物理化学 10章_电解与极化作用

合集下载

10物化-下-第十章电解与极化作用PPT课件

10物化-下-第十章电解与极化作用PPT课件
即电流密度很小时,氢超电势不符合Tafel 公式,而遵守 η=ωj
即η与j成正ห้องสมุดไป่ตู้。
电解时H+在阴极放电机理:(p.125)
对氢超电势研究较多的原因: (p.126)
H+ 进行电极反应的动力学机理:
(1) H3O+从溶液本体扩散到电极附近。 (2) H3O+从电极附近移动到电极上。 (3) H3O+在电极上按以下机理放电:
第十章 电解与极化作用
本章基本要求
1、了解分解电压的意义,要使电解池持续工作需克服哪几种阻力? 2、了解什么是极化作用,什么是超电势?极化作用有哪几种?如何 降低极化作用。 3、什么是极化曲线?电解池与原电池的极化曲线有哪些异同?各有 什么缺点和可利用之处。 4、如何计算H2(g)的超电势?为什么在电解中对H2(g)的超电势研究 较多? 5、了解电解的一般过程及其应用,能判断电解过程中在两个电极上 首先发生反应的物质。 6、了解金属腐蚀的类型及常用的金属防腐的方法。 7、 了解常见化学电源的基本原理、类型及目前的发展概况,特别是 燃料电池的应用前景。
阴极更负,阳极更正
1、浓差极化 电解过程中由于电极附近溶液浓度与本体溶液的浓度之间 的差异而引起的极化称为浓差极化(concentration polarization)。 这种差异主要是因为反应速率大于扩散速率所致。
当把两个银电极插到浓度为m的AgNO3溶液中进行电解, 阴极附近的Ag+沉积到电极上(Ag++e-→Ag),使得该处溶液中 的Ag+浓度不断降低。如果本体溶液中的Ag+扩散到该处进行补 充的速度赶不上沉积速度,则在阴极附近Ag+的浓度比本体溶 液的浓度低。在一定的电流密度下,达稳定状态后,溶液有一 定的浓度梯度,此时电极附近溶液浓度具有一定的稳定值,就 好像是把电极浸入一个浓度较小的溶液中一样。由于这种浓度 差别所引起的极化就是浓差极化。其数值由浓差的大小决定, 而浓差大小与搅拌情况、电流密度等有关。当没有电流通过 时,电极的可逆电势由溶液的浓度(即本体浓度)所决定。

10-电解与极化作用

10-电解与极化作用

阳,析出 阳,可逆 阳
3、极化曲线的测定
超电势或电极电势与电流密度之间的关系曲线称
为极化曲线,极化曲线的形状和变化规律反映了电化
学过程的动力学特征。
+
测定超电势的装置
如右图所示:
A
电极1为待测电极,
测定分解电压时的电流-电压曲线
二、分解电压的测定
当外压增至2-3段,氢 气和氯气的压力等于大
气压力,呈气泡逸出,反电
动势达极大值 Eb,max。

E外 Eb,max IR
流 I
再增加电压,使I 迅速增 加。将直线外延至I = 0 处,
得E(分解)值,这是使电解 池不断工作所必需外加的
最小电压,称为分解电压。
(2)电化学极化
以铜电极为例: 电极反应进行缓慢
作为阴极:则由外电源输入阴 极的电子来不及消耗,即溶液 中Cu2+不能马上与电极上的电 子结合,变成Cu,结果使阴极 表面积累了多于平衡状态的电 子,导致电极电势比平衡电极 电势更小。
-
- 电源 +
e-
+
e-
Cu
Cu
CuSO4
电解池
作为阳极:类似的,作为阳极时,会使阳极表面的电 子数目小于平衡状态的电子,导致电极电势比平衡电 极电势更大。
Ag ,Ag
-
RT F
ln
1 c,e
c,e c0
阴,不可逆 阴,可逆
c'
扩散层
在浓度梯度作用下(ce’ < c0)Ag+向 电极表面的迁移
阴极浓差极化的结果是阴极电极电势比可逆时变小。
(1)浓差极化
阳极: Ag Ag++e , v扩<v反,c0 < ce`

