基坑监测方案

合集下载

基坑监测技术方案

基坑监测技术方案

基坑监测技术方案基坑是建筑施工过程中不可避免的工程险情之一,如何有效地进行监测,发现隐患,及时调整措施,保障工程的安全性?本文将介绍基坑监测技术方案。

一、基坑监测的目的基坑是指在建筑工程中开挖的地面或地下空间,用于建筑施工或其他用途。

基坑开挖过程中,常常会涉及到地下水、岩土结构等问题,可能引发其它安全问题。

因此,进行基坑监测可以明确工程的变化及时调整建设措施,并确保工程的质量和安全。

二、常见的基坑监测技术方案1.测量法测量法采用传统的测量方法,利用仪器对基坑的各种数据进行测量。

通过对基坑周边的某些关键点(如墙体上相对位移、水平位移、沉降量等)的观测,得到基坑的变形量,及时掌握基坑的变化情况。

2.遥感技术遥感技术是通过卫星图像等技术,对建筑工程的状况进行监测。

它可以依靠大数据和软件分析技术,使用多层次、多角度监测手段,综合分析监测对象,实现全方位的建筑工程监测。

3.无人机监测技术无人机技术的应用可以在工程施工过程中实现对基坑的实时监测。

通过高清摄像头拍摄和即时传输,实现对基坑地形及其周边环境的监测,及时掌握基坑的变化,并调整施工措施。

4.传感器监测技术传感器监测技术是一种新型的监测方法,需要安装传感器模块在监测对象,例如挖掘机、混凝土泵车等,可以动态的监测设备的状态变化,通过收集基坑周边各种数据,实现基坑变化的高精度、高效率监测。

三、基坑监测技术方案的实现实现基坑监测技术方案需要从以下几个方面入手:1.规划设计方案,提前设计好基坑监测方案,明确监测的目标与方法。

2.确定监测方法与工具。

根据基坑的不同情况(地质条件、基坑的大小、开挖深度及周边环境等因素)选择合适的监测方法和工具。

3.安装好相应的仪器设备。

无论是传感器、测量设备、还是遥感技术,都需要进行相应的设备安装工作,将其定位到合适的位置。

4.监测数据的采集和处理。

通过设备采集到的数据,进行分类、整理、分析和处理,并将处理后的数据反馈给项目监理方、工程负责人和建设方等相关人员,以调整工程进展和方案。

基坑监测方案

基坑监测方案

基坑监测方案一、引言基坑工程是现代建设中常见的一项工程活动,其施工会涉及到土壤力学、结构力学、水文地质等多个学科。

为了确保基坑工程的安全施工和后期使用,需要进行基坑监测。

本文将就基坑监测方案进行详细介绍。

二、监测目标基坑监测的目标是为了掌握基坑施工过程中的变形、位移、应力等信息,以及周边环境的变化情况,以提供监测数据支持,为工程提供安全、稳定的施工条件。

监测目标包括以下几个方面:1. 基坑变形监测:通过监测基坑周边地表的沉降、侧移等变形情况,掌握基坑结构的变形状态,及时发现可能存在的安全隐患。

2. 基坑地下水位监测:监测基坑附近地下水位的变化情况,了解地下水对基坑的影响,并根据监测数据进行相应的水文调节。

3. 基坑支护结构监测:对基坑支护结构的应力、位移等进行监测,以确保支护结构的稳定性和安全性。

4. 周边建筑物监测:对接近基坑的周边建筑物进行监测,防止基坑施工对周边建筑物造成不可逆的影响。

三、监测方法与方案基坑监测应综合运用现场监测和远程监测两种方法,以确保监测数据准确可靠。

本方案提出以下监测方法与方案:1. 现场监测(1)地表变形监测:通过布设测点,使用测量仪器(如全站仪、水准仪等),定期监测地表的沉降、侧移等变形情况。

(2)支护结构监测:在基坑支护结构上设置应变计、位移计等传感器,实时检测支护结构的应力、位移等变化。

(3)地下水位监测:设置水位监测井,并配备合适的水位传感器,进行地下水位的定期监测。

(4)周边建筑物监测:通过定点振动传感器、应变计等监测周边建筑物的位移、应力等参数。

2. 远程监测(1)数据采集与传输:将现场监测获得的数据通过数据采集终端进行采集,并通过无线信号、有线传输等方式传输到远程监测中心。

(2)数据处理与分析:在远程监测中心对采集到的数据进行处理与分析,并生成监测报告,及时反馈给相关监理单位和工程管理人员。

四、监测频率与报告基坑监测应根据工程的实际情况,结合监测目标和监测指标的要求,确定监测频率。

基坑工程现场监测方案

基坑工程现场监测方案

基坑工程现场监测方案一、前言基坑工程是指在承载土体的工程基础体系周围凿挖一定的深度和宽度,以满足地下空间利用要求的一种工程。

其施工过程中可能存在土体塑性变形、地下水位变化、地下管线和建筑物变形等多种风险,因此需要对其现场进行全面的监测,及时掌握施工情况,保障工程顺利进行。

二、监测目标基坑工程的监测目标主要包括以下几个方面:1、土体变形监测:监测基坑周边土体的沉降变形情况,及时发现并控制土体的变形,防止地质灾害发生。

2、地下水位监测:监测基坑周边地下水位的变化情况,控制基坑内的地下水位在合理范围内,避免基坑水灾发生。

3、地下管线监测:监测基坑周边地下管线的变形情况,控制地下管线的变形,防止对施工安全造成影响。

4、建筑物变形监测:监测基坑周边建筑物的倾斜、裂缝等变形情况,确保周边建筑物的安全。

5、施工工艺参数监测:监测基坑支护结构的变形、应力、变形等参数,保障支护结构的稳定性。

三、监测方案1、土体变形监测:采用全站仪、GPS、精度水准仪等仪器对基坑周边土体进行定点观测,记录土体的沉降、水平位移、倾斜等信息,检测变形情况。

对于变形较大的地点,可采用测量点云技术,实时监测土体的三维形变情况。

2、地下水位监测:利用水位计、压力计对基坑周边的不同深度和位置进行地下水位的监测,并且建立水位监测井,实时监测地下水位的变化情况。

同时,采用地下水位自动监测系统,可以实时监测并记录地下水位的变化。

3、地下管线监测:采用地下管线监测仪器对基坑周边的地下管线进行监测,记录管线的变形、位移等信息,及时发现问题并采取相应的措施。

4、建筑物变形监测:采用倾斜仪、位移监测仪等仪器对基坑周边的建筑物进行倾斜、位移等变形情况的监测,确保建筑物的安全。

5、施工工艺参数监测:采用应力应变计、变形仪器、位移传感器等仪器对基坑支护结构进行监测,记录支护结构的变形、位移、应力等参数,及时掌握支护结构的稳定性。

四、监测频次1、土体变形监测:根据基坑的深度和地质条件,制定不同监测频次,一般情况下,每日至少监测一次,夜间施工时,应加强监测频次。

基坑工程监测检测方案

基坑工程监测检测方案

基坑工程监测检测方案一、前言基坑工程是城市建设中的重要组成部分,其安全施工和监测检测工作至关重要。

在建设过程中,需要对基坑工程进行监测检测,以确保施工过程中的安全以及结构稳定。

本文将针对基坑工程的监测检测方案进行详细的介绍。

二、监测检测的目的基坑工程监测检测的主要目的是为了掌握工程施工过程中的变形和变化规律,对施工现场的安全进行有效监控和控制;同时也是为了对基坑支护结构的受力进行实时监测,保证基坑支护结构的稳定性和安全性;对基坑周边环境进行监测,以保护周边建筑和地下管线的安全。

