风力发电机偏航系统控制
风力发电机及偏航系统
风力发电机及偏航系统引言:风力发电是一种利用风能将其转化为电能的发电方式。
它是一种环保、可再生的能源,可以帮助减少对传统化石燃料的依赖,并减少排放。
风力发电机是风力发电的核心设备,而偏航系统是确保风力发电机能够高效运行的关键部件。
本文将从风力发电机的原理、构造和工作原理以及偏航系统的功能、原理和优化等方面进行阐述,以帮助读者更好地理解风力发电机及偏航系统的工作原理与应用。
一、风力发电机1.原理2.构造3.工作原理当风力吹过风力发电机的叶片时,叶片产生升力,并形成一个扭转力矩。
这个扭转力矩通过轴传递给发电机,进而带动发电机转子旋转。
转子内部的磁场与绕组相互作用,产生感应电动势,从而产生电能。
二、偏航系统1.功能偏航系统是风力发电机中的重要部分,其主要功能是使风力发电机始终面向风向,以利用风能的最大化。
偏航系统可以通过调整发电机的方向来适应风的变化,确保叶片始终相对于风的方向。
2.原理偏航系统通常由风向传感器、控制器和驱动器等组成。
风向传感器负责感知风的方向,控制器根据风向数据和预设参数进行判断和计算,驱动器则通过调整发电机的方向来控制风力发电机的偏航。
3.优化为了提高风力发电系统的效益,偏航系统的优化也尤为重要。
通过采用更先进的风向传感器、控制算法和驱动器技术,可以提高偏航系统的准确性和响应速度,进而提高风力发电机的发电效率。
结论:风力发电机及偏航系统是风力发电的重要组成部分,其工作原理和优化对风力发电系统的效益起到至关重要的作用。
理解和掌握风力发电机及偏航系统的原理和应用,对于推广和应用风力发电具有重要的指导意义。
随着技术的不断进步,风力发电的效率和可靠性将继续提升,为可持续发展和环境保护做出积极贡献。
风力发电机及偏航系统PPT课件
对风装置每隔十分钟进行一次对风检测。控制系统根据风向标的指向 来检测此时的风向角,再根据风向标与机舱的夹角(锐角)来判断是 否进行偏航。如果系统检测到风向没有发生改变,那么系统不发出偏 航指令:如果系统检测到风向发生变化,那么系统此时进行风向角计 算,工作人员可以根据风向标的方向和系统显示面板来判断风向,计 算出来的风向角再与机舱的夹角进行比对,如果大于10°系统则发出 偏航信号,根据风向角来决定是否左偏或者右偏,偏航多少度。
我国风能资源比较丰富,近十几年来,对风能资源状况作了较深入的 勘测调查,全国可开发利用的风能资源总量约2.5亿kw。东南沿海和 山东、辽宁沿海及其岛屿,内蒙古北部,甘肃、新疆北部以及松花江 下游等地区均属风能资源丰富区,年平均风速≥6m/s ,有很好的开 发利用条件。这些地区中很多地方常规能源贫乏,无电或严重缺电, 尤其是新疆、内蒙古的大部分草原牧区以及沿海几千个岛屿,人口分 散,电网难以通达,或无电力供应,或采用很贵的柴油发电。
水平轴风力机简介
水平轴风力机的风轮围绕一个水平轴旋转,工 作时,风轮的旋转平面与风向垂直,风轮上的叶 片是径向安置的,与旋转轴相垂直,用于风力发电 的风力机一般叶片数取 1~4(大多为 2片或 3 片) ,叶片数多的风力机通常称为低速风力机, 它在低速运行时,有较高的风能利用系数和较大 的转矩。它的起动力矩大,起动风速低,因而适用 于提水。叶片数少的风力机通常称为高速风力机。 它在高速运行时有较高的风能利用系数,但起动 风速较高。由于其叶片数很少,在输出同样功率 的条件下比低速风轮要轻得多,因此适用于发电。
偏航控制系统实物图
接近开关简介
(完整版)基于PLC的风力发电机偏航控制系统设计毕业设计
基于PLC的风力发电机偏航控制系统设计摘要由于化石资源的日益枯竭和人类对全球环境恶化的倍加关注,因此清洁绿色的风力发电技术已深受全世界的重视。
本设计主要研究的偏航系统是风力发电机组的重要组成部分。
由于偏航机构安装在机舱底部,通过偏航轴承与机舱相连。
当风向改变时,风向仪将信号传到控制系统,控制驱动装置工作,小齿轮在大齿圈上转动,从而带动机舱旋转,是风轮对准风向。
当机舱的旋转方向有接近开关进行检测,当机舱向同一方向达到极限偏航角度时,限位开关会及时将信号传到控制装置内,控制装置会迅速发出信号使机组快速停机,并反转解缆,经过上述过程从而实现偏航控制使风轮始终保持迎风状态。
根据边行系统的工作原理本设计所要解决的基本问题有:1、实现自动偏航控制及手动偏航控制的双控制系统设计2、设计偏航系统的制动装置以及扭缆、解缆保护装置的控制方法3、了解偏航液压系统的作用、工作原理和控制方法。
4、编写驱动控制程序、扭缆、解缆保护程序。
