清华大学土力学1-张丙印-第五章复习课程

合集下载

土力学-第五章-土的抗剪强度指标2 张丙印

土力学-第五章-土的抗剪强度指标2 张丙印
一性关系
A点: ef=ef
B
eB=eB
• 有效应力和孔隙比间存在
唯一性关系
o
p
B点: eB=eB
土样的密度不变,强度相同
黏性土有效应力密度抗剪强度 间的唯一性关系
10
§5.5 土的抗剪强度指标 – 三轴试验指标
智者乐水 仁者乐山
强度指标:cuu(cu), uu(u)
试验条件 饱和试样的不排水强度指标cu 不排水试验与固结不排水试验 无侧限压缩试验:3=0的不排水试验 不饱和试样的不排水强度
固结排水试验小结
1
§5.5 土的抗剪强度指标 – 三轴试验指标
智者乐水 仁者乐山
强度指标:ccu ,cu c ,
试验条件 正常固结黏土试验曲线与强度包线 超固结黏土试验曲线与强度包线 固结不排水试验确定的强度参数 黏性土的孔隙比有效应力抗剪强度唯
一性关系
固结不排水试验
2
§5.5 土的抗剪强度指标 – 三轴试验指标
不固结不排水试验
11
§5.5 土的抗剪强度指标 – 三轴试验指标
试验条件
排水阀门关闭,施加
围压,产生孔隙水 压力 u1=B
施加(1 -)时,排水
阀门关闭,量测剪切 过程中产生的超静孔 隙水压力
u2 = BA (-)
百分表
围压
力3
阀门
智者乐水 仁者乐山
横梁 量力环
量 水 管
孔压

量测

马达
阀门
和试验的类型 及应力路径等 无关
对具有相同的前期固结压力的超固结土也有相似的规律
黏性土有效应力密度抗剪强度 间的唯一性关系
9
§5.5 土的抗剪强度指标 – 三轴试验指标

土力学-第一章-土的三相组成 张丙印

土力学-第一章-土的三相组成 张丙印

黏土矿物的带电特性
18
§1.2 土的三相组成–固体颗粒
智者乐水 仁者乐山
原生矿物:一般颗粒较粗,呈粒状。 有圆状、浑圆状、棱角状等。
次生矿物:颗粒较细,多呈针状、片 状、扁平状。
比表面积:单位质量土颗粒所拥有的 总表面积。对于黏性土,其大小直接 反映土颗粒与四周介质,特别是水,相 互作用的强烈程度,是代表黏性土特 征的一个很重要的指标。 高岭石的比表面积为:10-20m2/g,伊 利石:80-l00m2/g,蒙特石:800m2/g
第一章:土的物理性质与工程分类
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6
土的形成 ✓ 土的三相组成 土的物理状态 土的结构 土的工程分类 土的压实性
§1.2 土的三相组成
智者乐水 仁者乐山
固体颗粒 土中水
固相 液相
构成土体骨架 起决定作用
重要影响
土中气体 气相 次要作用
饱和土 :土体孔隙完全被水充满 干 土 :土体孔隙完全被气充满 非饱和土:孔隙中水和气均存在
8
§1.2 土的三相组成–固体颗粒
智者乐水 仁者乐山
小于某粒径之土质量百分数(%) 10 5.0 1.0 0.5 0.10 0.05 0.01 0.005 0.001
土的粗细度:用d50 表示
土的不均匀程度:
不均匀系数 Cu = d60 / d10 Cu 5 为不均匀土,反之 称为均匀土
连续程度:
§1.2 土的三相组成–固体颗粒
100
曲线 d60 d10 d30 Cu Cc
90 80
L
0.081
3.98
70
M 0.33 0.005 0.063 66 2.41
60

