三相绕线式异步电动机各种运行状态下的机械特性

合集下载

三相绕线式异步电动机各种运行状态下的机械特性

三相绕线式异步电动机各种运行状态下的机械特性

三相绕线式异步电动机各种运行状态下的机械特性原理简述机械特性是指其转速与转矩间的关系,一般表示为。

由于三相异步电动机的机械特性呈非线性关系,所以函数表达式以转速为自变量,转矩为因变量,写为更为方便。

又因转差率s也可以用来表征转速,而且用s表示的机械特性表达式更为简洁,所以对三相异步电动机一般用来表示机械特性,同时将作为横坐标,这样和原的图形是一致的。

一、三相异步电动机机械特性的表达式三相异步电动机机械特性的表达式一般有三种:1.物理表达式其中为异步电机的转矩常数;为每极磁通;为转子电流的折算值;为转子回路的功率因数。

2.参数表达式其中。

3.实用表达式其中为最大转矩,为发生最大转矩时的转差率。

三种表达式其应用场合各有不同,一般物理表达式适用于定性分析与及间的关系,参数表达式可以分析各参数变化对电动机运行性能的影响,而实用表达式最适合用于进行机械特性的工程计算。

二、三相异步电动机的机械特性1.固有机械特性固有机械特性是指异步电动机在额定电压、额定频率下,电动机按规定方法接线,定子及转子回路中不外接电阻(电抗或电容)时所获得的机械特性,如图15-1所示。

图15-1 三相异步电动机的固有机械特性下面对机械特性上反映其特点的几个特殊点进行分析:(1)起动点:其特点是:,,起动电流;(2)额定运行点:其特点是:,,;(3)同步速点:其特点是:,,,,点是电动状态与回馈制动的转折点;(4)最大转矩点:电动状态最大转矩点,其特点是:,;回馈制动最大转矩点,其特点是:,;由公式可以看出,。

2.人为机械特性由三相异步电动机机械特性的参数表达式可见,异步电动机的电磁转矩在某一转速下的数值,是由电源电压、频率、极对数及定转子电路的电阻、电抗、、、决定的。

因此人为的改变这些参数,就可得到不同的人为机械特性。

现介绍改变某些参数时人为机械特性的变化:(1)降低电压不变,不变,因为,,,所以降低电压时,、、均减小,其人为机械特性见图15-2。

三相异步电动机在各种运行状态下的机械特性word版本

三相异步电动机在各种运行状态下的机械特性word版本

精品文档三相异步电动机在各种运行状态下的机械特性一、实验目的了解三相线绕式异步电动机在各种运行状态下的机械特性。

二、预习要点1、如何利用现有设备测定三相线绕式异步电动机的机械特性。

2、测定各种运行状态下的机械特性应注意哪些问题。

3、如何根据所测出的数据计算被试电机在各种运行状态下的机械特性。

三、实验项目1、测定三相线绕式转子异步电动机在R=0时,电动运行状态和再生发电制动状态下的机械特性。

S2、测定三相线绕转子异步电动机在R=36Ω时,测定电动状态与反接制动状态下的机械特性。

S3、R=36Ω,定子绕组加直流励磁电流I=0.36A及I=0.6A时,分别测定能耗制动状态下的机械特21S性。

四、实验方法2、屏上挂件排列顺序D51 D34-2 、精品文档.精品文档1S2I1A4R3*U*SW21RV s1V R s I1WAWR12s**A2R12'1'I a I f+源+R V2电UGMV组机0a源2枢2V绕电电20电-磁流磁2 2励直励-图6-2 三相线绕转子异步电动机机械特性的接线图3、R=0时的反转性状态下机械特性、电动状态机械特性及再生发电制动状态下机械特性。

S用编号接线,图中M用编号为DJ17的三相线绕式异步电动机,U=220V,Y接法。

MG(1)按图6-2N 合在左S合向左边1端,、S选用D51挂箱上的对应开关,并将S为DJ23的校正直流测功机。

S、S21213、串上四只900Ω180Ω阻值加上R3、R5R边短接端(即线绕式电机转子短路),S合在2'位置。

选用R2的13上R7选用1800Ω阻值,RMET01电源控制屏上两只联再加R1300Ω并联共4430Ω阻值,R选用R1上S2,交流电500V200mA,V的量程为的量程为36Ω的电阻,R暂不接。

直流电表A、A5A,A量程为23243 A量程为3A。

的量程为表V500V,11的定子绕组接成星形的情况下。

M2'位置,端,(2)确定S合在左边1S合在左边短接端,S合在312阻值置最大位置,将控制屏左侧三相调压器旋钮向逆时针方向旋到底,即把输出电压调到零。

三相异步电动机在各种运行状态下的机械特性

三相异步电动机在各种运行状态下的机械特性

山东科技大学电工电子实验教学中心创新性实验研究报告实验项目名称三相异步电动机在各种运行状态下的机械特性姓名________________ 学号_____________________手机_______________ Email ___________________专业_____________________ 班级_________________指导教师及职称――_________开课学期____ 至____ 学年—学期提交时间______ 年_____ 月______ 日、实验摘要 通过对三相绕线式异步电动机在各个运行状态下的参数测量,绘制出机械特性曲线,加 深对三相异步电机的机械特性的了解。

