知识点 反比例函数的实际应用
专题6.3反比例函数的应用(知识解读)(原卷版)
![专题6.3反比例函数的应用(知识解读)(原卷版)](https://img.taocdn.com/s3/m/6b8d2205bf23482fb4daa58da0116c175f0e1ee4.png)
专题6.3反比例函数应用(知识解读)【学习目标】1.能灵活利用反比例函数的知识分析、解决实际问题2.利用反比例函数求出问题中的值3.渗透数形结合思想,提高学生用函数观点解决问题的能力【知识点梳理】考点一行程与工程应用考点二物理学中的应用考点三经济学的应用考点四生活中其他的应用【典例分析】【考点1 行程与工程的应用】【典例1】(2022秋•礼泉县期末)在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量x(米)是反比例函数关系,图象如图所示:(1)求y与x之间的函数关系式;(2)若该工程队有4台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?【变式11】某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?【变式12】(2021秋•华州区期末)一艘轮船从相距200km的甲地驶往乙地,设轮船的航行时间为t(h),航行的平均速度为v(km/h).(1)求出v关于t的函数表达式;(2)若航行的平均速度为40km/h,则该轮船从甲地匀速行驶到乙地要多长时间?【变式13】(2022秋•固安县期末)汽车从甲地开往乙地,记汽车行驶时间为t 小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如表:v(千米/小时)7580859095 t(小时) 4.00 3.75 3.53 3.33 3.16(1)根据表中的数据,分析说明平均速度v(千米/小时)关于行驶时间t(小时)的函数关系,并求出其表达式:(2)汽车上午8:00从甲地出发,能否在上午10:30之前到达乙地?请说明理由.【考点2 物理学中的应用】【典例2】(2022秋•青县期末)如图,根据小孔成像的科学原理,当像距(小孔到像的距离)和物高(蜡烛火焰高度)不变时,火焰的像高y(单位:cm)是物距(小孔到蜡烛的距离)x(单位:cm)的反比例函数,当x=6时,y=2.(1)求y关于x的函数解析式.(2)变化蜡烛和小孔之前的距离,某一时刻像高为3cm,请回答蜡烛是怎样移动的?【变式21】(2023•项城市一模)很多学生由于学习时间过长,用眼不科学,视力下降,国家“双减”政策的目标之一就是减轻学生的作业辅导,让学生提质增效,近视眼镜可以清晰看到远距离物体,它的镜片是凹透镜,研究发现,近视眼镜的度数y(度)与镜片焦距x(m)的关系式为.下列说法不正确的是()A.上述问题中,当x的值增大,y的值随之减小B.当镜片焦距是0.2m时,近视眼镜的度数是500度C.当近视眼镜的度数是400度时,镜片焦距是0.25mD.东东原来佩量400度的近视眼镜,经过一段时间的矫正治疗加注意用眼健康,复查验光时,所配镜片焦距调整为0.4m,则东东的眼镜度数下降了200度【变式22】(2022秋•禅城区期末)某校科技小组在一次野外考察中遇到一片烂泥湿地.为了安全、迅速通过这片湿地,他们沿着前进路线铺了若干块木板,构筑成一条临时近道.每块木板对地面的压强p(Pa)是木板面积S(m2)的反比例函数,其图象如图所示.(1)请根据图象直接写出这反比例函数表达式和自变量取值范围;(2)如果要求压强不超过8000Pa,选用的木板的面积至少要多大?【变式23】(2022秋•武功县期末)经研究发现,近视眼镜的度数y(度)与镜片焦距x(m)之间的关系满足反比例函数,已知小明的近视眼镜度数为200度,他的镜片焦距为0.5m.(1)求y与x之间的函数关系式;(2)已知王力的近视眼镜度数为400度,请你求出王力近视眼镜的镜片焦距.【考点3 经济学的应用】【典例3】(2022秋•阜平县校级期末)某企业生产一种必需商品,经过长期市场调查后发现:商品的月总产量稳定在600件.商品的月销量Q(件)由基本销售量与浮动销售量两个部分组成,其中基本销售量保持不变,浮动销售量与售价工(元/件)(x≤10)成反比例,且可以得到如下信息:售价x(元/件)58商品的销售量Q(件)580400(1)求Q与x的函数关系式.(2)若生产出的商品正好销完,求售价x.(3)求售价x为多少时,月销售额最大,最大值是多少?【变式31】(2022秋•太和县期末)俊俊想存钱购买一套售价为6000元的户外活动设备,若他目前已有存款2000元,后期每个月计划存相同金额,则他存够买设备的钱所需月数y与每个月存款额x元之间的函数关系式是()A.B.C.D.y=2000x﹣6000【变式32】(2022秋•峰峰矿区期末)某玩具厂计划生产一种玩具熊猫,已知每只玩具熊猫的成本为y元,若该厂每月生产x只(x取正整数),这个月的总成本为5000元,则y与x之间满足的关系为()A.y=B.y=C.y=D.y=【考点4 生活中的其他应用】【典例4】(2022秋•金水区校级期中)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求y与x(10≤x≤24)的函数表达式;(2)大棚里栽培的一种蔬菜在温度为12℃到20℃的条件下最适合生长,若某天恒温系统开启前的温度是10℃,那么这种蔬菜一天内最适合生长的时间有多长?(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多长时间,才能使蔬菜避免受到伤害?【变式41】(2022春•吴中区校级月考)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于2微克/毫升的持续时间多少小时?【变式42】(2022秋•梅里斯区期末)某水果生产基地在气温较低时,用装有恒温系统的大棚栽培一种新品种水果,如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段,表示恒温系统开启后阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)这个恒温系统设定的恒定温度为多少℃;(2)求全天的温度y与时间x之间的函数关系式;(3)若大棚内的温度低于10(℃)不利于新品种水果的生长,问这天内,相对有利于水果生长的时间共多少小时?【变式43】(2022秋•西丰县期末)为了做好校园疫情防控工作,学校每周要对办公室和教室进行药物喷洒消毒,消毒药物在每间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示,在进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(5,n).(1)n的值为;(2)当x≥5时,y与x的反比例函数关系式为;(3)当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,当教室药物喷洒完成45min后,学生能否进入教室?请通过计算说明.。
(完整版)初中数学反比例函数知识点及经典例
![(完整版)初中数学反比例函数知识点及经典例](https://img.taocdn.com/s3/m/ca72e88e09a1284ac850ad02de80d4d8d15a01bf.png)
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。
北师大版九年级数学上册第6章 反比例函数的应用
![北师大版九年级数学上册第6章 反比例函数的应用](https://img.taocdn.com/s3/m/ab0899680a4c2e3f5727a5e9856a561252d32124.png)
.
= . .
例 5:为检测某品牌一次性注射器的质量,将注射器里充满一定量的气
体,当温度不变时,注射器里的气体压强 p(kPa)与气体体积 ³
的部分对应 值如下表:
V(cm³) 15
20
25
30
40
50
p(kPa) 400 300 240 200 150 120
在R≥3.6Ω这个范围内
小组讨论
小组展示
越展越优秀
提疑惑:你有什么疑惑?
教师讲评
知识点1:反比例函数与几何图形、一次函数的综合应用
反比例函数与几何图形、一次函数综合起来应用可解决如下几种问题:
(1)已知一次函数和反比例函数的表达式,求它们图象交点的坐标,这类题目可以
通过列方程组来求解;
(2)判断含有同一字母系数的一次函数和反比例函数的图象在同一直角坐标系中的
误区提醒
忽略实际问题中自变量的取值范围;不能正确地构造出函数模型.
典例精讲
【题型一】反比例函数与一次函数的交点问题
例1:如图,在直角坐标系xOy中,一次函数 = ₁ + 的图象
与反比例函数 =
)的图象交于 A(1,m)、B(3,n)两点,则关
于 x的不等式 ₁ + >
经检验, ₁ = −, ₂ = 是原方程的解,且符合题意,
∴点A的横坐标为 −,把 = −代入 = − ,得 2 = ,
∴点A的坐标为( − .
(3)当 ₁ > ₂时,x的取值范围为. < −或 < < .
和点
【题型二】成比例线段的概念
反比例函数知识点知识点总结
![反比例函数知识点知识点总结](https://img.taocdn.com/s3/m/49f256a3900ef12d2af90242a8956bec0975a59f.png)
反比例函数知识点知识点总结反比例函数知识点总结一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。
其中,x 是自变量,y 是因变量,k 叫做比例系数。
需要注意的是,反比例函数中自变量 x 的取值范围是x≠0,因为在分母中,分母不能为 0。
二、反比例函数的表达式反比例函数常见的表达式有以下三种形式:1、 y = k/x(k 为常数,k≠0),这是最基本的形式。
2、 xy = k(k 为常数,k≠0),通过对 y = k/x 两边同时乘以 x 得到。
3、 y = kx^(-1)(k 为常数,k≠0),这是用幂的形式表示。
三、反比例函数的图像反比例函数的图像属于双曲线。
当 k>0 时,双曲线的两支分别位于第一、第三象限,在每一象限内 y 随 x 的增大而减小。
当 k<0 时,双曲线的两支分别位于第二、第四象限,在每一象限内 y 随 x 的增大而增大。
反比例函数的图像是以原点为对称中心的中心对称的两条曲线。
四、反比例函数的性质1、单调性当 k>0 时,函数在区间(∞,0)和(0,+∞)上分别单调递减;当 k<0 时,函数在区间(∞,0)和(0,+∞)上分别单调递增。
2、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。
它有两条对称轴,分别是直线 y = x 和 y = x;对称中心是原点(0,0)。
3、渐近线当 x 趋近于正无穷或负无穷时,曲线无限接近坐标轴,但永远不会与坐标轴相交。
4、取值范围当 k>0 时,y>0 或 y<0;当 k<0 时,y<0 或 y>0。
五、反比例函数中 k 的几何意义1、过反比例函数 y = k/x(k≠0)图像上任意一点 P 作 x 轴、y 轴的垂线 PM、PN,垂足分别为 M、N,则矩形 PMON 的面积 S =PM×PN =|y|×|x| =|xy| =|k|。
九年级数学北师大版(上册)6.3 反比例函数的应用
![九年级数学北师大版(上册)6.3 反比例函数的应用](https://img.taocdn.com/s3/m/6594a943974bcf84b9d528ea81c758f5f71f2965.png)
(2)当S=2时,y=100 =50, 2
所以当面条粗2 mm2时,面条的总长度为50 m.
