2018-2019学年高一上学期期末考试数学答案(图片版)

合集下载

【优质文档】2018-2019学年人教版高中数学高一第一学期期末质量检测试卷(二)含答案

【优质文档】2018-2019学年人教版高中数学高一第一学期期末质量检测试卷(二)含答案

17. (本小题满分 10 分)
1
(1)
计算:
(
1 )
2
(lg 25)0
lg 已知 , 都是锐角, sin
43 ,cos(
7
11
)
,求 的值 .
14
18. (本小题满分 12 分)
已知 0
, sin cos sin2
1 m.
22
22
(1) 当 m
1
时,求

2
(2) 当 m 5 时,求 tan 的值 . 10
净后,再选涂其它答案标号。答在试卷和草稿纸上无效。 3.非选择题作答用 0.5 毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内。
答在试卷和草稿纸上无效。考生必须保持答题卡的整洁。考试结束后,只需上交答题卡。
第 I 卷(选择题 60 分)
一、选择题: (本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有
第 2页共8 页
13. 若 f (x)
ax (a
1 0) 的图像过点 (2, 4) ,则 f ( )
.
2
14. 若 tan 3 ,则 sin 2
.
15.衣柜里的樟脑丸随着时间推移会挥发而体积变小
, 若它的体积 V 随时间 t 的变化规律是
V
1 t
V0 e 10 ( e 为自然对数的底) ,其中 V0 为初始值 . 若 V
8. 函数 f ( x) sin( x ) 3cos( x ) 的最大值为
3
6
A. 3
B
.4
C
.5
D
.6
9. 已知 a log 0.3 2 , b 20.1 , c sin 789 ,则 a , b , c 的大小关系是

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

【优质文档】2018-2019学年高一(上)期末数学试卷(含答案)

18.已知向量 =( x,﹣ 1), =( x﹣2 ,3), =( 1﹣ 2x, 6). ( 1)若 ⊥( 2 + ),求 | | ; ( 2)若 ? < 0,求 x 的取值范围.
2
19.已知函数 f( x)=Asinx+cosx, A> 0. ( 1)若 A=1,求 f ( x)的单调递增区间;

22. 解: Ⅰ)若 a=1,则 f( x)=

函数 f ( x)的图象如下图所示:

(Ⅱ)若 f( x) ≥2﹣ x 对任意 x∈[1,2] 恒成立, 即 x2﹣ 4ax+3a2≥2﹣ x 对任意 x∈[1 ,2] 恒成立, 即 x2+( 1﹣4 a) x+(3a2﹣ 2) ≥0对任意 x∈[1 , 2]恒成立,
( 2)函数 f( x)在 x=x0 处取得最大值
,求 cosx0 的值.
20.已知 f ( x)是定义在 R上的偶函数,当 x ≥0时, f( x) =xa( a∈R),函数 f( x)的图象经过点( ( 1)求函数 f ( x)的解析式; ( 2)解不等式 f ( x2)﹣ f(﹣ x2+x﹣ 1)> 0.
4, 2).
3
21.已知向量 =( sinx ,﹣ 1), =( cosx , m),m∈ R.
( 1)若 m= ,且 ∥ ,求
的值;
( 2)已知函数 f ( x) =2( + ) ? ﹣2m2﹣ 1,若函数 f( x)在 [ 0, ] 上有零点,求 m 的取值范围.
22. 设函数 f ( x) =
由 y=x2+( 1﹣ 4a) x+( 3a2﹣ 2)的图象是开口朝上,且以直线 x=
为对称轴的抛物线,

2018-2019学年高一上期末数学试卷(答案+解析)

2018-2019学年高一上期末数学试卷(答案+解析)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)设全集U={1,2,3,4,5,6},A={1,3,5},B={2,3},则(∁U A)∪B=()A.{2,3,4,6} B.{2,3} C.{1,2,3,5} D.{2,4,6}2.(5分)一个半径为2的扇形的面积的数值是4,则这个扇形的中心角的弧度数为()A.1 B.C.2 D.43.(5分)若函数y=f(x)的定义域为{x|﹣3≤x≤8,x≠5,值域为{y|﹣1≤y≤2,y≠0},则y= f(x)的图象可能是()A.B.C.D.4.(5分)设f(x)=,则f(f())=()A.B.ln C.D.﹣5.(5分)已知角α的终边是射线y=﹣x(x≥0),则sinα的值等于()A.±B.C.±D.﹣6.(5分)为了求函数f(x)=2x+3x﹣7的一个零点,某同学利用计算器得到自变量x和函数f(x)的部分对应值,如表所示:则方程2x+3x=7的近似解(精确到0.1)可取为()A.1.32 B.1.39 C.1.4 D.1.37.(5分)对于任意a>0且a≠1,函数f(x)=log a(x﹣1)+3的图象必经过点()A.(4,2)B.(2,4)C.(3,2)D.(2,3)8.(5分)函数y=2sin x(x∈[,])的值域是()A.[,] B.[1,] C.[1,2] D.[,1]9.(5分)设<()b<()a<1,那么()A.1<b<a B.1<a<b C.0<a<b<1 D.0<b<a<110.(5分)已知函数f(x)=﹣tan(2x﹣),则()A.f(x)在(+,+)(k∈Z)上单调递减B.f(x)在(+,+)(k∈Z)上单调递增C.f(x)在(kπ+,kπ+)(k∈Z)上单调递减D.f(x)在[kπ+,kπ+](k∈Z)上单调递增11.(5分)已知函数y=3sin(x+)的图象C.为了得到函数y=3sin(2x﹣)的图象,只要把C上所有的点()A.先向右平行移动个单位长度,然后横坐标伸长到原来的2倍,纵坐标不变B.先横坐标缩短到原来的倍,纵坐标不变,然后向左平行移动个单位长度C.先向右平行移动个单位长度,然后横坐标缩短到原来的倍,纵坐标不变D.先横坐标伸长到原来的2倍,纵坐标不变,然后向左平行移动个单位长度12.(5分)给出下列三个等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(xy)= f(x)f(y),下列选项中,函数在其定义域内不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=x2+x C.f(x)=log2x D.f(x)=二、填空题13.(5分)sin210°=.14.(5分)()﹣lg=.15.(5分)若a sinθ+cosθ=1,2b sinθ﹣cosθ=1,则ab的值为.16.(5分)已知f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,都有<0,记a=,b=,c=,则a、b、c的大小关系是.三、解答题17.(10分)已知全集U=R,集合A={x|﹣2≤x<4},集合B={x|x≥3},集合C={x∈R|x<a}.(1)求A∪B,A∩(∁U B);(2)若(B∩C)⊆A,求实数a的取值范围.18.(12分)设a为实数,函数f(x)=x2﹣ax.(1)若函数f(x)在[2,4]上具有单调性,求实数a的取值范围;(2)设h(a)为f(x)在[2,4]上的最小值,求h(a).19.(12分)已知f(α)=.(1)利用诱导公式化简f(α);(2)设f(α)=﹣2,计算:①;②sinαcosα.20.(12分)已知函数f(x)=ln.(1)判断函数f(x)的奇偶性,并说明理由;(2)判断函数f(x)在其定义域上的单调性,并用单调性定义证明你的结论.21.(12分)海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:(1)若用函数f(t)=A sin(ωt+φ)+h(A>0,ω>0,|φ|<)来近似描述这个港口的水深和时间之间的对应关系,根据表中数据确定函数表达式;(2)一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定要有2.25米的安全间隙(船底与洋底的距离),该船何时能进入港口?22.(12分)已知函数F(x)=e x(e=2.71828…)满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数.(1)求g(x),h(x)的表达式;(2)若任意x∈[1,2]使得不等式a e x﹣2h(x)≥1恒成立,求实数a的取值范围;(3)探究h(2x)与2h(x)•g(x)的大小关系,并求(n∈N*)的值.【参考答案】一、选择题1.A【解析】∵U={1,2,3,4,5,6},A={1,3,5},∴∁U A={2,4,6},又B={2,3},∴(∁U A)∪B={2,3,4,6}.故选A.2.C【解析】设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4,解得:α=2.故选C.3.B【解析】A.当x=8时,y=0,∴A错误.B.函数的定义域和值域都满足条件,∴B正确.C.由函数的图象可知,在图象中出现了有2个函数值y和x对应的图象,∴C错误.D.函数值域中有两个值不存在,∴函数的值域不满足条件,∴D错误.故选B.4.C【解析】∵f(x)=,∴f()=,f(f())=f(ln)==.故选C.5.D【解析】由题意角α在第四象限,设终边上任一点P(x,﹣x),则OP=x,∴sinα=,故选D.6.C【解析】由图表可知,函数f(x)=2x+3x﹣7的零点介于1.375到1.4375之间,故方程2x+3x=7的近似解也介于1.375到1.4375之间,由于精确到0.1,结合选项可知1.4符合题意,故选C.7.D【解析】对数函数恒过定点(1,0),则令x﹣1=1,可得:x=2,此时f(2)=0+3=3,即函数f(x)=log a(x﹣1)+3的图象必经过点(2,3).故选D.8.C【解析】函数y=2sin x,当x∈[,],∴sin x∈[,1],∴2sin x∈[1,2],∴y∈[1,2],∴函数y的值域为[1,2].故选C.9.C【解析】由<()b<()a<1,可得<()b<()a<,根据指数函数的单调性,底数为,是减函数,∴0<a<b<1.故选C.10.A【解析】函数f(x)=﹣tan(2x﹣),令kπ﹣<2x﹣<kπ+,k∈Z,解得kπ+<2x<kπ+,k∈Z,即+<x<+,k∈Z;∴f(x)在(+,+)(k∈Z)上单调递减.故选A.11.C【解析】根据三角函数图象变化规律,只要把C上所有的点先向右平行移动个单位长度,可得函数y=3sin(x﹣+)=3sin(x﹣)的图象,∴再把y=3sin(x﹣)的图象所有点横坐标缩短到原来的倍,纵坐标不变.得到函数y=3sin(2x﹣)的图象,故选C.12.B【解析】A中f(x)=3x,显然满足f(x+y)=f(x)f(y),D中f(x)=显然满足f(xy)=f(x)f(y),C中f(x)=log2x,显然满足f(xy)=f(x)+f(y),B选项都不满足上述性质.故选B.二、填空题13.﹣【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故答案为﹣14.3【解析】原式=﹣lg103=﹣=3,故答案为3.15.【解析】∵a sinθ+cosθ=1,b sinθ﹣cosθ=1,∴a=,b=,∴ab=•===,故答案为.16.b<c<a【解析】f(x)是定义在(0,+∞)上的函数,对任意两个不相等的正数x1,x2,不妨假设0<x1 <x2,都有<0,即﹣=<0,即<,∴函数在(0,+∞)上是增函数.∵<logπ3<20.2,而a=,b==,c=,∴b<c<a,故答案为b<c<a.三、解答题17.解:全集U=R,集合A={x|﹣2≤x<4},集合B={x|x≥3},则∁U B={x|x<3},(1)∴A∪B={x|﹣2≤x<4}∪{x|x≥3},∴A∪B={x|﹣2≤x}.∴(∁U B)∩A={x|﹣2≤x<3}(2)∵集合B={x|x≥3},集合C={x∈R|x<a}.当a≤3时,B∩C=∅,(B∩C)⊆A满足题意,当a>3时,B∩C═{x|a>x≥3},∵(B∩C)⊆A满足a≤4.综上可得实数a的取值范围是(﹣∞,4].18.解:(1)函数f(x)=x2﹣ax,f′(x)=2x﹣a∵函数f(x)在[2,4]上具有单调性,∴f′(2)≥0,或f′(4)≤0.∴4﹣a≥0,或8﹣a≤0,解得a≤4,或a≥8.∴实数a的取值范围是(﹣∞,4]∪[8,+∞).(2)函数f(x)=x2﹣ax=﹣.①≥4,即a≥8时,函数f(x)在[2,4]上单调递减,∴f(x)min=f(4)=16﹣4a.②,即4<a<8时,函数f(x)在[2,)上单调递减,在(,4]上单调递增,∴f(x)min=f()=﹣=﹣.③≥2,即a≤4时,函数f(x)在[2,4]上单调递增,∴f(x)min=f(2)=4﹣2a.综上可得:h(a)=.19.解:(1)f(α)===﹣tanα.(2)f(α)=﹣2,可得tanα=2①==4;②sinαcosα==.20.解:(1)函数有意义,则:,求解关于实数x的不等式可得﹣1<x<1,所以函数的定义域是(﹣1,1),函数的定义域关于原点对称,且,故函数是奇函数;(2)此函数在定义域上是减函数,证明如下:任取x1,x2∈(﹣1,1)且x1<x2,则:,由于x1,x2∈(﹣1,1)且x1<x2,∴1﹣x1>1﹣x2>0,1+x2>1+x1>0,可得,所以,即有f(x1)﹣f(x2)>0,即f(x1)>f(x2),故函数在定义域是减函数.21.解:(1)水深和时间之间的对应关系,周期T=12.∴ω=,可知A=,h=.∴f(t)=sin(ωt+φ)+5.当t=3时f(3)=7.5.即sin(3×+φ)=1.∵|φ|<,∴φ=0.∴函数表达式为∴f(t)=sin t+5.(0<t≤24)(2)船底与水面的距离为4米,船底与洋底的距离2.25米,∴y≥6.25,即sin t+5≥6.25可得sin t.∴+2kπ≥+2kπ,k∈Z.解得:1≤t≤5或13≤t≤17.故得该船1≤t≤5或13≤t≤17.能进入港口满足安全要求.22.解:(1)由题意结合函数的奇偶性可得:,解方程可得:.(2)结合(1)的结论可得所给不等式即:,整理可得:,x∈[1,2],则,则函数的最大值为:,即实数a的取值范围是.(3)结合(1)的结论可得:,,故h(2x)=2h(x)g(x).结合函数的解析式计算可得:g(2k)⋅g(2n﹣k)=2h(2n)(k=1,2,3,…,n﹣1),则:===1.。