、实验目的 研究三相线绕式异步电动机在各种运行状态下的机械特性,即在额定电压下并且励磁回路电阻阻值为常数时转速与电磁转矩的关系即T=f(n),本次试验的转矩 T 是公式三、实验场地及仪器、设备和材料:四、实验内容T二955^ -(U a l a -l :R a )] n计算所得1、实验原理①电动状态工作时,电动机由电网吸收电能,变化成机械能以带动负载,电动运行状态的特点是电动机转矩T的方向与旋转的方向n相同;②三相异步电动机的转速高于同步速度ns,即n>ns时,转差率s=(ns-n)/ns<0 ,转子感应电动势sE2反向,异步电机进入回馈制动状态;③反接制动状态分为转速反向的反接制动和定子两向反接的反接制动;2、实验内容测定三相线绕式异步电动机在各种运行状态下的机械特性电路图如下所示:图6-2三相线绕转子异步电动机机械特性的接线图+V022源电枢电(6) 当电动机接近空载而转速不能调高时,将S3合向2'位置,调换MG电枢极性(在开关S3的两端换)使其与“电枢电源”同极性。

调节“电枢电源”电压值使其与MG电压值接近相等,将S3合至1'端。

保持M端三相交流电压U=110V ,减小R i阻值直至短路位置(注:D42上6只900Q阻值调至短路后应用导线短接)。

第九章 三相异步电动机的机械特性及各种运转状态 第一节 三相异步电动机机械特性的三种表达式

第九章 三相异步电动机的机械特性及各种运转状态 第一节 三相异步电动机机械特性的三种表达式

U
2 X
(10 17)
R12
(X1
X
' 2
)
2
正号对应于电动机状态,而负号则适用于发电机状态 考虑 R1 << ( X1 + X2') ,可得:
Sm
R2'
X1
X
' 2
(10 18)
Tm
m1U
2 X
20 ( X1
X
' 2
)
(10 19)
可以看出:
4.几点规律
1)当电动机各参数及电源频率不变时, Tm 与 UX2 成正比,sm 因与 UX 无关而保持不变
二.异步电动机机械特性的参数表达式
采用参数表达式可直接建立异步电动机工作时转矩和转速关系并 进行定量分析
E
' 2
2f1W1kW1 m (10 5)
0
2f
p
(10 6)
T
m1 0
E
' 2
I
' 2
c
os
' 2
(10 7)
E
' 2
I
' 2
Z
' 2
(10 8)
R2'
c
os
' 2
PT
3I
2 2
R2 R f s
(10 44)
转子轴上机械功率为
P2 PT (1 s) (10 45)
s > 1,P2 为负值,即电动机由轴上输入机械功率 转子电路的损耗为
DP2 PT (1 s) (10 45)
DP2 数值上等于 PT 与 P2 之和,所以反接制动时能量损耗极大 3)用途 可以用于稳定下放位能性负载

实验4:三相异步电动机在各种运行状态下的机械特性

实验4:三相异步电动机在各种运行状态下的机械特性

实验4:三相异步电动机在各种运行状态下的机械特性实验目的:1、了解三相异步电动机的基本结构和工作原理;2、学习三相异步电动机的电气参数计算方法;4、掌握测量三相异步电动机的机械特性的方法。

实验原理:三相异步电动机是一种广泛应用的电动机,其基本结构和工作原理如下图所示:三相异步电动机的主要部件包括:旋转部分和定子部分。

旋转部分包括转子和轴承等部分,定子部分包括绕组、铁心、端盖等部分。

在三相交流电压的作用下,定子上的三组绕组会产生旋转磁场,在旋转磁场的作用下,转子上的导体产生感应电动势,从而在转子中产生转动力矩。

由于转子中感应电动势的存在,转子的转速与旋转磁场的同步速度是有一定差距的,因此称之为异步电动机。

三相异步电动机的主要电气参数有定子电阻、定子电感、转子电阻、转子电感、互感系数和空载电流等,这些参数与三相异步电动机的机械特性密切相关。

三相异步电动机的机械特性包括:空载特性、转矩特性和效率特性。

其中空载特性是指在无负载情况下,机械输出功率与输入电功率之比;转矩特性是指在有负载的情况下,三相异步电动机的旋转磁场力矩和负载之间的关系;效率特性是指在不同运行状态下,三相异步电动机的效率和输入电功率之间的关系。