关键词:风向,自动偏航,风向仪,偏航电机Design of Yaw Control System for Wind MotorBased on PLCABSTRACTClean and green wind power technology has gotten great attention by the world because of the increasingly exhausted fossil resources and the more attention on the global environmental degradation. This design mainly researches the yaw system which is an important component of the wind turbine. Because the yaw mechanism installed at the bottom of the engine room and connected to the engine room through the yaw bearing. When the wind changes, wind vane will send the signal to the control system to control the drive work. The pinion rotated on the big gear ring, which can turn the engine room to make the wind wheel turbines on the direction of the wind. When the revolving direction of the engine room is closed to the switch to do detection and the engine room reaches the maximum yaw angle to the same direction, the limited switch will send the signals to the control device in time. Then the control device could quickly send a signal to make the set quick stop and turn over the cast loop. After above the process, it will realize the yaw control and make the wind wheel keep the state of facing the wind. According to theworking principle of the edge system, this design should solvethe problem as follow.1、Realizing the double control system of automatic yawcontrol and manual yaw control;2、Designing the brake device of yaw system and the controlling methods of protection device of the button cableand the cast loop;3、Understanding the effect of yaw hydraulic pressuresystem, working principle and the controlling methods;4、Writing the controlling program of drive and the protection program of button cable and cast loop.KEY WORDS: Wind Direction, Automatic Yaw, Yaw Angle,Yaw Motor目录前言................................................................................................第1章绪论....................................................................................1.1 风力发电的介绍...................................................................1.2 风力发电的发展历史...........................................................1.3 中国风力发电的发展现状...................................................