2018-2019学年高一上学期期末考试数学试卷(带答案)

2018-2019学年高一上学期期末考试数学试卷(带答案)

2018-2019学年高一上学期期末考试数学试题一、选择题1.已知集合{}1,2a A =,{},B a b =,若12A B ⎧⎫=⎨⎬⎩⎭,则A B =() 1A.,12b (,){1B.1,2⎫-⎬⎭}1.,12C ⎧⎨⎩{1D.1,,12⎫-⎬⎭ 2.已知向量,a b 满足=323a b =,,且()a a b ⊥+,则a 与b 的夹角为() πA.22πB.33πC.45πD.6 3.已知A 是ABC ∆的内角且sin 2cos 1A A +=-,则tan A =() 3A.4-4B.-33C.44D.34.若当x ∈R 时,函数()x f x a =始终满足0()1f x <≤,则函数1log ||a y x=的图象大致为()5.将函数)0()4sin()(>+=ωπωx x f 的图象向左平移π8个单位,所得到的函数图象关于y 轴对称,则函数)(x f 的最小正周期不可能是()πA.9πB.5C.πD.2π 6.已知⎩⎨⎧<+≥+=0),sin(0),cos()(x x x x x f βα是奇函数,则βα,的可能值为() πA.π,2αβ== πB.0,2αβ== πC.,π2αβ== πD.,02αβ== 7.设函数21()x f x x-=,则使得()(21)f x f x >-成立的x 的取值范围是() 1A.(,1)31B.(-,)(1,+)3∞∞111C.(,)(,1)3221D.(-,0)(0,)(1,+)3∞∞8.已知1260OA OB AOB OP OA OB λμ==∠==+,,,,22λμ+=,则OA 在OP 上的投影()A.既有最大值,又有最小值B.有最大值,没有最小值C.有最小值,没有最大值D.既无最大值,又无最小值9.在边长为1的正ABC ∆中,,,0,0BD xBA CE yCA x y ==>>且1x y +=,则CD BE ⋅的最大值为() 5A.-83B.-43C.-83D.-210.定义在R 上的偶函数)(x f 满足)2()(x f x f -=,当]1,0[∈x 时2()f x x =,则函数()|sin 2|()g x x f x π=-()在区间]25,21[-上的所有零点的和为() A.6B.7C.8D.10二、填空题函数)1(log )(2-=x x f 的定义域是. 12.计算:21log 32-+=;若632==b a R),∈b a (,则11a b +=. 13.已知(2,3),(1,)AB AC k ==-.若AB AC =,则k =;若,AB AC 的夹角为钝角,则k 的范围为.14.已知函数π()cos(2)3f x x =-,则3π()4f =; 若31)2(=x f ,ππ[,]22x ∈-,则πsin()3x -=.15.向量a 与b 的夹角为π3,若对任意的t ∈R ,a tb -的最小值为a =. 16.已知函数5,2,()22, 2.x x x f x a a x -+≤⎧=⎨++>⎩,其中0a >且1a ≠,若12a =时方程()f xb =有两个不同的实根,则实数b 的取值范围是;若()f x 的值域为[3,)+∞,则实数a 的取值范围是.17.若对任意的实数1a ≤-,恒有230b a b a ⋅--≥成立,则实数b 的取值范围为.三、解答题18.已知(cos ,sin ),(1,0),(4,4)a x x b c ===.(Ⅰ)若//()a c b -,求tan x ;(Ⅱ)求a b +的最大值,并求出对应的x 的值.19.已知函数π()sin()4f x A x =+,若(0)f =(Ⅰ)求A 的值;(Ⅱ)将函数()f x 的图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()g x 的图像.(i)写出()g x 的解析式和它的对称中心;(ii)若α为锐角,求使得不等式π()8g α-<成立的α的取值范围.20.已知函数π()2sin()(0,||)2f x x ωφωφ=+><,角ϕ的终边经过点)3,1(-P .若))(,()),(,(2211x f x B x f x A 是)(x f 的图象上任意两点,且当4|)()(|21=-x f x f 时,||21x x -的最小值为π3.(Ⅰ)求的值和ϕω;(Ⅱ)求函数)(x f 在[0,π]x ∈上的单调递减区间;(Ⅲ)当π[,]18x m ∈时,不等式02)()(2≤--x f x f 恒成立,求m 的最大值.21.已知函数mx x f x ++=)12(log )(24的图像经过点233(,+log 3)24P -. (Ⅰ)求m 值并判断()f x 的奇偶性;(Ⅱ)设)2(log )(4a x x g x ++=,若关于x 的方程)()(x g x f =在]2,2[-∈x 上有且只有一个解,求a 的取值范围.22.定义在R 上的函数x ax x f +=2)(.(Ⅰ)当0>a 时, 求证:对任意的12,x x ∈R 都有[])2()()(212121x x f x f x f +≥+成立; (Ⅱ)当[]2,0∈x 时,1)(≤x f 恒成立,求实数a 的取值范围;(Ⅲ)若14a =, 点2(,,)P m n m n ∈∈Z Z )(是函数()y f x =图象上的点,求,m n .【参考答案】一、选择题1.D2.D3.A4.B5.D6.C7.C8.B9.C 10.D二、填空题11.[)∞+,2 12.2,23 13.2332k k ±<≠-且 14.232,23-- 15.2 16.133,4() ,),1()1,21[+∞⋃ 17.1b ≤ 三、解答题 18.解:(Ⅰ)()4,3=-b c ,由()b c a -//得0sin 3cos 4=-x x ,34tan =∴x ; (II )()x x x b a cos 22sin 1cos 22+=++=+ , 当()2πx k k =∈Z 时,b a +的最大值为2.19.解:(Ⅰ)π(0)sin 42f A ==,3=A ;(II )(i)()π24g x x ⎛⎫=+ ⎪⎝⎭, 对称中心()ππ,082k k ⎛⎫-+∈ ⎪⎝⎭Z ,(ii)π282g αα⎛⎫-=< ⎪⎝⎭,即212sin <α α 为锐角,π5ππ012122αα∴<<<<或. 20.解:(Ⅰ)π2π2π, 3.33T φωω=-===, (II )π()2sin(3)3f x x =-.)(x f 的减区间是5π2π11π2π[,],183183k k k ++∈Z , [0,π]x ∈,取1,0=k 得减区间是5π11π17π[,][,π]181818和; (Ⅲ)ππππ[,],3[,3],18363x m x m ∈-∈--则又,2)(1≤≤-x f 得ππ7πππ3,,636182m m -<-≤<≤解得所以m 的最大值为π2. 21.解:(Ⅰ))(x f 的图象过点233(,+log 3)24-, 得到m 23)12(log 433log 342++=-,.21-=m 所以x x f x 21)12(log )(24-+=,且定义域为R , )(21)14log 21414log 21)12(log )(4424x f x x x x f x x x x =-+=++=++=--(, 则)(x f 是偶函数.(II )因为x x x x xx 214log 2log )14(log 21)14(log 4444+=-+=-+, 则方程化为x x xa x 214log )2(log 44+=++,得02142>+=++x x x a x , 化为x a x -=)21(,且在]2,2[-∈x 上单调递减, 所以使方程有唯一解时a 的范围是647≤≤-a . 22.解:(Ⅰ)[]2121212)1()()0224x x a x x f x f x f +-⎛⎫+-=≥ ⎪⎝⎭(, (II )112≤+≤-x ax 对(]2,0∈x 恒成立;2211xx a x x -≤≤--, ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛≤≤⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-x x a x x 111122对(]2,0∈x 恒成立. 3144a ∴-≤≤-; (Ⅲ)22221,(2)44,4m m n m n +=+-=,22)(22)4m n m n +-++=( (22)(22)24m n m n m +-+++=+为偶数, 2222m n m n ∴+-++,同奇同偶,222222222222m n m n m n m n +-=+-=-⎧⎧∴⎨⎨+-=+-=-⎩⎩或得0400m mn n==-⎧⎧⎨⎨==⎩⎩或.。

2018-2019学年山西省高一上学期期末数学试题(含答案解析)

2018-2019学年山西省高一上学期期末数学试题(含答案解析)