实验内容:1、接线及仪器调整:根据图1所示连接电路,仪表的电压选择250V档,电流选择10A 档。

2、实验步骤:(1)打开柜门,启动三相异步电动机,使其无负载运行。

(2)调整滑动变阻器,依次改变定子电压,记录定子电流、转速、输入电功率和输出电功率。

(3)理论计算机械输出功率和机械效率,并与实验测量结果进行比较。

3、实验结果与分析:(1)绘制三相异步电动机空载特性曲线。

(2)比较理论计算结果与实验测量结果,分析其差异的原因。

(3)计算旋转磁场力矩和负载间的关系,并绘制转矩特性曲线。

实验注意事项:1、实验过程中,电动机的运行状态要保持稳定,否则会影响测量结果。

2、实验时需要注意安全,避免触电等意外情况的发生。

三相异步电动机的机械特性

三相异步电动机的机械特性

空载时损耗占比例大,效率低;随P2增 加,增加,当负载过大,铜损耗增加快,使 效率下降,如图所示。
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
效率曲线和功率因数曲线都是在额定负载附近 达到最高,因此合理选用电动机容量时,对电动 机的寿命、功率因数和效率都有很实际的意义。 5、功率因数特性cos1=f(P2)
§4-5 三相异步电动机的机械特性
本节要点: 一、三相异步电动机的工作特性 二、机械特性:n = f ( T ) ㈠固有机械特性曲线分析 ㈡人为机械特性 三、运行性能 1、运行状态 2、启动转矩倍数
3、过载能力 4、异步电动机机械特性的结论
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
原因:是静止的转子导体与定子旋转磁 场之间的相对切割速度很大(n1)。将 产生很大的I2,使定子电流也增大。但 由于转子绕组的功率因数cosφ2很小, 由于Tst=CTφI2cosφ2,故启动转矩并不 很大。
只有当Tst达到一定值时,电动机才 能启动。
Tst>TL ,将 S = 1代入T公式,即 可得Tst 的表达式。
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
⑵额定运行点(TN、nN) TN = 9.55 PN/nN
⑶临界工作点(Tm、nm) 当S = Sm 时,电磁转矩达到最大
值。
Sm ∈( 0.04,0.14 ) ⑷同步点(0、n1)
n = n1
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
2023年8月26日 星期六
§4-5 三相异步电动机的机械特性
2、转矩特性T=f(P2) 空载时P2=0,电磁转矩T等于空载转矩 T0。随着P2的增加,已知T2=9.55P2/n, 如n基本不变,则T2为过原点的直线。 考虑到P2增加时,n稍有降低,故 T2=f(P2)随着P2增加略向上偏离直线。 在T=T0+T2式中。T0很小,且为常数。所 以T=f(P2)将比平行上移T0数值,如图所 示。

三相异步电动机械特性及各种运行状态

三相异步电动机械特性及各种运行状态

n
n0
a1
O
T
-n0
机械功率Pm
第 十 章 异步电动机的电力拖动
(2) 转子反向的反接制动 ——下放重物
① 制动原理
n
定子相序不变,转子 电路串联对称电阻 Rb。 低速提 a 点 惯性 b 点(Tb<TL),升重物
n↓ c 点 ( n = 0,Tc<TL )
n0
a
b
e TL
Oc
1 T
在TL 作用下 M 反向起动
由参数表达式可知,改变定子电压U1、 定子频率f1、极对数p、定子回路电阻 r1和电抗x1、转子回路电阻r2ˊ和电抗 x2ˊ,都可得到不同的人为机械特性。
(1)降低定子电压的人为机械特性
在参数表达式中,保持其它参数不变, 只改变定子电压U1的大小,可得改变 定子电压的人为机械特性。
讨论电压在额定值以下范围调节的人 为特性(为什么?)
Pe = m1—I2'—2 R定2'子+s 发Rb出'<电0功率,向电源回馈电能。
Pm=
(1-s ) ——
轴Pe上<输0入机械功率(位能负载的位能)。
PCu2 = Pe-Pm
|Pe | = |Pm|-PCu2
—— 机械能转换成电能(减去转子铜损耗等)。
第 十 章 异步电动机的电力拖动
制动效果 Rb →下放速度 。
第 十 章 异步电动机的电力拖动
(3) 能耗制动过程 —— 迅速停车 2
① 制动原理
b
n
a1
制动前:特性 1。
制动时:特性 2。
a 点 惯性 b 点 (T<0,制动开始)
O TL
T
n↓ 原点 O (n = 0,T = 0),制动过程结束。

三相异步电动机的各种运行状态

三相异步电动机的各种运行状态
1
8.5三相异步电动机的各种运行状态
8.5.1电动运行状态
T与n方向一致, n<n1,0<s<1, T 为拖动转矩,特性 在第Ⅰ、Ⅲ象限。
2
8.5.2 能耗制动
1能耗制动基本原理
• 三相异步电动机处于电动运 行状态的转速为n,如果突然 切断电动机的三相交流电源, 同时把直流电通入它的定子 绕组,例如开关K1打开、K2 闭合,结果,电源切换后的 瞬间,三相异步电动机内形 成了一个不旋转的空间固定 磁动势,用F=表示。
• 磁通势与转子相对转速为-n
• •
F~的转速,即同步转速为
能耗制动转差率 n
n1
60 f1 p
n1
• 转子绕组感应电动势的大小与频率则为:
E2 E2
f2 f1
7
三相异步电动机能耗制动的等值电路
8
4、能耗制动的机械特性
能耗制动时,铁损耗很小,可以 忽略。这样一来,根据等值电路画出电 动机定子电流、励磁电流及转子电流之 间的相量关系如右图所示。
14
机械功率为 从定子到转子的电磁功率为
转子的铜耗为
说明两部分能量全部消耗在电阻上,一部分消 耗在转子本身的内阻R2上,因R2很小,故能量 大部分消耗在外串电阻RS上。这样可以减小转 子发热程度
15
特点和应用
特点: s>1 ,运行过程中能量消耗多,改变
转子串接电阻,可变速度。 应用:
适用于位能性负载下放重物。
鼠笼式电机转子回路无法串电阻,因此反接制动不能过于 频繁
13
8.5.4 倒拉反转运行
拖动位能性恒转矩负载运行 的三相绕线式异步电动机, 若在转子回路内串入一定值 的电阻,电动机转速可以降 低。如果所串的电阻超过某 一数值后,电动机还要反转, 称之为倒拉反转制动运行状 态。倒拉反转运行时负载向 电动机送入的机械功率是靠 着负载贮存的位能的减少, 是位能性负载倒过来拉着电 动机反转