第2章风力发电机及偏航系统的工作原理 ...................................2.1 风力发电机组的基本介绍...................................................2.1.1 风力发电机的分类.....................................................2.1.2 风力发电机的基本构成及及原理 (1)2.2 风力发电机偏航系统的介绍 (1)2.2.1 偏航系统的分类 (1)2.2.2 偏航系统的组成 (1)2.2.3 偏航系统的功能及原理 (1)第3章风电机偏航系统总体设计 (1)3.1 风电机偏航系统基本设计思路 (1)3.2 设计方案选择 (1)3.3 偏航系统硬件的选型 (1)3.3.1 电动机选型 (1)3.3.2 限位开关选型 (1)3.3.3 接近开关选型 (2)3.3.4 风向传感器的选型 (2)3.3.5 PLC选型 (2)第4章风电机偏航控制系统的硬件设计 (3)4.1 风电机偏航系统工作过程 (3)4.2 系统硬件设计 (3)4.2.1 PLC I/O地址分配 (3)4.2.2 PLC端子连接图 (3)4.2.3 偏航电机主电路设计 (3)第5章风电机偏航系统软件设计 (3)5.1 风电机偏航系统整体流程图 (3)5.2 风电机手动偏航系统流程图 (3)5.3 风电机手动偏航梯形图 (3)结论 (4)谢辞 (4)参考文献 (4)附录 (4)外文资料译文 (4)前言能源是人类生存所必需的最基本的物质,保证国民经济稳定发展的主要物资基础。
风力发电机偏航控制系统的设计
b s D 通讯 。s — 20P C 置的 主站 通讯模 块为 C 14 — , r — u— P 7 10 L 配 M 2 3 5 Po i f b sD u — P从站 通讯模块 使用 的是泗博 P 一 2 。除此之外 , M 15 系统 的主要 硬 件还包括 : 向传感器 、 风 偏航 电机 、 减速机构等 。其 中 , 风向传感 器采 用 绝对 式传感 器 。绝 对式 风向传感 器一般 由风 向标 和旋转 编码盘组 成。风向标 可随风 自由转动 , 其方向与风 向一致 。旋转编码 盘安装在风 向标的转动轴上 , 向标转动带动旋转编码盘轴转动 , 风 当编码盘处于不同 位置时 , 就会输 出不同的信号 , 代表不同的风 向。绝对式风 向传感器输 出得到的是一个确定的角度值 , 其范围在一 8 。+ 8 。 10 ~ 10之间 , 符合要求。 3偏航 系统的软件设计 . 31 向角 与偏航角定义 .风 风 向角 的范围为一 8 。 10 , 10 ~ 8 。 定义正北 方 向为风 向角 0方 向 。风 。 向从 正北方 向顺 时针变化 时 , 风向角正 向增加 , 正南风 向为 10 方 向; 8。 方 向从正北方 向逆时针变化时 , 风向角反向增加 , 正南方向为一 8 。 向。 10方 偏 航角 的范 围一 80 ~ 80 , 10 。 10 。 同样定 义正北方 向为偏航角 为 0方 。 向。风 轮主轴顺 时针 旋转 时 , 偏航 角正 向增加 ; 风轮 主轴逆 时针旋转 时, 偏航角反 向增 加。
(一c s ×1 0 1 o ) 0 %
() 4
由式 ( ) 4 可知 , 了使损失功率最 小 , 为 理论上应使 0 为零 。其 意义 在 于在整 个控制 过程 中 , 应使偏 航角始终与 风向角一致 。由于在 不同 的时刻 , 风向是改变的 , 那么就需保证风力发 电机的风轮始终跟随风 向 的变 化 , 确保其准 确对风 。但在 实际控制 中 , 许一定 的偏差存 在 , 允 即
偏航系统原理及维护
风力发电机组偏航系统原理及维护UP77/82 风电机组偏航控制及维护目录1、偏航系统简介2、偏航系统工作原理3、偏航系统控制思想4、偏航系统故障5、偏航系统维护偏航系统简介偏航系统功能使机舱轴线能够跟踪变化稳定的风向;当机舱至塔底引出电缆到达设定的扭缆角度后自动解缆。
风向标风向标的接线包括四根线,分别是两根电源线,两个信号我们实际的线和两根加热线;目前每台机组上有两个风向标;风向标的N指向机尾;偏航取一分钟平均风向。
偏航系统结构4个偏航电机偏航刹车片10个偏航内齿圈塔筒偏航大齿圈侧面轴承偏航轴承内摩擦的滑动轴承系统;内齿圈设计。
偏航驱动电机:数量:4个对称布置,由电机驱动小齿轮带动整个机舱沿偏航轴承转动,实现机舱的偏航;内部有温度传感器,控制绕组温度偏航电子刹车装置,偏航齿轮箱:行星式减速齿轮箱偏航小齿轮偏航编码器绝对值编码器,记录偏航位置;偏航轴承齿数与编码器码盘齿数之比;左右限位开关,常开触点;左右安全链限位开关,常闭触点;偏航刹车片数量:10个液压系统偏航刹车控制;偏航系统未工作时刹车片全部抱闸,机舱不转动;机舱对风偏航时,所有刹车片半松开,设置足够的阻尼,保持机舱平稳偏航;自动解缆时,偏航刹车片全松开。
偏航润滑装置偏航轴承润滑150cc/周偏航齿轮润滑50cc /周用量3:1润滑周期16分钟/72小时偏航润滑油泵启动间隔时间:36H 偏航润滑油泵运行时间:960s偏航系统工作原理偏航系统原理由四个偏航电机与偏航内齿轮咬合,偏航内齿轮与塔筒固定在一起,四个偏航电机带动机舱转动。
偏航电机由软启动器控制。
偏航软启动器软启动器使偏航电机平稳启动;晶闸管控制偏航电机启动电压缓慢上升,启动过程结束时,晶闸管截止;限制电机起动电流。