4.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细 (横截面积)S(mm2)的反比例函数,其图象如图所示. (1)写出y(m)与S(mm2)的函数关系式; (2)求当面条粗2 mm2时,面条的总长度是多少米?
∴y= 240 x
(2)
根据题意,若x=10,则y=
240 10
=24,
∴长为24 m
(3) 根据题意可得 240 ≤20,解得x≥12, x
∴宽至少为12 m
2.打字员要完成一篇4 200字的文章录入工作.
(1)若平均每分钟录入60个字,则完成工作需要多少分钟?
(2)写出录入时间y(分)与录入速度x(字/分)之间的函数关系式;
油0.1升的耗油速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析
式,(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
解:(1)把 a=0.1,S=700 代入
S= k 中,得 k=70,∴S= 70
a
a
(2) 把a=0.08代入 S= 70 得
(2) 不能
理由:晚上20:00到第二天早上
7:00共有11小时,
把x=11 代入 y= 225 , 得 y= 225 >20
x
11
∴不能
二、过关检测
第1关
7.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与
平均耗油量a(单位:升/千米)之间是反比例函数关系S=k (k是常
a
数,k≠0).若某轿车油箱注满油后,以平均耗 油量为每千米耗
初三反比例函数知识点
![初三反比例函数知识点](https://img.taocdn.com/s3/m/b2890eb6f71fb7360b4c2e3f5727a5e9856a27c0.png)
初三反比例函数知识点反比例函数是数学中的一种特殊函数,也称为倒数函数。
初三学习反比例函数是为了帮助学生更好地理解函数关系及其图像,在解决实际问题中的应用也非常广泛。
本文将从反比例函数的定义、性质、图像及实际应用等方面进行详细介绍。
一、反比例函数的定义和性质反比例函数是指一个函数与其自变量的乘积为常数的函数。
通常用符号y=k/x表示,其中k为常数。
1. 定义:反比例函数可以定义为y=k/x,其中k为常数,x≠0。
2. 性质:反比例函数的一个重要性质是其定义域和值域都不包括0。
因为当x=0时,函数值无意义,除数不能为0。
此外,反比例函数的图像一般是一个双曲线,具有一个垂直渐近线x=0和一个水平渐近线y=0。
二、反比例函数的图像反比例函数的图像是一个双曲线,在以原点为中心的坐标平面上对称分布。
其图像的特点如下:1. x轴和y轴:反比例函数的图像与x轴和y轴有关,当x趋近于无穷大或无穷小,y趋近于0;当y趋近于无穷大或无穷小,x趋近于0。
2. 渐近线:反比例函数有两条渐近线,水平渐近线和垂直渐近线。
水平渐近线表示y=0,x轴就是一个水平渐近线;垂直渐近线表示x=0,y轴就是一个垂直渐近线。
3. 对称性:反比例函数图像具有关于原点的对称性,即当(x, y)在图像上时,则(-x, -y)也在图像上。
三、反比例函数的实际应用反比例函数在实际生活中具有广泛的应用,特别是与数量关系有关的问题中常会涉及到反比例函数的应用。
1. 比例尺:反比例函数可以用来解决比例尺相关的问题。
比如,当地图缩小为原来的1/1000时,比例尺变为原来的1000倍。
2. 工作时间与工作效率:工作时间和工作效率之间通常存在反比例关系。
如果一项工作需要的时间越长,那么单位时间内的工作效率就会越低。
比如,甲乙两个人共同完成一项任务,甲需要10小时完成,乙需要5小时完成,乙的工作效率就是甲的两倍。
3. 电阻和电流关系:在电路中,电阻和电流之间往往存在反比例关系。
反比例函数知识点
![反比例函数知识点](https://img.taocdn.com/s3/m/e7a0d31376232f60ddccda38376baf1ffd4fe35d.png)
反比例函数知识点反比例函数是一种特殊的函数形式,它描述了两个变量之间的关系。
其特点是当一个变量的值增加时,另一个变量的值会减小,反之亦然。
在数学中,反比例函数通常用一个方程表示,形式为y=k/x,其中k是一个常数。
在本文中,我们将探讨一些与反比例函数相关的知识点。
一、反比例函数的定义反比例函数是一种形如y=k/x的函数形式。
其中,k是一个常数,被称为反比例函数的比例常数。
在反比例函数中,变量x和y的变化满足如下关系:当x增加时,y减小;当x减小时,y增加。
二、反比例函数的图像和性质反比例函数的图像是一条直线,经过原点(0,0)。
该函数的图像与坐标轴都有一个渐近线,与x轴共轭于y轴,与y轴共轭于x轴。
同时,反比例函数的图像在第一象限和第三象限中是上升的,即从左下到右上。
三、反比例函数的图像和实际应用反比例函数的图像常常出现在实际问题中,如物理、经济等领域。
例如,某物体的速度与其所受的力成反比,即速度越大,所受的力越小,反之亦然。
又如,在某种化学反应中,反应速率与溶液中的浓度成反比。
这些实际问题可以通过反比例函数来表示和解决。
四、反比例函数的性质和应用由于反比例函数的性质和图像特点,反比例函数在实际问题中有许多应用。
首先,反比例函数可以用来描述两个变量之间的关系,例如速度和力的关系、反应速率和浓度的关系等。
其次,反比例函数可以用来解决一些实际问题,例如求解未知变量的值或优化问题。
五、反比例函数的变形除了常见形式的反比例函数y=k/x,还有其他形式的反比例函数。
例如,y=k/(x-a)、y=(k+x)/(k-x)等。
这些变形形式的反比例函数在实际问题中也有广泛应用,例如电路中的电阻和电流的关系等。
六、反比例函数的应用举例反比例函数的应用非常广泛。
下面以几个具体的实例来说明。
例1:某车辆以恒定的速度行驶,当行驶时间增加时,其行驶距离减小。
这个问题可以用反比例函数来描述,行驶距离与行驶时间成反比。
例2:某工厂的生产成本与产量成反比,即产量越大,生产成本越低,反之亦然。
实际问题与反比例函数
![实际问题与反比例函数](https://img.taocdn.com/s3/m/e0211e5ccf84b9d528ea7a55.png)
实际问题与反比例函数知识点一:反比例函数的图象应用知识要点1.反比例函数图象的平移:(1(22.反比例函数图象的对称性:典例分析例1、反比例函数的图象经过点)32,3(-M ,将其图象向上平移2个单位后,得到的图象所对应的函数解析式为 _________ .例2、若将反比例函数xky =的图象绕原点O 逆时针旋转90︒后经过点A (-2,3),则反比例函数的解析式为__________.巩固练习:1.反比例函数的图象经过点)32,6(-M ,将其图象向右平移2个单位后,得到的图象所对应的函数解析式为______ .2.已知反比例函数xky =的图象经过点A (-2,3),将它绕原点O 逆时针旋转90︒后经过点A (-2,3),则旋转后的反比例函数的解析式为__________.知识点二:反比例函数的应用知识要点1.方式方法:把实际问题中寻找变量之间的关系,建立数学模型,运用数学知识解决实际问题。
2.常见题型:利用反比例函数求具体问题中的值,解决确定反比例函数中常数k 值的实际问题。
典例分析题型一:反比例函数的实际应用例1、京沈高速公路全长658km ,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t (h )与行驶的平均速度v (k m /h )之间的函数关系式为?例2、若r 为圆柱底面的半径,h 为圆柱的高.当圆柱的侧面积一定时,则h 与r 之间函数关系的图象大致是( )例3、小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v (米/分),所需时间为t (分)(1)则速度v 与时间t 之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少? (3)如果小林骑车的速度为300米/分,那他需要几分钟到达单位?巩固练习:1.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图像是( )A .B .C .D .2.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa )是气体体积V (m 3)的反比例函数,其图象如图所示. 当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体体积应( )(第2题图) A .不大于3m 3524 B .不小于3m 3524 C .不大于3m 3724D .不小于3m 37243.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面时,面条的总长度y (m )是面条的横截面积S (mm 2)的反比例函数,其图象如图所示.⑴写出y (m )与S (mm 2)的函数关系式;⑵求当面条的横截面积是1.6 mm 2时,面条的总长度是多少米?4.正在新建中的饿某会议厅的地面约5002m ,现要铺贴地板砖. (1)所需地板砖的块数n 与每块地板砖的面积S 有怎样的函数关系?(2)为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案,每块地板砖的规格为80×802cm ,蓝、白两种地板砖数相等,则需这两种地板砖各多少块?5.一场暴雨过后,一洼地存雨水20m 3,如果将雨水全部排完需t 分钟,排水量为a m 3/min ,且排水时间为 5~10min(1)试写出t 与a 的函数关系式,并指出a 的取值范围; (2)当排水量为3m 3/min 时,排水的时间需要多长? (3)当排水时间4.5分钟时,每分钟排水量多少?题型二:反比例函数与一次函数的交点问题例1、如图,一次函数y =kx +5(k 为常数,且k ≠0)的图象与反比例函数y =-8x的图象交于A (-2,b ),B 两点. (1)求一次函数的表达式;(2)若将直线AB 向下平移m (m >0)个单位长度后与反比例函数的图象有且只有一个公共点,求m 的值.【思路点拨】(1)将点A 坐标代入反比例函数解析式得b ,将A 坐标代入一次函数解析式得k ; (2)联立两函数解析式,得一元二次方程,有一个公共解则Δ=0,即可求出m 的值. 