三相异步电动机的机械特性

三相异步电动机的机械特性
结论:降低U1后的人为机械特性,仍然通过固有机械 特性的同步点,即:同步点保持不变。
1. 降低定子端电压U1的人为机械特性
2)最大转矩点
横坐标Tm :
最大转矩Tm与定子端电压U1的 平方成正比,降低U1之后,最 大转矩Tm的值大幅度减小。
纵坐标nm: nm=n1(1-sm) =n1(1-R2/X2)
用平滑曲线连接这三个坐标 点,就得到了降低定子端电 压U1的人为机械特性。
1.降低定子端电压U1的人为机械特性
降低电压U1对电动机运行 性能的影响:
TL1 TL2
1)最大转矩Tm和启动转矩Tst 都大幅度减小,过载能力λ和 启动能力Kst都显著降低。 如果U1降低得太多,可能会因 为Tst<TL而无法启动,也可能 会因为Tm<TL而堵转。
长期欠压过载运行,电动机绕组的温升会超过允许值而损害 绕组的绝缘,甚至会烧毁绕组。
电动机的电气控制电路要设置欠电压保护:
1)电动机通常由接触器控制。接触器在其线圈电压下降到 85%UN时,会自动释放而切断电路,自带欠压保护功能。 2)低压断路器上有失压脱扣器,在低电压时会自动跳闸, 有欠压失压保护功能。 3)有时需要设置专门的欠电压继电器作欠压保护。
TL1 TL2 TL3
TL4
可采取的措施2:
电动机的固有机械特性
√ 换一台启动转矩Tst大于TL3,额定转矩TN与TL3相当的电动
机,带动TL3重新启动。
运行情况:
TN ≈ TL3,电动机会运行在额定状态附近,运行性能好。
★通过固有机械特性判断电机运行情况
参考答案4:
电动机带负载TL4不能启动, 绕组很快就会烧毁。
第1步: 从产品目录中查出电动机的外部参数值,计算出Tm和sm的 值,代入实用表达式,得到T = f ( s )。在转差率s的取值范 围内,计算出电动机若干个运行点的(s,T)坐标值。

三相异步电动机的机械特性、启动、制动与调速

三相异步电动机的机械特性、启动、制动与调速

工艺与装备143三相异步电动机的机械特性、启动、制动与调速刘宗涛毕强(九江职业技术学院,九江332000)摘要:通过对概念的解释和详尽的分析,对三相异步电动机的四个方面进行阐述,即三相异步电动机的机 械特性、启动、制动以及调速。

对三相异步电动机的一些特点进行描述,如结构较为简单、费用低、维护方便等。

现代社会,异步电动机的电力拖动应用非常广泛。

在解析三相异步电动机机械特性的基础上,对异步电动机的启 动、制动以及调速的一些技术问题进行了详尽的说明与分析。

关键词:三相异步电动机机械特性启动制动调速异步电动机具备许多的特性,其中包括结构简单、价 格相对较低、维护方便等。

所以,在电力拖动系统中经常 能够看到异步电动机的身影。

电子技术以及交流调速技术 的不断发展和逐渐成熟,极大地优化了异步电动机的调速 技能。

到现在为止,在许多工业电气自动化领域中,异步 电动机的电力拖动都得到了广泛运用。

以三相异步电动机 的机械特性作为基本出发点,文章对电动机的启动、制动 以及调速等方面进行了分析阐述。

1三相异步电动机的机械特性三相异步电动机的机械特性简单概括就是:在电动机的 定子电压、频率还有绕组参数不变的情况下,电动机的转速 或转差率与电磁转矩之间的关系,即n=f (T)或s=f(T)转速与转差率有某种程度上的对应关系。

机械特性可以用 函数来表示,也可以用曲线来表示。

用函数表达机械特性 曲线时有三种表达形式,包括物理表达式、参数表达式以 及实用表达式。

物理表达式描述的是异步电动机电磁转矩 是如何产生的,可知是因为主磁通与转子有功电流互相作 用得以产生的电磁转矩。

参数表达式描述的是电动机和电 源参数和电磁转矩的关系。

应用这一关系式,能够很便捷 地描述参数变化对电磁转矩以及人为特性的影响。

实用表 达式简单方便,有利于记忆,常常出现在工程计算中。

三相异步电动机的机械特性包括固有机械特性和人为 机械特性。

固有机械特性指的是异步电动机在工作时达到 额定电压和额定频率时,电动机按照正确的接线方式,在 定子还有转子中没有外接电容电抗电阻时得到的机械特性 曲线。

三相异步电动机的机械特性

三相异步电动机的机械特性

三相异步电动机的运行特性摘要:本章介绍了三相异步电动机的机械特性的三个表达式。

固有机械特性和人为机械特性,阐述了三相异步电动机的起动、调速和制动的各种方法、特点和应用5.1三相异步电动机的运行特性三相异步电动机的运行特性就是三相异步电动机的运行工作时的机械特性。

和直流电动机一样,三相异步电动机的机械特性也是指电磁转矩与转子转速之间的关系。

由于转子转速与同步转速、转差率存在下列关系,即(5.1)则三相异步电动机的机械特性用曲线表示时,习惯上纵坐标同时表示转速和转差率,横坐标表示电磁转矩。

三相异步电动机的机械特性有三种表达式,现介绍如下:5.1.1机械特性的物理表达式由上一章三相异步电动机的转矩关系知,三相异步电动机转矩的一般表达式为(5.2)式中为三相异步电动机的转矩系数,是一常数;为三相异步电动机的气隙每极磁通量;为转子电流的折算值;为转子电路的功率因数;式(5.2)表明了电磁转矩与磁通量和转子电流的有功分量的乘积成正比,它是电磁力定律在三相异步电动机的应用,它从物理特性上描述了三相异步电动机的运行特性,因此这一表达式又称为三相异步电动机的物理表达式。