物理化学期中-第十章 电解与极化作用-考研试题文档资料系列

物理化学期中-第十章 电解与极化作用-考研试题文档资料系列

第十章 电解与极化作用一、选择题1、金属活性排在H 2之前的金属离子,如Na +能优先于H +在汞电极上析出,这是由于( )(A )φ(标准)(Na +/Na)<φ(标准)(H +/H 2) (B)φ(Na +/Na)<φ(H +/H 2)(C)η(Na)<η(H 2) (D)H2在汞上析出有很大的超电势, 以至于φ(Na +/Na)>φ(H +/H 2)2、用铜电极电解CuCl 2的水溶液,在阳极上会发生( )(A ) 析出氧气 (B )析出氯气 (C )析出铜 (D )铜电极溶解3、Tafel 公式η=a+blgj 的适用范围是( )(A)仅限于氢超电势 (B)仅限于j 约等于零,电极电势稍有偏差的情况(C)仅限于阴极超电势,可以是析出氢,也可以是其他(D )可以是阴极超电势,也可以是阳极超电势4、极谱分析中加入大量惰性电解质的目的是( )(A ) 增加溶液电导 (B )固定离子强度(C )消除迁移电离 (D )上述几种都是5、当发生极化现象时,两电极的电极电势将发生如下变化( )(A )φ平,阳>φ阳;φ平,阴>φ阴 (B)φ平,阳<φ阳;φ平,阴>φ阴(C)φ平,阳<φ阳;φ平,阴<φ阴 (D)φ平,阳>φ阳φ平,阴<φ阴6、极谱分析的基本原理是根据滴汞电极的( )(A)电阻(B)浓差极化的形成 (C)汞齐的形成 (D)活化超电势二、填空题1、已知φ(标准)(Fe 2+/Fe)=-0.440V,φ(标准)(Cu 2+/Cu)=0.337V,在25℃,标准 大气压时,以Pt 为阴极,石墨为阳极,电解含有FeCl 2(0.01mol.Kg -1)和CuCl 2 (0.02mol.Kg -1)的水溶液,若电解过程中不断搅拌溶液,且超电势可忽略不计,则 最先析出的金属是————2、在锌电极上H 2的超电势为0.75V,电解一含Zn 2+的浓度为1*10-5mol.Kg -1的溶液,为了不使H 2(g)析出,向溶液的pH 值应控制在————已知25℃时φ(标准)(Zn 2+/Zn)=-0.763V3、以Cu 为电极电解1mol.Kg -1CuSO 4溶液(pH=3),则在阴极上的电极反应——-——————————阳极上的电极反应——————————。

10章_电解和极化作用2-PPT课件

10章_电解和极化作用2-PPT课件

例:298K时,如以Pt为电极电解CuSO4溶液,浓
度为1mol/kg,所组成的原电池为:
Cu ( s ) CuSO ( 1 mol / kg ) O ( g ) Pt ( s ) 4 2
设电解质的活度系数均等于1,并已知氧在铂电
0 . 34 V 极上的电极电势为1.70V, 2 ( Cu Cu )
继续下降,然后降至第三种离子的电极电势,以此类 推。 因此,可以利用这个性质,对多种金属进行分离。
例如:电解液中含有浓度为1mol/kg的Ag+ ,Cu2+
和Cd2+,因为,
所以Ag优先析出, Ag Cu Cd

然后是Cu,最后是Cd。依据这一原理,可以控制外
加电压,依次将金属分离。但是要达到金属分离的目
所以,极化作用会使阳极电势变大,阴极电势 变小。
对于电解池来说,若外加电压,当大于分解
电压时,则在电极上发生电极反应(阴极反应和
阳极反应),所以当电解池的电压施加一定值时,
则凡是能满足大于分解电压的反应都能进行。因
此,讨论电解时所能发生的电极反应对电解及电
镀工业具有重要意义。
★§10.3 电解时电极上的竞争反应
1.对于阴极反应,随着金属的析出,金属离子浓 度不断下降,电极电势不断下降。
另外,在电镀工业中,若加入Cu2+(1mol/kg), 要使电镀完毕时,Cu2+为0.1mol/kg,则如何控制电 压?
( Cu , 1 mol / kg ) 0 . 337 ( V )E 阳 0 . 3 ( Cu , 0 . 1 mol / kg ) 0 . 307 ( V )E 阳 0 . 3
若在电解池中:

10第十章 电解与极化作用07jgPPT课件

10第十章 电解与极化作用07jgPPT课件

上一内容 下一内容 回主目录
返回
2020/7/16
极化原因主要有三种:
(a) 浓差极化 当有限电流通过电极时,由于离子扩散的迟缓性
导致电极表面与本体溶液离子浓度的差异,从而使电 极电势偏离可逆电极电势的现象称为浓差极化.
(b) 电化学极化
当有限电流通过电极时,由于电化学反应的迟缓 性导致电极表面带电程度不同,而使电极电势偏离可 逆电极电势的现象称为电化学极化.
常见的电解制备有氯碱工业、由丙烯腈制乙二腈、 用硝基苯制苯胺等。
上一内容 下一内容 回主目录
返回
2020/7/16
引言
二、讨论内容:
1、电极过程规律 不可逆电极过程规律------电极极化
2、电极过程应用 : 电解在工业上的应用
金属的电化学腐蚀与防腐 化学电源
上一内容 下一内容 回主目录
返回
2020/7/16
阳 析 , 出阳 可 , 逆阳 阴 析 , 出阴 可 , 逆阴
(c) 电阻极化 电极表面生成氧化膜或其它物质,而产生电势降
IR(不具有普遍意义).
上一内容 下一内容 回主目录
返回
2020/7/16
10.2 极化作用
极化结果: 阳极极化: 电极电势向正向移动, 不可正值增大. 阴极极化: 电极电势向负向移动, 不可负值增大. 不可也称为析出电势
就个别电极而言:
实验表明, 无论是酸还是碱溶液其分解电压都 是1.7V, 因产物都是H2和O2, 而H2和O2构成电池的 电动势都是1.23V, 可见, H2和O2在Pt电极上有相当 大的极化现象.
上一内容 下一内容 回主目录
返回
2020/7/16
10.2 极化作用
电极的极化现象