土力学课件(清华大学)_第1章

土力学课件(清华大学)_第1章

粒径级配曲线和指标的应用
§1.2 土的三相组成 – 固体颗粒
原生矿物 - 石英、长石、云母等
矿物质
固体成分 有机质
无定形氧化物胶体
次生矿物
可溶盐
粘土矿物
具有和原生矿物很不相同的特性 对粘土性质的影响很大
固体颗粒 - 矿物成分
§1.2 土的三相组成 – 固体颗粒
粘土矿物是一种复合的铝-硅盐晶体,颗粒呈片状,是由硅 片和铝片构成的晶包所组叠而成,可分成高岭石、伊利石和 蒙特石三种类型。

上升高度
T
2T cos hc r
毛细升高与孔径成反比
hc
2r
粘土 粉土 砂土 砾石
土中毛细水上升高度
§1.2 土的三相组成 – 土中水
T
毛细管中的 负静水压力
T
张力T
T
uc= -hcw hc 2r
uc
水压
2πrTcosα+ucπr2 = 0
+

则毛细压力:
uc hc
§1.2 土的三相组成 – 土中水
自由水:不受颗粒电场引 力作用的孔隙水
- 毛细水:由于土体孔隙的毛细作 用升至自由水面以上的水。毛细 水承受表面张力和重力的作用。 - 重力水:自由水面以下的孔隙自 由水,在重力作用下可在土中自 由流动。
毛细水
hc
重力水
土中水 – 自由水
§1.2 土的三相组成 – 土中水
§1.2 土的三相组成 – 土中气
自由气体:与大气连通的气体对土的性
质影响不大
封闭气体:被土颗粒和水封闭的气体
其体积与压力有关。会增加土的弹性; 阻塞渗流通道,降低渗透性
溶解在水中的气体 吸附于土颗粒表面的气体

土力学-第五章-土的抗剪强度 习题课2 张丙印

土力学-第五章-土的抗剪强度 习题课2 张丙印

智者乐水 仁者乐山
150
q(kPa)
100
q-3=0.5p
50
0 0
q=(6/11)(p-20)
q=(6/8)(p-20)
50 100 150 200 250 300 350
p'(kPa)
19
方法及讨论 – 强度指标的应用
200
智者乐水 仁者乐山
150
q(kPa)
100 50
q-3=0.5p q=(6/11)(p-20)
1-3=165kPa,求固结不排水总应力强度 指标、破坏时试样内的孔隙水压力及相应
的孔隙水压力系数、剪切破坏面上的法向
总应力和剪应力。
6
方法及讨论 – 强度指标计算
智者乐水 仁者乐山
真正破裂面
30
a)总应力强度指标: cu 17 ccu 0 b)破坏时的孔隙水压力:
uf=A(1-3)f=165A
《土力学1》之习题课4
第五章习题讨论课
张丙印
清华大学土木水利学院 岩土工程研究所
第五章:习题讨论课
主要内容:
• 习题讨论
• 作业中的问题评述
• 小测验(30分钟)
• 方法讨论 • 概念及难点
• 强度指标计算 • 应力路径 • 强度指标的应用
• 其它问题讨论
小测验 30分钟
3
方法及讨论 – 强度指标计算
0
0 50 100 150 200 250 300 350
p'(kPa)
20
(3 1f ) cos 71.4kPa
n=n+uf=241.3kPa
2
7
方法及讨论 – 强度指标计算
智者乐水 仁者乐山

土力学-第五章-土的抗剪强度理论2 张丙印

土力学-第五章-土的抗剪强度理论2 张丙印

σy
τ
yz
τzx τzy σz
三维应力状态
z zx xz
x
σij
σx τzx
τxz
σz
二维应力状态
应力状态
2
§5.2 土的抗剪强度理论 – 莫尔-库仑强度理论
智者乐水 仁者乐山
τ zx 材料力学
τ zx 土力学
σz
+
-
σx τxz
σz
+σx
τxz
正应力
剪应力
拉为正 顺时针为正 压为负 逆时针为负
(破坏)
m > 不可能状态
(破坏)
土单元是否破坏的判别
13
§5.2 土的抗剪强度理论 – 莫尔-库仑强度理论
智者乐水 仁者乐山
= 45+ /2 1f
2 =90+
3
O
3
2
1f
2
与大主应力面夹角: θ φ /
可见土体破坏的剪切破
坏不在45º最大剪应力面 上,为什么?
剪切破坏面的位置 14
(破坏)
土单元是否破坏的判别 12
§5.2 土的抗剪强度理论 – 莫尔-库仑强度理论
智者乐水 仁者乐山
方法三: 由1 , 3 m ,比较 和m
sinφm
σ1
σ1 σ σ c cot
φ
处于极限平衡状态
所需的视内摩擦角
c
O O
f = c + tan
m < 安全状态 m = 极限平衡状态
土单元是否破坏的判别
10
§5.2 土的抗剪强度理论 – 莫尔-库仑强度理论
智者乐水 仁者乐山
方法一: 由3 1f,比较1和1f