2018-2019学年山西省高一上学期期末数学试题一、单选题1.若集合{}|1A x x =>-,{}2,1,1,2B =--,则A B =I ( ) A .{}1,2 B .{}1,1,2-C .{}1x x -D .{}()2,11,---+∞U【答案】A【解析】根据集合的交集的概念得到结果即可. 【详解】{}|1A x x =>-Q ,{}2,1,1,2B =--,{}1,2A B ∴=I .故答案为A. 【点睛】本题考查了集合的交集的概念以及运算,属于简单题.2.如图,正方形ABCD 的边长为2,以正方形的每个顶点为圆心,1为半径作圆,在正方形内随机取一点,则此点取自阴影部分的概率是( )A .4π B .14π-C .14π- D .8π 【答案】B【解析】根据几何概型面积型的公式得到结果. 【详解】224ABCD S =⨯=Q 正方形,阴影部分的面积是正方形的面积减去整个圆的面积,故得到4S π=-阴影,4144P ππ-∴==-. 故答案为B. 【点睛】本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的. 3.下列两个变量具有正相关关系的是( ) A .正方形面积与边长 B .吸烟与健康C .数学成绩与物理成绩D .汽车的重量与汽车每消耗1L 汽油所行驶的平均路程 【答案】C【解析】相关关系是一种不确定关系,故A 不正确,B 两者呈负相关,C 成相关关系,D 负相关. 【详解】正方形的面积与边长是函数关系,∴A 选项错误;吸烟越多,越不健康,所以吸烟与健康具有负相关关系,∴B 选项错误;汽车越重,每消耗1L 汽油所行驶的平均路程越短,所以汽车的重量与汽车每消耗1L 汽油所行驶的平均路程具有负相关关系,∴D 选项错误;数学成绩越好,物理成绩也会越好,所以数学成绩与物理成绩具有正相关关系,C 正确. 故答案为C. 【点睛】这个题目考查了相关关系的概念以及负相关的概念,属于基础题. 4.执行下边的程序,若输入3n =,则输出S =( )A .6B .7C .8D .9【答案】C【解析】由题意,模拟执行程序,依次写出每次循环得到的i S 、的值,当满足i 3>时,退出循环,输出S 的值. 【详解】解:由题可知,1i =,2S =,2241S =⨯=; 2i =,3462S =⨯=;3i =,4683S =⨯=;4i =,输出8S =.故选:C. 【点睛】本题主要考查程序框图,求程序框图的输出结果,考查运算求解能力.5.下面是某实验中学157班第一小组5位同学的立定跳远、跳绳、800米跑的成绩折线图,则这5位同学立定跳远的中位数,跳绳的平均数,800米跑的众数分别是( )A .1.98,131,3.88B .1.87,130,3.88C .1.98,130,3.88D .1.98,130,3.65【答案】C【解析】根据中位数和平均数,众数的概念得到结果即可.【详解】由折线图中数据可得立定跳远的中位数为1.98, 跳绳的平均数为(1301)(1305)(1307)(1302)(1301)5-+++-++++13051305⨯==,800米跑的众数为3.88.故答案为C. 【点睛】这个题目考查了中位数,众数,平均数的概念属于简单题. 6.若A ,B 为互斥事件,则( ) A .()()1P A P B +< B .()()1P A P B +≤ C .()()1P A P B += D .()()1P A P B +>【答案】B【解析】因为A,B 互斥,但A,B 不一定对立,所以()()1P A P B +≤7.利用随机模拟方法计算如图所示阴影部分(1y =和2y x =所围成的部分)的面积,先利用计算机产生两组区间[]0,1内的均匀随机数,1a RAND =,1b RAND =;再进行平移和伸缩变换,下列变换能求出阴影面积的是( )A .()120.5a a =-,1b b =B .12a a =,1b b =C .1a a =,12b b =D .()120.5a a =-,12b b =【答案】A【解析】由题意可得[]10,1a ∈,[]1b 0,1∈,结合函数图像可得[]-1,1a ∈,[]b 0,1∈,结合各个选项判断可得答案. 【详解】解:将区间[]10,1x ∈上的数变换到[],x a b ∈上的公式为()1x a b a x =+-,因为[]10,1a ∈,[]1,1a ∈-,所以()120.5a a =-,[]1b 0,1∈且[]b 0,1∈ 故A 选项符合题意. 故选:A. 【点睛】本题主要考查用模拟方法估计概率,相对简单.8.用秦九韶算法求多项式()5424231x x f x x =+-+,当3x =时,3v =( )A .14B .42C .123D .143【答案】C【解析】:根据秦九韶算法,把多项式改写成如下形式:()()()()()420301f x x x x x x =++-++,将当3x =代入,可得3v 的值.【详解】解:根据秦九韶算法,把多项式改写成如下形式:()()()()()420301f x x x x x x =++-++,04v =,143214v =⨯+=,2143042v =⨯+=,34233123v =⨯-=,∴3123v =. 故选:C. 【点睛】本题是一道关于秦九韶算法的题目,解题的关键是掌握秦九韶算法的特征.9.已知实数a ,b ,c 满足01a b c <<<<,设log a m b =,log c n b =,log c p a =,则m ,n ,p 的大小关系是( ) A .m n p >> B .p n m >> C .n p m >> D .n m p >>【答案】B【解析】由01a b c <<<<,结合对数函数的单调性,可得m ,n ,p 的大小关系,可得答案. 【详解】解:由题意:01a b c <<<<,可得log log 1a a m b a =<=,1log log log c c c c b a =<<,所以p n m >>.故选:B.【点睛】本题主要考查函数值的大小比较,根据对数函数的单调性是解决本题的关键. 10.执行如图所示的程序框图,如果输入的1234x =,则输出的S 是( )A .14B .15C .16D .17【答案】A【解析】由题意,分析循环,依次写出每次循环得到的y z x 、、的值,当满足y=0时,退出循环,求出S 的值,输出S 的值. 【详解】解:由程序框图可知,1234x =,205y =,4z =,205x =,04z =,34y =,1z =,34x =,11z =,5y =,4z =,5x =,24z =,0y =,35z =.所以0123414514S z z z z =+++=+++=. 故选:A. 【点睛】本题主要考查程序框图的应用,考查分析问题解决问题的能力.11.下图是甲、乙两人六次综合测评成绩的茎叶图,其中一个数字被污损,已知x ∈N 且10x <,若甲、乙两人的平均数相同,则甲的方差是( )A .23B 23C .25D .5【答案】A【解析】由甲、乙两人的平均数相同,可得求出x 的值,可得甲的平均数,利用方差公式可得甲的方差. 【详解】解:由题可知,81011122021658192125x ++++++=+++++,解得2x =.所以甲的平均数为14, 甲的方差为()()()()()()22222221814111412141214201421146s ⎡⎤=-+-+-+-+-+-⎣⎦23=.故选:A. 【点睛】本题主要考查茎叶图及平均数、方差的求法,相对简单,属于基础题型. 12.已知函数()f x 是定义在()(),00,-∞⋃+∞上的偶函数,当0x >时,()12log 2,011,1x x f x x x +<<⎧⎪=⎨⎪+≥⎩,若方程()()20f x af x b ⎡⎤++=⎣⎦有且只有6个不同实数根,则实数a 的取值范围是( ) A .()4,+∞ B .[)4,+∞ C .(],4-∞- D .(),4-∞-【答案】D【解析】画出()f x 的图象,设()f x t =,则原方程为20t at b ++=,由图象可知方程20t at b ++=必有两个不同的实数根1t ,2t ,可得1t ,2t 的取值范围,由韦达定理可得a 的取值范围. 【详解】解:由题意知函数()f x 的图象如图所示,设()f x t =,则原方程为20t at b ++=,由图象可知方程20t at b ++=必有两个不同的实数根1t ,2t ,因为原方程有6个不同的实数根,所以12t =,22t >,由韦达定理可知12t t a +=-,所以22a -->,解得4a <-. 故选:D. 【点睛】本题考查利用函数的性质求参数的取值范围,考查数形结合的思想,属于中档题型.二、填空题13.72和168的最大公约数是______. 【答案】24【解析】利用辗转相除法可求得72和168的最大公约数. 【详解】解:由辗转相除法可知,16872224=⨯+,72243=⨯,所以,72和168的最大公约数是24. 故答案为:24. 【点睛】本题考查利用辗转相除法求公约数,熟练掌握辗转相除法是解题的关键.14.小明将本班的51个同学编号为01,02,03,…,51,并依次将其平分为17个小组,组号为1,2,…,17,现用系统抽样法抽取一个容量为17的样本,若样本中有一个同学的编号为46,则组号为6的小组中抽到的号码为______. 【答案】16【解析】依据题意每组3个人,再由系统抽样的概念得出结果即可. 【详解】解:因为46除以3余1,所以抽出的号码都是除以3余1的数,所以组号为6的小组中抽到的号码为()361116⨯-+=. 故答案为:16【点睛】本题主要考查系统抽样,熟悉系统抽样的性质是解题的关键,是基础题.15.记函数lg 1y x =-的定义域为D ,在区间[]3,5-上随机取一个数x ,则x D ∈的概率______.【答案】12【解析】求出函数的定义域,代入几何概型的概率计算公式可得答案. 【详解】解:由题可知y =(]0,4,区间长度为4,而区间[]3,5-的长度为8,所以概率是12. 故答案为:12【点睛】本题主要考查几何概型的概率计算及函数的定义域,相对不难.16.已知函数()()()24log 4log 2x x f x =⋅,1,84x ⎡⎤∈⎢⎥⎣⎦,则()f x 的最小值为______.【答案】18-【解析】将()f x 化简可得()22131log 228x f x ⎛⎫=+- ⎪⎝⎭,设2log x t =,可得[]2,3t ∈-,可得()f x 的最小值. 【详解】 解:由题可得()()()()2222211log 2log 1log 3log 222x f x x x x =++=++22131log 228x ⎛⎫=+- ⎪⎝⎭, 设2log x t =,则2131228y t ⎛⎫=+- ⎪⎝⎭,因为1,84x ⎡⎤∈⎢⎥⎣⎦,所以[]2,3t ∈-. 当32t =-时,y 取得最小值18-,故()f x 的最小值为18-.故答案为:18-. 【点睛】本题主要考查换元法及二次函数、对数函数的性质,需注意新变量的取值范围.三、解答题17.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x 的值.【答案】(1) 22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩当0x =时,y 无解.(2) 2x =-.【解析】(1)根据框图得到函数解析式;(2)结合第一问得到的函数表达式,分情况得到x 值即可. 【详解】(1)函数解析式为22,0log ,042,4x x x y x x x ⎧<⎪=<≤⎨⎪>⎩,当0x =时,y 无解.(2)当0x <时,24x =,2x =-或2(舍). 当04x ≤≤时,2log 4x =,解得16x =(舍). 当4x >时,24x =,解得2x =(舍) 所以2x =- 【点睛】这个题目考查了程序框图的应用,以及分段函数的应用;解决分段函数求值问题的策略:(1)在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f (f (f (a )))的值时,一般要遵循由里向外逐层计算的原则.18.已知一个口袋有3个白球,1个黑球,这些球除颜色外全部相同,现将口袋中的球随机逐个取出,并依次放入编号为1,2,3,4的抽屉内. (1)求编号为2的抽屉内放黑球的概率;(2)口袋中的球放入抽屉后,随机取出两个抽屉中的球,求取出的两个球是一黑一白的概率. 【答案】(1) 14P =.(2) 12P =. 【解析】(1)4个球放入编号为1,2,3,4的抽屉里,有4种方法,满足题意的有1中,根据古典概型公式得到结果;(2)根据抽屉的编号,对于一种确定的放法,取法有6种情况,满足一白一黑的有3种情况,进而得到结果. 【详解】(1)将口袋中的3个白球,1个黑球,依次放入编号为1,2,3,4的抽屉内,共有4种不同的放法,分别是(白,白,白,黑),(白,白,黑,白),(白,黑,白,白),(黑,白,白,白),其中编号为2的抽屉内放黑球的情况有1种,所以编号为2的抽屉内放黑球的概率为14P =. (2)假设口袋内的球逐个依次取出放入抽屉内后是(白,白,白,黑),随机取出两个球,根据抽屉的编号,可能是()1,2,()1,3,()1,4,()2,3,()2,4,()3,4共6种,其中一黑一白的是()1,4,()2,4,()3,4共3种,所以取出的两个球是一黑一白的概率为12P =. 【点睛】本题考查了古典概型公式的应用,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:万元)对年销售量y (单位:t )的影响,对近4年的年宣传费i x 和年销售量(),2,3,4i y i l =作了初步统计和处理,得到的数据如下:4152.5i ii x y==∑,42154i i x ==∑.(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程ˆˆˆybx a =+; (3)若公司计划下一年度投入宣传费万元,试预测年销售量y 的值.参考公式1221ˆˆˆni i i nii x y ny b x nx ay bx ==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 【答案】(1)见解析.(2) ˆ0.7 1.05yx =+.(3) 5.25t . 【解析】(1)根据题干中所给的数据得到散点图;(2)根据公式以及题干中的数据得到0.7b ∧=,ˆ 1.05a=进而得到回归方程;(3)将6x =代入回归直线方程得到预测值. 【详解】(1)表中数据的散点图为:(2)由表中数据得 3.5x -=, 3.5y = , 因为4152.5i i i x y ==∑,42154i i x ==∑,将上述数据代入公式得0.7b ∧=,ˆ 1.05a=, 所以回归直线方程为ˆ0.7 1.05yx =+. (3)将6x =代入回归直线方程,得ˆ0.76 1.05 5.25y=⨯+=, 所以预测年销售量是5.25t . 【点睛】本题考查回归分析,回归方程的计算;考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值20.随着手机的普及,大学生迷恋手机的现象非常严重.为了调查双休日大学生使用手机的时间,某机构采用不记名方式随机调查了使用手机时间不超过10小时的50名大学生,将50人使用手机的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到下表,根据数据完成下列问题: 使用时间/时 (]0,2(]2,4(]4,6(]6,8(]8,10大学生/人 51015128(1)完成频率分布直方图,并根据频率分布直方图估计大学生使用手机时间的中位数(保留小数点后两位);(2)用分层抽样的方法从使用手机时间在区间(]0,2,(]2,4,(]4,6的大学生中抽取6人,再从这6人中随机抽取2人,求这2人取自不同使用时间区间的概率. 【答案】(1)频率分布直方图见解析,中位数约为5.33小时;(2)1115【解析】(1)根据题中数据,完成频率分布表,可完成频率分布直方图,设中位数为x ,则()()0.050.1020.1540.5x +⨯+⨯-=,可得中位数;(2)分别求出从6人中随机抽取2人总的事件数及2人取自不同使用时间区间的事件数,由古典概型公式可得概率. 【详解】解:(1)根据题意,可将数据做如下整理: 使用时间/时 (]0,2(]2,4(]4,6(]6,8(]8,10大学生/人 5 10 15 12 8 频率 0.1 0.2 0.3 0.24 0.16 频率/组距 0.050.10.150.120.08设中位数为x ,则()()0.050.1020.1540.5x +⨯+⨯-=,解得 5.33x =. ∴大学生每天使用手机时间的中位数约为5.33小时.(2)用分层抽样的方法从使用时间在区间(]0,2,(]2,4,(]4,6中抽取的人数分别为1,2,3,分别设为a ,1b ,2b ,1c ,2c ,3c ,所有的基本事件为1ab ,2ab ,1ac ,2ac ,3ac ,12b b ,11b c ,12b c ,13b c ,21b c ,22b c ,23b c ,12c c ,13c c ,23c c ,这2名大学生取自同一时间区间的基本事件12b b ,12c c ,13c c ,23c c ,设这2名大学生取自不同使用时间区间为事件A ,符合条件的总事件数为15,在同一区间内的情形有4种情况,∴()41111515P A =-=, 故这2名年轻人取自不同使用时间区间的概率为1115..【点睛】本题考查了频率分布直方图及系统抽样的相关性质,考查了分层抽样的使用及概率的求法,考查了推理与计算能力,是中档题.21.已知函数()(lg x f x =+.(1)判断函数()f x 的奇偶性;(2)若()()1210f m f m -++≤,求实数m 的取值范围. 【答案】(1)奇函数;(2)(],2-∞-【解析】(1)根据函数奇偶性的定义,求出函数的定义域及()f x 与()f x -的关系,可得答案;(2)由(1)知函数()f x 是奇函数,将原不等式化简为()()121f m f m -≤--,判断出()f x 的单调性,可得关于m 的不等式,可得m 的取值范围. 【详解】解:(1)函数()f x 的定义域是R ,因为()(lg f x x -=-+,所以()()((lg lg lg10x x f x f x =+-=-=+,即()()f x f x -=-,所以函数()f x 是奇函数.(2)由(1)知函数()f x 是奇函数,所以()()()12121f m f m f m -≤-+=--,设lg y u =,u x =,x ∈R .因为lg y u =是增函数,由定义法可证u x =在R 上是增函数,则函数()f x 是R 上的增函数.所以121m m -≤--,解得2m ≤-,故实数m 的取值范围是(],2-∞-. 【点睛】本题主要考查函数的单调性、奇偶性的综合应用,属于中档题. 22.已知函数()()()F x f x g x =-.(1)若函数()f x x =,()222g x x x =+-,求函数()F x 的零点;(2)若函数()21f x ax =-,()ln g x x =,函数()F x 在区间1,1e ⎡⎤⎢⎥⎣⎦上有且仅有两个零点0x 和0ex ,求实数a 的取值范围.【答案】(1) 2-和1.(2) 2221,11e e e ⎡⎤⎢⎥--⎣⎦. 【解析】(1)解二次方程即可得到零点;(2)当0a =时,()1ln F x x =--是单调函数,故不存在两个零点,当0a ≠时,由题可得()20022001ln 1ln ax x ae x ex ⎧-=⎪⎨-=⎪⎩化简得到()20211x a e =-,根据2021,1x e ⎡⎤∈⎢⎥⎣⎦得到参数范围. 【详解】(1)由题意知2220x x x --+=即220x x +-= ,解得2x =-或1x =. 所以函数()F x 的零点是2-和1.(2)当0a =时,()1ln F x x =--单调递减,在区间1,1e ⎡⎤⎢⎥⎣⎦上不存在两个零点.当0a ≠时,由题可得()20022001ln 1ln ax x ae x ex ⎧-=⎪⎨-=⎪⎩因为()00ln ln 1ex x =+,所以2220111ae x ax -=-+,解得()20211x a e =-.因为01,1x e ⎡⎤∈⎢⎥⎣⎦,所以2021,1x e ⎡⎤∈⎢⎥⎣⎦,即()221111e a e ≤≤-. 所以()2211a e e ≤-≤,解得222111e a e e ≤≤--. 故实数a 的取值范围是2221,11e e e ⎡⎤⎢⎥--⎣⎦. 【点睛】研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.。