【解答】(1)∵A (-2,b )在y =-8x上, ∴-2b =-8,b =4.∴A (-2,4). ∵A (-2,4)在y =kx +5上, ∴k =12, ∴一次函数为y =12x +5. (2)向下平移m 个单位长度后,直线为y =12x +5-m ,由题意,得15.82y y x m x=-=+⎧⎪⎨⎪-⎪⎪⎩,整理得12x 2+(5-m )x +8=0, ∵平移后直线与双曲线有且只有一个公共点, ∴Δ=(5-m )2-4×12×8=0,解得m =1或9. 方法归纳:解决一次函数和反比例函数的问题常常从反比例函数突破,求两函数的交点问题通常联立成方程组,转化为方程解决.若两函数图象有两个交点,则对应的一元二次方程的Δ>0;若两函数图象有1个交点,则对应的一元二次方程的Δ=0;若两函数图象没有交点,则对应的一元二次方程的Δ<0.巩固练习:1.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2ky x=(x <0)分别交于点C 、D ,且点C 的坐标为(-1,2).⑴ 分别求出直线及双曲线的解析式; ⑵ 求出点D 的坐标;⑶ 利用图象直接写出当x 在什么范围内取值时,12y y >.2.反比例函数中y =5x-,当x <2时,y 的取值范围是 ;当y ≥-1时,x 的取值范围是 .3.一次函数y =kx+b 与反比例函数y =2x 的图象如图,则关于x 的方程kx+b =2x的解为( ) xyD CBAOA . x l =1,x 2=2B . x l =-2,x 2=-1C . x l =1,x 2=-2D . x l =2,x 2=-题型三:反比例函数求面积类问题例2、如图,点A 、B 在反比例函数ky x的图象上, A 、B 两点的横坐标分别为a 2a (a >0),AC ⊥x 轴于点C ,且ΔAOC 的面积为2. ⑴求该反比例函数的解析式;⑵若点(-a ,y 1),(-2a ,y 2)在该反比例函数的图象上,试比较y 1 与y 2的大小;⑶求ΔAOB 的面积.例3、如图,一次函数y =-x +2的图象与反比例函数y =-3x的图象交于A 、B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称. (1)求A 、B 两点的坐标; (2)求△ABC 的面积.巩固练习:1.如图,在△AOB 中,∠ABO =90°,OB =4,AB =8,反比例函数y =kx在第一象限内的图象分别交OA ,AB 于点C 和点D ,且△BOD 的面积S △BOD =4. (1)求反比例函数解析式; (2)求点C 的坐标.2.如图,在直角坐标系xOy 中,直线y =mx 与双曲线y =nx相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. (1)求m 、n 的值; (2)求直线AC 的解析式.课后作业1.如图1,一次函数y x b =+与反比例函数ky x=的图象相交于A 、B 两点,若已知一个交点为A (2,1),则另一个交点B 的坐标为( )图1A . (2,-1)B .(-2,-1)C . (-1,-2)D . (1,2)2.点P 为反比例函数图象上一点,如图2,若阴影部分的面积是12个(平方单位),则解析式为 __________3.如图3,利用函数图象解不等式xx 1<,则不等式的解集为______________4.不解方程,利用函数的图象判断方程02=-x x的解的个数为_____________ 5.如图,在平面直角坐标系xOy 中,已知一次函数y =kx +b 的图象经过点A (1,0),与反比例函数y =mx(x >0)的图象相交于点B (2,1). (1)求m 的值和一次函数的解析式;(2)结合图象直接写出:当x >0时,不等式kx +b >mx的解集.6.如图,一次函数y =kx +b (k ≠0)的图象过点P (-32,0),且与反比例函数y =m x(m ≠0)的图象相交于点A (-2,1)和点B . (1)求一次函数和反比例函数的解析式;(2)求点B 的坐标,并根据图象回答:当x 在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?7.已知一次函数y =kx -6的图象与反比例函数y =-2kx的图象交于A 、B 两点,点A 的横坐标为2. (1)求k 的值和点A 的坐标; (2)判断点B 的象限,并说明理由.。
关于反比例函数的知识点
![关于反比例函数的知识点](https://img.taocdn.com/s3/m/bdc76bccd1d233d4b14e852458fb770bf78a3bc9.png)
关于反比例函数的知识点反比例函数是数学中经常用到的一种重要函数类型。
它是一种特殊类型的函数,通过定义两个变量之间的关系,其中一个变量的增加导致另一个变量的减小,反之亦然。
本文将详细介绍反比例函数的定义、图像、性质以及一些实际应用。
一、反比例函数的定义反比例函数的定义如下:y = k / x其中,x 和 y 是变量,k 是一个常数。
在反比例函数中,y 的值与 x 的值成反比例关系,即 x 越大,y 越小,反之亦然。
常数 k 称为比例常数,它决定了函数的形状。
二、反比例函数的图像反比例函数的图像通常是一个双曲线,它的形状取决于比例常数 k 的值。
当比例常数 k 大于 0 时,反比例函数的图像在 x 轴的正半轴和 y 轴的负半轴上分别存在一个渐近线。
这是因为当 x 趋近于无穷大时,y 趋近于 0,当 y 趋近于无穷大时,x 趋近于 0。
当比例常数 k 小于 0 时,反比例函数的图像与前一种情况相似,但是渐近线位于 x 轴的负半轴和 y 轴的正半轴上。
三、反比例函数的性质1. 定义域和值域:由于反比例函数中 x 不能为 0,所以它的定义域为 x ≠ 0。
根据函数的定义,可以得出反比例函数的值域为 y ≠ 0。
2. 对称性:反比例函数具有轴对称性,即当 (x, y) 在反比例函数中时,(-x, -y) 也在反比例函数中。
3. 变化率:反比例函数的变化率是一个常数,即在函数图像上的任意两个点 (x1, y1) 和 (x2, y2) 中,斜率 k = y1 / x1 = y2 / x2 是一个常数。
四、反比例函数的实际应用反比例函数在实际生活中有许多应用。
以下是一些常见的实际应用示例:1. 物体的速度和时间:当物体的运动速度保持不变时,物体在单位时间内所需的时间与其速度成反比例关系。
当速度增加时,所需时间减小;当速度减小时,所需时间增加。
2. 货币兑换:兑换货币时,汇率决定了兑换后的货币数量。
如果汇率变高,那么兑换后的货币数量就变少;如果汇率变低,兑换后的货币数量就变多。
初三反比例函数知识点
![初三反比例函数知识点](https://img.taocdn.com/s3/m/aa00a30fce84b9d528ea81c758f5f61fb736280d.png)
初三反比例函数知识点初三数学中,反比例函数是一个非常重要的知识点。
它是函数的一种特殊形式,与正比例函数相对应。
反比例函数在数学和实际生活中都有着重要的应用。
本文将详细介绍反比例函数的定义、性质、图像和应用。
1. 反比例函数的定义反比例函数是指形如f(x) = k/x的函数,其中k是常数,x不等于0。
在反比例函数中,当x增大时,f(x)的值减小;当x减小时,f(x)的值增大。
可以看出,反比例函数是一个曲线,它的图像可以用一个双曲线表示。
2. 反比例函数的性质反比例函数有一些重要的性质值得我们关注。
2.1. 定义域和值域:反比例函数的定义域是除了0的所有实数,值域是除了0的所有实数。
2.2. 对称轴:反比例函数的对称轴是y轴。
2.3. 渐近线:反比例函数有两条渐近线,即x轴和y轴。
2.4. 单调性:反比例函数在定义域上是单调递减的。
2.5. 零点:当输入变量x等于0时,反比例函数的值为无穷大。
3. 反比例函数的图像反比例函数的图像是一个双曲线。
双曲线有两个分支,分别趋近于渐近线,与坐标轴的相交点是它的零点。
当x趋近于正无穷大或负无穷大时,函数值趋近于0。
4. 反比例函数的应用反比例函数在实际生活中有很多重要的应用。
4.1. 比例定理:反比例函数可以用来描述许多与比例有关的问题。
比如,在购买商品时,如果商品的价格和数量成反比,那么我们可以使用反比例函数来计算购买不同数量商品时的总花费。
4.2. 速度和时间的关系:在汽车行驶过程中,速度和时间成反比例关系。
当速度增大时,时间减小;当速度减小时,时间增大。
反比例函数可以帮助我们计算汽车行驶的时间。
4.3. 电路中的电阻和电流关系:在电路中,电阻和电流成反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
反比例函数可以帮助我们计算电路中的电流。
4.4. 功率和电压关系:在电路中,功率和电压成反比例关系。
当电压增大时,功率减小;当电压减小时,功率增大。
专题14反比例函数及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习
![专题14反比例函数及其应用(知识点总结+例题讲解)-2021届中考数学一轮复习](https://img.taocdn.com/s3/m/9b98a1108bd63186bdebbc36.png)
2021年中考数学 专题14 反比例函数及其应用(知识点总结+例题讲解)一、反比例函数、图像、性质:1.反比例函数的概念: (1)定义:一般地,函数ky x(k 是常数,k ≠0)叫做反比例函数; (2)变形:反比例函数的解析式也可以写成y=kx -1或xy=k(k ≠0)的形式;(3)自变量x 的取值范围:x ≠0的一切实数,函数的取值范围也是一切非零实数。