三、监测检测的内容1. 地表沉降监测:通过设置地表沉降监测点,进行实时监测,了解地表变形情况。

可以采用测量仪器,如沉降仪、倾斜仪等进行监测,并采用自动化数据采集系统进行数据存储和分析。

2. 基坑轴线监测:针对基坑的变形情况进行监测,了解基坑结构的稳定性。

可以采用全站仪、GPS等工具进行轴线监测,实时记录基坑的变形情况。

3. 支护结构受力监测:对基坑支护结构的受力情况进行监测,确保支护结构的安全性。

可以采用应变计、位移计等仪器进行实时监测。

4. 地下水位监测:对基坑附近地下水位进行监测,了解地下水位的变化情况。

可以通过长期监测和数据分析,掌握地下水位的变化规律。

5. 基坑周边环境监测:对基坑周边建筑和地下管线进行监测,确保工程施工过程中的安全。

可以采用地质雷达、声波检测等技术进行监测,确保基坑工程对周边环境的影响最小化。

四、监测检测方法1. 传统监测方法:采用常规测量仪器进行监测,如全站仪、GPS、沉降仪、倾斜仪、应变计等。

这些仪器可以准确监测基坑工程的变形情况,并且数据可以实时采集分析。

2. 自动化监测系统:采用自动化监测系统进行监测,实现数据实时采集和存储。

可以采用传感器、数据采集器、数据传输设备等进行布设,实现对基坑工程的全方位监测。

3. 遥感监测技术:利用遥感技术进行基坑工程的监测,减少人工操作和提高监测效率。

可以采用卫星遥感、无人机等技术进行监测,实现对基坑工程的大范围监测。

基坑工程监测技术方案

基坑工程监测技术方案

基坑工程监测技术方案一、前言基坑工程是指为了建设地下结构或地下工程而在地面上开挖出的深坑,如地下车库、地下商场、地下室等。

在基坑工程施工过程中,要保证施工过程稳定安全,必须对基坑周边的地下水位、基坑变形、邻近建筑物或地下管线等进行严密监测。

基坑工程中的监测技术在施工和使用阶段起到至关重要的作用。

本文就基坑工程监测技术方案进行讨论。

二、基坑工程监测内容基坑工程监测内容主要包括以下几个方面:1. 地下水位监测:考虑到基坑周围地下水的波动对基坑稳定性的影响,需对周边地下水位进行监测,掌握地下水位的变化范围和趋势。

2. 基坑变形监测:基坑挖掘深度增加时,土体受到变形应力的影响,从而引起土体变形。

因此,需要监测基坑边坡的位移和变形情况。

3. 周边建筑物和地下管线监测:基坑开挖对周边建筑物和地下管线会产生影响,需监测周边建筑物和地下管线变化情况。

以上监测内容对基坑工程的施工和使用阶段都至关重要。

三、基坑工程监测技术方案1. 地下水位监测技术方案地下水位监测一般采用水位计或压力传感器进行监测。

监测点分布需覆盖基坑周边,监测频率一般为每日至每周。

监测数据通过无线传输至监测中心,并及时进行分析与处理。

在发现异常情况时,及时采取相应措施。

2. 基坑变形监测技术方案基坑变形监测可采用全站仪、测斜仪等设备进行监测。

设立监测点布设需均匀,以获取较为准确的数据。

监测频率根据施工情况和地质条件而定,一般监测频率为每日至每周。

监测数据传输至监测中心,并进行实时监测和分析。

3. 周边建筑物和地下管线监测技术方案周边建筑物和地下管线监测可采用全站仪、测斜仪等设备进行监测。

设立监测点分布需合理,监测频率一般为每周至每月。

监测数据传输至监测中心,并进行分析和处理。

四、基坑工程监测数据分析与应用监测数据的分析和应用是基坑工程的关键环节。

监测数据的实时分析可以预警和预防基坑工程中可能出现的安全隐患,从而采取相应的控制措施。

1. 地下水位监测数据分析与应用地下水位监测数据的分析可以帮助预测地下水位的变化趋势,及时发现地下水位异常变动的可能性。

深基坑监测方案

深基坑监测方案
六、监测周期及频率
1.基坑周边土体监测:
施工前进行初始监测,施工过程中根据工程进度和监测数据变化情况,调整监测频率。一般情况下,监测频率为每周1-2次。
2.支护结构监测:
施工过程中,监测频率与土体监测同步进行。关键施工阶段,如土方开挖、支撑施工、降水等,应加强监测。
3.周边环境监测:
施工前进行初始监测,施工过程中根据周边环境变化情况,调整监测频率。一般情况下,监测频率为每周1次。
二、监测目标
1.监测基坑周边土体的稳定性,包括水平位移、垂直位移及裂缝发展情况。
2.监测支护结构的健康状况,包括位移、倾斜及内力变化。
3.监测周边建(构)筑物及设施的安全状况,确保不受基坑施工影响。
三、监测原则
1.系统性:确保监测内容全面,覆盖基坑施工全周期。
2.预警性:建立预警机制,对异常情况及时预警,指导施工调整。
3.动态性:根据施工进度和监测数据,动态调整监测策略。
4.科学性:采用可靠的监测技术,确保监测数据的准确性。
四、监测内容
1.土体监测:
-水平位移:采用全站仪等设备进行监测。
-垂直位移:使用电子水准仪等设备进行监测。
-地表裂缝:通过巡视和裂缝观测仪进行监测。
2.支护结构监测:
-桩(墙)位移:使用测斜仪等设备监测。
深基坑监测方案
第1篇
深基坑监测方案
一、项目背景
随着城市化进程的加快,地下空间开发逐渐成为缓解城市土地资源紧张的重要手段。深基坑工程作为地下空间开发的关键环节,其安全性直接关系到工程质量和周边环境的安全。为确保深基坑施工过程中的稳定性和安全性,制定一套合法合规的深基坑监测方案至关重要。
二、监测目的
1.掌握深基坑施工过程中土体、支护结构及周围环境的变化规律,确保工程安全。