2018—2019学年上期期末考试

2018—2019学年上期期末考试

2018—2019学年上期期末考试高一数学参考答案一、选择题(每小题5分,共60分)1.D 2.C 3.B 4.A 5.D 6.A7.B 8.A 9.D 10.C 11.C 12.B二、填空题(每小题5分,共20分)13.33 14.()6122=+−y x 15.3 16.②三、解答题(本题共6小题,共70分)17.解:当1−=a 时,直线1l 的斜率不存在,直线2l 的斜率为21,1l 与2l 既不平行,也不垂直............2分当1−≠a 时,直线1l 的斜率为a +−11,直线2l 的斜率为2a −...........4分 因为21//l l ,所以211a a −=+−,解得21−==a a 或.当1=a 时,直线,021=+y x l :062:2=++y x l ,1l 与2l 平行当2−=a 时,直线1l 与2l 的方程都是,03=−−y x 此时两直线重合,.........6分 故1=a ...........7分(1)因为21l l ⊥,所以1211−=⎪⎭⎫ ⎝⎛−⨯⎪⎭⎫ ⎝⎛+−a a ,解得.32−=a ..........9分 经检验32−=a 符合题意,故.32−=a ............10分 18.解:(1)由⎩⎨⎧>>−,0,05x x 得50<<x ,所以{}50<<=x x B . ............2分 因为{}31<<=x x A ,{}31≥≤=x x x A C R ,或............4分 所以(){}.5310<≤≤<=x x x B A C R ,或 .......6分 (2)因为C C A = ,所以A C ⊆,分两种情况讨论....7分当Φ=C 时,由m m ≥−12,解得.1≥m ............9分当Φ≠C 时,由⎪⎩⎪⎨⎧≤≥−<−,3,112,12m m m m 此不等式组无解......11分故实数m 的取值范围是[)+∞,1............12分19.解:(1)当直线l 的斜率不存在时,直线l 的方程为4=x ,满足题意........2分 当直线l 的斜率存在时,设直线l 的方程为()42−=+x k y ,即024=−−−k y kx , 则()41241022=−+−−−k k ,解得247=k , 此时直线l 的方程为.076247=−−y x ............5分所以直线l 的方程为4=x 或.076247=−−y x ............6分(2)当直线l 的倾斜角为 135时,直线l 的方程为()42−−=+x y ,即.02=−+y x ............8分圆心()1,0M 到直线l 的距离为221121022=+−+=d .......10分 所以直线l 被圆M 所截得的弦长.62221622222=⎪⎪⎭⎫ ⎝⎛−=−d r ..........12分 20.解:(1)在长方体1111D C B A ABCD −中,因为11//D A BC ,11D A BC =,所以四边形11BCD A 是平行四边形,11//CD B A ........2分又11ACD B A 平面⊄,,平面11ACD CD ⊂...........4分所以直线//1B A 平面.1ACD ...........6分(2)因为三棱锥BCD D −1的所有顶点所在的球面与长方体1111D C B A ABCD −的八个顶点所在的球面相同,...........8分 这个球的直径7322221221=++=++==AA BC AB BD R ,半径27=R ............10分 所以所求球的体积为.677343ππ==R V .........12分21.解:(1)根据题意,得(](](]⎪⎩⎪⎨⎧∈∈−∈∈∈∈+=***.12,8,10240,8,4,160,4,0,10110N t t t N t t N t t t A 且且且...........6分(2)因为每件销售利润=售价−进价,所以B A R −=,当(]*∈∈N t t 且4,0时,304+=t R ,4=t 时,46max =R ............8分当(]*∈∈N t t 且8,4时,.56=R ..........9分 当(]*∈∈N t t 且12,8时,t R 10136−=,9=t 时,46max =R .............11分故该服装第5,6,7,8周每件销售利润R 最大,最大值是56元............12分 22.解:(1)因为数()x kx x f +=22(k 为实常数)为奇函数,所以()()x f x f −=−,即x kx x kx −−=−2222,所以.0=k ...........2分(2)()()11+=+=x x f a a x g ...........3分当1>a 时,()x g 在[]1,2−上是增函数,()x g 的最大值()11+=a g ,()x g 的最小值()1122+=−ag ............5分 当10<<a 时,()x g 在[]1,2−上是减函数, ()x g 的最大值()1122+=−a g ,()x g 的最小值()11+=a g .............7分 (3)当2=a 时,()12+=x x g 在[]0,1−上是增函数,()()20=≤g x g .........9分所以232≥+−mt ,即012≤−mt 对所有的[]1,1−∈m 恒成立..........10分令()12−=tm m h ,则()()⎩⎨⎧≤≤−,01,01h h 即⎩⎨⎧≤−≤−−,012,012t t 解得2121≤≤−t , 实数t 的取值范围是⎥⎦⎤⎢⎣⎡−21,21...........12分。