清华大学版土力学课后答案

清华大学版土力学课后答案

第一章1-1:已知:V=72cm3 m=129.1g ms =121.5g Gs=则:129.1121.56.3%121.5ssm mwm--===3333 129.1*1017.9/72121.5452.77245271.0*27121.5*1020.6/72sssV ssat w V ssat satmg g KN mvmV cmV V V cmm V mg g g KN mV Vγρρργρ========-=-=++=====3320.61010.6/121.5*1016.9/72sat wsdsat dKN mmg KN mVγγγγγγγγ'=-=-===='>>>则1-2:已知:Gs = 设Vs=1cm3则33332.72/2.722.72*1016/1.72.720.7*1*1020.1/1.720.11010.1/75%1.0*0.7*75%0.5250.52519.3%2.720.525 2.721.sssd ds V wwrw w V rwsw sg cmm gmg g KN mVm Vg g KN mVKN mm V S gmwmm mg gVργρργργγγργρ======++===='=-=-========++===当S时,3*1019.1/7KN m=1-3:3477777331.70*10*8*1013.6*1013.6*10*20%2.72*1013.6*10 2.72*10850001.92*10s d w s s wm V kg m m w kg m m V mρρ======++==挖1-4: 甲:33334025151* 2.72.7*30%0.81100%0.812.70.811.94/10.8119.4/2.71.48/1.8114.8/0.81p L P s s s s w r wV ws w s w s d s w d d vsI w w V m V g m g S m V m m g cm V V g KN m m g cm V V g KN m V e V ρρργρργρ=-=-=======∴==++===++=====+====设则又因为乙:3333381 2.682.68*22%0.47960.47962.680.47962.14/10.47962.14*1021.4/2.681.84/1.47961.84*1018.4/0.4796p L p s s s s w s V s w s V s d s w d d VsI w w V m V g m m w g V cm m m g cm V V g KN m m g cm V V g KN m V e V ρργρργρ=-========++===++======+=====设则则γγ∴<乙甲 d d γγ<乙甲 e e >乙甲 p p I I >乙甲则(1)、(4)正确 1-5:1s wd G eρρ=+ 则2.7*1110.591.7022%*2.7185%0.59s wds r G e wG S e ρρ=-=-====>所以该料场的土料不适合筑坝,建议翻晒,使其含水率降低。

清华大学土木工程系土力学第五章讲义_121302362

清华大学土木工程系土力学第五章讲义_121302362
i
第五章
土的抗剪强度
第六节
四、 峰值抗剪强度指标和残余抗剪强度指标 ...........................................41 五、 抗剪强度指标的选用 ...........................................................................43 土的动强度与砂土的振动液化 .......................................................................47 一、 冲击荷载作用下土的动强度 ...............................................................47 二、 周期荷载作用下土的强度 ...................................................................49 (一)动强度的测试方法 .......................................................................49 (二)破坏标准 .......................................................................................51 (三)动强度曲线 ...................................................................................52 (四)土的动强度指标 ...........................................................................53 三、 不规则荷载作用下土的强度 ...............................................................54 (-)不规则荷载的等价循环周数 .......................................................55 (二)地震的等价震次 ...........................................................................55 四、 砂土的振动液化 ...................................................................................56 (一)液化的基本概念 ...........................................................................56 (二)振动孔隙水压力的发展 ...............................................................57 (三)影响土液化的主要因素 ...............................................................58 (四)土单元体的液化可能性判别 .......................................................59