基坑工程监测方案完整版

基坑工程监测方案完整版

基坑工程监测方案完整版一:(详细版)基坑工程监测方案完整版一、前言本旨在规划基坑工程的监测方案,确保施工过程中的安全和质量。

本方案详细介绍了监测的目的、内容、方法及具体实施步骤,以供参考。

二、监测目的基坑工程的监测目的是为了及时掌握基坑工程施工过程中的变形和破坏情况,预测和评估可能带来的风险,并采取相应的措施以确保工程的顺利进行。

三、监测内容1. 地面沉降监测地面沉降监测旨在记录基坑周围地面的垂直位移情况,以评估基坑开挖对周边建造物和地下管线的影响。

2. 基坑顶部水平位移监测基坑顶部水平位移监测旨在记录基坑各个部位的水平位移情况,以评估基坑结构的稳定性。

3. 地下水位监测地下水位监测旨在记录基坑周围地下水位的变化情况,以评估基坑排水系统的效果。

4. 基坑支护结构变形监测基坑支护结构变形监测旨在记录基坑支护结构的变形情况,以评估支护结构的稳定性。

五、实施步骤1. 建立监测点根据监测内容确定监测点的位置,并进行标记和记录。

2. 部署监测仪器根据监测内容选择合适的监测仪器,并按照要求进行部署和安装。

3. 数据采集和处理定期对监测仪器进行数据采集,并对数据进行处理和分析,监测报告。

4. 监测报告及时反馈及时将监测报告反馈给相关责任方,并提供相应的建议和措施。

六、附件本所涉及附件如下:1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》:指中华人民共和国建造领域的专门法律法规。

2.《施工安全管理条例》:指中华人民共和国施工领域的专门法律法规。

二:(简洁版)基坑工程监测方案完整版一、前言本为基坑工程监测方案,旨在确保工程施工过程的安全和质量。

详细介绍了监测的目的、内容、方法及实施步骤。

二、监测目的基坑工程监测的目的是为了及时掌握工程变形和破坏情况,预测风险并采取措施,确保工程顺利进行。

三、监测内容1. 地面沉降监测2. 基坑顶部水平位移监测3. 地下水位监测4. 基坑支护结构变形监测五、实施步骤1. 建立监测点2. 部署监测仪器3. 数据采集和处理4. 监测报告及时反馈六、附件1. 基坑工程监测点位置图2. 基坑工程监测仪器说明书3. 基坑工程监测数据报告样本七、法律名词及注释1.《建造法》2.《施工安全管理条例》。

基坑监测方案

基坑监测方案

基坑监测方案基坑监测是在建筑施工阶段对基坑周边土体和工程结构进行实时监测和评估的重要工作。

本文将介绍一个基坑监测方案,其中包括监测目的、监测内容、监测方法和监测频率等方面的内容。

一、监测目的基坑监测的主要目的是确保施工过程中的安全性和稳定性,及时发现并预防潜在的安全风险。

具体的目的如下:1. 评估基坑围护结构的稳定性,判断是否存在下沉或倾斜等问题;2. 监测基坑周边土体的变形情况,了解土体的工程性质和变化趋势;3. 检测地下水位的变化,控制水位对基坑的影响;4. 监测基坑开挖工序中的土方量,确保施工进度的正常进行。

二、监测内容基坑监测的内容主要包括以下几个方面:1. 基坑围护结构的变形监测:通过安装位移传感器等监测设备,实时监测基坑围护结构的下沉、倾斜和变形情况。

2. 基坑周边土体的变形监测:通过土壤应变计、浸润计等监测设备,监测土体的应变、变形和稳定性。

3. 地下水位的监测:通过水位监测井和水位传感器等设备,监测地下水位的变化情况,及时采取控制措施。

4. 土方量的测量:通过挖掘机上的土重计等设备,实时测量基坑开挖工序中的土方量,掌握施工进度。

三、监测方法基坑监测可以利用传统的实地测量与现代化的自动化监测相结合的方式进行。

具体的监测方法如下:1. 传统实地测量:包括使用测量仪器进行位移测量、水位测量和土方量测量等。

2. 自动化监测:采用自动化仪器和传感器进行监测,通过数据采集和传输系统实现远程实时监测。

四、监测频率基坑监测的频率需要根据具体施工情况和工程要求来确定。

一般情况下,应进行定期监测和临时监测相结合的方式,根据实际情况进行调整。

1. 定期监测:按照工程进度和要求,每隔一定时间进行监测,如每周、每月或每季度进行一次。

2. 临时监测:在施工过程中,发现异常情况或关键节点时,及时进行监测,以确保施工的安全进行。

总结:基坑监测方案是基坑工程的重要组成部分,能够帮助工程人员及时了解工程的安全状况和土体变化情况,为施工过程提供科学的依据和指导。

基坑监测监控方案

基坑监测监控方案

基坑监测监控方案土方开挖施工期间,应对基坑支护结构受力和变形、周边建筑物、重要道路及地下管线等保护对象进行系统的监测。

通过监测,可以及时掌握基坑开挖过程中支护结构的实际状态及周边环境的变化情况,做到及时预报,为基坑边坡和周边环境的安全与稳定提供监控数据,防患于未然;通过监测数据与设计参数的对比,可以分析设计的正确性与合理性,科学合理地安排下一步工序,必要时及时修改设计,使设计更加合理,施工更加安全。

一.监测频率1坡顶水平位移监测:基坑开挖前3步深度在5m以内,可每2d观测一次,基坑开挖至5m以下及基坑开挖完成后一周内,每天观测一次。

基坑开挖至基底后一周后无明显位移时,可适当延长观测周期,每5~IOd 观测一次。

2、坡顶垂直位移及建筑物沉降观测:在基坑降水时和在基坑土开挖过程中应每天观测一次。

混凝土底板浇完IOd以后,可每2~3d观测一次,直至地下室顶板完工和水位恢复。

此后可每周观测一次至回填土完工。

3、当出现下列情况之一时,应进一步加强监测,缩短监测时间间隔加密观测次数,并及时向施工、监理和设计人员报告监测结果:(1)监测项目的监测值达到报警标准;(2)基坑及周围环境中大量积水、长时间连续降雨、市政管线出现泄漏;(3)基坑附近地面荷载突然加大;(4)临近的建筑物或地面突然出现大量沉降、不均匀沉降或严重开裂。

4、当有危险事故征兆时,应连续监测。

二、监控报警1基坑及支护结构监控报警值以累计变化量和变化速率两个值控制,累计变化量的报警指标不应超过设计限制。

2、本基坑坡顶水平位移报警值设为25mm,水平位移速率报警值设为连续三日大于2mm∕d o3、周围建筑物报警值以累计变形量、变形速率、差异变形量并结合裂缝观测确定。