偏航软起动器工作时序图1.主控给出软起使能EN命令;2.软起内部启动工作继电器READY接点闭合;3.启动初始电压30%Un;4.启动时间10s5.内部旁路继电器TOR接点闭合,晶闸管控制截止。
风力发电机偏航系统的工作原理
风力发电机偏航系统的工作原理风力发电机偏航系统是风力发电机的重要组成部分,它的主要作用是使风力发电机能够根据风向自动调整转向,使叶片始终对准风的方向,从而最大限度地捕捉到风能。
风力发电机偏航系统的工作原理可以简单地描述为以下几个步骤:1. 风向检测:风力发电机偏航系统首先需要准确地检测到风的方向。
通常,系统会使用一个或多个风向传感器来测量风的方向,并将这些信息传输给控制系统。
2. 信号处理:一旦风向传感器测量到风的方向,这些信号就会被传输到控制系统中进行处理。
控制系统会根据这些信号来确定风的方向,以便后续的调整。
3. 偏航控制:确定了风的方向后,控制系统会通过调整发电机的转向来使叶片对准风的方向。
通常,风力发电机偏航系统使用液压或电动机来实现转向的调整。
控制系统会根据风向信号来控制液压系统或电动机,使风力发电机转向。
4. 转向调整:一旦控制系统调整了风力发电机的转向,风力发电机就能够始终面向风的方向。
这样,风力发电机的叶片就能够最大限度地捕捉到风的能量,并将其转化为电能。
5. 反馈控制:风力发电机偏航系统通常还会包括反馈控制,以确保风力发电机能够稳定地对准风的方向。
反馈控制可以根据风向传感器的信号来实时调整风力发电机的转向,以保持其对准风的方向。
总结起来,风力发电机偏航系统的工作原理是通过风向传感器检测风的方向,控制系统根据这些信号来调整风力发电机的转向,使其始终面向风的方向。
这样,风力发电机就能够最大限度地捕捉到风的能量,并将其转化为电能。
风力发电机偏航系统的工作原理的实现离不开风向传感器、控制系统以及液压或电动机等关键组件的配合。
通过这些关键组件的协同工作,风力发电机偏航系统能够实现稳定的转向调整,从而提高风力发电机的发电效率。
偏航系统浅谈
偏航系统浅谈摘要风作为自然的产物,风能具有能量密度低、随机性和不稳定性等特点。
因此,控制技术是机组安全高效运行的关键,偏航控制系统成为水平轴风力发电机组的重要组成部分。
本文简述了风机偏航系统,其中包括偏航系统的功能、组成及工作原理等。
其次还介绍了偏航系统常见故障点的分析。
关键词:偏航系统组成工作原理常见故障点目录一、引言 (4)二、偏航系统的功能 (5)三、偏航系统的组成 (6)四、偏航系统工作原理 (7)(一) 测量 (7)(二)偏航识别 (8)(三)偏航执行过程 (8)五、偏航系统的维护 (8)(一)偏航减速器的运行检查: (8)(二)润滑油加注: (9)(三) 偏航小齿轮与外齿圈的啮合间隙 (9)1.偏航轴承: (9)2.偏航刹车: (10)3.紧固螺栓: (10)六、偏航系统常见故障点分析 (10)(一) 机械方面原因: (10)1.检查偏航电机 (10)2.检查偏航齿轮箱 (10)3.检查偏航驱动小齿轮 (10)4.检查偏航轴承 (10)5.检查刹车器安装对中性 (11)(二)电控方面原因: (12)(三)液压方面原因: (12)七、结束语 (13)参考文献 (14)偏航系统浅谈一、引言随着不可再生资源的消耗,可再生利用的新能源在全球得到广泛关注。
风能以其巨大的储量、广泛的分布、便捷地采集得到发达国家和部分发展中国家的青睐。
偏航系统在作为风电控制系统的重要组成部分,主要应用于水平轴的风力发电机组。
其作用在于当风向变化时,能够快速平稳地对准风向,以便获得最大的风能。
二、偏航系统的功能风力发电机组的偏航系统也可以成为对风系统,由于风向经常改变,如果叶轮扫风面和风向不垂直,不但功率输出减少,而且载荷情况也更加恶劣.偏航系统的功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫风掠面与风向保持垂直。
偏航系统的功能就是跟踪风向的变化,驱动机舱围绕塔架中心线旋转,使风轮扫风掠面与风向保持垂直。
风力发电机偏航系统的组成
风力发电机偏航系统的组成一、引言风力发电机是一种利用风能转化为电能的装置,风力发电机偏航系统是指控制风力发电机转向风向的系统。
它的主要作用是保持风力发电机转子始终朝向风的方向,以最大化风能的捕捉效率。
1. 偏航控制器:偏航控制器是风力发电机偏航系统的核心部件。
它负责监测风向和风速,并根据设定的参数来控制偏航动作。
通常采用微处理器或PLC来实现控制逻辑,具备高精度和高可靠性。
2. 风向传感器:风向传感器用于测量风的方向,通常采用风向风速传感器。
它能够快速准确地感知风的方向,并将信号传输给偏航控制器,以便偏航控制器做出相应的调整。
3. 偏航驱动装置:偏航驱动装置是将偏航控制器的指令转化为实际的偏航动作的装置。
常见的偏航驱动装置有液压驱动装置和电动驱动装置两种。
液压驱动装置通过控制液压缸的伸缩来实现偏航动作,而电动驱动装置则通过电机驱动来实现。
4. 偏航传动系统:偏航传动系统用于传递偏航动作到风力发电机的转向机构。
它通常由传动轴、传动链条或传动皮带等组成,能够将偏航驱动装置产生的动力传递给转向机构,使风力发电机实现转向。