【例题1】下列函数是y 关于x 的反比例函数的是( ) A .y =1x−1 B .y =1x 3C .y =−3xD .y =−x4【答案】C【解析】利用反比例函数定义进行分析即可.解:A 、不是y 关于x 的反比例函数,故此选项不合题意; B 、不是y 关于x 的反比例函数,故此选项不合题意; C 、是y 关于x 的反比例函数,故此选项符合题意;D 、不是y 关于x 的反比例函数,是正比例函数,故此选项不合题意;故选:C . 【变式练习1】若y =(a +1)x a2−2是反比例函数,则a 的取值为( )A .1B .﹣1C .±1D .任意实数【答案】A【解析】先根据反比例函数的定义列出关于a 的方程组,求出a 的值即可. 解:∵此函数是反比例函数,∴{a +1≠0a 2−2=−1,解得a =1.故选:A .2.反比例函数的图象:(1)反比例函数的图像是双曲线;它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限;它们关于原点对称;(2)反比例函数关于直线y=x和y=-x成轴对称;(对称中心:原点)(3)由于反比例函数中自变量x≠0,函数y≠0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
和y=﹣kx+2(k≠0)在同一平面直角坐标系中的大致图【例题2】(2020•德州)函数y=kx象可能是( )【答案】D【解析】根据题目中函数的解析式,利用一次函数和反比例函数图象的特点解答本题.和y=﹣kx+2(k≠0)中,解:在函数y=kx的图象在第一、三象限,函数y=﹣kx+2的图象在第一、二、四当k>0时,函数y=kx象限,故选项A、B错误,选项D正确;的图象在第二、四象限,函数y=﹣kx+2的图象在第一、二、三当k<0时,函数y=kx象限,故选项C错误。
2、实际问题与反比例函数汇总
![2、实际问题与反比例函数汇总](https://img.taocdn.com/s3/m/7bf06601af45b307e87197bd.png)
反比例函数实际应用一、知识点详解在中考试题中对反比例函数应用的考查主要有两种形式,一是确定实际问题中的反比例函数解析式,这类问题一般属于跨学科问题,除了要了解一些基本生活常识外还要掌握常见的物理学公式;二是判断实际问题中的函数图象,这类问题一般会综合考查一次函数和二次函数,正确解答这类问题的关键是确定函数关系式,同时注意自变量的取值范围。
二、知识点拨1、实际问题中常见的反比例关系现实世界中有许多含有反比例函数关系和性质的现象,常见的主要有以下几种:(1)面积S 一定,长方形的长a 与宽b 之间的反比例函数关系:a =Sb。
(2)体积V 一定,圆柱体的底面积S 与高d 之间的反比例函数关系:S =Vd ;(3)压力N 一定,压强P 与接触面积S 之间的反比例函数关系:P =NS;(4)质量m 一定,气体压强p 与气体体积V 之间的反比例函数关系:p =mV ;(5)功率P 一定,速度v 与所受阻力F 之间的反比例函数关系:v =PF;(6)路程S 一定,匀速行驶速度v 与时间t 之间的反比例函数关系:v =St ;(7)电压U 一定,电路中电流I 与电阻R 之间的反比例函数关系:I =UR;2、反比例函数模型的建立1. 条件:实际问题中的两个变量在变化过程中,它们的积为定值;2. 过程:(1)用两个不同字母表示变量; (2)确定k 的值; (3)建立函数关系式;(4)利用图象及其性质解决问题。
3、实际问题中反比例函数的特点1. 实际问题中反比例函数自变量的取值是有一定范围的,一般情况取正数,有时取正整数,所以在实际问题中,具体问题需要具体分析其自变量、函数的取值。
2. 实际问题中反比例函数的图象往往是在第一象限中的部分或其中的某一段,这与自变量的取值范围有关。
三、经典例题 能力提升类例1 填空题(1)在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是__________米。
根据反比例函数知识点归纳,给出10个例子:
![根据反比例函数知识点归纳,给出10个例子:](https://img.taocdn.com/s3/m/8dddfbb98662caaedd3383c4bb4cf7ec4afeb6c4.png)
根据反比例函数知识点归纳,给出10个例子:根据反比例函数知识点归纳,给出10个例子反比例函数是一种特殊的函数形式,其特点是当自变量增大时,因变量会相应地减小;反之,当自变量减小时,因变量则会增大。
下面列举了10个反比例函数的例子:1. 电阻和电流的关系:当电流增大时,电阻减小;当电流减小时,电阻增大。
这能够用反比例函数来描述。
2. 速度和时间的关系:在恒定的距离下,当时间增加时,速度减小;当时间减少时,速度增加。
这也可以用反比例函数来表示。
3. 燃料效率和车速的关系:在同一辆车中,当车速增加时,燃料效率减小;当车速减小时,燃料效率增加。
4. 打孔机打孔时间和打孔数量的关系:对于一台打孔机来说,当打孔时间增加时,每分钟打孔的数量减少;当打孔时间减少时,每分钟打孔的数量增加。
5. 饺子和蒸锅水量的关系:当蒸锅中的水量增加时,每批饺子蒸熟所需的时间减少;当水量减少时,蒸饺所需的时间增加。
6. 光照强度和物体亮度的关系:在同一条件下,当光照强度增加时,物体的亮度减小;当光照强度减小时,物体的亮度增加。
7. 音乐音量和听到的声音大小的关系:当音乐音量增大时,听到的声音大小减小;当音乐音量减小时,听到的声音大小增加。
8. 网球击球速度和击球力度的关系:在相同的击球动作下,当击球力度增大时,网球的击球速度减小;当击球力度减小时,网球的击球速度增加。
9. 泵抽水时间和抽水深度的关系:当泵抽水时间增加时,抽水深度减小;当泵抽水时间减少时,抽水深度增加。
10. 车辆行驶速度和制动距离的关系:当车辆行驶速度增加时,制动距离增加;当车辆行驶速度减小时,制动距离减小。
以上是10个常见的反比例函数的例子。
反比例函数在实际生活中有着广泛的应用,能够帮助我们理解自然界中的各种规律和现象。
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)
![中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)](https://img.taocdn.com/s3/m/7d636b0b366baf1ffc4ffe4733687e21af45ffb2.png)
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。
反比例函数图象性质及应用复习课件
![反比例函数图象性质及应用复习课件](https://img.taocdn.com/s3/m/41bbfd3ca517866fb84ae45c3b3567ec102ddcb1.png)
04
反比例函数的实际应用案 例
电流与电阻的关系
总结词
电流与电阻成反比关系,当电阻增大时,电流减小;反之亦然。
详细描述
在电路中,电流与电阻之间的关系表现为反比例关系。当电路中的电压保持恒定时,电阻的阻值增大,会导致电 流减小;反之,如果电阻的阻值减小,电流则会增大。这一关系在电子设备和电路设计中具有重要应用。
答案解析
针对每个练习题,提供 详细的答案解析,帮助 学生理解解题思路和过
程。
感谢您的观看
THANKS
表达式
一般形式为 y = k/x,其中 k 是 常数且 k ≠ 0。
图像特点
双曲线
反比例函数的图像是双曲线,分布在两个象限内。
渐近线
图像分别渐近于 x 轴和 y 轴。
变化趋势
随着 x 的增大或减小,y 的值会无限接近于 0 但永远不会等于 0。
渐近线与对称性
渐近线
对于反比例函数 y = k/x (k > 0),其图像在第一象限和第三象限内,当 x 趋于正无穷 或负无穷时,y 值趋于 0,因此渐近于 x 轴;当 y 趋于正无穷或负无穷时,x 值趋于 0 ,因此渐近于 y 轴。对于 k < 0 的情况,图像在第二象限和第四象限内,渐近线为 y
反比例函数图象性质及 应用复习ppt课件
目录 CONTENT
• 反比例函数的基本性质 • 反比例函数的图像绘制 • 反比例函数的应用场景 • 反比例函数的实际应用案例 • 反比例函数与其他知识点的关联 • 复习与巩固
01
反比例函数的基本性质
定义与表达式
定义
反比例函数是指形如 y = k/x (k ≠ 0) 的函数,其中 x 是自变量, y 是因变量。
反比例函数最全知识点
![反比例函数最全知识点](https://img.taocdn.com/s3/m/8fce246cec630b1c59eef8c75fbfc77da2699737.png)
反比例函数最全知识点反比例函数是一种特殊的函数形式,它表示了一种两个变量之间的相互依赖关系。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,反之亦然。
本文将介绍反比例函数的定义、图像特征、性质、图像变换、实际应用以及解决反比例函数问题的方法等知识点。
一、反比例函数的定义反比例函数可以表示为:y=k/x(k≠0),其中y表示因变量(通常是函数的输出值),x表示自变量(通常是函数的输入值),k表示常数。
该定义中的k称为反比例函数的常数项,它决定了反比例函数的性质,也决定了函数图像的形状。
二、反比例函数的图像特征1.零点:当x=0时,由于分母为0,函数无定义。
因此,反比例函数没有定义在x=0的点,这个点称为函数的零点。
2.渐近线:反比例函数有两条渐近线,分别是x轴和y轴。
当x趋近于无穷大或无穷小时,y趋近于0;当y趋近于无穷大或无穷小时,x趋近于0。
3.反比例函数的图像是一个双曲线,由于分母不能为0,因此函数的图像始终存在。
当x取值较小时,y的取值较大;当x取值较大时,y的取值较小。
图像的形状与常数项k相关,k越大,图像越接近于x轴和y 轴。
三、反比例函数的性质1.定义域:反比例函数的定义域为除去零点以外的实数集合。
2.值域:反比例函数的值域为除去0以外的实数集合。
3.奇偶性:反比例函数是个奇函数,即满足f(-x)=-f(x)。
4.单调性:反比例函数在定义域上是单调递减的。
5.对称轴:反比例函数的对称轴为y=x,即函数图像关于对称轴对称。
四、反比例函数的图像变换对反比例函数进行图像变换可以通过调整常数项k的值来实现。
具体变换如下:1.平移:当k保持不变时,反比例函数的图像向上平移或向下平移。
若向上平移b个单位,则为y=k/(x+b);若向下平移b个单位,则为y=k/(x-b)。
2.拉伸:当k保持不变时,反比例函数的图像可以进行纵向拉伸或纵向压缩。
若纵向拉伸为a倍,则为y=(k/a)/x;若纵向压缩为a倍,则为y=(a*k)/x。
反比例函数的应用课件
![反比例函数的应用课件](https://img.taocdn.com/s3/m/27142e2d00f69e3143323968011ca300a6c3f621.png)
解:根据电学知识,
U~
当 U = 220 时,得
2202 p .