4、本基坑周围建筑物沉降报警值设为15mm,倾斜报警值设为IOmm,倾斜速率报警值设为连续三日大于Imm/55、当出现下列情况时,应立即报警:6、周围建筑物砌体部分出现宽度大于15mm的变形裂缝;7、附近地面出现宽度大于IOmm的裂缝;三、紧急预案1基坑开挖和喷锚支护施工过程中,由于破坏了土层中的原有的应力平衡,坡面肯定会发生变形,直到达到新的平衡。

基坑工程监测项目方案

基坑工程监测项目方案

基坑工程监测项目方案目录1. 项目概述 (2)1.1 项目背景 (3)1.2 监测目标与要求 (4)1.3 组织机构与职责 (5)2. 监测内容与技术参数 (5)2.1 基坑监测内容 (8)2.2 监测技术参数 (9)3. 监测项目实施步骤 (10)3.1 勘察与设计 (11)3.2 监测仪器与设备 (12)3.3 监控网络布设 (14)3.4 监测数据采集与处理 (15)3.5 监测成果汇总与应用 (17)4. 监测项目质量控制 (18)4.1 质量控制体系 (19)4.2 监测人员资质要求 (20)4.3 监测数据质量控制 (21)4.4 质量检查与评估 (22)5. 监测项目安全与环境保护 (24)5.1 安全措施 (25)5.2 环境影响评估 (26)5.3 应急处理方案 (28)6. 监测项目预算与经费管理 (28)6.1 预算编制 (30)6.2 经费管理 (31)7. 监测项目报告与成果汇编 (32)7.1 监测报告要求 (34)7.2 成果汇编 (35)8. 后期维护与项目验收 (36)8.1 后期维护计划 (37)8.2 项目验收程序 (39)1. 项目概述本工程集中体现了现代城市发展的需求,积极响应可持续发展的战略方向。

作为一座集住宅、商业与休闲功能为一体的综合性建筑项目,本工程的基坑工程部分特别重要,有必要开展科学的监测工作以保证施工安全和周边环境的安全。

基坑工程的监测对优化设计、施工管理以及项目竣工后的长期安全运营具有至关重要的作用。

实施精确的风险预警和控制措施,能有效预测和防治可能出现的工程问题,例如基坑塌陷、土体变形、支撑系统失效等。

考虑到项目所在区域的特殊性和复杂性——诸如邻近重要设施——我们的监测方案将采用详细的监测计划和先进的监测技术手段,以确保监测信息的全面性和准确性。

这不仅能满足本项目施工期间的需求,而且能够为未来的维护管理和应急响应提供科学依据。

本次基坑工程监测项目方案旨在通过系统性的监测网络和精确的监测参数,实现对施工期间基坑及其周边环境的全面监控,确保项目的顺利进行及周围环境与建筑物的安全,充分体现安全生产和文明施工的原则。

施工单位基坑监测方案

施工单位基坑监测方案
施工单位基坑监测方案
第1篇
施工单位基坑监测方案
一、工程概况
本项目位于XXX地区,为高层建筑,设地下室,基坑开挖深度约XX米。根据地质勘察报告,场地土层分布主要为:①杂填土,②粉质粘土,③砂质粘土,④碎石土。地下水类型为孔隙潜水,水位受季节性变化影响。
二、监测目的
为确保基坑施工安全,预防事故发生,及时掌握基坑变形及周围环境变化情况,对基坑施工过程进行监测,为施工提供科学依据。
-遇预警情况,及时启动应急预案,采取相应措施。
九、质量保证措施
1.确保监测设备的高质量和高精度,定期进行校准和检验。
2.强化监测人员的专业技能培训,提升监测水平。
3.建立完善的数据管理体系,确保数据的真实、准确、连续和完整。
十、结语
本基坑监测方案旨在为施工提供科学、严谨的指导,确保工程安全。施工过程中应持续关注监测数据,及时调整施工策略。各方应密切协作,共同保障基坑施工的顺利进行。
2.对监测设备进行定期检查、校验,保证设备性能稳定。
3.加强监测人员培训,提高监测水平。
4.建立监测数据档案,确保数据完整、连续。
九、结语
本方案旨在为基坑施工提供科学、严谨的监测依据,确保施工安全。在施工过程中,应密切关注监测数据,及时调整施工措施,确保工程顺利进行。同时,各方应密切配合,共同为基坑施工安全保驾护航。
4.基坑围护结构顶部水平位移监测
5.基坑围护结构顶部垂直位移监测
6.基坑围护结构深层水平位移监测
7.基坑支撑轴力监测
8.基坑地下水位监测
五、监测方法及频率
1.监测方法
(1)地表沉降监测:采用电子水准仪、铟钢尺进行监测。
(2)建筑物沉降监测:采用电子水准仪、铟钢尺进行监测。

基坑监测施工方案百度文库

基坑监测施工方案百度文库

基坑监测施工方案1. 引言基坑工程在土木工程中占据重要地位,因为它涉及到建筑物的基础和地下结构的建设。

基坑监测是一项关键的施工措施,旨在提供对基坑施工过程中土体变形、水位水压等信息的实时监测和分析,以确保基坑工程的安全和稳定。

本文档详细介绍了基坑监测施工方案,包括监测目标、监测仪器和设备、监测方法、监测数据处理等方面的内容,以帮助项目团队实施有效的基坑监测措施。

2. 监测目标基坑监测的主要目标是:•监测基坑土体的变形情况,包括沉降、滑移等,以评估基坑周边建筑物的安全性;•监测基坑内的水位和水压变化,以确保基坑排水系统的正常运作;•监测基坑周边地表的变形情况,以保证周边环境的安全性。

3. 监测仪器和设备基坑监测所需的仪器和设备包括:•全站仪:用于测量基坑和周围土地的水平和垂直位移,以及变形情况;•立体测绘仪:用于生成基坑和周围地表的三维模型,以便进行精确的分析和比较;•压力传感器:用于监测基坑内的水位和水压变化;•倾斜仪:用于监测土壤的倾斜和滑移情况;•数据采集器:用于收集和记录监测数据;•计算机软件:用于分析和处理监测数据。

4. 监测方法基坑监测可采用以下方法:4.1 传统测量方法传统测量方法基本上是通过人工测量和观察来获得监测数据的方法。

这种方法需要专业的测量人员进行测量工作,并进行手动记录和处理数据。

传统测量方法主要包括:•基准测量:通过测量基准点的位置和高度,确定基坑和周围土地的变形情况;•经常性测量:定期对基坑和周围土地进行测量,以监测其变形情况。

4.2 远程监测方法远程监测方法是通过仪器和传感器来自动收集和传输监测数据的方法。

这种方法不需要人工干预,可以实时监测基坑的变形情况。

远程监测方法主要包括:•自动化测量系统:利用自动测量仪器,并通过无线通信技术传输数据,实现对基坑变形情况的实时监测;•数据采集系统:通过安装传感器和数据采集设备,对基坑的水位、水压等数据进行实时采集和传输;•图像监测系统:利用摄像机和图像处理技术,对基坑和周围地表进行实时监测和分析。