【优质文档】2018–2019学年度高一数学第一学期期末检测试卷(一)(必修1+必修2)含解析

【优质文档】2018–2019学年度高一数学第一学期期末检测试卷(一)(必修1+必修2)含解析


A. x+y+1=0 C. x+y+1=0 或 4x﹣ 3y=0
B.4x﹣ 3y=0 D. 4x+3y=0 或 x+y+1=0
第 3 页 共 16 页
A、 M =N B、 M N 【答案】 A
C、M N D、M N=
【解析】 x y 0且xy 0 x 0, y 0 故选 A
2.已知图①中的图象对应的函数为 y=f( x) ,则图②的图象对应的函数为 ( ) .
第 1 页 共 16 页
A. y f x
B. y f x
C. y f x D. y f x
根落在区间( 1.25 ,1.5 ),选 B. 学科 =网
考点:本题主要考查函数零点存在定理。
点评:简单题,函数零点存在定理要求,区间端点函数值异号。
4.函数 y ex e x x 1 的图象大致是( ) x
A.
B.
C.
D.
【答案】 D
第 2 页 共 16 页
5 . 已 知 g x 是 R 上 的 奇 函 数 , 当 x 0 时 , g x ln 1 x , 函 数
绝密★启用前
2018–2019 学年度高一数学第一学期期末检测试卷(一)
数学
全卷满分 150 分,考试时间 120 分钟。
★祝考试顺利 ★
注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上。并将准考证号条形码
粘贴在答题卡上的指定位置。 2.选择题作答用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦
台体的体积公式 台体
,其中 分别是台体上、下底面的面积, 是台体的
高. 第 I 卷(选择题 60 分)

2018-2019学年高一上学期期末考试化学试题(答案+解析)

2018-2019学年高一上学期期末考试化学试题(答案+解析)

2018-2019学年高一上学期期末考试数学试题一、选择题(本大题共12小题,共60.0分)1.满足2,的集合A的个数是A. 2B. 3C. 4D. 8【答案】C【解析】由题意,可得满足2,的集合A为:,,,2,,共4个.故选:C.2.已知幂函数的图像过点,若,则实数的值为()A. B. C. D.【答案】D【解析】依题意有2=4a,得a=,所以,当时,m=9.3.的值是A. B. C. D.【答案】A【解析】.4.已知直线:,:,:,若且,则的值为A. B. 10 C. D. 2【答案】C【解析】由题意,直线:,:,:,因为且,所以,且,解得,,所以.故选:C.5.已知2a=5b=,则+=()A. B. 1 C. D. 2【答案】D【解析】∵2a=5b=,∴a=log2,b=log5,利用换底公式可得:+=2+5=10=2.6.如图,已知正方体中,异面直线与所成的角的大小是A. B. C. D.【答案】C【解析】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是.故选:C.7.已知,则()A. B. C. D.【答案】D【解析】=,故选D.8.设,是两条不同的直线,,是两个不同的平面,下列命题中正确的是()A. 若,,,则B. 若,,,则C. 若,,,则D. 若,,,则【答案】D【解析】,,故选D.9.已知函数,则()A. 1B.C. 2D. 0【答案】C【解析】由题意,函数,.故选:C.10.若存在正数x使成立,则a的取值范围是A. B.C. D.【答案】D【解析】根据题意,,设,由基本初等函数的性质,得则函数在R上为增函数,且,则在上,恒成立;若存在正数x使成立,即有正实数解,必有;即a的取值范围为;故选:D.11.如图,有一个水平放置的透明无盖的正方体容器,容器高4cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为3cm,如果不计容器的厚度,则球的体积为A. B. C. D.【答案】A【解析】设球的半径为R,设正方体上底面截球所得截面圆恰好为上底面正方形的内切圆,该圆的半径为,且该截面圆圆心到水面的距离为1cm,即球心到截面圆圆心的距离为,由勾股定理可得,解得,因此,球的体积为.故选:A.12.已知是定义在R上的单调函数,满足,且,若,则a与b的关系是A. B. C. D.【答案】A【解析】根据题意,是定义在R上的单调函数,满足,则为常数,设,则,又由,即,则有,解可得,则,若,即,则,若,必有,则有,又由,则,解可得,即,所以,故选:A.二、填空题(本大题共4小题,共20.0分)13.函数的定义域为___________。

山东省2018-2019年高一(上)期末数学试卷(含答案解析)

山东省2018-2019年高一(上)期末数学试卷(含答案解析)

