一种竖曲线上高程的计算方法_secret

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种竖曲线上高程的计算方法

在道路工程建设中,由于地势起伏、高差不均,并且考虑到工程的造价,就需要根据地势的实际情况和工程要求在不同的线段上设计不同的坡度,在不同的坡度连接处要使其合理平稳的连接起来,就需要加设竖曲线。如图1,i1为线路BA部分的坡度,i2为线路CA部分的坡度,线路由坡度i1变化到坡度i2,中间加设了竖曲线,竖曲线半径根据BA和CA的坡度可以求出,竖曲线上的高程就是对变坡点1到变坡点2这一段圆曲线上的高程进行计算。

变坡点1

变坡点2

图1 竖曲线

方法理论

根据竖曲线的定义,竖曲线的高程计算是要求B点到C之间的圆弧长度。而B和C点的高程都可以根据比较简单的计算公式计算得到。已知B和C的高程为HB、HC,竖曲线半径R,前后坡度i1、i2。根据第一坡度i1,可以在如上图的直角坐标系中的直线斜率K就等于i1,由于直线与以R为半径的圆相切,则可以求出其切点坐标(XB,YB),XB对应的是B点的里程(不相等),YB对应的是B点的高程(不相等)。同理可以求出后一坡度线与圆的切点坐标为(XC,YC),XC对应的是C点的里程(不相等),YC对应的是C点的高程(不相等)。而需要求的是BC圆弧上任一点j的坐标值(Xj,Yj),而j点高程则等于B点的高程与j点与B点Y轴方向上的增值。

具体计算方法

由上述可知,以知前后坡度i1、i2,竖曲线半径为R,变坡点桩号为L。

建立直角坐标系XOY,以R为半径作圆,以i1为斜率作与圆相切的直线AB,B为切点,其坐标为(XB,YB)。

切点坐标的计算(XB,YB)

直线AB的方程为

Y=kX+b (k=i1) (1)

根据直线到坐标原点的距离等于半径R:

1

+2

k

R

b=

得:

21k R b +±= (i1>i2时取正,否则取负)

则直线AB 的方程为:

Y=kX+b 其中21k R b +±= (2)

对于(XB ,YB)有

XB/ YB=k (3)

YB=kXB +b (4)

根据3,4式可得

XB= 2

1k kb - YB=2

1k b - 同理求出:

XC= 21k

kb - YC=2

1k b - 其中的b 等于21k R +±,k 等于后一段的坡度值i2,

XB 对应的是B 点的里程,YB 对应B 点的高程。

XC 对应的是C 点的里程,YC 对应C 点的高程。

在BC 之间的点j 对应的里程和高程,等于BC 圆弧上j 点坐标值(Xj ,Yj),满足圆的方程,因此在知道BC 圆弧上任一点j 点的Xj 时,它的Yj 可以圆的方程求出:

222R y x =+

将x=Xj 代入得 Yj=22Xj R -± (i1>i2时取正,否则取负)

j 点的里程等于B 点的里程加上j 点与B 点X 值的差值。

Kj=KB+(Xj-XB)

Hj=HB+(Yj-YB)

注意: j 点里程对应的X 坐标取值范围只能BC 之间。

相关文档
最新文档