深基坑监测专项施工方案

深基坑监测专项施工方案

一、工程概况本工程为深基坑施工项目,基坑深度约8米,占地面积约500平方米。

基坑周边环境复杂,包括地下管线、周边建筑物等。

为确保施工安全和工程质量,特制定本深基坑监测专项施工方案。

二、监测目的1. 监测基坑围护结构的变形和稳定性,确保施工安全;2. 监测周边地下管线和建筑物的沉降,防止对周边环境造成影响;3. 为施工提供实时数据,指导施工方案的调整。

三、监测内容1. 基坑围护结构水平位移监测;2. 基坑围护结构竖向位移监测;3. 周边地下管线沉降监测;4. 周边建筑物沉降监测。

四、监测方法1. 水平位移监测:采用测斜仪进行监测,测量基坑围护结构水平位移;2. 竖向位移监测:采用水准仪进行监测,测量基坑围护结构竖向位移;3. 地下管线沉降监测:采用精密水准仪进行监测,测量地下管线沉降;4. 周边建筑物沉降监测:采用精密水准仪进行监测,测量周边建筑物沉降。

五、监测频率1. 基坑围护结构水平位移和竖向位移监测:每日监测一次;2. 地下管线沉降监测:每周监测一次;3. 周边建筑物沉降监测:每周监测一次。

六、监测数据处理1. 对监测数据进行实时记录,确保数据的准确性;2. 对监测数据进行整理和分析,发现异常情况及时报告;3. 对监测数据进行统计和评估,为施工方案的调整提供依据。

七、监测设备配置1. 测斜仪:用于监测基坑围护结构水平位移;2. 水准仪:用于监测基坑围护结构竖向位移、地下管线沉降和周边建筑物沉降;3. 数据采集器:用于实时记录监测数据;4. 软件系统:用于监测数据分析和处理。

八、监测人员要求1. 监测人员应具备相关专业知识和技能,熟悉监测设备的操作和维护;2. 监测人员应严格遵守监测规程,确保监测数据的准确性;3. 监测人员应定期参加培训和考核,提高监测技能。

九、监测安全管理1. 监测现场应设置警示标志,防止人员误入;2. 监测设备应妥善保管,防止损坏和丢失;3. 监测人员应遵守安全操作规程,确保自身安全。

基坑支护工程监测方案

基坑支护工程监测方案

基坑支护工程监测方案一、基坑支护工程监测方案1.监测目的(1)监测基坑开挖过程中的变形情况,及时发现并处理可能存在的变形加剧或者失稳的情况。

(2)监测基坑支护结构的施工质量,及时发现并处理支护结构的裂缝、位移等问题。

(3)监测基坑开挖和支护过程中的地下水位变化情况,确保地下水位对支护结构的影响在合理范围内。

(4)监测基坑支护工程对周边建筑物、管线等的影响,确保不会对周边环境造成负面影响。

2.监测内容(1)基坑开挖过程的变形监测,包括土体沉降、支护结构位移、裂缝变化等情况。

(2)基坑支护结构施工过程的监测,包括混凝土浇筑质量、支护结构内力变化、裂缝情况等。

(3)地下水位监测,主要是为了了解地下水位的变化情况,及时调整排水和抗渗措施。

(4)周边建筑物、管线等的影响监测,主要是为了了解基坑支护工程对周边环境的影响情况。

3.监测方法(1)基坑开挖过程的变形监测,可以采用测量仪器进行实时监测,如全站仪、测斜仪、倾角仪等。

(2)基坑支护结构施工过程的监测,可以采用超声波检测仪、裂缝位移计等仪器进行实时监测。

(3)地下水位监测,可以采用水位计进行实时监测。

(4)周边建筑物、管线等的影响监测,可以采用激光测距仪、地震波等仪器进行实时监测。

4.监测频率(1)基坑开挖过程的变形监测,每天至少进行一次监测,发现异常情况要及时处理。

(2)基坑支护结构施工过程的监测,根据施工进度和情况进行不定期监测,发现问题及时处理。

(3)地下水位监测,每天至少进行一次监测,根据地下水位变化情况适时调整排水和抗渗措施。

(4)周边建筑物、管线等的影响监测,根据实际情况进行不定期监测,及时发现问题并处理。

二、监测结果处理1.监测结果的处理(1)基坑开挖过程的变形监测结果要及时分析,如发现异常情况要立即停止开挖,并做好防护措施。

(2)基坑支护结构施工过程的监测结果要及时分析,如发现支护结构存在问题要及时调整施工方案,并进行补救措施。

(3)地下水位监测结果要及时分析,根据地下水位变化情况适时调整排水和抗渗措施。

基坑监测方案范文

基坑监测方案范文

基坑监测方案范文一、背景与目的基坑工程是城市建设中不可或缺的一环,然而基坑工程中存在着一定的风险,如土层不稳、地下水位变化等,这些因素都可能导致基坑工程的安全隐患。

因此,为了确保基坑工程的施工安全,需要制定一套完善的基坑监测方案,及时发现并处理潜在的风险。

二、监测内容和方法1.土层稳定性监测:采用地面测斜仪对基坑周边土层的变形进行监测,以及使用倾斜计对基坑周边建筑物的倾斜情况进行监测。

如果发现土层发生变形或建筑物倾斜超出了允许范围,需要及时采取措施加固土层或修复建筑物。

2.地下水位监测:通过在基坑内安装水位计观测地下水位的变化,监测地下水位是否超过了设计要求的安全范围。

如若超出,需要采取相应的排水措施,控制地下水的涌入。

3.基坑周边环境监测:包括监测附近地表的沉降情况、环境噪声、震动等因素对基坑工程的影响。

通过这些监测指标的评估,能够及时发现异常情况并提出合理的解决方案。

4.施工过程监测:对基坑的开挖、土方填筑、支护结构施工等各个环节进行实时监测,以便及时调整施工方案、减少风险发生的可能性。

三、监测设备和技术1.地面测斜仪:地面测斜仪是一种通过测量地面上各个点的变形量来判断土层稳定性的仪器。

它能够实时监测土层的变形情况,并通过数据分析给出预警。

2.倾斜计:倾斜计能够测量基坑周边建筑物的倾斜情况,以及墙体的变形情况。

通过倾斜计的监测,能够及时发现墙体的变形情况,并采取相应的修复措施。

3.水位计:水位计是监测地下水位变化的主要设备,通过实时测量地下水位的高低来判断基坑周边的地下水变化情况。

4.环境监测仪器:包括沉降监测仪、噪声监测仪、震动监测仪等,用于监测基坑周边环境的变化情况。

四、监测频率与执行机构1.土层稳定性监测:根据施工进度和土层情况的变化,每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。