仅从式(5.2)不能明显地看出电磁转矩与转差率之间的变化规律。

要从分析气隙每极磁通量,转子相电流,以及为转子功率因数与转差率之间的关系,间接地找出其变化规律。

现分析如表5.1所示。

根据表5.1中的分析,可作出曲线、和分别如图5.2、5.3、5.4所示,据此可得出图5.1所示的机械特性曲线。

曲线分为两段:当较小时(),变化不大,,电磁转矩与转子相电流成正比关系,表现为AB段近似为直线,称为直线部分;当较大时 (),如,减少近一半,很小,尽管转子相电流增大,有功电流不大,使电磁转矩反而减小了,此时表现为段,段为曲线段,称为曲线部分。

由此分析知,三相异步电动机的机械特性在某转差率下,产生最大转矩,即点称为最大转矩点,相应的转矩为称为最大转矩,对应的转差率称为临界转差率。

三相异步电动机的固有机械特性和人为机械特性

三相异步电动机的固有机械特性和人为机械特性
第5章 三相异步电动机的电力拖动
二、人为机械特性
人为机械特性是指人为改变电源参数或电动机参数而得到的机 械特性。
1. 降压时的人为机械特性
U1下降后,Tm 和Tst 均下降, 但 sm不变如果电机在额定负载下运 行,U1下降后, n 下降, s 增大, sm
转子电流因E2s sE2增大而增 大,导致电机过载。长期欠压
作业:
P243:5.6
第5章 三相撰责主电制稿任子编作异编教:步辑师…电:…动……机(的以电姓力氏为拖序动)
过载运行将使电机过热,减
少使用寿命。
10
TL
0.8UN
UN
第5章 三相异步电动机的电力拖动
2. 转子回路串对称电阻时的人为机械特性 串电阻后,机械特性线性段斜率变大,特性变软。
串电阻后,n 、Tm不变,sm 增大。s n
在一定范围内增加电阻,可以 0 n1
增加 Tst 。当sm 1 时Tst Tm ,若 sm 再增加电阻,Tst 减小。
3. 定子串接对称电抗或电阻时
的人为机械特性
sm
除了上述特性外,还有 改变电源频率、极对数等人 1 0 为机械特性。
R2
R2+Rs
Tem
Tst
Tst Tm
第5章 三相异步电动机的电力拖动
小结
教学重点:
1 机械特性的表达式 2 各物理量对机械特性的影响
3 机械特性的求取
教学难点: 各物理量对机械特性的影响

第十章 三相异步电动机的机械特性及各种运转状态(1)

第十章 三相异步电动机的机械特性及各种运转状态(1)

第一节 机械特性的三种表达式
• 由物理表达式绘制异步电动机的机械特性曲线: • 转子电流公式→n=f(I2′) • 转子电路功率因数公式→n=f(cosφ2′) • 上述两条曲线相乘并乘以CT1Φm→n=f(T) • 表明:异步电动机的电磁转矩T, 与气隙磁通Φm和转子电流有功分 量I2′cosφ2′的乘积成正比 • 第一种表达式中,三个量在物理 上遵循左手定则——物理表达式 • 物理表达式适用于——定性分析
Tst
2 2 s R1 R2 X1 X 2
m1
2 U R2
——可见,对于绕线转子异步电动机,转子电路串联附加 电阻,可以改善起动特性
12
第一节 机械特性的三种表达式
6、起动转矩倍数 • 对于笼型转子异步电动机,转子电路不能串联附加电阻 • 为使电动机能起动,电动机须具有一定的起动转矩倍数:
22
第二节 固有机械特性与人为机械特性
4、转子电路串联对称电阻
Tst
2 2 s R1 R2 X1 X 2
m1
2 U R2
Tmax
s 2 R R 2 ( X X )2 1 1 1 2
R2
m1
2 U
sm
• 2)电源频率及电压不变,sm与Tmax近似与X1+X2′成反比 • 3)Tmax与R2′无关,sm与R2′成正比
——对于绕线转子异步电动机,当转子电路串联某一恰当 电阻RΩ时,可使sm=1(n=0),即Tst=Tmax
RΩ R12 ( X 1 X 2 )2 R2 R12 ( X 1 X 2 ) 2 R2 RΩ
Tmax KT TN
sm sN ( KT KT2 1)