高一(上)期末数学试卷一.选择题(5&#215;12=60分,每题只有一个正确答案,涂到答题卡上)1.(5分)已知集合A{x|x<﹣1或x>1},B={x|log2x>0},则A∩B=()A.{x|x>1}B.{x|x>0}C.{x|x<﹣1}D.{x|x<﹣1或x>1} 2.(5分)方程x3﹣x﹣3=0的实数解落在的区间是()A.[﹣1,0]B.[0,1]C.[1,2]D.[2,3]3.(5分)设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c4.(5分)已知a>1,函数y=a x与y=log a(﹣x)的图象只可能是()A.B.C.D.5.(5分)已知三条不重合的直线m、n、l与两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若l⊥α,m⊥β,且l∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确的命题个数是()A.1 B.2 C.3 D.46.(5分)一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为()A.3 B.4 C.5 D.67.(5分)圆x2+y2=4上的点到直线4x﹣3y+25=0的距离的最大值是()A.3 B.5 C.7 D.98.(5分)设f(x)=lgx+x﹣3,用二分法求方程lgx+x﹣3=0在(2,3)内近似解的过程中得f(2.25)<0,f(2.75)>0,f(2.5)<0,f(3)>0,则方程的根落在区间()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)9.(5分)实数﹣•+lg4+2lg5的值为()A.25 B.28 C.32 D.3310.(5分)函数f(x)=a x+log a(x+1)(a>0,且a≠1)在[0,1]上的最大值和最小值之和为a,则a的值为()A.B.C.2 D.411.(5分)已知定义在R上的函数y=f(x)满足下列条件:①对任意的x∈R都有f(x+2)=f(x);②若0≤x1<x2≤1,都有f(x1)>f(x2);③y=f(x+1)是偶函数,则下列不等式中正确的是()A.f(7.8)<f(5.5)<f(﹣2)B.f(5.5)<f(7.8)<f(﹣2)C.f(﹣2)<f(5.5)<f(7.8)D.f(5.5)<f(﹣2)<f(7.8)12.(5分)给出下列4个判断:①若f(x)=x2﹣2ax在[1,+∞)上增函数,则a=1;②函数f(x)=2x﹣x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2﹣x的图象关于y轴对称.其中正确命题的序号是()A.①②B.②③C.③④D.①④二.填空题(4&#215;5=20分,填到答题纸上)13.(5分)执行如图所示的程序框图,若p=0.8,则输出的n=.14.(5分)函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x,那么,=.15.(5分)过点P(2,3),并且在两轴上的截距相等的直线方程为.16.(5分)某同学在研究函数f (x)=(x∈R)时,分别给出下面几个结论:①等式f(﹣x)+f(x)=0在x∈R时恒成立;②函数 f (x)的值域为(﹣1,1);③若x1≠x2,则一定有f (x1)≠f (x2);④方程f(x)﹣x=0有三个实数根.其中正确结论的序号有.(请将你认为正确的结论的序号都填上)三、解答题17.(10分)已知A={x|x2﹣3x+2=0},B={x|ax﹣2=0},且A∪B=A,求实数a组成的集合C.18.(12分)为了了解某市开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区抽取5个工厂进行调查.已知这三个区分别有9,18,18个工厂.(1)求从A、B、C三个区中分别抽取的工厂的个数.(2)若从抽得的5个工厂中随机地抽取2个进行调查结果的比较,计算这2个工厂中至少有一个来自C区的概率.19.(12分)△ABC的三个顶点分别为A(﹣3,0),B(2,1),C(﹣2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.20.(12分)如图所示,四棱锥P﹣ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.求证:(1)BC∥平面EFG;(2)平面EFG⊥平面PAB.21.(12分)已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心C 在直线x+3y﹣15=0上.(Ⅰ)求圆C的方程;(Ⅱ)设点P在圆C上,求△PAB的面积的最大值.22.(12分)已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.(Ⅰ)求函数g(x)的解析式;(Ⅱ)设f(x)=.若f(2x)﹣k•2x≤0在x∈[﹣3,3]时恒成立,求k 的取值范围.参考答案与试题解析一.选择题(5&#215;12=60分,每题只有一个正确答案,涂到答题卡上)1.(5分)已知集合A{x|x<﹣1或x>1},B={x|log2x>0},则A∩B=()A.{x|x>1}B.{x|x>0}C.{x|x<﹣1}D.{x|x<﹣1或x>1}【解答】解:由对数函数的性质,易得B={x|x>1},又有A={x|x<﹣1或x>1},结合交集的运算,可得A∩B={x|x>1},故选A.2.(5分)方程x3﹣x﹣3=0的实数解落在的区间是()A.[﹣1,0]B.[0,1]C.[1,2]D.[2,3]【解答】解:令f(x)=x3﹣x﹣3,易知函数f(x)=x3﹣x﹣3在R上连续,f(1)=﹣3<0,f(2)=8﹣2﹣3=3>0;故f(1)•f(2)<0,故函数f(x)=x3﹣x﹣3的零点所在的区间为[1,2];故选C.3.(5分)设a=log54,b=(log53)2,c=log45,则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c【解答】解:∵a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,∴c最大,排除A、B;又因为a、b∈(0,1),所以a>b,故选D.4.(5分)已知a>1,函数y=a x与y=log a(﹣x)的图象只可能是()A.B.C.D.【解答】解:已知a>1,故函数y=a x是增函数.而函数y=log a(﹣x)的定义域为(﹣∞,0),且在定义域内为减函数,故选B.5.(5分)已知三条不重合的直线m、n、l与两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若l⊥α,m⊥β,且l∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确的命题个数是()A.1 B.2 C.3 D.4【解答】解:对于①,若m∥n,n⊂α,则m∥α或m⊂α,①不正确;对于②,若l⊥α,m⊥β且l∥m,则α∥β,显然成立;对于③,若m⊂α,n⊂α,m∥β,n∥β,则α∥β,由面面平行的判定定理知它是不正确的;对于④,若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α,由面面垂直的性质定理知它是正确的;综上所述,正确命题的个数为2,故选B.6.(5分)一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为()A.3 B.4 C.5 D.6【解答】解:每个个体被抽到的概率等于=,32×=4,故选B.7.(5分)圆x2+y2=4上的点到直线4x﹣3y+25=0的距离的最大值是()A.3 B.5 C.7 D.9【解答】解:圆x2+y2=4的圆心O(0,0),半径r=2,圆心O(0,0)到直线4x﹣3y+25=0的距离d==5,∴圆x2+y2=4上的点到直线4x﹣3y+25=0的距离的最大值为:d+r=5+2=7.故选:C.8.(5分)设f(x)=lgx+x﹣3,用二分法求方程lgx+x﹣3=0在(2,3)内近似解的过程中得f(2.25)<0,f(2.75)>0,f(2.5)<0,f(3)>0,则方程的根落在区间()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)【解答】解析:∵f(2.5)•f(2.75)<0,由零点存在定理,得,∴方程的根落在区间(2.5,2.75).故选C.9.(5分)实数﹣•+lg4+2lg5的值为()A.25 B.28 C.32 D.33【解答】解:﹣•+lg4+2lg5=﹣2×(﹣2)+lg(4×25)=27+4+2=33,故选D.10.(5分)函数f(x)=a x+log a(x+1)(a>0,且a≠1)在[0,1]上的最大值和最小值之和为a,则a的值为()A.B.C.2 D.4【解答】解:y=a x,y=log a(x+1)(a>0,且a≠1)在[0,1]上单调性相同,可得函数f(x)在[0,1]的最值之和为f(0)+f(1)=1+a+log a2=a,即有log a2=﹣1,解得a=,故选B.11.(5分)已知定义在R上的函数y=f(x)满足下列条件:①对任意的x∈R都有f(x+2)=f(x);②若0≤x1<x2≤1,都有f(x1)>f(x2);③y=f(x+1)是偶函数,则下列不等式中正确的是()A.f(7.8)<f(5.5)<f(﹣2)B.f(5.5)<f(7.8)<f(﹣2)C.f(﹣2)<f(5.5)<f(7.8)D.f(5.5)<f(﹣2)<f(7.8)【解答】解:∵对任意的x∈R都有f(x+2)=f(x),∴函数是以2为周期的周期函数;根据若0≤x1<x2≤1,都有f(x1)>f(x2),函数在区间[0,1]上是减函数;∵y=f(x+1)是偶函数,∴f(﹣x+1)=f(x+1),其图象关于x=1直线对称,∴f(﹣2)=f(0);f(7.8)=f(6+1.8)=f(1.8)=f(0.8+1)=f(﹣0.8+1)=f(0.2);f(5.5)=f(4+1.5)=f(1.5)=f(0.5+1)=f(﹣0.5+1)=f(0.5);∵0≤x1<x2≤1,都有f(x1)>f(x2);∴f(﹣2)>f(7.8)>f(5.5).故选B12.(5分)给出下列4个判断:①若f(x)=x2﹣2ax在[1,+∞)上增函数,则a=1;②函数f(x)=2x﹣x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2﹣x的图象关于y轴对称.其中正确命题的序号是()A.①②B.②③C.③④D.①④【解答】解:①二次函数的对称轴为x=a,要使函数在[1,+∞)上是增函数,则a≤1,所以①错误.②令f(x)=2x﹣x2=0,分别作出y=x2,y=2x的图象,由图象观察,x<0有一个交点,x>0时,x=2,4两个交点,共3个交点,故②错.③因为|x|≥0,所以y=2|x|≥20=1,所以函数y=2|x|的最小值是1,所以③正确.④与函数y=2x图象关于y轴对称的函数为y=2﹣x,所以④正确.故选:C二.填空题(4&#215;5=20分,填到答题纸上)13.(5分)执行如图所示的程序框图,若p=0.8,则输出的n=4.【解答】解:根据流程图所示的顺序,该程序的作用是判断S=>0.8时,n+1的值.当n=2时,当n=3时,,此时n+1=4.故答案为:414.(5分)函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x,那么,=﹣3.【解答】解:∵函数f(x)是定义在R上的奇函数∴=﹣f(log23)∵x∈(0,+∞)时,f(x)=2x,∴f(log23)=2log23=3∴=﹣3故答案为:﹣315.(5分)过点P(2,3),并且在两轴上的截距相等的直线方程为x+y﹣5=0,或3x﹣2y=0.【解答】解:若直线的截距不为0,可设为,把P(2,3)代入,得,,a=5,直线方程为x+y﹣5=0若直线的截距为0,可设为y=kx,把P(2,3)代入,得3=2k,k=,直线方程为3x﹣2y=0∴所求直线方程为x+y﹣5=0,或3x﹣2y=0故答案为x+y﹣5=0,或3x﹣2y=016.(5分)某同学在研究函数f (x)=(x∈R)时,分别给出下面几个结论:①等式f(﹣x)+f(x)=0在x∈R时恒成立;②函数 f (x)的值域为(﹣1,1);③若x1≠x2,则一定有f (x1)≠f (x2);④方程f(x)﹣x=0有三个实数根.其中正确结论的序号有①②③.(请将你认为正确的结论的序号都填上)【解答】解:①∴正确②当x>0时,f(x)=∈(0,1)由①知当x<0时,f(x)∈(﹣1,0)x=0时,f(x)=0∴f(x)∈(﹣1,1)正确;③则当x>0时,f(x)=反比例函数的单调性可知,f(x)在(0,+∞)上是增函数再由①知f(x)在(﹣∞,0)上也是增函数,正确④由③知f(x)的图象与y=x只有一个交点(0,0).不正确.故答案为:①②③.三、解答题17.(10分)已知A={x|x2﹣3x+2=0},B={x|ax﹣2=0},且A∪B=A,求实数a组成的集合C.【解答】解:∵A={x|x2﹣3x+2=0}={1,2},B={x|ax﹣2﹣0},且A∪B=A,∴B⊆A,当B=∅时,a=0,成立;当B≠∅时,B={},此时或=2,解得a=2或a=1.∴实数a组成的集合C={0,1,2}.18.(12分)为了了解某市开展群众体育活动的情况,拟采用分层抽样的方法从A、B、C三个区抽取5个工厂进行调查.已知这三个区分别有9,18,18个工厂.(1)求从A、B、C三个区中分别抽取的工厂的个数.(2)若从抽得的5个工厂中随机地抽取2个进行调查结果的比较,计算这2个工厂中至少有一个来自C区的概率.【解答】解:(1)工厂总数为9+18+18=45,样本容量与总体中的个体数比为,所以从A,B,C三个区中应分别抽取的工厂个数为:A区:1个B区:2个C区:2个…(3分)(2)抽得的5个工厂分别记作A,B1,B2,C1,C2列举:(A1,B1)(A1,B2)(A1,C1)(A1,C2)(B1,B2)(B1,C1)(B1,C2)(B2,C1)(B2,C2)(C1,C2)共10种,∴…(6分)19.(12分)△ABC的三个顶点分别为A(﹣3,0),B(2,1),C(﹣2,3),求:(1)BC边所在直线的方程;(2)BC边上中线AD所在直线的方程;(3)BC边的垂直平分线DE的方程.【解答】解:(1)BC边所在直线的方程为:y﹣1=(x﹣2),化为:x+2y﹣4=0.(2)线段BC的中点D(0,2),可得BC边上中线AD所在直线的方程:=1,化为:2x﹣3y+6=0.(3)k DE=﹣=2.∴BC边的垂直平分线DE的方程为:y=2x+2.20.(12分)如图所示,四棱锥P﹣ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.求证:(1)BC∥平面EFG;(2)平面EFG⊥平面PAB.【解答】(1)证明:∵E,F分别是线段PA、PD的中点,∴EF∥AD.…(2分)又∵ABCD为正方形,∴BC∥AD,∴EF∥BC.…(4分)又∵BC⊄平面EFG,EF⊂平面EFG,∴BC∥平面EFG.…(6分)(2)证明:∵PA⊥AD,又EF∥AD,∴PA⊥EF.…(8分)又ABCD为正方形,∴AB⊥EF,又PA∩AB=A,∴EF⊥平面PAB,…(10分)又EF⊂平面EFG,∴平面EFG⊥平面PAB.…(12分)21.(12分)已知以点C为圆心的圆经过点A(﹣1,0)和B(3,4),且圆心C 在直线x+3y﹣15=0上.(Ⅰ)求圆C的方程;(Ⅱ)设点P在圆C上,求△PAB的面积的最大值.【解答】解:(Ⅰ)题意所求圆的圆心C为AB的垂直平分线和直线x+3y﹣15=0的交点,∵AB的中点为(1,2),斜率为k==1,∴AB的垂直平分线的方程为y﹣2=﹣(x﹣1),即y=﹣x+3,联立,解得,即圆心C(﹣3,6),∴半径r==2,所求圆C的方程为(x+3)2+(y﹣6)2=40;(Ⅱ)∵点P在圆C上,设P(﹣3+2cosθ,6+2sinθ),∵点A(﹣1,0)和B(3,4),∴AB==4,直线AB为:,即x﹣y+1=0.点P(﹣3+2cosθ,6+2sinθ)到直线x﹣y+1=0的距离:d==,∴当=时,d max=4,∴△PAB的面积的最大值:S===16+.22.(12分)已知二次函数g(x)=mx2﹣2mx+n+1(m>0)在区间[0,3]上有最大值4,最小值0.(Ⅰ)求函数g(x)的解析式;(Ⅱ)设f(x)=.若f(2x)﹣k•2x≤0在x∈[﹣3,3]时恒成立,求k 的取值范围.【解答】解:(Ⅰ)∵g(x)=m(x﹣1)2﹣m+1+n∴函数g(x)的图象的对称轴方程为x=1∵m>0依题意得,即,解得∴g(x)=x2﹣2x+1,(Ⅱ)∵∴,∵f(2x)﹣k•2x≤0在x∈[﹣3,3]时恒成立,即在x∈[﹣3,3]时恒成立∴在x∈[﹣3,3]时恒成立只需令,由x∈[﹣3,3]得设h(t)=t2﹣4t+1∵h(t)=t2﹣4t+1=(t﹣2)2﹣3∴函数h(x)的图象的对称轴方程为t=2当t=8时,取得最大值33.∴k≥h(t)max=h(8)=33∴k的取值范围为[33,+∞).。

2018-2019学高一上期末期末考试数学试卷(答案+解析)