2.地下水位监测:根据地下水位变化的情况,每日或每周进行一次监测,并由相关专业机构或工程监理单位负责数据的采集、分析和处理。

基坑监测方案

基坑监测方案

基坑监测方案一、工程概述本次基坑工程位于具体地点,周边环境较为复杂,有相邻建筑物、道路、地下管线等情况。

基坑开挖深度为具体深度,面积约为具体面积。

二、监测目的1、及时掌握基坑围护结构和周边环境的变形及受力情况,确保施工安全。

2、为优化设计和施工方案提供依据,实现信息化施工。

3、对可能发生的危险情况进行预警,提前采取防范措施。

三、监测内容1、围护结构水平位移监测在围护结构顶部设置监测点,采用全站仪或经纬仪进行观测,监测其水平位移变化情况。

2、围护结构竖向位移监测使用水准仪对围护结构顶部的监测点进行竖向位移观测。

3、深层水平位移监测在围护结构内埋设测斜管,通过测斜仪测量深层水平位移。

4、支撑轴力监测在支撑结构上安装轴力计,监测支撑轴力的变化。

5、地下水位监测在基坑周边设置水位观测井,使用水位计测量地下水位的变化。

6、周边建筑物沉降及倾斜监测在周边建筑物上设置沉降观测点和倾斜观测点,分别采用水准仪和全站仪进行观测。

7、周边道路及地下管线沉降监测在道路和地下管线上设置监测点,使用水准仪进行沉降观测。

四、监测点布置1、围护结构水平位移和竖向位移监测点沿基坑周边每隔具体间距布置一个监测点。

2、深层水平位移监测点在基坑的关键部位,如阳角、阴角等,每隔具体间距布置一个测斜管。

3、支撑轴力监测点选择受力较大的支撑构件,每隔具体间距布置一个轴力计。

4、地下水位监测点在基坑周边每隔具体间距布置一个水位观测井。

5、周边建筑物沉降及倾斜监测点在建筑物的四角、大转角处及沿外墙每具体间距布置一个沉降观测点,倾斜观测点布置在建筑物的顶部和底部。

6、周边道路及地下管线沉降监测点根据道路和地下管线的走向,每隔具体间距布置一个监测点。

五、监测频率1、基坑开挖期间,每天监测 1 次。

2、底板浇筑完成后,每 2-3 天监测 1 次。

3、主体结构施工期间,每周监测 1-2 次。

4、当监测数据变化较大或遇暴雨等恶劣天气时,应加密监测频率。

六、监测报警值1、围护结构水平位移和竖向位移报警值累计位移达到具体数值或单日位移达到具体数值。

基坑工程内力监测方案

基坑工程内力监测方案

基坑工程内力监测方案一、基坑工程内力监测的意义在基坑工程施工过程中,由于土壤的支护结构和周围环境的影响,基坑工程的内力状况会发生变化,可能会出现土体变形、墙壁倾斜、水平位移等情况。

因此,基坑工程内力监测的意义在于及时发现基坑工程的内力变化趋势,为施工方提供及时的反馈信息,采取相应的措施,以保证基坑工程的稳定性和安全性。

二、基坑工程内力监测方案的内容1. 监测对象基坑工程内力监测的对象主要包括土体变形、墙壁倾斜、水平位移等情况。

其中,土体变形主要指土体的沉降、变形和收缩,墙壁倾斜主要是指各种支护结构的倾斜情况,水平位移主要是指基坑工程周围环境的水平位移情况。

2. 监测方法基坑工程内力监测的方法主要包括传统测量方法和现代监测技术两种。

传统测量方法主要包括测量孔、水准测量、定位测量等;现代监测技术主要包括全站仪监测、GPS监测、遥感监测等。

3. 监测频率基坑工程内力监测的频率主要根据基坑工程的施工进度和环境变化情况确定。

一般情况下,基坑工程内力监测的频率为每天一次或者每周一次。

4. 监测技术基坑工程内力监测的技术主要包括传感器技术、数据采集技术和数据处理技术。

其中,传感器技术主要是通过安装传感器来监测土体变形、墙壁倾斜、水平位移等情况;数据采集技术主要是通过数据采集设备来采集监测数据;数据处理技术主要是通过计算机软件来处理监测数据。

5. 监测报告基坑工程内力监测的报告主要包括监测数据、监测结果和监测建议三部分。

其中,监测数据主要是监测设备采集到的监测数据;监测结果主要是基于监测数据得出的基坑工程内力情况;监测建议主要是根据监测结果提出的相应建议。

三、基坑工程内力监测方案的实施步骤1. 制定监测计划首先,需要根据基坑工程的实际情况制定监测计划,确定监测的对象、方法、频率、技术和报告内容等。

2. 安装监测设备其次,需要安装监测设备,包括传感器、数据采集设备和数据处理设备等,确保监测设备的正常运行。

3. 进行监测然后,需要进行监测工作,采集监测数据,及时发现基坑工程的内力变化趋势。

基坑监测技术方案及预算

基坑监测技术方案及预算

基坑监测技术方案及预算一、技术方案1.地下水位监测:通过在基坑周边埋设水位监测管,在管道内安装水位计,实时测量地下水位的变化情况。

可以监测地下水位的高度、水位的变动速率等,便于及时采取必要的措施。

2.地表沉降监测:通过在基坑周边埋设沉降监测点,利用沉降仪测量监测点的垂直位移,以监测地表沉降的情况。

可以实时掌握地表沉降的速率和量值,及时发现异常情况。

3.土体位移监测:通过在基坑边坡或周边埋设位移监测点,利用位移传感器测量监测点的水平和垂直位移,以监测土体的变形情况。

可以及时发现土体的下移、侧移等异常情况,并采取相应的控制措施。

4.基坑周边环境监测:通过安装环境监测仪器,监测基坑周边的环境因素,如气温、湿度、风速等,以及周边建筑物的振动情况,以确保施工过程中的环境安全。

二、预算1.设备预算:根据监测范围和要求,预计需要购买地下水位监测仪器、沉降仪、位移传感器、环境监测仪器等。

这些设备的价格在几千到几万不等,预算约为10万元至50万元。

2.人员费用:需要专业的监测人员进行设备的安装、数据的采集和分析等工作。

根据监测项目的规模和周期,需要相应数量的人员,并计算其工时费用。

预算约为5万元至20万元。

3.数据存储和管理费用:基坑监测需要实时监测并保存大量的数据,需要购买专业的数据存储设备和软件,以及相关的数据管理和分析服务。

预算约为5万元至10万元。

4.其他费用:包括设备维护费用、差旅费用等。

根据具体情况进行预算。

预算约为5万元至10万元。

综上所述,基坑监测技术方案及预算大致在30万元至100万元之间,具体的预算还需要根据具体的监测范围和要求进行详细计算和确定。

基坑监测方案2024

基坑监测方案2024

引言:概述:正文内容:1. 地质勘察与监测1.1. 地质调查与分析:对基坑所在地区的地质情况进行详细的调查和分析,了解地层结构、土壤条件、地下水位等因素,为后续监测工作提供依据。