清华大学土木工程系2010-土力学-总复习_374901177

清华大学土木工程系2010-土力学-总复习_374901177
emax − e Dr = emax − emin
IL = ω − ωp ω L − ωp
第一章 土的物理性质
§1.4 土的结构
粗粒土: 粗粒土:单粒结构 细粒土:分散(片堆)结构、凝聚(片架)结构 细粒土:分散(片堆)结构、凝聚(片架) 结构性指标(了解): 结构性指标(了解): 粘性土的灵敏度 粘性土的触变性
3 ⇒ 2 ⇒1
1⇒ 2 ⇒ 3
U t = 1 − Ae− Bt − Bt St = (1 − Ae ) S∞
计算公式
1. S t = S ∞ ⋅ U t 2. U t = f (Tv ) 3. Tv = Cvt / H 2 4. Cv = k (1 + e1 ) γw ⋅a
第四章 土的压缩性和地基沉降量计算
第二章 土的渗透性与渗流问题
第二章 土的渗透特性
重点:
达西定律: 达西定律:v = k i, i =∆H/L, ∆H为总水头差 为总水头差 多层土一维渗流计算 流网:等势线概念; 流网:等势线概念;特征 土体受力分析;渗透力的计算: 土体受力分析;渗透力的计算: j = i γw 流土的发生条件, 流土的发生条件,临界水力坡降
基本假设 → 结果影响 → 修正 材料力学: 材料力学:基底压力线性分布 弹性力学: 弹性力学:均匀连续各向同性弹性介质 侧限应变条件, 侧限应变条件,基础中点下应力分布 主固结沉降:公式不计入S 主固结沉降:公式不计入Sd和Ss的影响 单一土层的沉降量计算
Si =
分层总和法
− ∆ ei e − e2 i H i = 1i Hi 1 + e1i 1 + e1i
§ 3.4 基底压力计算
简化计算:圣维南原理- 简化计算:圣维南原理-线性分布

土力学1-第五章-清华大学-知识归纳整理

土力学1-第五章-清华大学-知识归纳整理

求知若饥,虚心若愚。 第 56 页/共 138 页
千里之行,始于足下。 第 57 页/共 138 页
求知若饥,虚心若愚。 第 58 页/共 138 页
千里之行,始于足下。 第 59 页/共 138 页
求知若饥,虚心若愚。 第 60 页/共 138 页
千里之行,始于足下。 第 61 页/共 138 页
求知若饥,虚心若愚。 第 110 页/共 138 页
千里之行,始于足下。 第 111 页/共 138 页
求知若饥,虚心若愚。 第 112 页/共 138 页
千里之行,始于足下。 第 113 页/共 138 页
求知若饥,虚心若愚。 第 114 页/共 138 页
千里之行,始于足下。 第 115 页/共 138 页
求知若饥,虚心若愚。 第 26 页/共 138 页
千里之行,始于足下。 第 27 页/共 138 页
求知若饥,虚心若愚。 第 28 页/共 138 页
千里之行,始于足下。 第 29 页/共 138 页
求知若饥,虚心若愚。 第 30 页/共 138 页
千里之行,始于足下。 第 31 页/共 138 页
求知若饥,虚心若愚。 第 80 页/共 138 页
千里之行,始于足下。 第 81 页/共 138 页
求知若饥,虚心若愚。 第 82 页/共 138 页
千里之行,始于足下。 第 83 页/共 138 页
求知若饥,虚心若愚。 第 84 页/共 138 页
千里之行,始于足下。 第 85 页/共 138 页
求知若饥,虚心若愚。 第 134 页/共 138 页
千里之行,始于足下。 第 135 页/共 138 页
求知若饥,虚心若愚。 第 136 页/共 138 页

土力学课件(清华大学)土力学绪论

土力学课件(清华大学)土力学绪论


什么是土?