2018-2019学高一上期末期末考试数学试卷(答案+解析)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数是()A.y=x2+1 B.y=2x C.y=x+D.y=﹣x2+12.(5分)若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线都与直线l异面B.α内不存在与直线l平行的直线C.α内存在唯一的直线与直线l平行D.α内存在唯一的直线与直线l平行3.(5分)已知m、n为两条不同的直线,α、β为两个不同的平面,下列命题中的正确的是()A.若α∥β,m∥α,则m∥βB.若m∥α,m⊥n,则n⊥αC.若α⊥β,m⊥β,则m⊥αD.若m⊥α,m⊥β,则α∥β4.(5分)函数f(x)=x2+ln x﹣4的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)5.(5分)已知直线l:x+2y+k+1=0被圆C:x2+y2=4所截得的弦长为4,则k是()A.﹣1 B.﹣2 C.0 D.26.(5分)直线l经过点P(﹣3,4)且与圆x2+y2=25相切,则直线l的方程是()A.y﹣4=﹣(x+3)B.y﹣4=(x+3)C.y+4=﹣(x﹣3)D.y+4=(x﹣3)7.(5分)如图是一几何体的直观图、正视图和俯视图.下列选项图中,按照画三视图的要求画出的该几何体的侧视图是()A.B.C.D.8.(5分)下列命题中正确的是()A.正方形的直观图是正方形B.平行四边形的直观图是平行四边形C.有两个面平行,其余各面都是平行四边形的几何体叫棱柱D.用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台9.(5分)已知正方体的体积是64,则其外接球的表面积是()A.32πB.192πC.48πD.无法确定10.(5分)如图所示,正四棱锥P﹣ABCD的底面面积为3,体积为,E为侧棱PC的中点,则P A与BE所成的角为()A.30°B.45°C.60°D.90°11.(5分)如果实数x,y满足(x﹣2)2+y2=3,那么的最大值是()A.B.C.D.12.(5分)点M(x0,y0)在圆x2+y2=R2外,则直线x0x+y0y=R2与圆的位置关系是()A.相切 B.相交 C.相离 D.不确定二、填空题13.(5分)直线x+y﹣3=0的倾斜角是.14.(5分)直线y=kx与直线y=2x+1垂直,则k等于.15.(5分)已知直线l与直线2x﹣3y+4=0关于直线x=1对称,则直线l的方程为.16.(5分)如图,在三棱锥P﹣ABC中,P A=PB=PC=BC,且∠BAC=,则P A与底面ABC 所成角为.三、解答题17.(10分)已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x﹣3y+16=0,CA:2x+y﹣2=0,求AC边上的高所在的直线方程.18.(12分)求经过点P(6,﹣4)且被定圆O:x2+y2=20截得的弦长为6的直线AB的方程.19.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,E是PC的中点.(1)证明:P A∥平面EDB;(2)证明:BC⊥DE.20.(12分)已知曲线方程为:x2+y2﹣2x﹣4y+m=0.(1)若此曲线是圆,求m的取值范围;(2)若(1)中的圆与直线x+2y﹣4=0相交于M,N两点,且OM⊥ON(O为坐标原点),求m的值.21.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求证:(1)平面BDD1⊥平面P AC;(2)直线PB1⊥平面P AC.22.(12分)已知四棱锥P ABCD如图所示,AB∥CD,BC⊥CD,AB=BC=2,CD=PD=1,△P AB 为等边三角形.(1)证明:PD⊥平面P AB;(2)求二面角P﹣CB﹣A的余弦值.【参考答案】一、选择题1.A【解析】对于A,函数是偶函数,在区间(0,+∞)上单调递增,符合题意;对于B,函数不是偶函数,不合题意;对于C,函数不是偶函数,不合题意;对于D,函数是偶函数,在区间[0,+∞)上单调递减,不符合题意;故选:A.2.B【解析】∵直线l不平行于平面α,且l⊄α,∴直线l与平面α相交,∴α内不存在与直线l平行的直线.故选:B.3.D【解析】A不正确,因为α∥β,m∥α的条件下,m∥β或m⊂β;B不正确,因为若n⊂α时,亦有m∥α,m⊥n;C不正确,因为α⊥β,m⊥β可得出m∥αm⊂α;D正确,由m⊥α,m⊥β可得出α∥β;故选D.4.B【解析】∵连续函数f(x)=x2+ln x﹣4,f(1)=﹣3<0,f(2)=ln2>0,∴函数f(x)=x2+ln x﹣4的零点所在的区间是(1,2).故选B.5.A【解析】设圆心(0,0)到直线l:x+2y+k+1=0的距离为d,则由点到直线的距离公式得d==|k+1|,再由4=2=2,k=﹣1,故选A.6.B【解析】显然点(﹣3,4)在圆x2+y2=25上,设切线方程的斜率为k,则切线方程为y﹣4=k(x+3),即kx﹣y+3k﹣4=0,∴圆心(0,0)到直线的距离d==5,解得k=,则切线方程为y﹣4=(x+3).故选:B.7.B【解析】根据该几何体的直观图、正视图和俯视图,可得它的侧视图为直角三角形P AD及其P A边上的中线,故选:B.8.B【解析】在A中,正方形的直观图是平行四边形,故A错误;在B中,由斜二测画法规则知平行性不变,即平行四边形的直观图是平行四边形,故②正确;在C中,有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱,要注意棱柱的每相邻两个四边形的公共边互相平行,故C错误;在D中,用一个平行于底面的平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台,故D错误.故选:B.9.C【解析】∵正方体的体积是64,∴正方体的边长为4,∴正方体的外接球的半径R=2,∴正方体的外接球的表面积S=4πR2=48π,故选:C.10.C【解析】连结AC、BD,交于点O,连结OP,则OP⊥平面ABCD,∵正四棱锥P﹣ABCD的底面面积为3,体积为,∴AB=,OA===,==,解得OP=,以OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,则P(0,0,),A(,0,0),B(0,,0),C(﹣,0,0),E(﹣,0,),=(,0,﹣),=(﹣,﹣,),设P A与BE所成的角为θ,则cosθ===,∴θ=60°.∴P A与BE所成的角为60°.故选:C.11.C【解析】设=k,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得|OC|=2,|CE|=,可由勾股定理求得|OE|=1,于是可得到k==,即为的最大值.故选:C.12.B【解析】∵点M(x0,y0)在圆x2+y2=R2外,∴x02+y02>R2,∴圆心(0,0)到直线x0x+y0y=R2的距离:d=<R,∴直线x0x+y0y=R2与圆相交.故选:B.二、填空题13.π【解析】直线x+y﹣3=0 即y=﹣x+,故直线的斜率等于﹣,设直线的倾斜角等于α,则0≤α<π,且tanα=﹣,故α=,故答案为:.14.﹣【解析】直线y=kx与直线y=2x+1垂直,∴2k=﹣1,解得k=﹣.故答案为:﹣.15.2x+3y﹣8=0【解析】设直线l的方程上的点P(x,y),则P关于直线x=1对称的点P′为(2﹣x,y),P′在直线2x﹣3y+4=0上,∴2(2﹣x)﹣3y+4=0,即2x+3y﹣8=0,故答案为2x+3y﹣8=0.16.【解析】∵P A=PB=PC,∴P在底面的射影E是△ABC的外心,又故E是BC的中点,所以P A与底面ABC所成角为∠P AE,等边三角形PBC中,PE=,直角三角形ABC中,AE=BC=,又P A=1,∴三角形P AE中,tan∠P AE==∴∠P AE=,则P A与底面ABC所成角为.三、解答题17.解:由得B(﹣4,0),设AC边上的高为BD,由BD⊥CA,可知BD的斜率等于=,用点斜式写出AC边上的高所在的直线方程为y﹣0=(x+4 ),即x﹣2y+4=0.18.解:由题意知,直线AB的斜率存在,且|AB|=6,OA=2,作OC⊥AB于C.在Rt△OAC中,|OC|==.设所求直线的斜率为k,则直线的方程为y+4=k(x﹣6),即kx﹣y﹣6k﹣4=0.∵圆心到直线的距离为,∴=,即17k2+24k+7=0,∴k=﹣1或k=﹣.故所求直线的方程为x+y﹣2=0或7x+17y+26=0.19.证明:(1)连结AC,AC交BD于O,连结EO.∵底面ABCD是正方形,∴点O是AC的中点在△P AC中,EO是中位线,∴P A∥EO而EO⊂平面EDB且P A⊄平面EDB,所以,P A∥平面EDB;(2)∵PD⊥底面ABCD且BC⊂底面ABCD,∴PD⊥BC①又∵底面ABCD是正方形,有DC⊥BC②其中PD∩DC=D∴BC⊥平面PDC.又∵DE⊂平面PDC,∴BC⊥DE.20.解:(1)曲线方程为:x2+y2﹣2x﹣4y+m=0.整理得:(x﹣1)2+(y﹣2)2=5﹣m,则5﹣m>0,解得:m<5.(2)直线x+2y﹣4=0与圆:x2+y2﹣2x﹣4y+m=0的交点为M(x1,y1)N(x2,y2).则:,整理得:5y2﹣16y+8+m=0,则:,,且OM⊥ON(O为坐标原点),则:x1x2+y1y2=0,x1=4﹣2y1,x2=4﹣2y2,则(4﹣2y1)(4﹣2y2)+y1y2=0.解得:m=,故m的值为.21.证明:(1)长方体ABCD﹣A1B1C1D1中,AB=AD=1,∴底面ABCD是正方形,∴AC⊥BD.又DD1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥DD1.又BD∩DD1=D,BD⊂平面BDD1,DD1⊂平面BDD1,∴AC⊥平面BDD1,∵AC⊂平面P AC,∴平面P AC⊥平面BDD1.(2)∵PC2=2,PB12=3,B1C2=5,∴PC2+PB12=B1C2,△PB1C是直角三角形,PB1⊥PC.同理PB1⊥P A,又P A∩PC=P,P A⊂平面P AC,PC⊂平面P AC,∴直线PB1⊥平面P AC.22.(1)证明:取AB得中点E,连接PE,DE.∵AB=BC=2,CD=PD=1,△P AB为等边三角形∴AE⊥AB,AE=,BE=CD,EB∥CD∴四边形BCDE是平行四边形,∴DE=CB=2,DE∥CD∴AB⊥ED,∴AB⊥面PED⇒AB⊥PDDE2=PD2+AE2,∴PD⊥AE,∴PD⊥面P AB;(2)解:由(1)得面P AD⊥面ABCD,过P作PO⊥ED于O,则PO⊥面ABCD,过O作OH⊥CB于H,连接PH,则∠PHO为二面角P﹣CB﹣A的平面角.在Rt△PED中,PO•ED=PE•PD,可得PO=在Rt△PED中,OH=1,PH=,=∴二面角P﹣CB﹣A的余弦值为。

2018-2019学年高一上学期期末考试数学试题(答案+解析)

2018-2019学年高一上学期期末考试数学试题(答案+解析)