1.2. 地质灾害风险评估:根据地质调查结果,对基坑所处地区的地质灾害潜在风险进行评估,确定监测的重点和方向。

1.3. 地下水位监测:通过布置地下水位监测孔,实时监测地下水位的变化情况,及时掌握基坑水平。

1.4. 地质灾害预警:根据地质灾害风险评估和监测数据,制定相应的预警方案,一旦发生地质灾害,可以及时采取措施避免危害。

2. 土体变形监测2.1. 支撑结构监测:对基坑周边支撑结构进行安装应变计、水平位移仪等监测设备,监测支撑结构的变形情况,确保其稳定性。

2.2. 土体位移监测:通过安装监测孔和地表应变测量点,实时监测土体位移的情况,及时掌握基坑变形情况,确保工程的稳定进行。

3. 土体力学参数监测3.1. 土压力监测:通过安装土压力计,实时监测基坑周边土体的压力变化情况,判断土体与支撑结构之间的相互作用。

3.2. 土体力学参数测试:采集土体样本,进行室内试验,获取土体的力学参数,为工程施工提供依据。

3.3. 强度指标监测:对于基坑周边土体的强度指标进行实时监测,及时发现并解决可能出现的强度问题。

4. 建筑物变形监测4.1. 建筑物结构监测:通过安装挠度计、应变计等监测设备,实时监测建筑物结构的变形情况,确保其稳定性和安全性。

4.2. 建筑物沉降监测:通过设置沉降点,实时监测建筑物的沉降情况,及时掌握建筑物沉降的速度和变化趋势。

5. 施工期基坑开挖监测5.1. 土方开挖监测:通过地下位移监测仪和支护结构监测点,实时监测土方开挖过程中的变形情况,预测土方塌陷风险。

5.2. 施工振动监测:通过振动传感器,实时监测施工过程中的振动情况,确保施工振动对周边建筑物和土体的影响控制在合理范围内。

总结:基坑监测方案是保障基坑工程施工安全和顺利进行的重要措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某项目基坑施工信息化监测技术方案2014年9月6日商品房项目基坑施工信息化监测技术方案编写:审核:批准:2019年9月6日目录一. 工程概况及周边环境 (4)二. 监测方案编制依据 (9)三. 监测内容、目的及测点布置 (9)四. 监测仪器设备 (14)五. 监测方法 (16)六.监测频率 (18)七. 报警控制值 (19)八. 质量保证 (19)九. 提供成果 (20)十. 应急预案 (20)十一.基坑及周边环境监测点布置示意图 (20)基坑施工信息化监测技术方案一.工程概况及周边环境1.一般概况(1) 项目名称:商品房项目(2) 建筑场所:(3) 主要用途:(4) 建设单位:(5) 围护设计单位:2. 设计概况(1) 拟建建筑:商品房项目(上广电基地保障性住房配建经营性项目)位于。

项目用地面积42726.1平方米,总建筑面积为152464.7平方米。

拟建项目包括10幢住宅楼(16层~26层,采用筏板基础)、地下一层车库及辅助设施用房等,设置地下一层整体地下室。

(2) 基坑规模及开挖深度:基坑平面形状大致呈梯形,南北向长约206.9m,东西向宽约160.9~211.4m。

基坑开挖总面积约38586平方米,围护周边长约795m。

地下车库一般区域基础底板面标高为-5.50m,底板厚度为500mm,承台高800mm~900mm,垫层厚度为150mm,则一般区域底板垫层底标高为-6.15m,承台垫层底标高为-6.45m~-6.55m。

地下室外墙下未分布承台处,按底板垫层底计算开挖深度,分布承台处按承台垫层底计算开挖深度,则基坑计算开挖深度为5.15米~5.45米,地库内集水坑及电梯井局部落深1.30m。

(3) 基坑围护体系:本工程基坑东侧一般区域及西侧浅基础分布区域拟采用双轴搅拌桩的支护形式,搅拌桩坝体宽度为4.20m,桩长13.0m,插入比不小于1:1.38,桩端进入坑底以下第⑤1-1层粘土层,以满足基坑各项安全指标;基坑北侧管线众多,搅拌桩坝体宽度为4.20m,桩长14.0m,插入比不小于1:1.71,基坑南侧邻近航油管线,环境保护要求高,搅拌桩坝体宽度为4.70m,桩长13.0m,插入比不小于1:1.45;基坑西侧其他区域采用两级放坡的支护形式,其坡比均为1: 1.5,中间平台宽度2.0m。

(4) 基坑安全和周边环境保护等级:根据上海市标准《基坑工程技术规范(DG/TJ08-61-2010)中相关规定和基坑围护设计总说明,本工程基坑一般开挖深度5.15米~5.45米,基坑安全等级应为三级,基坑南侧环境保护等级应为二级,其他侧环境保护等级为三级。

3.周边环境:拟建场地上海市闵行区朱梅路以北、业祥路以南、已建公租房小区以西、龙州路以东。

拟建场地示意图东侧:基坑开挖边线距离用地红线最近约为4.20m,红线外为已建I-01A地块公租房小区,邻近基坑的1号、5号、7号及9号共4幢高层住宅楼,层高18层~26层,剪力墙结构,下设一层地下室,采用400×400预应力空心混凝土方桩,桩长27m~28m,距离基坑开挖边线约为17.26m~26.89m,均在3倍开挖深度以外。

该小区1号楼与5号楼之间分布有一幢变电所,地上1层,框架结构,条形基础,距离基坑开挖边线最近约为7.34m,需要重点保护。

照片1: 基坑东侧现状南侧:基坑开挖边线距离用地红线最近约为5.20m,用地红线外为10m宽防护绿地及已建朱梅路,道路宽约20.0m。

用地红线以外分布有多条市政管线,按距离基坑开挖边线由近及远以此为给水管、航油管、燃气管、4条给水管地下管线。

朱梅路管线分布表序号管线名称管径埋深与基坑开挖边线最近距离备注1 给水管80mm 0.35m 5.04m 塑胶2 航油管300mm 1.74m 9.17m 铸铁3 燃气管200mm 0.92m 14.94m 铸铁4 给水管500mm 1.50m 18.05m 铸铁5 给水管300mm 0.99m 18.60m 铸铁6 给水管500mm 0.82m 24.40m 铸铁7 给水管300mm 1.45m 25.43m 铸铁照片2: 基坑南侧现状西侧:基坑开挖边线距离用地红线最近约为2.70m,红线外为规划龙州南路,规划道路宽约19.0m,目前为空地。