物理化学(第五版傅献彩)第10_电解与极化作用

物理化学(第五版傅献彩)第10_电解与极化作用
9
无电流
ϕ可逆
= ϕy Ag+ |Ag

RT F
ln
1 aAg+
有电流
ϕ不可逆
= ϕy Ag+ |Ag

RT F
ln
1 aAg+ , e
η阴
= ϕ可逆
− ϕ不可逆
=
RT F
ln aAg+ aAg+ , e
>0
aAg+ , e < aAg+ ϕ不可逆 < ϕ可逆
阳极上的情况类似,但 ϕ不可逆 > ϕ可逆
的金属先在阴极析出,这在电镀工业上很重要 例如,利用氢的超电势,控制溶液的pH,实
现镀 Zn,Sn,Ni,Cr 等
25
阴极上发生还原反应
发生还原 (1) 金属离子 的物质: (2) 氢离子 (中性水溶液 aH+ = 10−7 ) 判断在阴极上首先析出何种物质,应把各 种可能还原的物质的电极电势求出来(气 体要考虑超电势,金属可不考虑超电势)
2H+ + 2e- = H2
ϕ可逆
=ϕΟ H+ |H2
− RT 2F
ln
pH2 / p Ο a2
H+
= −0.059pH = −0.414V
ϕ不可逆 = ϕ可逆 −η = −0.414V − 0.584V = −0.998V
Zn2+ + 2e- = Zn
ϕ可逆
=ϕΟ Zn2+ |Zn
− RT 2F
1 ln
=−
RT 2F
ln
aH2 a2
H+
−ηH2
设 pH2 = p Ο

物理化学10章_电解与极化作用

物理化学10章_电解与极化作用

对于在阳极、阴极均有多种反应可以发主的情况
下,在电解时,阳极上总是极化电极电势最低的反应
优先进行,阴极上总是极化电极电势最高的反应优先
进行。
阴,1
阳,1
阴,2
阴 = 阴,可逆 – 阴 阳 = 阳 – 阳,可逆
阳,2
故 阴= 阴,可逆– 阴 阳 = 阳,可逆+ 阳
上一内容 下一内容 回主目录
返回
2020/9/6
E(分解) E(可逆) E(不可逆) IR
E(不可逆) (阳) (阴)
显然分解电压的数值会随着通入电流强度的增 加而增加。
上一内容 下一内容 回主目录
返回Biblioteka 2020/9/6§10.2 极化作用
电流通过电极时,电极电势偏离平衡电极电势的
现象称为电极的极化。
超电势
= | –可逆 |
(1)浓差极化
E(理论分解 ) E(可逆)
上一内容 下一内容 回主目录
返回
2020/9/6
§10.2 极化作用
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势(阴) 和(阳) ,以及克服电 池电阻所产生的电势降 IR。这三者的加和就称为实 际分解电压。
上一内容 下一内容 回主目录
返回
2020/9/6
§10.1 分解电压
在大气压力下于l mol·m–3盐酸溶液中放入两个铂 电极,将这两个电极与电源相连接。如图:
氯气
氢气
上一内容 下一内容 回主目录
分解电压
返回
2020/9/6
§10.1 分解电压
理论分解电压 使某电解质溶液能连续不断发生 电解时所必须外加的最小电压,在数值上等于该电 解池作为可逆电池时的可逆电动势:

2010 第十章电解与极化作用

2010 第十章电解与极化作用

A
电位计
辅助电极
待测电极
甘汞电极
j
j
η阳
η阴
阳,可逆

阴,可逆
(b)阴极极化曲线

(a)阳极极化曲线
阳 = 阳,不可逆 - 阳,可逆
阴 = 阴,可逆 - 阴,不可逆
阳,析出 = 阳,可逆 +阳
阴,析出 = 阴,可逆 - 阴
电极电势
பைடு நூலகம்E分解 = 阳,析出 - 阴,析出 = E可逆+ 阳+ 阴
电解质 HCl HNO3 H2SO4 NaOH CdSO4 NiCl2 浓度 c / mol · -3 dm 1 1 0.5 1 0.5 0.5 电解产物 H2 + Cl2 H2 + O2 H2 + O2 H2 + O2 Cd + O2 Ni + Cl2 E分解 /V 1.31 1.69 1.67 1.69 2.03 1.85 E理论/ V 1.37 1.23 1.23 1.23 1.26 1.64
a b ln( j /[ j ])
单位电流密度 时的超电势 电流密度
j 很小时:
j
10.3 电解时电极上的竞争反应
阴极上的反应
阳极上的反应
金属离子的分离
分解电压 E分解 = 阳,析出 - 阴,析出 = E可逆+ 阳+ 阴 E理论分解= E可逆
一、阴极上的反应
物理化学—第十章
电极电势
电极电势
第十章 电解与极化作用
10.1 分解电压
10.2 极化作用 10.3 电解时电极上的竞争反应
10.1 分解电压
HCl
分解电压 使某电解质溶液能连续不断发生电解时所必

《物理化学》第十章 电解与极化作用PPT课件

《物理化学》第十章 电解与极化作用PPT课件

(1)电解时那种物质先析出,初始电压是多少?
(2)当第二种金属析出时,电压应为多少?此时 溶液中第一种金属的残余浓度是多少?
(3) 当电压加到多大时,H2开始析出?
已知H2在Cu上的超电势为1V,在Zn上的超电势 为1.3V, 在 Pt上的超电势可忽略不计。
氢析出超电势较大, 且在不同金属上超电势不
同, 不能忽略. 由于超电势存在, 氢析出电势向负向
移动.
例1 电解 AgNO3(a± = 1) 水溶液. 解: 在阴极上析出反应:
Ag (a 1) e Ag(s)
Ag,析
θ Ag
0.799V
H (a
10-7 )
e
1 2
H2(
pθ )
H2 ,析 0.414V H2
2 1
E分解 电压E
测定分解电压时的电流-电压曲 线
实际分解电压
要使电解池顺利地进行连续反应,除了克服作 为原电池时的可逆电动势外,还要克服由于极化在 阴、阳极上产生的超电势(阴) 和(阳) ,以及克服电 池电阻所产生的电位降 IR。这三者的加和就称为实 际分解电压。
E(分解) E(可逆) E(不可逆) IR
§10.2 极化作用
例如电解一定浓度的硝酸银溶液
阴极反应
Ag+ (mAg+ ) e Ag(s)
电解时
可逆
Ag |Ag
RT F
ln
1 aAg+
不可逆
Ag |Ag
RT F
ln
1 ae,Ag
阴 (可逆 不可逆)阴 RT ln aAg
F
ae,Ag
> ae,Ag < aAg 可逆
不可逆
阳极上有类似的情况,但 可逆 < 不可逆

物理化学——第10章-电解和极化

物理化学——第10章-电解和极化

Zn2++2eZn2++2e-
§10.2 极化作用
由此可见: (1) 电化学极化的原因:当I≠0时,电极上的 电化学反应具有阻力,使电极上的带电 情况发生变化,从而使值与平衡值产 生偏离。
(2) 电化学极化结果: 阴↓, 阳↑。
(3) 除Fe、Co、Ni等少数金属外,其他金属 电极的电化学极化程度都很小,而气体 电极的电化学极化程度一般都很大。

Ag析出, Ag+ Ag(s)
此时该电极的φir就是Ag +的析出电势
注意:析出电势不是φθ和φr 阴极:Φir = φr - η 阳极:Φir = φr + η
§10.3 电极上的竞争反应
离子在电极上的析出顺序 E(分解) = φir(阳极) - φir(阴)
φir(A-) > φir(B-) > φir(C-) 阳级:
浓差极化
例:电池 Zn|Zn2+(b1)||Cu2+(b2)|Cu
阴极: Cu2+(b2)|Cu
I→0, Cu2+(b2)+2eθ
Cu
RT 1 r ,阴= 阴 ln θ (为简单,=1) 2 F b2 b
I≠0, Cu2+(b2´)+2e- Cu
RT 1 ir ,阴= 阴 ln ' θ r ,阴 2F b 2 b
第电能的装置 电解池:将电能转变为化学能的装置 可逆电池和可逆电解池互为逆反应。
本章主要讨论不可逆的原电池和电解池
可逆电极:平衡,I→0, r 实际电极:I≠0,不平衡,不可逆电极过程, ir 本章讨论: (1) r与ir的区别。以及由此引起 的不可逆电池和电解池与可逆电池 和电解池的区别. (2) 当电解池中多种电极可能成为 阳极(或阴极)时,到底哪个是真正的 阳极(或阴极)。