R
新课进行时
(2) 这个用电器功率的范围是多少?
解:根据反比例函数的性质可知,电阻越大,功率 越小. 把电阻的最小值 R = 110 代入求得的表达式, 得到功率的最大值 p 2202 440 ; 110
把电阻的最大值 R = 220 代入求得的表达式,
小. 因此,若想用力不超过 400 N 的一半,则
动力臂至少要加长 1.5 m.
新课进行时
想一想
在物理中,我们知道,在阻力和阻 力臂一定的情况下,动力臂越长就越省力, 你能用反比例函数的知识对其进行解释吗?
新课进行时
练一练 假定地球重量的近似值为 6×1025 牛顿 (即阻力),
阿基米德有 500 牛顿的力量,阻力臂为 2000 千米,请 你帮助阿基米德设计,该用多长动力臂的杠杆才能把 地球撬动? 解: 2000 千米 = 2×106 米,
解:运了8天后剩余的垃圾有
1200-8×60=720 (立方米),
剩下的任务要在不超过6天的时间完成,则每天
至少运
720÷6=120 (立方米),
所以需要的拖拉机数量是:120÷12=10 (辆),
即至少需要增加拖拉机10-5=5 (辆).
新课进行时
例3 一司机驾驶汽车从甲地去乙地,他以 80千米/时的 平均速度用 6 小时到达乙地. (1)甲、乙两地相距多少千米?
( B) y
A.
x
B.
x
y
y
C.
x
D.
x
新课进行时
2. 如图,某玻璃器皿制造公司要制造一种容积为1升
(1升=1立方分米)的圆锥形漏斗.
反比例函数知识点及举例
![反比例函数知识点及举例](https://img.taocdn.com/s3/m/416e2e21793e0912a21614791711cc7931b778dd.png)
反比例函数知识点及举例下面举例几种常见的反比例函数及其应用:1.流体力学中的波速和横截面积:根据连续性方程,流体通过管道时,速度和横截面积成反比例关系。
波速等于流量除以横截面积,可以表示为v=k/a,其中v为波速,a为横截面积,k为常数。
2.物体运动的速度和所用时间:根据物理学中的路程公式,速度等于路程除以时间。
如果物体在运动中的速度与所用时间成反比例关系,可以表示为v=k/t,其中v为速度,t为所用时间,k为常数。
例如,一辆汽车在行驶过程中的速度与所用的时间成反比例关系,行驶时间越长,速度越慢。
3.人均资源消耗与人口数量:在经济学中,人均资源消耗与人口数量成反比例关系。
当人口数量增加时,人均资源消耗会减少,反之亦然。
这可以表示为y=k/x,其中y为人均资源消耗,x为人口数量,k为常数。
4.电路中的电阻和电流:根据欧姆定律,电阻等于电压除以电流。
如果电阻和电流成反比例关系,则可以表示为R=k/I,其中R为电阻,I为电流,k为常数。
例如,在并联电路中,增加电流会减少总电阻。
5.两个自变量之间的关系:反比例函数也可以用来表示两个自变量之间的关系。
例如,一个简单的例子是工人完成其中一种工作所需的时间和工作人数。
当工人的数量增加时,完成工作所需的时间会减少,反之亦然。
这可以表示为t=k/n,其中t为完成工作所需的时间,n为工作人数,k为常数。
总结起来,反比例函数是一种非常重要的函数形式,在实际问题中有着广泛的应用。
通过了解反比例函数的图像和特性,我们可以更好地理解和解决与反比例关系相关的问题。
新人教版初中数学——反比例函数-知识点归纳及典型题解析
![新人教版初中数学——反比例函数-知识点归纳及典型题解析](https://img.taocdn.com/s3/m/42d8a9777f21af45b307e87101f69e314332faee.png)
新人教版初中数学——反比例函数知识点归纳及典型题解析一、反比例函数的概念1.反比例函数的概念一般地,函数kyx=(k是常数,k≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx-=的形式.自变量x的取值范围是x≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数kyx=(k是常数,k≠0)中x,y的取值范围反比例函数kyx=(k是常数,k≠0)的自变量x的取值范围是不等于0的任意实数,函数值y的取值范围也是非零实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k>0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y随x的增大而减小.当k<0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y随x的增大而增大.表达式kyx=(k是常数,k≠0)k k>0 k<0大致图象所在象限第一、三象限第二、四象限2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永远不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x 的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解. (1)正比例函数与一次函数所围成的三角形面积.如图①,S △ABC =2S △ACO =|k |;(2)如图②,已知一次函数与反比例函数ky x=交于A 、B 两点,且一次函数与x 轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+; (3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-. 五、反比例函数与一次函数的综合 1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k值的符号来决定.①k值同号,两个函数必有两个交点;②k值异号,两个函数可能无交点,可能有一个交点,也可能有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y,等号右边是关于自变量x的分式,分子是不为零的常数k,分母不能是多项式,只能是x的一次单项式.2.反比例函数的一般形式的结构特征:①k≠0;②以分式形式呈现;③在分母中x的指数为1.典例1 下列函数中,y与x之间是反比例函数关系的是A.xy2B.3x+2y=0C.y=kxD.y=21x【答案】A【解析】A、xy=2属于反比例函数,故此选项正确;B、3x+2y=0是一次函数,故此选项错误;C、y=kx(k≠0),不属于反比例函数,故此选项错误;D 、y =21x +,是y 与x +1成反比例,故此选项错误. 故选A .1.下列函数:①2x y =;②2y x =;③12y x=-;④12y x -=中,是反比例函数的有 A .1个 B .2个 C .3个D .4个考向二 反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).典例2 在同一平面直角坐标系中,函数y =﹣x +k 与y =kx(k 为常数,且k ≠0)的图象大致是 A . B .C .D .【答案】C【解析】∵函数y =﹣x +k 与y =kx(k 为常数,且k ≠0),∴当k >0时,y =﹣x +k 经过第一、二、四象限,y =k x 经过第一、三象限,故选项D 错误,当k <0时,y =﹣x +k 经过第二、三、四象限,y =kx经过第二、四象限,故选项C 正确,选项A 、B 错误,故选C . 典例3 反比例函数3y x=-的图象在 A .第一、二象限 B .第一、三象限 C .第二、三象限D .第二、四象限【答案】D【解析】因为30k =-<,故图象在第二、四象限,故选D . 典例4 已知点A (1,m ),B (2,n )在反比例函数(0)ky k x=<的图象上,则 A .0m n << B .0n m << C .0m n >>D .0n m >>【答案】A【解析】∵反比例函数(0)k y k x =<,它的图象经过A (1,m ),B (2,n )两点,∴m =k <0,n =2k<0,∴0m n <<,故选A .2.对于函数4y x=,下列说法错误的是 A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小3.下列函数中,当x <0时,y 随x 的增大而减小的是 A .y =x B .y =2x –1 C .y =3x D .y =–1x4.如图是三个反比例函数y =1k x ,y =2kx ,y =3k x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2考向三 反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因此要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入k y x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.典例5 若反比例函数的图象经过点()32,-,则该反比例函数的表达式为 A .6y x = B .6y x =-C .3y x=D .3y x=-【答案】B【解析】设反比例函数为:ky x=.∵反比例函数的图象经过点(3,-2),∴k =3×(-2)=-6.故反比例函数为:6y x=-,故选B . 典例6 如图,某反比例函数的图象过点M (-2,1),则此反比例函数表达式为A.y=2xB.y=-2xC.y=12xD.y=-12x【答案】B【解析】设反比例函数表达式为y=kx,把M(2-,1)代入y=kx得,k=(-2)×1=-2,∴2yx=-,故选B.典例7 如图,C1是反比例函数y=kx在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为__________(x>0).【答案】y=–2 x【解析】∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,–1),∴C2对应的函数的表达式为y=–2x,故答案为y=–2x.5.已知反比例函数y=-6x,下列各点中,在其图象上的有A.(-2,-3)B.(2,3)C.(2,-3)D.(1,6)6.点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A在第二象限内,则这个函数的解析式为A.y=12xB.y=-12xC.y=112xD.y=-112x7.在平面直角坐标系中,点P(2,a)在反比例函数y=2x的图象上,把点P向上平移2个单位,再向右平移3个单位得到点Q,则经过点Q的反比例函数的表达式为__________.考向四反比例函数中k的几何意义三角形的面积与k的关系(1)因为反比例函数kyx中的k有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k|,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.典例8 如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y=kx(k≠0)的图象经过A、D两点,则k值为__________.163【解析】如图,过点D作DE⊥x轴于点E,∵点B 的坐标为(﹣2,0),∴AB =﹣2k ,∴OC =﹣2k , 由旋转性质知OD =OC =﹣2k,∠COD =60°,∴∠DOE =30°, ∴DE =12OD =﹣14k ,OE =OD ·cos30°=32×(﹣2k )=﹣34k , 即D (﹣34k ,﹣14k ),∵反比例函数y =kx(k ≠0)的图象经过D 点, ∴k =(﹣34k )(﹣14k )=316k 2,解得:k =0(舍)或k =﹣1633,故答案为:﹣1633. 典例9 如图,已知双曲线ky x经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C ,若 △OBC 的面积为9,则k =__________.【答案】6【解析】如图,过点D 作x 轴的垂线交x 轴于点E ,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为9.设点D的横坐标为x,纵坐标就为kx,∵D为OB的中点.∴EA=x,AB=2kx,∴四边形DEAB的面积可表示为:12(kx+2kx)x=9;k=6.故答案为:6.【名师点睛】过反比例函数图象上的任一点分别向两坐标轴作垂线段,垂线段与两坐标轴围成的矩形面积等于|k|,结合函数图象所在的象限可以确定k的值,反过来,根据k的值,可以确定此矩形的面积.在解决反比例函数与几何图形综合题时,常常需要考虑是否能用到k的几何意义,以简化运算.8.