ni)、铅(Pb)、r-铁图3-2 晶胞结构

(r-Fe)、银(Ag)等;密

排六方晶胞的y/x≈1.633,其配属该晶胞的原子数为(1/4)x12+(1/2)x2+3=6个。属于此类晶格结构的金属有铍(Be)、镁(Mg)、锌(Zn)、镉(Cd)等。不同晶格型式的金属,其机械性能是不同的。我们知道,金属的强度表现为金属原子间的金属健结合。也就是说,金属原子(实为离子)周围的自由电子穿梭于各原子之间,它不再为某个原子所拥有,而是为相邻的所有原子共有,各原子正是靠这些自由电子将它

们紧紧地“粘”在一起(通常称这种结合为金属健结合),从而使金属具有了较高的强度。如果相邻原子较远,其自由电子的“粘结力”将降低。从上面讲到的三种晶胞型式看,由于其各个几何面上的原子数及原子间的距离不同,故各几何面上的原子结合力是不同的,这就是通常所说的晶体具有“各向异性”的原因。

金属的变形,实质上就是其晶格的变形或移动。在外力的作用下,金属内部的晶格首先将发生伸长或歪扭变形,如果去掉外力,变形的晶格将恢复正常的稳定位臵,此时的金属变形称为弹性变形。如果施加的外力足够大,以致超过了原子间的结合力,金属内部的晶格将发生错位(业内人士称其为位错)或滑移,移位后的原子将和新位臵上的原子发生“粘结”,此时就说金属发生了塑性变形。如果再增大外力,使它能够克服整个金属断面上所有晶格滑移所需要的力,此时金属的塑性变形量将快速增加,直到金属的断裂。对单晶体来说,晶格的变形(拉伸或扭转)或移位(位错或滑移等)总是优先在原子结合力较小的面间进行,或者是沿原子密度最大的几何面(称为晶面)发生。对于每种晶胞来说,这种面越多,晶体变形越容易,表现出来的金属塑性越好。因为密排六方晶胞的变形面较多,面心立方晶胞次之,体心立方晶胞最少,故具有体心立方晶胞结构的金属强度最高,面心晶胞次之,密排六方晶胞则最低。

众所周知,工程上应用的金属材料并没有呈现各向异性的性能。这是因为实际的金属材料通常并不是一个单一的晶体,而是由无数个晶格取向各不相同的小晶体所组成。每个小晶体的外形多呈不规则的颗粒状,并称其为晶粒。晶粒与晶粒之间的界面称为晶界。显然,晶界上的原子为了适应两晶粒间的不同晶格方位的过渡,其排列是不规则的,晶格也不再保持原形而发生畸变。根据金属变形的理论可知,此时晶界上的原子难以移位,晶格也难以变形,故使得金属的性能因晶界的存在而发生改变,具体表现为金属的强度和硬度升高,而塑性和韧性下降。又由于晶界的原子排列不规则,自由电子的运动受到阻碍,使得晶界金属容易失去电子而遭受化学或电化学腐蚀,同时金属的导电率、导热率下降。由于各晶粒的晶格取向不同,每个晶粒发生晶格变形都将受到它周围晶粒的约束和阻碍,因此实际金属中的晶粒也变得难以变形和移动。晶粒和晶界共同作用的结果使得实际金属的强度一般高于单晶体。试验证明,金属的强度不仅与原子间的结合力有关,还与其晶粒的大小有关。理论上可以这样解释:因为金属的晶粒尺寸越小,单位体积内的晶粒数就越多,晶界的总面积就越大,每个晶粒周围不同取向的晶粒数越多,从而表现出金属的变形抗力就越大,金属的强度越高。另一方面,晶粒尺寸越小,金属的塑性和韧性也越好。这是因为此时单位体积内的晶粒数目增加后,同样的晶格变形可以分散在更多的晶粒中发生,产生较均匀的变形,不致于造成局部某个晶粒过大变形而导致裂纹的出现,甚至导致金属的过早断裂。基于这样的理论,工程上常将金属中晶粒的大小作为评定金属产品内在质量好坏的一个重要指标。这部分内容将在第九章中介绍。

从上面的论述中可以得到这样一个结论:金属的晶粒尺寸越小越好。金属晶粒尺寸的大小与它液态凝固时的条件、压力加工变形方法、热处理方法等因素有很大关系。采用合理的凝固条件、压力加工变形方法和热处理方法,可以获得良好的晶粒尺寸。本节主要讲凝固条件对金属晶粒度的影响,而热处理及压力加工变形方法对晶粒度的影响将放在第九章中讲述。

(二)钝金属的结晶过程

物质从液态变为固态的过程叫做凝固。金属凝固时因为伴随着晶体的形成,故称这种凝固过程为结晶。结晶的过程实际上是一个能量转换过程。液体金属温度较高,也就是说其自由能较高,当金属冷却凝固时,实质上是一个降低其自由能的过程。当金属温度降低到其凝固点时,结晶便开始。由热动力学理论可知,实际开始结晶的温度应低于金属的凝固点,以此获得一个结晶降能的足够动力,通常把这个温度差叫做过冷度。过冷度越大,降能过程获得的动力越大,此时结晶过程进行的越快。

结晶总是首先从高熔点物或局部过冷度较大的地方开始。较高熔点物因其凝固点较高而首先凝固,而获得较大过冷度的局部金属也将首先凝固,通常把首先凝固的细小颗粒叫做晶核。晶核形成之后,由于固体表面散热快,故结晶将围绕晶核进行,使晶核长大,直到各晶粒相互接触并完成结晶。由此也可以说,结晶的过程就是晶核形成和成长的过程。金属中高熔点成分越多,形成的晶核就越多,得到的结晶晶粒尺寸就越小。结晶过程的过冷度越大,同时生成的晶核数量也越多,而且因晶粒成长的时间较短,故得到的结晶晶粒尺寸就越小。因此,工程上往往在一些材料中有意加入一些高熔点元素,或者有意加快冷却速度,以期得到晶粒较细的组织。

相关文档
最新文档