土及土力学有哪些特点? 为什么要学习土力学? 土力学包括哪些内容? 如何学好土力学?
一般固体: 液体: 土体(散粒体):
可保持固定的形状
不具有特定的形状
具有一定但不固 定的形状
土体的特点
碎散性
岩石风化或破 碎的产物,是 非连续体
• 受力以后易变形,强度低 • 体积变化主要是孔隙变化 • 剪切变形主要由颗粒相对 位移引起
连续墙并对塔周围与塔基进行钻 孔注浆和打设树根桩加固塔身。
1986年:开工 1990年:人工岛完成 1994年:机场运营 面积:4370m×1250m
填筑量:180×106m3
平均厚度:33m
世界最大的人工岛
日本 关西机场
关西机场
问题:沉降大且不均匀
• 设计沉降:5.7-7.5 m
• 完成时(1990年)实际沉降: 8.1 m,5cm/月 • 预测主固结需:20年 • 比设计多超填:3m
可归结为与土有关的 渗透问题
案例总结(三)
土工结构物或地基
强度问题 变形问题 渗透问题

强度特性 变形特性 渗透特性
土力学可以解决工程实践问题,这正是土力学存 在的价值以及我们学习土力学的目的。
学习土力学的目的
课程绪论:土力学及其特点

什么是土?

土及土力学有哪些特点? 为什么要学习土力学? 土力学包括哪些内容? 如何学好土力学?
土壤在自然界的位置
土壤带 腐殖质层 淀积层 母质层
土壤有非常复杂的形成过程,并具有独特 的层状构造。土壤剖面一般包含枯枝落叶 层、腐殖质层、淀积层和母质层四个基本 层次。 传统岩土工程的范畴 风化、搬运、沉积 土壤 地质大循环:岩石 地质成岩作用 生物小循环: 生物活动所造成的土壤 有机质的循环

土力学-第五章-土的抗剪强度指标3 土的动强度与砂土的振动液化1 张丙印

土力学-第五章-土的抗剪强度指标3 土的动强度与砂土的振动液化1 张丙印

Kc=3 Kc=2 Kc=1
破坏振 次 lgNf
土的动强度 19
§5.6 土的动强度与砂土的振动液化
液化现象
孔压u
智者乐水 仁者乐山
松砂 振动台
时间 T
饱和松砂在振动情况
下孔压急剧升高
在瞬间砂土呈液态
饱和松砂的振动液化 20
§5.6 土的动强度与砂土的振动液化
液化机理
(1)初始处于疏松状态
智者乐水 仁者乐山
(2)振动过程中处于悬浮状态 - 孔压升高(液化)
(3)振后处于密实状态
饱和松砂的振动液化 21
§5.6 土的动强度与砂土的振动液化
液化机理
智者乐水 仁者乐山
排出的剩 余孔隙水
振前松砂 的结构
振中颗粒悬浮, 有效应力为零
振后砂土 变密实
饱和松砂的振动液化 22
§5.6 土的动强度与砂土的振动液化
不固结不排水试验 1
§5.5 土的抗剪强度指标 – 三轴试验指标
智者乐水 仁者乐山
无侧限压缩试验
cu
u=0
f
o 3=0
qu=
3=0的不排水试验
f = cu = qu/2
由于土样扰动等的
影响,一般稍低于 原位不排水强度
特别说明:十字板剪切试验所得到的抗剪强度
f 相当于土的不排水强度cu
不固结不排水
智者乐水 仁者乐山
第五章: 土的抗剪强度
§5.1 概述 §5.2 土的抗剪强度理论 §5.3 土的抗剪强度的测定试验 §5.4 应力路径与破坏主应力线 §5.5 土的抗剪强度指标 §5.6 土的动强度与砂土的振动液化
§5.6 土的动强度与砂土的振动液化
固结比
Kc=1/3