三相异步电动机的机械特性及各种运转状态要点

三相异步电动机的机械特性及各种运转状态要点

1、异步电动机机械特性的三种表达式
1)当电动机各参数及电源频率不变时,Tm与U x成正比,sm保持不变。
成正比 2)当电源频率及电压不变时,sm与Tm近似地与X 1 X 2
之值无关,sm与R2 成正比。 3)Tm与R2
若负载转矩大于电动机的最大转矩,电动机停机或无法起动, 为保证电机不会因短暂过载而停机,电动机必须具有一定的过载能 力,用过载倍数KT表示:
定义: 将最大电磁转矩 Te max 与额定转矩 (或过载能力),用 K T 表示,即:
KT Tm TN
的比值定义为最大转矩倍数
KT: 一般电动机为1.8~3.0,冶金起重等电动机可达3.5
1、异步电动机机械特性的三种表达式
此外,由图6.50还可以看出:三相异步电动机的机械特性曲线 可分为两个区域:(1)稳定运行区域;(2)不稳定运行区域。 稳定运行区域: 在此区域内, 0 s sm , n1 (1 sm ) n n 。此时,机械特性向下 1 倾斜,无论是对于恒转矩负载还是对于风机、泵类负载,电力拖动 系统可以稳定运行; 不稳定运行区域: 0 n n1 (1 sm ) 。此时,对于恒转矩负载, 在此区域内,sm s 1 , 系统将无法稳定运行;而对于风机、泵类负载,尽管系统可以稳定 运行,但由于转速太低,转差率较大,转子铜耗较大,三相异步电 动机将无法长期运行。
1、异步电动机机械特性的三种表达式
• (1)物理表达式 • 电磁转矩为:
cos 2 I2 cos 2 m1 (4.44f1 N1k w1 m ) I 2 Pem m1 E2 T 2n1 2f1 1 60 p pm1 N1k w1 cos 2 CT mI2 cos 2 mI2 2

三相异步电动机的机械特性

三相异步电动机的机械特性

三相异步电动机的机械特性
1.三相异步电动机的电磁转矩
三相异步电动机的转矩:
三相异步电动机的转矩是由旋转磁场的每极磁通Φ与转子电流I2相互作用而生成的。

它与Φ和I2 的乘积成正比,此外,它还与转子电路的功率因素cosφ2 有关。

转矩表达式:
式中,K——与电动机结构参数、电源频率有关的一个常数;
U1,U ——定子绕组相电压,电源相电压;
R2——转子每相绕组的电阻;
X20——电动机不动(n=0)时转子每相绕组的感抗。

2.三相异步电动机的固有机械特性
固有机械特性:
异步电动机在额定电压和额定频率下,用规定的接线方式,定子和转子电路中的不串联任何电阻或电抗时的机械特性称为固有(自然)机械特性。

电动机的抱负空载转速:
额定转矩及额定转差率:S=(N1-N2)/N1
转矩-转差率特性的有用表达式,即规格化转矩-转差率特性。

3.三相异步电动机的人为机械特性
人为机械特性:
异步电动机的机械特性与电动机的参数有关,也与外加电源电压、电源频率有关,将关系式中的参数人为地加以转变而获得的特性称为异步电动机的人为机械特性。

电压U的变化对抱负空载转速no和临界转差率Sm不发生影响,但最大转矩Tmax与U2成正比,当降低定子电压时,no和Sm不变,而Tmax大大减小。

在同一转差率状况下,人为特性与固有特性的转矩之比等于电压的平方之比。

因此在绘制降低电压的人为特性时,是以固有特性为基础,在不同的S处,取固有特性上对应的转矩乘降低电压与额定电压比值的平方,即可作出人为特性曲线:
在电动机定子电路中外串电阻或电抗后,电动机端电压为电源电压减去定子外串电阻上或电抗上的压降,致使定子绕组相电压降低。

第15讲 三相异步电动机的机械特性及各种运转状态

第15讲  三相异步电动机的机械特性及各种运转状态

动 基
sm
R2 R12 ( X1 X 2 )2

同步转速ns不变 Tmax、Tst、Sm将随Rf增大而减小 也用于笼型异步电动机的减压起动 。
22
(五)转子电路接入并联阻抗
起动初期,转子频率sf1较大,
Xst=2πsf1Lst较大,转子电流的大部分
电 机
将流过电阻Rst; Rst决定了起动电流 和起动转矩;
础 机械特性
物理表达式
参数表达式
实用表达式
3
一、物理表达式
机械特性的物理表达式:

T CT1mI2 cos 2
机 CT1 ——异步电动机的转矩系数 及 拖 Φm ——异步电动机每极磁通
CT 1

pm1N1kw1 2
动 基 I 2 ——转子电流的折算值
础 cos2——转子电路的功率因数
2
R12

(
X1

X 2
)2

2s ( X1 X 2 )

动 基 结论: 础 1)当电动机各参数及电源频率不变时,Tmax与Uφ2成正比,
sm则保持不变,与Uφ无关;
2)当电源频率及电压不变时,sm与Tmax近似地与X1+X2′成 反比;
3)Tmax与R2′之值无关,sm则与R2′成正比。
因此
I 22
1 sN
I22z
1 sz
T

Pe
s

1
s
m1 I 22
R2 s
由于n下降→ sz>sN,故I2z′> I2N′,即U φ降低后电动机电 流将大于额定值,电动机如长时连续运行,最终温升将超
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相绕线式异步电动机各种运行状态下的机械特性原理简述机械特性是指其转速与转矩间的关系,一般表示为。

由于三相异步电动机的机械特性呈非线性关系,所以函数表达式以转速为自变量,转矩为因变量,写为更为方便。

又因转差率s也可以用来表征转速,而且用s表示的机械特性表达式更为简洁,所以对三相异步电动机一般用来表示机械特性,同时将作为横坐标,这样和原的图形是一致的。

一、三相异步电动机机械特性的表达式三相异步电动机机械特性的表达式一般有三种:1.物理表达式其中为异步电机的转矩常数;为每极磁通;为转子电流的折算值;为转子回路的功率因数。