苏州大学物理化学考研、期末考试复习-第十章电解与极化作用习题及答案

苏州大学物理化学考研、期末考试复习-第十章电解与极化作用习题及答案

φ (Zn2+/ Zn) = -0.7628 V ,
φ (Cu2+/ Cu) = 0.337 V
()
(
)
(
)
(
)
当不考虑超电势时, 在电极上金属析出的次序是 : (A) Cu → Fe → Zn → Ca (B) Ca → Zn → Fe → Cu (C) Ca → Fe → Zn → Cu (D) Ca → Cu → Zn → Fe
把Pb阴极与另一摩尔甘汞电极相联接, 当Pb阴极上氢开始析出时, 测得E分解=1.0685 V,
试求H2在Pb电极上的超电势(H2SO4只考虑一级电离), 已知摩尔甘汞电极的氢标电势
φ甘汞=0.2800 V 。
22.
298 K时, 以Pt为阳极, Fe为阴极, 电解浓度为 1 mol·kg-1的NaCl水溶液(活度系数
为 0.66)。 设电极表面有H2(g)不断逸出时的电流密度为 0.1A·cm-2, Pt上逸出Cl2(g)的超电
势可近似看作零。 若Tafel公式为 η =a+blg(j/1A·cm-2), 且Tafel常数 a=0.73 V, b=0.11V, φ
(Cl2/Cl-)=1.36 V,请计算实际的分解电压。
φ析出(Cu) ≈ φ可逆(Cu) = 0.2435 V ∴φ析出(Cu) > φ析出(Zn) > φ析出(H2) Cu2+最先析出
20.
[答] (1) φ (Zn2+/Zn) =φ (Zn2+/Zn) +(RT/2F)lnα (Zn2+) =-0.793 V
φ (Cd2+/Cd) =φ (Cd2+/Cd) +(RT/2F)lnα (Cd2+) =-0.433 V

浙江大学物理化学(甲)第十章(电解与极化作用)

浙江大学物理化学(甲)第十章(电解与极化作用)
2



0.814 0.799 0.015 V
10
注意: 式中氧电极的标准电极电势为碱性条件 qOH-,O2=0.401V 实际分解电压:E分解=(OH-,O2-Ag+Ag)不可逆 由于浓差极化,使得: 阴极:不可逆> 阳极:不可逆 > 浓差极化使得实际分解电压: E分解=(阳-阴)不可逆 > E理论分解=(阳-阴)平衡 由于浓差极化主要是由离子在溶液中的扩散速率缓慢 引起的,所以可以通过搅拌或升高电解温度,可以降低浓差 极化。
Ag+
AgNO3( m )
8
阴极反应: Ag+ + e Ag (s) 由于Ag+的扩散速率小于Ag+在阴极上的沉积速度,使得在 阴极附近(10-3~10-2cm)Ag+的浓度 me 小于本体溶液的浓 度m。 当 I = 0时,电极的可逆电势为:
θ 可逆 Ag

Ag

RT 1 ln F m(Ag )
14
G
电 极 2 电 极 1
电位计
甘汞电极 电解质溶液
① 由电极1、电极2和可变电阻、电源,组成一个电解池。
② 由电极1与甘汞电极组成一个电池。 实验: ① 通过调节可变电阻,逐渐改变加到电解池上的电压, 通过电流计测出流经电解池的电流密度J。 ② 由电位计测出在电流密度为J时,电池的电动势E
15
2
通过本章电极极化的讨论,结合前一章可逆电池的平衡 性质,才能比较全面地分析、解决电化学的问题。
本章主要介绍三方面的内容: (1)电极的极化作用
(2)金属腐蚀与防腐和电化学的应用 (3)化学电源 §10.1 分解电压 1. 分解电压测定 在电解一给定的电解液时,对电解池至少需要施加多 少大的电压才能使电解顺利进行分解电压。 以铂电极电解0.1mol· -3的NaOH水溶液为例,说明 dm 分解电压的测定。

10章_电解与极化作用.ppt

10章_电解与极化作用.ppt

2020/4/15
8
§10.1 分解电压
所产生的
H2(g)和Cl2(g)与 电 溶液中相应离子 流
及电极构成了原 I
3
电池,产生E反。
外加电压必须克 服E反。继续增加
2 1
电压,I 有少许
E分解 电压E
增加,如图中1-2 测定分解电压时的电流-电压曲线
段。
2020/4/15
9
§10.1 分解电压
阳极
Pt
G
阴极
度I 和电压E,画出I-E曲 线。
分解电压的测定
2020/4/15
7
§10.1 分解电压
外加电压很
小时,几乎无电
流通过,阴、阳
电 流
极上无H2 (g) 和 I
Cl2(g)放出。
3
随着E的增大,
电极表面产生少
2
量H2(g)和Cl2(g), 但压力低于大气
1
E分解 电压E
压,无法逸出。 测定分解电压时的电流-电压曲线
处化学反应的速度较快,电极附近某离子浓 度由于电极反应而发生变化,本体溶液中离 子扩散的速度相对较慢又赶不上弥补这个变 化,就导致电极附近溶液的浓度与远离电极 的本体溶液间有差别,这种浓度差别引起的 电极电势的改变称为浓差极化。
2020/4/15
16
§10.2 极化作用