土力学-第五章-土的抗剪强度 习题课1 张丙印

土力学-第五章-土的抗剪强度 习题课1 张丙印

q
( > , c > a)
ca
O O
f线
B
Kf线
C
A
p
5
一、习题评述
5-6 要 点:极限平衡状态莫尔圆求强度指标,破坏面方向
常见问题:判断主应力方向
通过莫尔圆判断破坏面方向
x
σz=350kPa
z θ
τ
2θ 2
σ
α=22.5o θ=39.7o
σx=150kPa τxz=-100kPa
6
一、习题评述
3、粘聚强度c:单位KPa
τ(kPa)
300 250 200 150 100 50
0 0
y = 0.521x + 50.5 y = 0.295x + 5
峰值 终值
100 200 300 400 500 σ(kPa)
3
一、习题评述
5-4 ☺ 要 点:极限平衡条件、破坏判断方法(多种方法)
常见问题:用σ1、σ3、 怎么判断土体发生破坏?
A’ A
100 140 170 p’、p
p=100~140kPa,q=40kPa
➢不排水加载:C’→D’
p=140kPa,q=40~70kPa
7
一、习题评述 5-14 要 点:应力路径的画法 常见问题:---
q
C
3
0
1
B
p
8
一、习题评述 5-16 要 点:三轴试验加载过程中多种强度指标、破坏主应力线 常见问题:破坏状态的求解、破坏时剪应力求解
第四次习题讨论课
—— 第五章作业中的问题 张丙印 于玉贞
1
一、习题评述
作业 5-1、5-4、5-5、5-6 5-12(选做)、5-13、5-14、 5-16

土力学-第五章-土的抗剪强度测定试验1 应力路径与破坏主应力线 张丙印

土力学-第五章-土的抗剪强度测定试验1 应力路径与破坏主应力线 张丙印

fh
M2
πDH
D 2
τfv
假定土体为各向同性,fh=fv=f:
Mmax
M1
M2
πD3 6
τf
πD 2 H 2
τf
τf
Mmax πD2 ( D H )
23
M
M1 fh
fv
H
M2
D
十字板剪切试验
2
第五章: 土的抗剪强度
§5.1 概述 §5.2 土的抗剪强度理论 §5.3 土的抗剪强度的测定试验 §5.4 应力路径与破坏主应力线 §5.5 土的抗剪强度指标 §5.6 土的动强度与砂土的振动液化
固结过程:
p 0 p0 = 3
剪切过程:
3=0 1 0 u 0
p p u q q u A(σ1 - σ3 )
饱和土固结不排水试验
q q
有效 应力
Kf线 uf Kf线
u 总应力
p
O
p0=3 p
当A是常数时,有效应力路径为直线,
一般情况下A不为常数,有效应力路径为曲线
三轴试验的有效应力路径
§5.3 土的抗剪强度的测定试验 –十字板剪切试验
智者乐水 仁者乐山
一般适用于测定软黏
土的不排水强度指标
钻孔到指定的土层,
插入十字形的探头
通过施加的扭矩计算
土的抗剪强度
十字板剪切试验
1
§5.3 土的抗剪强度的测定试验 –十字板剪切试验
智者乐水 仁者乐山
M1
D/2
2 τfh
0
2πr
rdr
πD3 6
智者乐水 仁者乐山
有效应力原理: + u 或 - u
孔隙水压力: u =B3+AB(1-3)

土力学(二) 课件清华大学 张丙印

土力学(二) 课件清华大学 张丙印

§6.3 库仑土压力理论
• 如果墙背不垂直,光滑 • 墙后填土任意 如何计算挡土墙后的土压力?
§3 库仑土压力理论
(一) 主动土压力
当b=d=a=0时,即:
墙背光滑 垂直, 填土表面水平时 与朗肯土压力理论一致
§3 库仑土压力理论
(二) 被动土压力
E库伦
求解方法类似主动土压力 变化,取若干滑裂面,使E最小 dE/d =0, 求得,得到:
Rankine (朗肯)
Conlomb (库仑)
0.49 0.218 0.49 0.22
0.49 0.447
0.218 0.199
0.49 0.218 0.43 0.210
§6.4 朗肯和库仑土压力理论的比较
(三) 计算误差---与理论计算值比较
被动土压力系数 Kp(a=b=0)
d=0
d=/2
d=
D D H
D D
E0
H
_D H
Ea
d
+
D H
1~5% 1~5%0
墙体外移, 土压力逐渐减小, 当土体破坏,达到极 限平衡状态时所对应 的土压力
(最小)
支撑土坡的 挡土墙 填土
E
§1 概述
3. 被支动撑土土坡的 压力
挡土墙
土压力 E
填土 D
D
墙体内移,
填土
E
E
堤岸挡土土压墙 力逐渐增大,
Ep
当土体破坏,
滑裂面方向:与水平夹角45+f/2
sv s
H/3
gHKa
§2 朗肯土压力理论
(一) 填土为砂土
2.被动土压力
H
90+
H/3
45-/2