2018-2019学年高一上学期期末考试数学试卷一、选择题1.设全集U =M ∪N ={1,2,3,4,5},M ∩N C U ={2,4},则N = ( ) A .{1,2,3} B. {1,3,5} C. {1,4,5} D. {2,3,4}2.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A.1)2(22=-+y x B.1)2(22=++y xC.1)3()1(22=-+-y x D .22(1)(2)1x y -+-=3.已知四边形的斜二测画法的直观图是一边长为1正方形,则该四边形的的面积等于( ) A.1B .22 C.42D.2 4.3log 21=a ,2log 31=b ,3.0)21(=c ,则( )A .a <b <c B.a <c <b C.b <c <a D.b <a <c5.长方体的一个顶点上三条棱长分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是( )A B. C.50π D.200π6.点),4(a A 和),5(b B 的直线与直线0=+-m y x 平行,则AB 的值为( ) A.6 B.2 C.2 D.不确定7.若函数)12(log )(23-+=x ax x g 有最大值1,则实数a 的值等于( ) A.21-B.41C.41- D.48. 直线03=-+m y x 与圆122=+y x 在第一象限内有两个不同的交点,则m 的取值范围是( )A.)2,1(B.)3,3(C.)3,1(D.)2,3( 9.下列命题中正确命题的个数是( )⑴如果一条直线与一个平面不垂直,那么这条直线与这个平面内的任何直线都不垂直;⑵过不在平面内的一条直线可以作无数个平面与已知平面垂直; ⑶如果一个几何体的主视图和俯视图都是矩形,则这个几何体是长方体; ⑷方程05222=--+y y x 的曲线关于y 轴对称( ) A. 0 B. 1 C. 2 D. 310.过直线:l y x =上的一点P 做圆2)1()5(22=-+-y x 的两条切线1l 、2l ,A 、B 为切点,当直线1l 、2l 关于直线l 对称时,∠APB 等于( )A.︒30 B.︒45 C.︒60 D.︒9011. ⎩⎨⎧++-++=2222)(22x x x x x f 00<≥x x ,若()()4342>+-f a a f ,则a 的取值范围是( ) A. (1,3) B. (0,2) C. (-∞,0)∪(2,+∞) D. (-∞,1)∪(3,+∞)12. 如图,已知平面α⊥平面β,α∩β=AB ,C ∈β, D ∈β,DA ⊥AB , CB ⊥AB , BC =8, AB =6, AD =4, 平面α有一动点P 使得∠APD =∠BPC ,则△P AB 的面积最大值是 ( )A .24B .32 C. 12 D. 48 二. 填空题13. 已知A (1,1)B (-4,5)C (x ,13)三点共线,x =__________. 14. 点(2,3,4)关于x 轴的对称点的坐标为__________. 15. 已知二次函数342)(2+-=x x x f ,若)(x f 在区间[1,2+a a ]上不单调,则a 的取值范围是______.16. 若),(11y x A ,),(22y x B 是圆422=+y x 上两点,且∠AOB =︒120,则2121y y x x += __________. 三. 解答题(第12题图)B17.如图,已知AP 是O 的切线,P 为切点,AC 是O 的割线,与O 交于B C ,两点,圆心O 在PAC ∠的内部,点M 是BC 的中点.(Ⅰ)证明A P O M ,,,四点共圆; (Ⅱ)求OAM APM ∠+∠的大小.18.一个几何体的三视图如右图所示,已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.⑴求该几何体的体积V ; ⑵求该几何体的表面积S .13俯视图左视图主视图19. 直线l :10-=kx y 与圆C :04222=-+++y mx y x 交于M 、N 两点,且M 、N 关于直线02:=+y x m 对称, ⑴求直线l 截圆所得的弦长;⑵直线:35n y x =-,过点C 的直线与直线l 、n 分别交于P 、Q 两点,C 恰为PQ 的中点,求直线PQ 的方程.20. 已知二次函数)(x f y =的图象与函数12-=x y 的图象关于点P (1,0)成中心对称, 数)(x f 的解析式;⑵是否存在实数m 、n ,满足()f x 定义域为[m ,n ]时,值域为[m ,n ],若存在,求m 、n 的值;若不存在,说明理由.21. 如图,直三棱柱111C B A ABC 中,M 、N 分别为B A 1和11C B 的中点,(1)求证:直线MN ∥平面C C AA 11; ⑵若B A 1⊥C B 1,1A N ⊥11B C , 求证: C B 1⊥1AC .22. 矩形PQRS 的两条对角线相交于点M (1,0),PQ 边所在的直线方程为x -y -2=0,原点O (0,0)在PS 边所在直线上, (1)矩形PQRS 外接圆的方程;(2)设A (0,t ),B (0,t +6) (-5≤t ≤-2),若⑴的圆是△ABC 的内切圆,求△ABC 的面积S 的最大值和最小值.【参考答案】(第20题图)C 11.B2.A3.B4.A5.C6.B7.C8. D 9 .B 10.C 11.D 12.C 13.-14 14.)4,3,2(-- 15.)21,0( 16.-2 17. (Ⅰ)证明:连结OP OM ,.因为AP 与O 相切于点P ,所以OP AP ⊥. 因为M 是O 的弦BC 的中点,所以OM BC ⊥.于是180OPA OMA ∠+∠=°.由圆心O 在PAC ∠的内部,可知四边形APOM 的对角互补,所以A P O M ,,,四点共圆. (Ⅱ)解:由(Ⅰ)得AP O M ,,,四点共圆,所以OAM OPM ∠=∠. 由(Ⅰ)得OP AP ⊥.由圆心O 在PAC ∠的内部,可知90OPM APM ∠+∠=°. 所以90OAM APM ∠+∠=°.18.解:由已知,该几何体是平行六面体,⑴ 侧视图长为3∴几何体的高为3∴3311=⨯⨯=V ;⑵几何体左右两个侧面的高为()21322=+,则326221231211+=⨯⨯+⨯⨯+⨯⨯=S .19. 解:(1) m l ⊥∴1)21(-=-⨯k ∴2=k ∴l :0102=--y x)1,2(--m C 在m 上,0)1(22=-+-m,4-=m ,则)1,2(-C ,3=r 设C 到l 的距离为d ,则()()5121012222=-+---⨯=d ,2222=-=d r MN ,∴弦长为4;⑵设),(b a P ,则)2,4(b a Q ---,又l P ∈,n Q ∈,则有⎩⎨⎧--=---=5)4(32102a b a b ,解之得⎩⎨⎧-=-=121b a)12,1(--P ,311)1(2)12(1=-----=PQ K ,直线PQ 的方程为)2(3111-=+x y ,即025311=--y x .20. 解:(1)在)(x f y =上任取点),(y x ,则),2(y x --在12-=x y 上, 则有1)2(2--=-x y ,即1)2(2+--=x y ,∴1)2()(2+--=x x f ;⑵假设存在实数m 、n ,满足题意 1)(≤x f ∴12n ≤<,∴)(x f 在区间[],m n 上是单调递增函数,则x x f =)(有两个不等实根m 、n ,即0332=+-x x 有两个不等实根m 、n ,033432<-=⨯-=∆,方程无解.∴不存在.21. 解:(1)连接1AB ,则M 为1AB 中点,又N 为11C B 中点,MN ∥1AC ,1AC ⊂平面C C AA 11,MN ⊄平面C C AA 11, ∴直线MN ∥平面C C AA 11;⑵ 1111C B A BB 平面⊥∴⊥B B 1N A 1 111C B N A ⊥,∴111BCC B N A 平面⊥,∴C B N A 11⊥ C B A 11B ⊥,∴BN A C B 11平面⊥,11MN A BN B C MN ⊂∴⊥又平面∴11AC C B ⊥22. 解:⑴由已知111-=∴-=⋅=PR PR PQ PQ k k k k 又x y l PR =∴:, 又02:=--y x l PQ )1,1(-∴P 则1==PM r ,∴圆的方程为1)1(22=+-y x ,⑵设t kx y l AC+=:即0=+-t y kx 由已知112=++k tk ,t t k 212-=, ∴t x tt y l AC+-=21:2同理)6()6(2)6(1:2++++-=t x t t y l BC ,联立得)6(1)6(2+++=t t t t x ,⋅-+=∴])6[(21t t S )6(1)6(2+++t t t t =)6(1)6(6+++t t t t =)6(116++t t ,]5,9[9)3()6(252--∈-+=+∴-≤≤-t t t t 91)6(151-≤+≤-∴t t ,∴≤427)6(116++t t 215≤, 当3-=t 时,S 有最小值427; 当5-=t 时,S 有最小值215.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中小学教育教学资料
18 - 2 0 19 莆田一中 学年度上学期期末考试参考答案
1-6 A C B D D B 7-12 A B B A C D
一、选择题
13.-2 14. 1 15. 3 /8 16. 2,8 二、填空题 ( )
8+8+8+9+9+10 三、解答题( )
| a | 1, a ( a b ) 0,| a b | 3 a b , 17.设向量 满足 ,
2 2 a ( a b )
0 ( a ) a b
0 a b | a |
1 ( 1 )
2 2 2 | a b |
3 | a b | 3 | a | | b | 2 a b
3 由 得 即 2 2 | b | 3 2 a b | a | 3 2 1
4 | b |
2 1
( 2 ) ( a 2 b ) ( a kb ) ( a 2 b ) ( a kb )
0 k
3 1 2 3
4 3 2 2 2 2 2 2 18 I 、解:( ) S ac sin B a c b S a c b ac sin B
, , 2 3 3 2 2 2 c a
b 3
由余弦定理得 ,
tan B 3 cos B sin B 2 a c
3 B 0 B 由于 ,所以 . 3 A 3
4
2 cos A 2cos 1 sin A sin A 0 ( II ) , 因 为 , 故

2 5
5 1 3 4
3 3
所以 . sin C sin A sin A cos A 3 2 2 10 19. 5
( ,
) ( , ) 20. 解: ( 1 )由已知可得 ,
3 6 6 2 0 2
16
3 ) cos( )

6 5 6 5
3 4 3
y sin sin[( ) ] sin( )cos cos( )sin
6 6 6 6 6 6 10
1 1
2
()
,
S sin S cos( )
1 2
2 2 6
1 1 3 1 1 1
S S cos(
)由题得
)sin ( cos sin )sin sin( 2)
1 2 4 6 4 2 2 8 6 16
5 11
3 2
sin( 2) 1 2 ( , ) 2
6 6 6 6 6 2 3
,,,
()解:根据题意得:的对称轴是,故在区间递增,
21 1
因为函数在区间上存在零点,故有,即,
故所求实数的范围是

2
)解:若对任意的,总存在,使成立,
只需函数的值域是函数的值域的子集,
时,的值域是,
下面求,的值域,
令,则,,
①时,是常数,不合题意,舍去;
②时,的值域是,
要使,只需,计算得出;
③时,的值域是,
要使,只需,计算得出;
综上,的范围是
2sin x ,0 x
22 1
.(
3
f ( x)
cos2 x ,
x 0
sin(
4
3
( )当 时,即 ,得 3 2s i n x 2 ; 3 3 3 3
x 0 2 x 2 x
0 当 时,即 ,得 0 c os 2 x
1 。

2sin x ,0 x
3 3, 2 ∴ 的值域为 。

f ( x )
cos2 x , x 0
2sin x ,0 x
3 ( )
3 的图象如图所示: f ( x ) cos2 x ,
x 0
f x m n f x m m
函数y = ( )- 的零点个数为 函数y = ( )- 的图象与直线y = 的
n
交点个数为 。

π ①由图象可知,当 n = 2 时,因为 f
(0)= 2 si n = 3,所以 3 m < 2 ; 3 n 3 m 1 m n 5 m 1 m
当 = 时, = 或 =0;当 = 时,0< < 。

综上,所求的实数 的 1 3 2 取值范围为[0, ] ∪[ , ) π ②当 n = 5 时, 由①知, 0< m < 1 .当0 x π时, 由 f ( x )=0, 得 2 si n ( x + )=0, 3 2 π π π 解得 x = ;由 f ( x )= 1 ,得 2 si n ( x + )= 1 ,解得 x = 。

因为函数y = f ( x )- m 3 2 3 π π 的零点从小到大依次为 x , x , x , x , x ,所以 x ;当- π < x <0 1 2 3 4 5 5 2 3 x + x π π 1 4 时,函数 f ( x )=|cos 2 x |的图象关于直线 x =- 对称,所以 =- , 2 2 2 3 π 4 π x + x π 2 3 =- ,所以 x + x + x + x =- 2 π ,所以- < x + x + x + x + x <- 。

所以 1 2 3 4 1 2 3 4 5
2 2 2 3
3 π
4 π x + x + x + x + x 的取值范围为(- ,- )。

1 2 3 4
5 2 3 x 0 2 x
4
2 3 4 3 4
4 2 2 6 2 ∴
sin cos cos sin 2 ) ( f ) ( f )) ( f (
f
6 2 1。

相关文档
最新文档