2.参数表达式其中。

3.实用表达式其中为最大转矩,为发生最大转矩时的转差率。

三种表达式其应用场合各有不同,一般物理表达式适用于定性分析与及间的关系,参数表达式可以分析各参数变化对电动机运行性能的影响,而实用表达式最适合用于进行机械特性的工程计算。

二、三相异步电动机的机械特性1.固有机械特性固有机械特性是指异步电动机在额定电压、额定频率下,电动机按规定方法接线,定子及转子回路中不外接电阻(电抗或电容)时所获得的机械特性,如图15-1所示。

图 15-1 三相异步电动机的固有机械特性下面对机械特性上反映其特点的几个特殊点进行分析:(1)起动点:其特点是:,,起动电流;(2)额定运行点:其特点是:,,;(3)同步速点:其特点是:,,,,点是电动状态与回馈制动的转折点;(4)最大转矩点:电动状态最大转矩点,其特点是:,;回馈制动最大转矩点,其特点是:,;由公式可以看出,。

2.人为机械特性由三相异步电动机机械特性的参数表达式可见,异步电动机的电磁转矩在某一转速下的数值,是由电源电压、频率、极对数及定转子电路的电阻、电抗、、、决定的。

因此人为的改变这些参数,就可得到不同的人为机械特性。

现介绍改变某些参数时人为机械特性的变化:(1)降低电压不变,不变,因为,,,所以降低电压时,、、均减小,其人为机械特性见图15-2。

(2)转子回路串联对称电阻图15-2 三相异步电动机降低电压时的人为机械特性图15-3 三相异步电动机转子回路串联对称电阻时的人为机械特性适用绕线式电机,不变,当增大,即串入,增大,增大,不变,其人为机械特性见图15-3。

(3)定子回路串联对称电抗一般用于鼠笼式异步电动机降压起动,不变,、、随所串电抗值的增大而减小,其人为机械特性见图15-4。

(4)定子回路串联对称电阻同定子回路串联对称电抗,不变,、、随所串电阻值的增大而减小,其人为机械特性见图15-5。

图 15-4 三相异步电动机定子回路串联对称电抗时的人为机械特性图 15-5 三相异步电动机定子回路串联对称电阻时的人为机械特性(5)转子回路接入并联电阻和电抗图15-6 三相异步电动机转子回路接入并联电阻和电抗时的人为机械特性适用于绕线式电机。

转子回路接入并联电阻和电抗如图15-6a 所示,起动过程中,电抗值随转子回路的频率变化,转速较低即频率较高时电抗值较大,转子电流大部分流过电阻,随着转速升高,电抗逐步减小,流过电阻的电流逐步减小,流过电抗的电流逐步增大,起动结束后,几乎全部转子电流都流过电抗,近乎将并联的电阻开路。

如果参数配合适当,电动机在整个加速过程中产生几乎恒定的转矩,绕线式异步电动机转子串联频敏变阻器起动即应用了上述原理。

其人为机械特性不变,低速时由于电阻流过的电流大,转矩比固有特性大,由于电抗的串入略有减小,曲线见图15-6b。

对于改变电源频率和电动机极对数的人为机械特性,在《电机学》有关章节中专门讨论,因本次实验不包括这些内容,此处就不再介绍。

三、三相异步电动机的各种运行状态与直流电动机相同,三相异步电动机也可工作于两大运行状态,即电动运行状态和制动运行状态。

在交流电力拖动系统运行时,拖动不同负载的条件下,改变异步电动机电源电压的大小、相序及频率,或者改变绕线式异步电动机转子回路所串电阻等参数,三相异步电动机可以运行在四个象限的各种不同状态。

1.电动运行状态图15-7 电动运行状态下异步电动机的机械特性电动运行状态的特点是电动机转矩的方向与旋转的方向相同,在图15-7的第I及第III象限绘出了电动状态下电动机的机械特性。

第I象限电动机工作在正向电动状态,第III象限相当于电动机改变相序后,工作在反向电动状态。

在电动状态下运行,电动机由电网吸取电能,变换为机械能带动负载。

2.制动运行状态与直流电动机相同,异步电动机也可工作于回馈制动、反接制动及能耗制动三种制动状态。

其共同的特点是电动机转矩与转速的方向相反,以实现制动。

此时电动机由轴上吸收机械能,并转换为电能,或消耗在电阻中,或反馈回电网。

(1)回馈制动当异步电动机由于某种原因,例如位能性负载的作用,使其转速高于同步速,转差率,转子感应电势反向,转子电流的有功分量也反向,而转子电流的无功分量方向则不变,由相量图可以看出,定子电流也相应改变,和间的相位差角,此时定子功率为负,即定子绕组将电能回馈电网。

同时转差率,电磁转矩,电磁转矩的方向和转向相反,在转子轴上产生制动转矩。

综上所述,当转速高于同步速时,电动机处于回馈制动运行状态。

回馈制动状态一般用于位能性负载下放,以获得稳定的下放速度,或异步电动机变极调速由少极数变为多极数时发生。

(a) (b)图15-8 异步电动机回馈制动的机械特性(a) 正向回馈制动 (b) 反向回馈制动当电动机处于正向电动运行时,转速高于同步速为正向回馈制动,如图15-8a所示;当电动机处于反向电动运行时,转速高于同步速为反向回馈制动,如图15-8b所示。

本次实验做的是正向回馈制动,由一直流电动机拖动异步电动机使其转速高于同步速。

(2)反接制动状态实现反接制动可有转速反向和定子两相反接两种方法,分别讨论如下:① 转速反向的反接制动(或称倒拉反转制动)转速反向的反接制动与直流电动机的电势反接制动相似。