如图,A、B两点在双曲线4yx=的图象上,分别经过A、B两点向轴作垂线段,已知1S=阴影,则12S S+=A.8 B.6 C.5 D.49.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA、BC,已知点C(2,0),BD=3,S△BCD=3,则S△AOC为A.2 B.3 C.4 D.610.如图,等腰三角形ABC的顶点A在原点,顶点B在x轴的正半轴上,顶点C在函数y=kx(x>0)的图象上运动,且AC=BC,则△ABC的面积大小变化情况是A.一直不变B.先增大后减小C.先减小后增大D.先增大后不变考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.典例10 在同一平面直角坐标系中,函数1yx=-与函数y=x的图象交点个数是A.0个B.1个C.2个D.3个【答案】A【解析】∵y=x的图象是过原点经过一、三象限,1yx=-的图象在第二、四象限内,但不过原点,∴两个函数图象不可能相交,故选A.典例11 已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是A.x<-1或0<x<3 B.-1<x<0或x>3 C.-1<x<0 D.x>3【答案】B【解析】根据图象知,一次函数y1=kx+b与反比例函数y2=kx的交点是(-1,3),(3,-1),∴当y1<y2时,-1<x<0或x>3,故选B.【名师点睛】本题主要考查函数图象的交点,把不等式转化为函数图象的高低是解题的关键,注意数形结合思想的应用.典例12 如图,已知直线y=–13x+10与双曲线y=kx(x>0)交于A、B两点,连接OA,若OA⊥AB,则k的值为A.910B.2710C 910D2710【答案】B【解析】如图,过A 作AE ⊥OD 于E ,∵直线解析式为y =–13x +10,∴C (0,10),D (310,0), ∴OC =10,OD =310,∴Rt △COD 中,CD =22 O C OD +=10, ∵OA ⊥AB ,∴12CO ×DO =12CD ×AO , ∴AO =3,∴AD =22OD OA -=9, ∵12OD ×AE =12AO ×AD ,∴AE =91010, ∴Rt △AOE 中,OE =22AO AE -=229103()10-=31010,∴A (31010,91010), ∴代入双曲线y =k x ,可得k =31010×91010=2710,故选B .11.已知反比例函数y =kx(k ≠0),当x >0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过 A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限D .第二、三、四象限12.如图,已知A (–4,n ),B (2,–4)是一次函数y =kx +b 和反比例函数y =mx的图象的两个交点. (1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积.考向六反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.典例13 某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=kx对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是__________;(2)求反比例函数y =__________的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x 的值.【解析】(1)当0≤x ≤40时,设y 与x 之间的函数关系式为y =ax +b , (10,35)和(30,65)在y =ax +b 的图象上, 把(10,35)和(30,65)代入y =ax +b ,得10353065a b a b +=+=⎧⎨⎩,得 1.520a b ==⎧⎨⎩, ∴y =1.5x +20,当x =0时,y =1.5×0+20=20, 故答案为:20;(2)将x =40代入y =1.5x +20,得y =80,∴点E (40,80), ∵点E 在反比例函数y =kx的图象上, ∴80=40k,得k =3200, 即反比例函数y =3200x ,当y =20时,20=3200x,得x =160,即车间内危险检测表恢复到气体泄漏之初数据时对应x 的值是160.13.如图为某种材料温度y (℃)随时间x (min )变化的函数图象.已知该材料初始温度为15℃,温度上升阶段y 与时间x 成一次函数关系,且在第5分钟温度达到最大值60℃后开始下降;温度下降阶段,温度y 与时间x 成反比例关系.(1)分别求该材料温度上升和下降阶段,y 与x 间的函数关系式;(2)根据工艺要求,当材料的温度高于30℃时,可以进行产品加工,问可加工多长时间?1.下列函数中,y 是x 的反比例函数的是 A .x (y –1)=1B .15y x =- 1C 3y x=. 21D y x=.2.已知反比例函数y =8k x-的图象位于第一、三象限,则k 的取值范围是 A .k >8 B .k ≥8 C .k ≤8D .k <83.如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=1k x(x >0)及y 2=2k x (x >0)的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则k 1-k 2的值为A .2B .3C .4D .-44.若点A (–5,y 1),B (–3,y 2),C (2,y 3)在反比例函数3y x=的图象上,则y 1,y 2,y 3的大小关系是 A .y 1<y 3<y 2 B .y 2<y 1<y 3 C .y 3<y 2<y 1D .y 1<y 2<y 35.如图,在同一平面直角坐标系中,一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点,则不等式y 1>y 2的解集是A .-3<x <2B .x <-3或x >2C .-3<x <0或x >2D .0<x <26.一次函数y =ax +b 与反比例函数a by x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是 A . B .C.D.7.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B.当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B 是MD的中点.其中正确结论的个数是A.0个B.1个C.2个D.3个8.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=6x的图象与AB边交于点D,与BC边交于点E,连接DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是A.-25B.-121C.-15D.-1249.已知(),3A m、()2,B n-在同一个反比例函数图像上,则mn=__________.10.如图,直线分别与反比例函数2yx=-和3yx=的图象交于点A和点B,与y轴交于点P,且P为线段AB的中点,作AC⊥x轴于点C,BD⊥x轴交于点D,则四边形ABCD的面积是__________.11.如图,正方形ABCD的边长为2,AD边在x轴负半轴上,反比例函数y=kx(x<0)的图象经过点B和CD边中点E,则k的值为__________.12.如图,点A,B在反比例函数kyx=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是__________.13.如图,已知反比例函数kyx=与一次函数y=x+b的图象在第一象限相交于点A(1,-k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.14.如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 的图象与反比例函数my x=的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程0x xk b m+-<的解集(请直接写出答案).15.一般情况下,中学生完成数学家庭作业时,注意力指数随时间x (分钟)的变化规律如图所示(其中AB 、BC 为线段,CD 为双曲线的一部分). (1)分别求出线段AB 和双曲线CD 的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?1.已知点A (1,–3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为A.3 B.1 3C.–3 D.–1 32.若点(–1,y1),(2,y2),(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是A.y1>y2>y3B.y3>y2>y1 C.y1>y3>y2D.y2>y3>y13.在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是A.B.C.D.4.如图,函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q5.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OABC 的顶点A 在反比例函数y =1x上,顶点B 在反比例函数y =5x上,点C 在x 轴的正半轴上,则平行四边形OABC 的面积是A .32B .52C .4D .66.在平面直角坐标系xOy 中,点A (a ,b )(a >0,b >0)在双曲线y =1k x上,点A 关于x 轴的对称点B 在双曲线y =2k x,则k 1+k 2的值为__________. 7.如图,在平面直角坐标中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(–4,0),点D 的坐标为(–1,4),反比例函数y =k x(x >0)的图象恰好经过点C ,则k 的值为__________.8.如图,菱形ABCD 顶点A 在函数y =3x (x >0)的图象上,函数y =kx(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB =2,∠BAD =30°,则k =__________.9.已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.10.如图,一次函数y =k 1x +b 的图象与反比例函数y =2k x的图象相交于A 、B 两点,其中点A 的坐标为(–1,4),点B 的坐标为(4,n ). (1)根据图象,直接写出满足k 1x +b >2k x的x 的取值范围; (2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP ∶S △BOP =1∶2,求点P 的坐标.1.【答案】C【解析】①不是正比例函数,②③④是反比例函数,故选C . 2.【答案】C【解析】根据反比例函数的图象与性质,可由题意知k =4>0,其图象在一三象限,且在每个象限内y 随x 增大而减小,它的图象既是轴对称图形又是中心对称图形,故选C . 3.【答案】C【解析】A 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; B 、为一次函数,k 的值大于0,y 随x 的增大而增大,不符合题意; C 、为反比例函数,k 的值大于0,x <0时,y 随x 的增大而减小,符合题意;变式拓展D、为反比例函数,k的值小于0,x<0时,y随x的增大而增大,不符合题意;故选C.4.【答案】B【解析】由图知,y y y k1<0,k2>0,k3>0,又当x=1时,有k2<k3,∴k3>k2>k1,故选B.5.【答案】C【解析】∵反比例函数y=-6x中,k=-6,∴只需把各点横纵坐标相乘,结果为-6的点在函数图象上,四个选项中只有C选项符合,故选C.6.【答案】B【解析】设A点坐标为(x,y).∵A点到x轴的距离为3,∴|y|=3,y=±3.∵A点到原点的距离为5,∴x2+y2=52,解得x=±4,∵点A在第二象限,∴x=-4,y=3,∴点A的坐标为(-4,3),设反比例函数的解析式为y=kx,∴k=-4×3=-12,∴反比例函数的解析式为y=12x,故选B.7.