负极
构成反电池 PtǀH2(pϴ)ǀHBr(m)ǀBr2(pϴ)ǀPt 理论上,电解时:
理论分解电压E理 = 反电池电动势ER
2020/4/15
6
§10.1 分解电压

物理化学第十章 电解与极化作用

物理化学第十章 电解与极化作用

3、析出电势 :
ϕ阳,不可逆 = ϕ阳,析出 = ϕ阳,可逆 + η阳 ϕ阴,不可逆 = ϕ阴,析出 = ϕ阴,可逆 − η阴
三、极化曲线-超电势的测定 1、测定超电势的装置
2、电解池中两电极的极化曲线
j(电流密度)
阴极曲线
阳极曲线
E可逆+ΔE不可逆
E可逆
η阴
η阳

−ϕ

电解池中两电极的极化曲线
正极: 负极:
LiCoO 2 , LiNiO 2 , LiMn 2 O 2
石墨,焦炭
2
正极反应: L i C o O
+
充 + Z Z Z X L i C o O + x L i + YZ Z Z 1 -x 2 放 −
充 ZZZ X Li C 负极反应: C+xLi + xe YZZ Z x 放
总反应:
Ag + (a ) Ag ( s ) Ag + (a ) + e − → Ag ( s ) RT 没有电流通过时 : ϕ Ag + / Ag (可逆) = ϕ + + ln a Ag + Ag / Ag F RT θ 有电流通过时:ϕ Ag + / Ag (不可逆) =ϕ + + ln a’ + Ag / Ag Ag F 扩散速度小于电极反应速度,a’ + < a Ag +
3、原电池中两电极的极化曲线
η阳
j(电流密度)
E可逆 -ΔE不可
η阴
负 极 曲 线 E可逆
正 3;ϕ
电解池中两电极的极化曲
4、氢超电势

《电解与极化作用》课件

《电解与极化作用》课件


03
重金属离子去除
利用电解法将重金属离子还原成单质或沉淀物,从而降低废水中的重金
属离子浓度。
电解在新能源领域的应用
电解水制氢
通过电解水反应制备氢气和氧气,为氢能源的生产提供基础。
燃料电池
利用电解反应为燃料电池提供所需的电解质,确保燃料电池的正常运行。
太阳能电池
通过电解方法对太阳能电池进行刻蚀、镀膜等处理,提高其光电转换效率。
06
结论与展望
电解与极化作用的总结
1
电解与极化作用在电化学领域中具有重要地位, 对能源储存和转化、电化学反应等方面具有广泛 的应用。
2
电解过程涉及到电子和离子的传输,而极化作用 则与电极表面的电荷分布和电场有关,对电极反 应的速率和机理产生影响。
3
电解与极化作用的研究有助于深入理解电化学反 应的本质,为新材料的开发和应用提供理论支持 。
电解反应的步骤
通电前
电解液中存在的离子在电场作用下向电极移动。
通电后
离子在电极上发生氧化还原反应,形成电流。
断电后
电解液中的离子重新分布,恢复到通电前的状态 。
电解效率的影响因素
电流密度
电流密度越大,电解效率越高,但过高的电流密度会导致副反应增 多。
电解液的组成和浓度
电解液的组成和浓度影响离子的迁移速度和电极反应速率。
01
02
03
电解冶炼
利用电解原理将金属从其 化合物中还原出来。
电镀
通过电解在金属表面镀上 一层金属或合金的过程。
氯碱工业
利用电解饱和食盐水的方 法生产烧碱、氢气和氯气 。
02
电解过程
电解池的构成
电源
提供电能,使电解过程得以进行。

电解和极化作用

电解和极化作用

金属型电解质
在熔融状态下能导电的金 属氧化物,如氧化铝、氧 化铁等。
电解质的导电性
电离程度
电解质在水溶液中的导电能力与其电离程度成正 比,电离程度越大,导电能力越强。
带电粒子
电解质在水溶液中导电依赖于带电粒子的运动, 带电粒子越多,导电能力越强。
离子迁移率
带电粒子在电场作用下的迁移率决定了电解质的 导电能力,迁移率越大,导电能力越强。
对物质导电性的影响
01
极化作用可以改变物质内部的电子分布,从而影响物质的导电
性能。
对物质介电常数的影响
02
介电常数是表征物质电介质性能的重要参数,极化作用可以显
著改变物质的介电常数。
对物质光学性质的影响
03
由于极化作用可以改变物质内部电子云的分布,因此对物质的
光学性质如折射率、反射率等也有重要影响。
对未来研究的展望
随着对电解和极化作用认识的深入,未来研究将更加 关注复杂电化学体系的反应机制和动力学过程,以揭
示更广泛的规律和现象。
输标02入题
新型电化学电极材料和电解质的研发将为电解和极化 作用提供更多可能性,有助于提高电化学过程的效率 和稳定性。
01
03
随着可持续发展理念的深入人心,电解和极化作用在 可再生能源转换和储存、环境治理等方面的应用将得
当物质处于外电场中时,物质中 的电荷会受到电场力的作用,产 生相对位移,导致极化现象的产
生。
热运动的影响
在热运动的作用下,物质中的原子 或分子的电子云分布会发生不规则 的涨落,从而导致极化现象的产生。
晶体结构的作用
物质的晶体结构对其极化性质也有 重要影响,不同晶体结构的物质具 有不同的极化率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阴极
分解电压的测定
1)电解池
阴极: 2H (aH ) 2e H2 ( g, p) 阳极: 2Cl (aCl ) Cl2 ( g, p) 2e
外加电压很小时,几乎无 电流通过,阴、阳极上无H2 (g) 和Cl2(g)放出。
电 流 I
2HCl (aHCl ) H2 ( g, p) Cl2 ( g, p)
例1:298K,用惰性电极电解AgNO3溶液(活度均为1)。 在阳极上放出氧气,在阴极上可能析出氢或金属银。只讨 论阴极的情况。 解:
析出银:Ag (a Ag 1) e Ag ( s )
Ag