照片3: 基坑西侧现状北侧:基坑开挖边线距离用地红线最近约为3.40m,红线外为已建业祥路,道路宽约24.0m,目前道路虽以建成,但仍处于封闭状态,暂未通车。

用地红线以外分布有多条市政管线,按距离基坑开挖边线由近及远以此为路灯电线管、电力管、燃气管、污水管、雨水管、路灯、给水管、电信管及广播电视地下管线。

业祥路管线分布表序号管线名称管径埋深与基坑开挖边线最近距离备注1 路灯1孔/1线0.48m 5.92m 铜2 电力3孔/3线 2.22m 5.97m 铜3 燃气管300mm 1.32m 8.69m 铸铁4 污水管300mm 2.25m 13.38 砼5 雨水管1000mm 3.65m 17.42 砼6 路灯1孔/1线0.45m 25.00 铜7 给水管300mm 1.22m 25.32 铸铁8 电信管6孔/0线 1.14m 25.90 铜9 广播电视2孔/0线 1.42m 26.21照片4: 基坑北侧现状由于桩基施工、坑内降水及基坑开挖等势必造成周边土体产生不同程度的沉降及位移影响;因此受建设方委托,从桩基施工开始至土建施工达±0.00期间,针对基坑周边环境及基坑围护体系的动态进行信息化监测;根据本工程围护设计单位针对监测提出的要求及相关规范制定以下监测方案。

二.监测方案编制依据(1)、委托方提供的资料①.工程平面布置图;②.围护平面布置图;③.地下管线分布图;④.基坑施工设计总说明对监测内容的要求。

(2)、监测规范和文件①.上海市《基坑工程施工监测规程》(上海市工程建设规范)DG/TJ08-2001-2006②.《建筑基坑工程监测技术规范》(GB50497—2009)③.上海市《岩土工程勘察规范》 (DG/J08—37-2012)④.《工程测量规范》(国家标准)(GB50026-2007)⑤.上海市《地面沉降监测与防止技术规程》(DG/TJ08—2051—2008)⑥.其它相关规范与技术文件等。

三、监测内容、目的及测点布置A.监测内容根据上海地区已有基坑工程经验以及基坑围护结构设计要求,为防止基坑失稳、减小基坑施工对周围环境的影响,必须考虑基坑施工的时空效应,并采取措施保护支护结构的稳定性,减小支护结构变形。

基坑开挖时,基坑周边不应大面积堆载,同时应加强基坑变形监测,做到信息化施工,以确保基坑围护体系和周边环境(临近道路、建筑物、地下管线)的安全。

为了能够为施工的安全顺利进行提供有效参考数据,根据本工程明挖顺做法施工的特点,经现场周边环境考察、设计单位提出的监测技术要求、业主提供的资料要求、相关规范要求、结合同类工程经验,综合考虑监测主要设置如下内容:①.基坑周边地表沉降监测;②.基坑周边地下管线垂直及水平位移监测;③.基坑周边建筑物垂直及水平位移监测;④.基坑围护墙顶的垂直及水平位移监测;⑤.基坑围护墙体深层侧向变形(测斜);⑥.基坑外地下潜水位沉降监测。

B.监测目的基坑监测目的主要有一下几个方面:1)对基坑本体及周边环境安全进行有效的监控,在基坑开挖与支护等施工过程中,通过信息化跟踪监测,确保基坑周边河道驳岸及建筑物等变形处于正常的范围内,在河道驳岸及建筑物基础的变形接近警戒值时,有利于采取对河道驳岸及建筑物进行保护的技术应急措施,从而最大程度上避免或减轻破坏的后果。

2)为信息化施工提供参数,在基坑开挖施工期间通过信息化监测变形值与设计值比较分析,验证原设计和施工方案的正确性,必要时对设计方案和施工工艺进行修正。

3)为验证有关设计参数,基坑支护结构设计尚处于半理论半经验的状态,基坑开挖深度、挖土空间顺序、施工进度等和空间因素有着复杂的关系,因此,在基坑施工过程中需要及时了解现场实际的受力和变化情况,为今后设计更趋于合理提供第一手资料。

C.监测点的布置监测点布设位置,请参阅后附:监测点平面布置图,具体布设如下:⑴.基本工作点:监测基准点分为永久基点和工作基点,永久基点布设在距离基坑50米外通视良好的位置,共计布设永久基准点3个以上。

工作基点布设在基坑四周,相对稳定和便于观测的位置,具体根据现场位置实地布设。

1.水准基准点:1)埋设:水准基准点埋设在施工影响范围以外位置,保证在整个监测过程中的稳定,根据现场情况可采用混凝土普通水准标石或直接采用测量道钉打入地面上,最好采用深埋式水准标石。

图:水准基点结构示意图2)联测:水准基准点一般要与设计部门提供的高程控制点采用闭合导线进行联测,精度应满足《建筑变形测量规范》一级水准导线测量技术的要求,往返闭合差应小于0.3n mm。

若不能满足前者要求,也可根据现场情况建立独立的水准基准网。

3)平差计算:水准基准点高程通过严密平差得到。

2.平面控制点:1)埋设每基坑工程至少应埋设3个以上稳定的控制点;监测过程中要定期检查控制点的稳定性,为保证监测工作的简单易行且提高观测精度的要求、消除测站的对中误差,水平位移控制点尽量采用强制对中的观测墩形式埋设,并宜采用精密的光学对中装置,对中误差不应大于0.5mm。

图:位移沉降监测基准点布设(单位mm)30206502040702)联测:控制点定期进行联测,精度应满足《建筑变形测量规范》二级导线测量技术的要求,若不能满足前者要求,也可根据现场情况建立独立的监测控制网。

3)平差计算:观测数据可利用“南方平差易”进行严密平差,取得控制点的坐标数据。

⑵.周边环境监测点:基坑周边地表上:在基坑周边临近基坑道路地表上按照每条剖面线3~4点,并设置在每侧边中部原则布设,计36点;测点编号为:DB1~DB36。

基坑周边地下管线上:在基坑周边地下管线上计布置76个垂直及水平位移监测点,其中上水编号为:S1~S20、电力编号为:D1~D10、雨水编号为:Y1~Y16、电话编号为:H1~H5、航油编号为:HY1~HY9、燃气编号为:R1~R5、污水编号为:U1~U10。

基坑周边临近建筑物上:在基坑东侧临近建筑物上计布设16个垂直及水平位移监测点,编号为:J1~J14;其中水平位移监测点,编号为:J13~J16。

⑶.基坑监测点1.基坑围护墙顶监测点:沿基坑围护墙顶周边布计设42个垂直及水平位移监测点,测点编号为:W1~W42。

(垂直及水平位移监测可共用观测点)2.坑外潜水位监测点:在基坑围护墙体外计布设14个坑外地下水位孔,埋设深度为8米,测点编号为:SW1~SW14。

3.基坑围护墙体深层侧向变形(测斜)孔:沿基坑周边围护墙体内计布设12个测斜孔,在基坑围护水泥土搅拌桩重力坝内钻孔埋设,每孔埋设深度为12米,测点编号为:CX1~CX12。

相关文档
最新文档