异步电动机带位能性负载,按正转接线,转子回路串入较大电阻,机械特性的最大转矩点到了第IV象限。

当接通电源,电动机的起动转矩的方向与重物产生的负载转矩相反,而且,在重物的作用下,迫使电动机反的方向旋转,并在重物下降的方向加速。

此时转差率,随着的增加,、及均增大,直到转矩增至,转速稳定为,此时重物以等速下降,稳定运行点在第IV象限的点,如图15-9b所示,图中机械特性在第IV象限的部分(用实线表示)即为异步电动机转速反向的反接制动。

(a) (b)图15-9 三相绕线式异步电动机转速反向的反接制动电路图和机械特性(a) 电路图 (b) 机械特性这种制动与前述回馈制动一样,可用于起重机的重物下放,这也属于一种稳定运行状态。

电动机在反接制动状态时,它由轴上输入机械功率(为负),同时,定子又通过气隙向转子输送电功率,这两部分合起来消耗在转子电路的总电阻中。

② 定子两相反接的反接制动异步电动机带动生产机械原在正向电动状态稳定运行(图15-10b中的点),为了迅速停车或反向,可将定子两相反接(如为绕线式转子,可同时在转子回路中串联电阻,见图15-10a),定子相序改变,旋转磁场方向也改变,转子转向未变,转差率变为,、、及均与正向电动运行时相反,从而得到反向的机械特性如图15-10b所示。

定子绕组刚反接瞬间,工作点由转移到,然后在电动机的转矩和负载转矩共同作用下,电动机转速很快下降,相当于机械特性的段。

在转速为零的点,如不切断电源,电动机将反向加速,进入反向电动运行状态,如果是位能性负载,将继续加速进入反向回馈运行。

(a) (b)图15-10 定子两相反接的反接制动的电路图与机械特性(a) 电路图(b) 机械特性定子两相反接的反接制动就是指机械特性的段。

本次实验要做的是转速反向的反接制动,由一直流电动机拖动异步电动机使其反向旋转,模拟位能性负载。

(3)能耗制动状态异步电动机原在图15-11b所示的点运行,相应于图15-11a电路图中闭合,断开。

为了迅速停车,开关转换,即当断开,电动机脱离电网时,立即将接通,则在定子两相绕组中通入直流电流,在定子内形成一固定磁场。

当转子由于惯性而仍在旋转时,其导体即切割该磁场,在转子中产生感应电动势和转子电流。

根据左手定则,可以确定出转矩方向与转速方向相反,即为制动转矩。

可以证明,能耗制动的机械特性与定子接三相交流电源运行时的机械特性很相似,是一条具有正、负最大值,过点的曲线,如图15-11b中的曲线1、2和3。

能耗制动的机械特性曲线在第II象限。

如果以转子不外串电阻,定子直流励磁电流为某一定值时的曲线1为基准,如果增大转子回路所串电阻而直流励磁电流不变时,最大转矩不变,产生最大转矩的转速增加,如图15-11b曲线3所示。

如果转子回路所串电阻不变而直流励磁电流增大时,最大转矩增大,产生最大转矩的转速不变,如图15-11b曲线2所示。

除图15-11a所示的两相绕组通入直流电流外,根据绕组接法的不同,还可以有其它的方法给定子绕组通入直流电流。

(a)(b)图15-11 异步电动机能耗制动的电路图与机械特性(a) 电路图 (b) 机械特性若三相异步电动机带动反抗性恒转矩负载运行时,采用能耗制动停车,电动机的运行点在第II 象限,如图15-11b所示,从,最后准确停在处。

实验十五三相绕线式异步电机在各种运行状态下的机械特性实验一、实验目的了解三相绕线式异步电动机在各种运行状态下的机械特性。

二、实验内容1.测定三相绕线异步电动机在电动运行状态下的机械特性。

2.测定三相绕线异步电动机在正向回馈(也叫再生发电)制动运行状态下的机械特性。

3.测定三相绕线异步电动机在转速反向的反接制动运行状态下的机械特性。

三、实验说明及操作步骤实验线路如图15-12所示,图中为被试三相绕线式异步电动机,其额定值为:,,,,为作为负载用的直流电机,安装时和涡流测攻机用联轴器直接联接(图虚线所示)。

三相电阻选用挂件上的三只、的可调电阻,接成接法,即端短接,端接转子端;选用挂件上的(考虑到电枢电流,故采用),实际接线为端短接,端短接,端短接,端分别接向开关和电流表一端;选用挂件上的 (接端,即两只串联)。

异步电动机定子回路测量用的交流表和选用主控屏左侧的交流电压表、电流表。

直流电流表选用直流稳压电源上的电流表();直流电流表选用直流电机励磁电源上的电流表();直流电压表选用上的电压表,量程为。

开关、为挂件上的、。

1.测定三相绕线转子异步电动机在电动运行状态下的机械特性操作前三相调压器输出调至最小(即“交流电源输出调节”黑色旋钮逆时针旋到底);电阻调至最小,电阻、调至最大;主控屏左侧的交流电压表、电流表、功率表的红色开关至“ON”位置。

各仪表的量程选择:若各表的“自动/手动”按钮选择“自动”(即红色按钮按下位置),那么各表量程选择按钮(白色)可不选择;若选择“手动”(即红色按钮弹出位置),那么应选择各表量程。

相关文档
最新文档