5. 转向机构:转向机构是风力发电机偏航系统的关键部件,它承担着将偏航动作传递给风力发电机转子的任务。
常见的转向机构有齿轮转向机构、液压转向机构和电动转向机构等。
它能够将来自偏航传动系统的动力转化为适合风力发电机转子转向的动力。
6. 控制信号传输系统:控制信号传输系统用于将偏航控制器发出的控制信号传输给偏航驱动装置。
常见的控制信号传输系统有导线传输系统、无线传输系统和光纤传输系统等。
它能够实现远程控制和监测,提高风力发电机的可靠性和安全性。
三、总结风力发电机偏航系统是风力发电机的重要组成部分,它通过偏航控制器、风向传感器、偏航驱动装置、偏航传动系统、转向机构和控制信号传输系统等组件的相互配合,实现风力发电机转向风向的功能。
只有保持风力发电机始终朝向风的方向,才能最大化地捕捉风能,提高发电效率。
风力发电机组偏航系统的维护与维修方法及要求
风力发电机组偏航系统的维护与维修方法及要求简介偏航系统的作用主要有两个:一是根据风向仪的检测,在偏航控制系统的指令下,自动使风轮对准风向,提高风力发电机组的发电效率;二是提供必要的阻尼,防止在交变风力作用下机舱频繁摆动,减小振动,保证风机平稳、安全运行。
功能(1)正常运行和暂停状态时保持机舱的方向不变;(2)必要时解开扭曲电缆。
解缆系统有一个旋转编码器,借助偏航驱动总成的小齿轮与偏航轴承内齿的啮合传动来确定机舱旋转的度数,解缆系统还设有一个解缆开关进行极限保护。
偏航系统的组成偏航系统主要由偏航轴承、制动器支座、偏航刹车盘、偏航制动器、偏航驱动总成、接油盘、偏航编码器、解缆系统组成。
偏航轴承偏航轴承承载机组中主要部件的重量,并通过偏航驱动器与其内齿圈啮合传递推力到塔架,机舱旋转一定角度,使风轮精确迎对风向。
偏航驱动器每台风力发电机组共有4个偏航驱动总成,偏航驱动总成由驱动电机、偏航减速箱、偏航小齿轮组成。
偏航驱动总成在通过与偏航轴承内齿圈啮合带动整个机舱旋转时,要求起动平稳,转速均匀,无振动现象。
偏航驱动电机参数如下:类型:带制动器的三相电机,B5额定功率:电压:380V频率:50Hz额定转速:1460rpm防护等级:IP54绝缘等级:ISOF制动器:失电弹簧制动,电磁松闸并带手动操作手柄式旋钮制动力矩:偏航减速箱参数如下:额定功率:额定输入转速:1460rpm额定扭矩:19Nm名义传动比:1113使用场合系数:使用场合系数(静强度):接触强度安全系数:≥接触强度安全系数(静强度):≥行星齿轮弯曲强度安全系数:≥行星齿轮弯曲强度安全系数:≥弯曲强度安全系数(静强度):≥所选轴承供应商:进口轴承使用寿命:20年运行环境温度:-40℃~+40℃生存环境温度:-40℃~+50℃噪声(声功率级):≤85dB(A)偏航小齿轮技术参数模数:18齿数:14压力角:20°变位系数:+表面粗糙度:齿面宽度:130mm齿面硬度:675HV齿轮精度:8e26(DIN3963/DIN3967)齿形:鼓形齿偏航减速机的润滑润滑方式:浸油润滑+油脂润滑齿轮润滑油:ShellOamalHD320MobilMobilgearSHCXMP320 OptigearSyntheticA320轴承润滑脂:460#号锂基润滑脂偏航制动器每台风机配备12个偏航制动器,分为4组匀布于偏航刹车盘上。
PLC的风力发电机偏航系统控制
偏航控制系统主要有三个功能: (1) 正常运行时自动对风:当机舱偏离风向一定角度时,控制系统发出向左或者向右 调向的指令,机舱开始对风,知道达到允许的范围内,自动对风停止; (2) 绕缆时自动解缆:当机舱向同一方向累计偏转达到一定的角度时,系统控制停机, 或者此时报告扭缆故障,机组自动停机,等待工作人员来手动解缆; (3)失速保护时偏离风向:当有特大强风发生时,机组自动停机,释放叶尖,背风,以 达到保护风轮免受损坏的目的。
4
图 2-2-3 带有避雷装置的风向传感器
图 2-2-4 偏航驱动装置
其中,风向传感器采用绝对式传感器,绝对式风向传感器一般由风向标和旋转编码盘组 成,风向标可随风自由转动,其方向与风向一致,旋转编码盘安装在风向标的转轴上,风向 标转动带动旋转编码盘轴转动,当编码盘处于不同的位置时,就会输出不同的风向。
1.3.1 世界风电发展.............................................2 1.3.2 我国风电发展.............................................3 第二章 偏航控制系统功能简介和原理.................................3 2.1 偏航控制系统的功能............................................
错误!未定义书签。
2.2 风力发电机组偏航控制原理......................................
错误!未定义书签。
第三章 偏航系统的控制过程.........................................