Ag
a Ag RT Ag Ag ln 0.799V Ag Ag F a Ag
生电解时所必须外加的最小电压,在数值上等于该 电解池作为可逆电池时的可逆电动势
E(理论分解 ) E(可逆)
2.分解电压的测定
使用Pt电极电解HCl,
电源
加入中性盐用来导电,实
验装置如图所示。
V
逐渐增加外加电压,
由安培计G和伏特计V分
G
别测定线路中的电流强
度I 和电压E,画出I-E曲 线。
阳极
Pt
Cd
2
2

Cd
0.403V

H (a H
H


1 10 ) e H 2 ( g , p ) 2
7

2
H2
H H
RT 1 ln 0.414V F aH
先析出镉,因为氢在镉电极上的超电势很大。
利用这种现象使金属活泼次序在氢以上的金属能从溶液
中析出来。
2.2极化曲线(polarization curve)
超电势或电极电势与电流密度之间的关系曲线称为 极化曲线,极化曲线的形状和变化规律反映了电化学 过程的动力学特征。
i
a
i
c
r
I (阳 )
r
I (阴 )
(1)电解池中两电极的极化曲线
随着电流密度的增大,两电极上的超电势也增大
阳极析出电势变大
别引起的电极电势的改变称为浓差极化。
用搅拌和升温的方法可以减少浓差极化
也可以利用滴汞电极上的浓差极化进行极谱分析。
例如电解一定浓度的硝酸银溶液 阴极反应
Ag + (mAg+ ) e Ag(s)
可逆
电解时
RT 1 Ag |Ag ln F aAg+

可逆 > 不可逆 阳极上有类似的情况,但 可逆 < 不可逆
金属在电极上析出时超电 势很小,通常可忽略不计。 氢气和氧气,超电势值较 大。 氢气在石墨和汞等材料上, 超电势很大,在金属Pt,
特别是镀了铂黑的铂电极
上,超电势很小。 影响因素如电极材料、电
极表面状态、电流密度、
温度、电解质的性质、浓 度及溶液中的杂质等。
Tafel 公式(Tafel’s equation)
1. 极化与极化的原因
2. 超电势
3. 氢超电势
1.1极化(polarization) 当电极上无电流通过时,电极处于平衡状态, 这时的电极电势分别称为阳极可逆(平衡)电势和阴极 可逆(平衡)电势
可逆 (阳),可逆 (阴)
在有电流通过时,随着电极上电流密度的增加, 电极实际分解电势值对平衡值的偏离也愈来愈大,这 种对可逆平衡电势的偏离称为电极的极化。
V
电源
G
所产生的氢气和氯气构成 了原电池,产生了与外加电 压方向相反的反电动势Eb。
阳极
Cl2
Pt
阴极
H2
原电池: 正极
原电池: 负极
分解电压的测定
外加电压必须克服Eb,继续 增加电压,I 有少许增加,如 图中1-2段 当外压增至2-3段,氢气和 氯气的压力等于大气压力, 呈气泡逸出,反电动势达极 大值 Eb,max。 再增加电压,使I 迅速增加。 将直线外延至 I = 0 处,得E(分 解)值,这是使电解池不断工作 所必需外加的最小电压,称为 分解电压。
电势。电极电势最大的首先在阴极析出。 RT 1 Mz+ |M Mz+ |M ln zF aMz+ RT 1 H+ |H ln H2 F aH+
2.阳极上的反应 电解时阳极上发生氧化反应。 发生氧化的物质有: (1)阴离子,如 Cl ,OH 等 (2)阳极本身发生氧化 判断在阳极上首先发生什么反应,应把可能发生 氧化物质的电极电势计算出来,同时要考虑它的超电 势。电极电势最小的首先在阳极氧化。
2.1超电势的测定
+