【答案】y=15 x【解析】∵点P(2,a)在反比例函数y=2x的图象上,∴代入得:a=22=1,即P点的坐标为(2,1),∵把点P向上平移2个单位,再向右平移3个单位得到点Q,∴Q的坐标是(5,3),设经过点Q的反比例函数的解析式是y=cx,把Q点的坐标代入得:c=15,即y=15x,故答案为:y=15x.8.【答案】B【解析】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6,故选B.9.【答案】D【解析】在Rt △BCD 中, ∵12×CD ×BD =3,∴12×CD ×3=3,∴CD =2, ∵C (2,0),∴OC =2,∴OD =4,∴B (4,3), ∵点B 是反比例函数y =kx(x >0)图象上的点,∴k =12, ∵AC ⊥x 轴,∴S △AOC =2k=6,故选D . 10.【答案】A【解析】如图,作CD ⊥AB 交AB 于点D ,则S △ACD =2k,∵AC =BC ,∴AD =BD ,∴S △ACD =S △BCD , ∴S △ABC =2S △ACD =2×2k =k ,∴△ABC 的面积不变,故选A .11.【答案】B【解析】∵当x >0时,y 随x 的增大而增大,∴反比例函数ky x=(k ≠0)的图象在二、四象限,∴k <0,∴一次函数y =kx -k 的图象经过第一、二、四象限,故选B . 12.【解析】(1)∵B (2,–4)在y =mx图象上, ∴m =–8.∴反比例函数的解析式为y =–8x. ∵点A (–4,n )在y =–8x图象上, ∴n =2,∴A (–4,2).∵一次函数y =kx +b 图象经过A (–4,2),B (2,–4),∴4224k b k b -+=+=-⎧⎨⎩,解得12k b =-=-⎧⎨⎩.∴一次函数的解析式为y =–x –2;(2)如图,令一次函数y =–x –2的图象与y 轴交于C 点,当x=0时,y=–2,∴点C(0,–2).∴OC=2,∴S△AOB=S△ACO+S△BCO=12×2×4+12×2×2=6.13.【解析】(1)当0≤x<5时,为一次函数,设一次函数表达式为y=kx+b,由于一次函数图象过点(0,15),(5,60),所以15560bk b=+=⎧⎨⎩,解得:159bk==⎧⎨⎩,所以y=9x+15,当x≥15时,为反比例函数,设函数关系式为:y=mx,由于图象过点(5,60),所以m=300.则y=300x;(2)当0≤x<5时,y=9x+15=30,得x=53,因为y随x的增大而增大,所以x>53,当x≥5时,y=300x=30,得x=10,因为y随x的增大而减小,所以x<10,10–53=253.答:可加工253min.1.【答案】C考点冲关【解析】由反比例函数的定义知,13y x=是y 关于x 的反比例函数,其余的不是y 关于x 的反比例函数.故选C . 2.【答案】A【解析】∵反比例函数y =8k x-的图象位于第一、三象限,∴k –8>0,解得k >8,故选A . 3.【答案】C【解析】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k, ∴△AOB 的面积为12k −22k , ∴12k −22k =2,∴k 1–k 2=4,故选C . 4.【答案】B【解析】∵点(–5,y 1)、(–3,y 2)、(2,y 3)都在反比例函数y =3x上, ∴y 1=–35,y 2=–1,y 3=32. ∵–35<–1<32,∴y 2<y 1<y 3,故选B .5.【答案】C【解析】∵一次函数y 1=kx +b (k 、b 是常数,且k ≠0)与反比例函数y 2=cx(c 是常数,且c ≠0)的图象相交于A (-3,-2),B (2,3)两点, ∴不等式y 1>y 2的解集是-3<x <0或x >2, 故选C . 6.【答案】C【解析】A .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项不正确; B .由一次函数图象过二、四象限,得a <0,交y 轴正半轴,则b >0,满足ab <0, ∴a −b <0,∴反比例函数y =a bx-的图象过二、四象限,所以此选项不正确; C .由一次函数图象过一、三象限,得a >0,交y 轴负半轴,则b <0,满足ab <0, ∴a −b >0,∴反比例函数y =a bx-的图象过一、三象限,所以此选项正确; D .由一次函数图象过二、四象限,得a <0,交y 轴负半轴,则b <0,满足ab >0,与已知相矛盾,所以此选项不正确,故选C . 7.【答案】D【解析】根据反比例函数的图象与系数k 的意义,设A (x 1,y 1),B (x 2,y 2),则有x 1y 1=x 2y 2=2可知S △ODB =S △OCA =1,故①正确;同样可知四边形OCMD 的面积为a ,因此四边形OAMB 的面积为a –2,故不会发生变化,故②正确;当点A 是MC 的中点时,y 2=2y 1,代入x 1y 2=a 中,得2x 1y 1=a ,a =4,由题得1242x x =,整理得x 1=2x 2,因此B 为MD 的中点,故③正确,故选D . 8.【答案】B【解析】∵矩形OABC ,∴CB ∥x 轴,AB ∥y 轴,∵点B 坐标为(6,4),∴D 的横坐标为6,E 的纵坐标为4,∵D ,E 在反比例函数y =6x 的图象上,∴D (6,1),E (32,4),∴BE =6-32=92,BD =4-1=3,∴ED =22BE BD +=3213,连接BB ′,交ED 于F ,过B ′作B ′G ⊥BC 于G ,∵B ,B ′关于ED 对称,∴BF =B ′F ,BB ′⊥ED ,∴BF •ED =BE •BD ,即3213BF =3×92,∴BF =913,∴BB ′=1813,设EG =x ,则BG =92-x ,∵BB ′2-BG 2=B ′G 2=EB ′2-GE 2,∴(1813)2-(92-x )2=(92)2-x 2,∴x =4526,∴EG =4526,∴CG =4213,∴B ′G =5413,∴B ′(4213,-213),∴k =-121,故选B .9.【答案】23-【解析】设反比例函数解析式为()0ky k x=≠,将(),3A m 、()2,B n -分别代入,得 3k m =,2k n =-,∴2332k m k n ==--, 故答案为:23-. 10.【答案】5【解析】如图,过点A 作AF y ⊥轴,垂足于点F ;过点B 作BE y ⊥轴,垂足为点E .∵点P 是AB 中点,∴PA PB =.易得△APF ≌△BPE , ∴APFBPESS=,∴ABCDACOFEODBSSS=+23=-+5=,故答案为5.11.【答案】-4【解析】∵正方形ABCD 的边长为2,∴AB =AD =2,设B (2k ,2),∵E 是CD 边中点,∴E (2k-2,1),∴2k-2=k ,解得k =-4,故答案为:-4. 12.【答案】372【解析】如图,过点B 作直线AC 的垂线交直线AC 于点F ,∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC =2BD ,∴OD =2O C . ∵CD =k , ∴点A 的坐标为(3k ,3),点B 的坐标为(–23k ,–32), ∴AC =3,BD =32, ∴AB =2AC =6,AF =AC +BD =92, ∴CD =k2==13.【解析】(1)∵已知反比例函数ky x=经过点A (1,-k +4), ∴41kk -+=,即-k +4=k , ∴k =2,∴A (1,2).∵一次函数y =x +b 的图象经过点A (1,2), ∴2=1+b ,∴b =1,∴反比例函数的表达式为2y x=, 一次函数的表达式为y =x +1.(2)由12y x y x ⎧=+⎪⎨=⎪⎩,消去y ,得x 2+x -2=0, 即(x +2)(x -1)=0, ∴x =-2或x =1. ∴y =-1或y =2. ∴21x y ⎧=-⎨=-⎩或12x y ⎧=⎨=⎩.∵点B 在第三象限, ∴点B 的坐标为(-2,-1),由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是x <-2或0<x <1.14.【解析】(1)∵B (2,-4)在y =mx上, ∴m =-8.∴反比例函数的解析式为y =-8x. ∵点A (-4,n )在y =-8x上, ∴n =2. ∴A (-4,2).∵y =kx +b 经过A (-4,2),B (2,-4),∴4224k b k b -+=⎧⎨+=-⎩, 解之得12k b =-⎧⎨=-⎩.∴一次函数的解析式为y =-x -2. (2)∵C 是直线AB 与x 轴的交点, ∴当y =0时,x =-2. ∴点C (-2,0).∴OC =2. ∴S △AOB =S △ACO +S △BCO =12×2×2+12×2×4=6. (3)不等式0mkx b x+-<的解集为:-4<x <0或x >2. 15.【解析】(1)设线段AB 所在的直线的解析式为y 1=k 1x +30,把B (10,50)代入得,k 1=2, ∴AB 解析式为:y 1=2x +30(0≤x ≤10). 设C 、D 所在双曲线的解析式为22k y x=, 把C (44,50)代入得,k 2=2200, ∴曲线CD 的解析式为:y 2=2200x(x ≥44); (2)将y =40代入y 1=2x +30得:2x +30=40,解得:x =5,将y=40代入y2=2200x得:x=55.55-5=50.所以完成一份数学家庭作业的高效时间是50分钟.1.【答案】A【解析】点A(1,–3)关于x轴的对称点A'的坐标为(1,3),把A'(1,3)代入y=kx得k=1×3=3.故选A.2.【答案】C【解析】∵k<0,∴在每个象限内,y随x值的增大而增大,∴当x=–1时,y1>0,∵2<3,∴y2<y3<y1,故选C.3.【答案】C【解析】∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项D错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项A、B错误,故选C.4.【答案】A【解析】由已知可知函数y=1(0)1(0)xxxx⎧>⎪⎪⎨⎪-<⎪⎩关于y轴对称,所以点M是原点,故选A.5.【答案】C【解析】如图,过点B作BD⊥x轴于D,延长BA交y轴于E,∵四边形OABC是平行四边形,∴AB∥OC,OA=BC,∴BE⊥y轴,∴OE=BD,∴Rt△AOE≌Rt△CBD(HL),直通中考。
反比例函数知识点梳理
![反比例函数知识点梳理](https://img.taocdn.com/s3/m/0989b37466ec102de2bd960590c69ec3d4bbdb46.png)
反比例函数知识点梳理在实际问题中,反比例函数有着广泛的应用。
下面是一些常见的应用场景:1.电阻和电流的关系:欧姆定律表示电阻和电流之间的关系,电流I 与电阻R的乘积等于电压V,即V=IR。
由于电流和电压之间的关系是反比例的,所以电阻和电流之间的关系也是反比例的。
2.速度和时间的关系:当一个物体以匀速运动时,速度与时间的乘积等于位移。
由于速度和位移之间的关系是反比例的,所以速度和时间之间的关系也是反比例的。
3.光线的衰减:当光线通过介质传播时,会发生衰减。
光线的强度与传播距离之间的关系是反比例的,即光线的强度随着传播距离的增加而减小。
4.投资收益率和投资金额的关系:投资收益率与投资金额之间的关系也是反比例的。
当投资金额增加时,投资收益率会减小;而当投资金额减小时,投资收益率会增大。
在解决反比例函数的问题时,可以运用以下方法:1.求定义域和值域:根据反比例函数的定义式,求出函数的定义域和值域。
2.绘制函数图像:根据函数的特点和性质,绘制函数的图像。
特别注意对称轴和分支的方向。
3.判断函数的单调性:由于反比例函数的性质,可以很容易地确定函数的单调性。
当k>0时,函数是递减的;当k<0时,函数是递增的。
4.求特定条件下的函数值:在特定条件下,求出函数的值,可以通过代入得出。
根据k的值、x的值和y的值的关系,进行代入运算,求出未知数的值。
总之,反比例函数是一种特殊的函数关系,表示为y=k/x。
它的图像是一条双曲线,函数的特点是x与y成反向关系。
反比例函数在实际问题中有广泛的应用,可以用来描述电阻和电流的关系、速度和时间的关系等。
在解决反比例函数的问题时,需要运用常规的代数运算和图像绘制方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1. (2011•泰州,5,3分)某公司计划新建一个容积V (m 3)一定的长方体污水处理池,池的底面积S (m 2)与其深度h (m )之间的函数关系式为(0)v S h h
=≠,这个函数的图象大致是( ) A 、 B 、.