错误!未定义书签。
风力发电机及偏航系统
政策法规对产业发展影响分析
补贴政策
政府对风力发电产业的补贴政策,包括上网电价补贴、投资补贴等, 对产业发展起到了积极的推动作用。
税收政策
政府对风力发电产业实行的税收优惠政策,如增值税即征即退、所 得税优惠等,降低了企业的税收负担。
环保政策
政府对可再生能源和环保产业的支持政策,如碳排放权交易、绿色电 力证书等,为风力发电产业的发展提供了良好的政策环境。
多元化能源融合
未来风力发电将与其他能源形式进行 融合,形成多元化的能源供应体系。
05 行业标准与政策法规解读
国内外相关行业标准梳理
国际标准
包括IEC(国际电工委员会)制定的风 力发电机组相关标准,以及ISO(国 际标准化组织)制定的可再生能源和 风力发电相关标准。
国内标准
中国制定的风力发电机组相关标准,如 GB/T(国家推荐性标准)和NB/T(能源行 业标准)等,涵盖了风力发电机组的设计、 制造、试验、安装和运行等方面。
特点
清洁、可
风力发电机类型及结构
类型
水平轴风力发电机、垂直轴风力发电 机等。
结构
包括叶片、轮毂、齿轮箱、发电机、 塔筒、偏航系统等主要部件。
风力发电机性能指标
额定功率
发电机在额定风速下输 出的功率。
切入风速
发电机开始发电的最低 风速。
切出风速
为保护发电机而设定的 最高风速,超过此风速
机的发电量和运行稳定性。
案例二
某风电设备制造商对其偏航系统进 行了结构优化设计,降低了制造成 本并提高了市场竞争力。
案例三
某研究机构将智能化技术应用于偏 航系统,实现了对风力发电机的智 能监控和优化控制,取得了显著的 应用效果。
运达1.5mw风机偏航控制逻辑
运达1.5mw风机偏航控制逻辑
偏航控制系统是风力发电机的关键组成部分,它能够确保风力发电机始终处于最佳的风能捕获位置。
运达1.5MW风机偏航控制逻辑主要包括以下几个方面:
1.偏航控制策略:采用爬山控制算法,通过实时监测风力发电机的输出电压和电流,寻找最大功率点,从而实现对风控制。
这种方法不需要风速风向传感器,具有较高的控制精度和可靠性。
2.偏航驱动系统:由3个偏航驱动机构组成,通过DSP控制器调节偏航电机的起停和转向。
较大的传动比使得机舱对风快速、平稳,提高了风力发电机的运行效率。
3.偏航位置传感器:用于实时监测偏航位置,将数据传输给DSP 控制器。
通过与设定值进行比较,调节偏航电机的运动,使风力发电机始终保持迎风状态。
4.偏航速度故障检测:实时监测偏航电机的转速,如果出现偏航过载或偏航速度异常,控制系统将发出警报,并采取相应的保护措施,以确保风力发电机的稳定运行。
5.故障诊断与处理:针对偏航系统可能出现的故障,如偏航位置故障、右偏航反馈丢失、左偏航反馈丢失等,设计了一套完善的故障诊断和处理机制。
通过实时监测系统状态,发现问题后及时采取措施,保障风力发电机的正常运行。
6.维护与保养:为保证偏航控制系统的长期稳定运行,需要定期
对系统进行维护和保养。
主要包括对偏航电机、传动装置、传感器等部件的检查和清洁,以及对控制系统软件的升级和优化。
通过以上六个方面的描述,我们可以了解到运达1.5MW风机偏航控制逻辑的详细内容。
该逻辑设计合理、运行稳定,能够确保风力发电机在各种工况下高效、安全地运行。
同时,也为风力发电机偏航控制系统的设计和维护提供了有益的参考。
风力发电机偏航系统控制策略分析袁博文
风力发电机偏航系统控制策略分析袁博文摘要:风能作为清洁能源,具有较大发展前景,尤其是在风能发电方面。
而如何提升风能利用率,增强风力发电机发电效益,控制发电成本,成为各国研究学者思考重点。
在风力发电时,偏航系统的控制水平直接影响着其的经济效益,因此,各国纷纷投入风力发电机偏航系统的研究中,并取得了显著成效。
文章对风力发电机偏航系统简单概述,探讨了偏航系统工作原理,并对偏航系统的控制提出几点策略,以期增强风力发电机发电效益,提高偏航系统的利用率,延长偏航系统的使用时间,实现效益最大化。
关键词:风力发电机;偏航系统;控制前言:风能作为自然能源,其内蕴含大量蕴藏量,具有再生、绿色无污染、分布广泛等优势,在世界范围内,风能的利用被广泛重视。
在风能利用中,对风力发电机依赖性较高,而发电机通过对风向追踪,将风能转变为电能,以供使用[1]。
在这一过程中,偏航系统的控制直接关系着发电机是否能迅速准确对风,影响着发电机对风的利用率,并且,作为发电机内不可缺少的部件,一旦偏航系统出现问题,风力发电机组极易停机。
对此,加强偏航系统的控制,对风能的高效利用具有重要意义。
1?风力发电机偏航系统概述及其工作原理1.1?风力发电机偏航系统概述风力机组。
在风里发电机内,风力机组直接将风力转化,变为机械能,通过机械能对转子的作用力,带动转子快速旋转,最终转变为电能。
电能转换时,风能经过两次转化,即由风能转变为机械能,后由机械能转化为电能。
偏航系统构造。
在大型水平轴风力发电机上,偏航系统主要包含偏航轴承、计数器、驱动装置等部件。