土力学课件(清华大学) 第五章 土的抗剪强度

土力学课件(清华大学) 第五章 土的抗剪强度
二、工程中土体的破坏类型 2. 各种类型的滑坡
滑裂面
边坡
§5 土的抗剪强度 §5.1 土体破坏与土的强度理论
二、工程中土体的破坏类型
3. 地基的破坏
粘土地基上的某谷仓地基破坏
§5 土的抗剪强度 §5.1 土体破坏与土的强度理论
二、工程中土体的破坏类型
3. 地基的破坏 日本新泻1964年地震引起大面积液化
5530 高程(m)
2000年西藏易贡巨型滑坡
立面示意图
坡高 堆积体宽 总方量
3330 m 约2500m 约3亿方
4000
2200 0
2000
4000 滑距(m)
6000
8000
§5 土的抗剪强度 §5.1 土体破坏与土的强度理论
二、工程中土体的破坏类型 2. 各种类型的滑坡
2000年西藏易贡巨型滑坡
4. 莫尔—库仑强度理论 莫尔-库仑强度理论表达式-极限平衡条件
1 f
3tg
2
45
2
2c
tg
45
2
3f
1tg
2
45
2
2c
tg
45
2
1 3
2
f c tan
c
O
3
c ctg 1 3
2
1f
§5 土的抗剪强度 §5.1 土体破坏与土的强度理论
四、摩尔-库仑强度理论
5. 破坏判断方法
土的抗剪强度
S tg:
T
摩擦强度-正比于压力
c:
粘聚强度-与所受压力无关
一般应力状态如何判断是否破坏?
借助于莫尔圆
§5 土的抗剪强度 §5.1 土体破坏与土的强度理论
四、摩尔-库仑强度理论

清华大学土木工程系土力学第五章(Yu)_26508750

清华大学土木工程系土力学第五章(Yu)_26508750

莫 尔 圆:代表一个单元的应力状态; 圆上一点:代表一个面上的两个应力与
p (1 3 ) / 2
q (1 3 ) / 2 r
30
§5.1 土体破坏与强度理论 1. 应力状态与莫尔圆 四、莫尔-库仑强度理论
§5 土的抗剪强度

f
直剪试验:
破坏时的莫尔圆与库仑抗剪强 度线的关系如何?为什么?
§5 土的抗剪强度
+ zx
z

1
+zx

r 2
x
O -xz
3 x
z 1

xz
p 圆心: p ( x z ) / 2 半径: r
2 ( x z ) / 2 xz 2
大主应力:
1 p r
σz按顺时针方向旋转α 小主应力: 3 p r σx按顺时针方向旋转α
2
§5 土的抗剪强度

1 3
2
f c tan

c O
3
1

c ctg
1 3
2
36
§5 土的抗剪强度
3= 常数:
1,3 x z
2
§5.1 土体破坏与强度理论
四、莫尔-库仑强度理论 4. 破坏判断方法 判别对象:土体微小单元(一点)
(2)咬合摩擦
剪切面 A B C B A C

是指相邻颗粒对于相对移动的约束作用 当发生剪切破坏时,相互咬合着的颗粒A必 须抬起,跨越相邻颗粒B,或在尖角处被剪 断(C),才能移动 土体中的颗粒重新排列,也会消耗能量
22

§5 土的抗剪强度
三、土的强度机理
§5.1 土体破坏与强度理论 2. 摩擦强度 tan
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档