C 、.
D 、.
考点:反比例函数的应用;反比例函数的图象。
专题:几何图形问题;数形结合。
分析:先根据长方体的体积公式列出解析式,再根据反比例函数的性质解答.注意深度h (m )的取值范围. 解答:解:根据题意可知:(0)v S h h
=≠, 依据反比例函数的图象和性质可知,图象为反比例函数在第一象限内的部分.
故选C .
点评:主要考查了反比例函数的应用和反比例函数的图象性质,要掌握它的性质才能灵活解题.反比例函数y=k
x
的图象是双曲线,当k >0时,它的两个分支分别位于第一、三象限;
当k <0时,它的两个分支分别位于第二、四象限.
2. (2011湖北咸宁,5,3分)直角三角形两直角边的长分别为x ,y ,它的面积为3,则y 与x 之间的函数关系
用图象表示大致是( )
A 、
B 、
C 、
D 、
考点:反比例函数的应用;反比例函数的图象。
专题:图表型。
分析:根据题意有:xy=3;故y 与x 之间的函数图象为反比例函数,且根据x y 实际意义x 、y 应大于0,其图象在第一象限;故可判断答案为C .
解答:解:∵xy=3,
∴y=(x >0,y >0).
故选C .
点评:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.
3. (2011黑龙江大庆,4,3分)若一个圆锥的侧面积是10,则下列图象中表示这个圆锥母线l 与底面半径r 之
间的函数关系的是()
A、B、C、D、
考点:圆锥的计算;反比例函数的图象;反比例函数的应用。
专题:应用题。
分析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求得圆锥母线长l与底面半径r之间函数关系,看属于哪类函数,找到相应的函数图象即可.
解答:解:由圆锥侧面积公式可得l=,属于反比例函数.
故选D.
点评:本题考查了圆锥的计算及反比例函数的应用的知识,解决本题的关键是利用圆锥的侧面积公式得到圆锥母线长l与底面半径r之间函数关系.
4.(2011•南充,7,3分,)小明乘车从南充到成都,行车的平均速度v(km/h)和行车时间t(h)之间的函数图象是()
A、B、
C、D、
考点:反比例函数的应用;反比例函数的图象。
专题:数形结合。
分析:根据时间t、速度v和路程s之间的关系,在路程不变的条件下,得v=s
t
,则v是t的反比例函数,且t
>0.
解答:解:∵v=s
t
(t>0),
∴v是t的反比例函数,
故选B.
点评:本题是一道反比例函数的实际应用题,注:在路程不变的条件下,v是t的反比例函数.
二、填空题
三、解答题
1.(2011•河池)如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边的活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡,改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
(1)把上表中(x,y)的各组对应值作为点的坐标,在坐标系中描出相应的点,用平滑曲线连接这些点;(2)观察所画的图象,猜测y与x之间的函数关系,求出函数关系式并加以验证;
(3)当砝码的质量为24g时,活动托盘B与点O的距离是多少cm?
(4)当活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?
考点:反比例函数的应用。
专题:跨学科。
分析:(1)根据各点在坐标系中分别描出即可得出平滑曲线;
(2)观察可得:x,y的乘积为定值300,故y与x之间的函数关系为反比例函数,将数据代入用待定系数法可得反比例函数的的关系式;
(2)把y=24代入解析式求解,可得答案;
(4)利用函数增减性即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数应该不断增大.
解答:解:(1)如图所示:
(2)由图象猜测y与x之间的函数关系为反比例函数,
∴设(k≠0),
把x=10,y=30代入得:k=300,
∴,
将其余各点代入验证均适合,
∴y与x的函数关系式为:.
(3)把y=24代入得:x=12.5,
∴当砝码的质量为24g时,活动托盘B与点O的距离是12.5cm.
(4)根据反比例函数的增减性,即可得出,随着活动托盘B与O点的距离不断减小,砝码的示数会不断增大;∴应添加砝码.
点评:此题主要考查了反比例函数的应用,此题是跨学科的综合性问题,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.
2.(2011•郴州)用洗衣粉洗衣物时,漂洗的次数与衣物中洗衣粉的残留量近似地满足反比例函数关系.寄宿生小红、小敏晚饭后用同一种洗衣粉各自洗一件同样的衣服,漂洗时,小红每次用一盆水(约10升),小敏每次用半盆水(约5升),如果她们都用了5克洗衣粉,第一次漂洗后,小红的衣服中残留的洗衣粉还有1.5克,小敏的衣服中残留的洗衣粉还有2克.
(1)请帮助小红、小敏求出各自衣服中洗衣粉的残留量y与漂洗次数x的函数关系式;
(2)当洗衣粉的残留量降至0.5克时,便视为衣服漂洗干净,从节约用水的角度来看,你认为谁的漂洗方法值得提倡,为什么?
考点:反比例函数的应用。
专题:应用题。
分析:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,后根据题意代入求出k1和k2即可;
(2)当y=0.5时,求出此时小红和小敏所用的水量,后进行比较即可.
解答:解:(1)设小红、小敏衣服中洗衣粉的残留量与漂洗次数的函数关系式分别为:y1=,y2=,
将和分别代入两个关系式得:
1.5=,2=,解得:k1=1.5,k2=2.
∴小红的函数关系式是=,小敏的函数关系式是.
(2)把y=0.5分别代入两个函数得:
=0.5,=0.5,
解得:x1=3,x2=4,
10×3=30(升),5×4=20(升).
答:小红共用30升水,小敏共用20升水,小敏的方法更值得提倡.
点评:本题考查了反比例函数的实际应用,读懂题意正确列出函数关系式是解题的关键.
3. (2011天水,21,13)Ⅰ.爱养花的李先生为选择一个合适的时间去参观20XX年西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题:
(1)5月10日至16日这一周中,参观人数最多的是日是,有万人,参观人数最少的是日是,有万人,中位数是.
(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)
(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?
Ⅱ.如图在等腰R t△O BA和R t△BCD中,∠O BA=∠BCD=90°,点A和点C都在双曲线y=4
x
(k>0)上,求点
D的坐标.
考点:反比例函数综合题;扇形统计图;条形统计图;中位数。
专题:综合题。
分析:Ⅰ.(1)看统计图即可得到答案;
(2)用上午的参观人数﹣下午的参观人数即可;
(3)根据图(2)知,下午或晚上参观人数较少.
Ⅱ.过C点作C E⊥BD于E,根据等腰直角三角形的性质得到O B=O A,即可求出A(2,2),得O B=2,又三角形CBD为等腰R t,∠BCD=90°,得到C E=B E=D E,设C E=b,则OE=b+2,O D=2+2b,则C点坐标为(b+2,b),
把它代入双曲线y=4
x
(k>0)求出b,即可得到O D,从而得点D的坐标.
解答:解:Ⅰ.(1)答案为星期六;34;星期一;16;22;
(2)上午的参观人数﹣下午的参观人数=34×(74%﹣6%)≈23(万),
所以5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多23万人;
(3)由图(2)知,下午或晚上参观人数较少,所以如果李先生想尽可能选择参观人数较少的时间参观世园会,选择下午或晚上参观较合适.
Ⅱ.过C点作C E⊥BD于E,如图,
∵三角形O BA为等腰R t△,∠O BA=90°,
∴O B=O A,
设A(a,a),
∴a•a=4,
∴a=2,或a=﹣2(舍去),即O B=2,
又∵三角形CBD为等腰R t,∠BCD=90°,
∴C E=B E=D E,
设C E=b,则OE=b+2,O D=2+2b,
∴C点坐标为(b+2,b),
∴(b+2)•b=4,解得b1,或b=1(舍去),
∴O D
∴点D的坐标为(0).
点评:本题考查了解反比例函数综合题的方法:通过反比例的解析式和几何条件确定点的坐标.也考查了观察统计图的能力和中位数的概念.。