偏航系统功能。
偏航控制系统作为对风装置,包括如下功能:与风力机组配合,对系统进行控制,当风速矢量方向变化,偏航控制系统直接控制风轮,快速平稳的对准风向,实现了风能最大化利用[2]。
偏航系统主要功能有:与风电机组控制系统有效配合,控制风电机组的机舱,使其旋转对风,充分利用风力,增强电机组发电效率;风险相对稳定时,偏航系统能够为其提供保持力矩,使风能能够保持对风捕捉,保证风电机组安全运行;因风电机组可能向一个方向持续偏航,为保障机组悬垂部分电缆因过度扭绞断裂,偏航系统能够在电缆到达规定缠绕值,自动反方向旋转,解除缠绕。
风电机组偏航系统
风电机组偏航系统
偏航系统是指风力发电机组在风向变化时保持一定的航向,使风电机
组的发电效率达到最优。
偏航系统由控制系统和驱动系统组成,它是指整
个风电机组的调节系统,它的作用是在自动把叶片中小的旋转和转向偏转
加以调节,以期达到最佳发电效果。
偏航系统的控制系统通常由一个传感器、一个控制器和一个两轴俯仰
控制器组成,控制器的逻辑由传感器收集的信息传输给俯仰控制器,从而
实现叶片旋转和偏转的自动控制。
驱动系统是指叶片旋转时的驱动机构,由驱动电机和传动机构组成,
它接受控制器传来的舵角控制信号,进而控制驱动电机的运行,实现叶片
的自动偏转。
另外,偏航系统还需要安装一个或者多个传感器,用以检测风向变化
并将信息传递给控制器,以便根据当前的风向变化对叶片进行相应的调节。
传感器的工作原理是检测风向,通过磁力计、陀螺仪或者红外传感器,将
信息传递给控制器,从而实现叶片的自动偏转和调节。
风力发电机偏航控制系统的研究
风力发电机偏航控制系统的研究一、本文概述随着全球对可再生能源需求的持续增长,风力发电作为一种清洁、可再生的能源形式,已在全球范围内得到了广泛的关注和应用。
风力发电机(Wind Turbine)作为风力发电系统的核心设备,其运行效率和稳定性对于整个系统的性能至关重要。
偏航控制系统作为风力发电机的重要组成部分,对于确保风电机组的安全运行和最大化能量捕获具有关键作用。
本文旨在深入研究风力发电机偏航控制系统的原理、设计及其在实际应用中的性能表现。
文章首先介绍了风力发电机的基本工作原理和偏航控制系统的基本构成,为后续的研究提供了理论基础。
接着,文章详细分析了偏航控制系统的关键技术和控制策略,包括传感器技术、执行机构、控制算法等,并探讨了这些技术和策略对风力发电机性能的影响。
在此基础上,文章通过实验和仿真研究,评估了不同偏航控制策略在实际应用中的效果,为优化风力发电机偏航控制系统提供了有益的参考。
文章还讨论了风力发电机偏航控制系统面临的挑战和未来的发展趋势,为相关领域的研究者和工程师提供了有价值的参考信息。
通过本文的研究,期望能够为风力发电机偏航控制系统的设计、优化和应用提供有益的指导,推动风力发电技术的发展,为实现全球能源转型和可持续发展做出贡献。
二、风力发电机概述风力发电机是一种利用风能转换为电能的装置,其工作原理基于风的动力学特性和电磁感应原理。
风力发电机通常由风轮(也称为风叶或转子)、发电机、塔筒和基础等部分组成。
风轮由多个风叶组成,当风吹过风叶时,风叶受到风力作用而旋转,进而带动发电机转动,发电机中的磁场与导体产生相对运动,根据电磁感应原理,导体中会产生感应电动势,从而产生电能。
风力发电机具有清洁、可再生、无污染等优点,是当前全球范围内大力推广的可再生能源发电方式之一。
风力发电机的装机容量和单机容量不断增大,技术也在不断进步,从最初的定桨距失速型发展到变桨距调节型,再到目前最先进的主动偏航控制系统,风力发电机的性能和稳定性得到了显著提升。
[知识]风机偏航结构及作用
风力发电机组偏航系统的结构与作用风力发电机组偏航系统的结构与作用偏航系统是一个随动系统,风向仪将采集的信号传送给机舱柜的PLC的I/O板,计算10分钟平均风向,与偏航角度绝对值编码器比较,输出指令驱动四台偏航电机(带失电制动),将机头朝正对风的方向调整,并记录当前调整的角度,调整完毕电机停转并启动偏航制动。
偏航控制系统框图如下图所示:下文将对偏航控制系统的各机构进行分析:1、风速仪风力发电机组应有两个可加热式风速计。
在正常运行或风速大于最小极限风速时,风速计程序连续检查和监视所有风速计的同步运行。
计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速和停机风速。
测量数据的差值应在差值极限1.5m/s以内。
如果所有风速计发送的都是合理信号,控制系统将取一个平均值。
2、风向标风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。
一般采用两个风向标,以便互相校验,排除可能产生的误信号。
控制器根据风向信号,起动偏航系统。
当两个风向标不一致时,偏航会自动中断。
当风速低于3m/s时,偏航系统不会起动。
3、扭揽开关扭缆开关是通过齿轮咬合机械装置将信号传递PLC进行处理和发出指令进行工作的。