设测量电极1的超电势 (1)将电极1与辅助电极 2组成一个电解池。调节 电阻,改变通过电极的电 流大小。 (2)将待测电极与甘汞 电极2组成原电池,测量 该电池的电动势,可求 出待测电极的电极电势。
电 极 2
A
电 极 1
电位计
甘汞电极
(3)每改变一次电流密 度,可测出待测电极的一 个稳定的电势值。

1 析出氢气:H (a H 10 ) e H 2 ( g , p ) 2 RT 1 H H H H ln 0.414V 先析出银 2 2 F aH
7
原电池:
Ag AgNO3 (a 1) O2 ( p ) Pt E H O2 Pt 0.799V
物理化学电子教案—第十章
第十章
§10.1 分解电压 §10.2 极化作用
电解与极化作用
§10.3 电解时电极上的竞争反应 §10.4 金属的电化学腐蚀、防腐与金属的钝化 §10.5 化学电源
§10.1 理论分解电压
1. 理论分解电压 2. 分解电压的测定 3. 实际分解电压
1.理论分解电压
使某电解质溶液能连续不断发
3
2 1
电压E 测定分解电压时的电流-电压曲线
随着E的增大,电极表面产 生少量氢气和氯气,但压力 低于大气压,无法逸出。
2)原电池
负极:H2 ( g, p) 2e 2H (aH )
正极:Cl2 ( g, p) 2e 2Cl (aCl )
H2 ( g, p) Cl2 ( g, p) 2HCl (aHCl )
1.2 电极极化原因
电极发生极化的原因,是因为当有电流流过电极
时,在电极上发生一系列的过程,并以一定的速率进
行,而每一步都或多或少地存在着阻力。 要克服这些阻力,相应地各需要一定的推动力, 表现在电极电势上就出现偏离。
根据极化产生的不同原因,通常把极化大致分为
两类:浓差极化和电化学极化。
(1)浓差极化 在电解过程中,电极附近某离 子浓度由于电极反应而发生变化,本体溶液中离子扩 散的速度又赶不上弥补这个变化,就导致电极附近溶 液的浓度与本体溶液间有一个浓度梯度,这种浓度差
在某一电流密度下,实际发生电解的电极电势 不可逆 极上由于超电势使电极电势变大,阴极上由于
超电势使电极电势变小。 为了使超电势都是正值,把阴极超电势 阴 和阳 极超电势 阳 分别定义为:
阴 (可逆 不可逆 )阴 阳 (不可逆 可逆 )阳
Ag H 2 ( p ) AgNO3 (a 1) O2 ( p ) Pt E H O2 Pt (0.414V )
阴极上,还原电势越正者,其氧化态越先还原析出。
例2:298K,以镉为阴极电解CdSO4溶液(活度均为1),氢
气与镉是否同时析出?
解:
Cd (aCd 2 1) 2e Cd ( s)
设电解质的活度系数均等于1。
解: (1)
阴极:Cu 2 (aCu2 ) 2e Cu 1 阳极:H 2O O2 ( p) 2 H (a H ) 2e 2
Cu
2+
|Cu

Cu2+ |Cu
RT 1 ln 0.34V 2F aCu2+
E分解 阳 阴 (1.70 0.34)V 1.36V
ae,Ag < aAg
RT 1 不可逆 Ag |Ag ln F ae,Ag aAg RT (可逆 不可逆) ln 阴 F ae,Ag
(2)电化学极化
电极反应总是分若干步进行,若其中一步反应
速率较慢,需要较高的活化能
为了使电极反应顺利进行所额外施加的电压称 为电化学超电势(亦称为活化超电势)
例3:298K,Pt电极,电解CuSO4溶液,浓度为1 mol· kg-1,已 知氧在铂电极上的电极电势为1.70V,求: (1)Cu析出时分解电 压为多少?(2)电压达到2V时,Cu2+浓度为多少?(3)电压多大 时,H2开始析出?(氢在铜电极上超电势,0.6V)
Cu
2
Cu
0.34V
的作功
E可逆
能力下
降。

电极电势

利用这种极化降低金属的电化腐蚀速度。
3.氢超电势
电解质溶液通常用水作溶剂,在电解过程中,H + 在阴极会与金属离子竞争还原。
利用氢在电极上的超电势,可以使比氢活泼的金
属先在阴极析出,这在电镀工业上是很重要的。
例如,只有控制溶液的pH,利用氢气的析出有超
电势,才使得镀Zn,Sn,Ni,Cr等工艺成为现实。
§10.3 电解时电极上的竞争反应
1. 阴极反应
2. 阳极反应
3. 分解电压 4. 金属离子的分离 4. 电解的应用
1.阴极上的反应 电解时阴极上发生还原反应。 发生还原的物质通常有(1)金属离子,(2)氢离子 (中性水溶液中 aH 107 )。
+
判断在阴极上首先析出何种物质,应把可能发
相关文档
最新文档