除了在控制软件上编入调向记数程序外,一般在电缆处安装行程开关,当其触点与电缆束连接,当电缆束随机舱转动到一定程度即启动开关。
以国内某知名公司生产的1.5MW风机为例,当机身在同一方向己旋转2转(720度),且风力机不处在工作区域(即10分钟平均风速低于切入风速) 系统进入解缆程序。
解缆过程中,当风力机回到工作区域(即10分钟平均风速高于切入风速),系统停止解缆程序,进入发电程序,但当机身在同一方向己旋转2.5转(900度)偏航限位动作扭缆保护,系统强行进入解缆程序,此时系统停止全部工作,直至解缆完成。
当风速超过25 m/s时,自动解缆停止。
自动解除电缆缠绕可以通过人工调向来检验是否正常。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
能源、环境是当今人类生存和发展所要解决的紧迫问题。
风力发电作为一种可持续发展的新能源,不仅可以节约常规能源,而且减少环境污染,具有较好的经济效益和社会效益,越来越受到各国的重视。
由于风能具有能量密度低、随机性和不稳定性等特点,风力发电机组是复杂多变量非线性不确定系统,因此,控制技术是机组安全高效运行的关键。
偏航控制系统成为水平轴风力发电机组控制系统的重要组成部分。
风力发电机组的偏航控制系统,主要分为两大类:被动迎风偏航系统和主动迎风系统。
前者多用于小型的独立风力发电系统,由尾舵控制,风向改变时,被动对风。
后者则多用大型并网型风力发电系统,由位于下风向的风向标发出的信号进行主动对风控制。
本文设计是大型风力发电机组根据风速仪、风向标等传感器数据,对风、制动、开闸并确定起动,达到同步转速一段时间后,进行并网操作,开始发电。
本文介绍了风力机的偏航控制机构、驱动机构的基础上,采用PLC作为主控单元,设计了风电机组的偏航控制系统。
系统根据风向、风速传感器采集的数据,采取逻辑控制主动对风,实现了对风过程可控。
论文给出了基于风向标、风速仪的偏航控制系统的软硬件设计结果。
关键词:风力发电机;风向标;偏航控制系统;驱动机构
目录
第1章绪论 (2)
1.1 课题的背景和意义 (2)
1.2 国内风力发电的发展 (3)
第2章风力发电机组系统组成及功能简介 (5)
2.1 风力机桨叶系统 (5)
2.2 风力机齿轮箱系统 (6)
2.3 发电机系统 (7)
2.4 偏航系统 (8)
2.6 刹车系统 (8)
2.8 控制系统 (8)
第3章偏航控制系统功能和原理 (10)
3.1 偏航控制机构 (10)
3.1.1 风向传感器 (10)
3.1.2 偏航控制器 (12)
3.1.3 解缆传感器 (12)
3.2 偏航驱动机构 (13)
3.2.2 偏航驱动装置 (15)
3.2.3 偏航制动器 (16)
第4章偏航控制系统设计及结果分析 (18)
4.1 偏航系统控制过程分析 (18)
4.1.1 自动偏航 (18)
4.1.2 90度侧风控制 (19)
4.1.3 人工偏航控制 (20)
4.1.4 自动解缆 (20)
4.1.5 阻尼刹车 (21)
4.2 偏航控制系统总体设计结构与思想 (22)
4.3 偏航控制系统设计各组成器件简介、选型及原理 (22)
总结与展望 (23)
参考文献 (24)
致谢 (24)
第1章绪论
1.1 课题的背景和意义
人类社会发展的历史与能源的开发和利用水平密切相关,每一次新型能源的开发都使人类经济的发展产生一次飞跃。
在我们进入21世纪的今天,世界能源结构也正在孕育着重大的转变,即由矿物能源系统向以可再生能源为基础的可持续能源系统转变。
所谓可再生能源就是取之不尽、用之不竭、与人类共存的能源。
它包括太阳能、风能、生物质能、地热能、海洋能等。
在这众多的可再生能源中,目前发展最快、商业化最广泛、经济上最适用的,当数风力发电。
风能是一种干净的可再生能源。
太阳辐射对地球表面的不均匀性加热是风的主要成因。
空气从高气压区向低气压区流动就产生了风。
地球自转、公转的影响和地形、地貌的差异,加剧了空气流量和流向的变化,造成风速和风向的变化。
地球上大约有2%的太阳能被转化成风能。
风力发电作为一种新的、安全可靠的洁净能源,其优越性为越来越多的人所认识。
风力发电的优越性可归纳为五点:
(1)风力发电是一种洁净的自然能源。
风能在转换成电能的过程中,只降低了气流的速度,没有给大气造成任何污染。
风电没有常规能源及核电对环境造成的污染问题。
核电的放射性废料仍是一个较难解决的问题。
(2)风力发电技术不断进步,单机容量逐步增大,产品质量得到改善,可用率达到98%以上,是一种安全可靠的能源。
(3)由于技术进步和产品批量增加,风力发电的经济性日益提高,风电成本持续下降。
从表1.1可以看出,风力发电的成本己接近煤电,低于油电和核电。
若考虑煤电的环境污染和交通安全等问题,风电的经济性优于煤电。
(4)风力发电场建设周期短。
单台风力发电机组安装仅需几个星期,可多台同时安装,。