毕业设计45光纤温度传感器的研制与开发

合集下载

光纤温度传感器系统设计

光纤温度传感器系统设计

数字光电技术讲座报告题目:光纤温度传感器系统设计院(系)专业学生学号光纤温度传感器系统设计摘要:主要介绍了基于光纤温度传感器的测温系统的设计方案,分析了光纤温度传感器和信号检测原理,最后用单片机实现数据采集和温度显示的控制。

关键词:光纤温度传感器; 单片机一.设计目的光纤传感器结构简单、体积小、质量轻、在易燃易爆和高温高压的场合下应用具有安全可靠等特点,所以光纤传感器的开发研制倍受青睐,并获得广泛应用,如图一所示,是光纤传感器测量系统,它可对电流、压力、温度、位移等量进行测量。

本设计所研发的光纤温度传感器可用于各种场合的温度检测。

光纤温度传感器一般分为两类:一类是利用光导纤维本身具有的某种敏感功能而使光纤起测量温度的作用,属于功能型,光纤既感知信息,又传输信息;另一类是光导纤维只起到传输光的作用,必须在光纤端面加装其它敏感元件才能构成新型传感器的传输型传感器.这两类的传感器工作原理和设计思想非常巧妙,研究工作都较为入.本设计采用后一种类型的光纤温度传感器,在光纤端面加装对折射率随温度而变化的透明材料,当光入射时就会因为折射率的不同使得进入光纤的光强不同,这样就可以得出光强与温度的变化关系,然后采集所得的信号电压,再通过软件处理就可以在数码管上显示温度信息,这样就可以完成对环境温度的探测。

图一一.原理框图及原理介绍为了得到最好的信噪比和排除环境温度以外的因素对所得数据的影响,本设计采用接收部分电路为两路:一路为参考信号,一路为实际信号;信号处理部分为一路,在同一时刻只对一路信号进行测量,然后用相除的方法对两路信号进行处理,使得两路信号在时间上分开,在空间上统一。

这样就可以大大降低外界非温度因素对系统的影响,提高噪比。

本系统原理框图如下:光纤温度传感器系统原理框图本设计的光纤温度传感器系统有方波发生器、发射驱动电路、接收驱动电路、前置放大电路、选通开关、放大滤波电路、同步相关电路、低通滤波电路、A/D 采样电路、单片机和显示单元等部分构成。

光纤温度传感器的设计

光纤温度传感器的设计

《传感器原理与应用》课程设计(2008级)项目名称光纤温度传感器的设计小组成员李翔 200803011015李斌 200803011016王搏 200803011008指导教师罗武胜鲁琴机电工程与自动化学院《测控技术与仪器》专业目录摘要 (v)Abstract (vi)第1章绪论 (1)1.1引言 (1)1.2光纤传感器及其分类 (1)1.3光纤传感器的基本原理 (1)1.3.1光强调制型 (2)1.3.2相位调制型 (3)1.3.3偏振态调制型 (3)1.4光纤传感器的特点 (4)第2章光纤温度传感的理论基础 (5)2.1光纤温度传感器简介 (5)2.2分布式拉曼散射 (6)2.3拉曼散射原理 (6)2.3.1 拉曼散射的基本原理 (6)2.3.2自发拉曼散射 (7)2.3.3 受激拉曼散射 (9)2.4 本章小结 (9)第3章光纤测温系统的组成 (11)3.1 光纤测温系统的硬件总体结构 (11)3.1.1 系统的结构及作用过程 (11)3.1.2光纤测温系统的理论分析 (12)3.1.3温度数据的得到方法 (13)3.2 光纤温度传感系统的主要技术指标的影响因素 (14)3.2.2 温度分辨率 (15)3.2.3空间分辨率 (16)3.2.4精度测量 (17)3.2.5测量时间 (17)3.2.6传感用光纤长度的影响 (18)3.3 硬件各部分的具体实现 (18)3.3.1激光器和光纤 (18)3.3.2 分光器 (19)3.3.3光电转换电路 (19)3.3.4数据采集模块 (22)3.3.5 电脑 (22)3.4 软件的实现 (23)3.4.1 Delphi简介 (23)3.4.2 测温系统软件部分 (24)3.4.3 显示子模块 (27)3.5 整体调试 (28)3.5.1 系统调试和标定 (28)3.5.2 系统稳定性分析 (29)3.6 本章小结 (30)第4章光纤温度传感器的应用 (31)4.1 光纤温度传感器在电力设备中的应用 (31)4.2 影响系统稳定性的问题研究 (33)4.3 系统误差分析 (33)4.4 本章小结 (33)结论 (34)参考文献 (35)摘要分布式光纤温度传感器则是重要的利用光纤进行测量的温度传感器。

光纤光栅温度传感器的研制----毕业设计

光纤光栅温度传感器的研制----毕业设计

摘要温度,它是表征工程结构安全的重要指标。

随着科技的发展,对温度测量的精度要求越来越高。

近年来,光纤传感技术得到飞速发展,光纤光栅传感器相比传统的机械电子式传感器在工业领域的越来越显示出其优势地位。

因此设计高精度的光纤光栅温度传感器对温度进行长期、长期、实时、动态的监测,具有十分重要的意义。

介绍了光纤光栅的结构、传感原理、传感模型、传感系统和传感网络的基本组成,通过对四种光纤光栅温度传感器结构的分析,说明封装方法对光纤布拉格光栅Fiber Bragg Grating(FBG)。

FBG温度传感器特性的影响;进一步分析光纤Bragg光栅传感技术,针对“开关柜火灾报警系统”项目,分析光纤光栅温度传感器的具体设计要求和性能指标。

通过研究目前光纤光栅温度传感器封装方法的现状,分析每一种封装方法的特点,设计出一种新的光纤光栅温度传感器封装方法;对所研制的FBG温度传感器进行性能测试试验,并结合特定的工业场合分析FBG温度传感器的性能,另外还介绍了其在现场的安装方式和一些注意事项。

“开关柜火灾报警系统”的成功实施,证明光纤光栅温度传感器其性能指标完全符合工业应用的现场。

关键词:光纤光栅,传感技术,温度传感器,电力系统ABSTRACTTemperature is an important index for project structure safety.With the development of technology,the accuracy requirements of measuring temperature are increasing obviously.Recently with the rapid development of fiber sensing technology FBG sensors are showing their more and more prominent advantages in industry engineering than traditional mechanical and electrical sensors.so it is meaningful to design novel FBG-based temperature sensors to take long-time, real-time and dynamic monitor for the temperature.The structure,sensing principle,sensing model of fiber grating,and basic structure of fiber grating sensing system and sensing network are introduced in the paper.The effects of characteristics of fiber grating temperature sensor of four encapsulating methods are analyzed in my paper. Through deeply study on the FBG sensing technology,the design requirements of FBG temperature sensor are illustrated,according to the practical needs in engineering of Switchgear Fire Alarm System,learning from the research on the current status of FBG temperature sensor encapsulation,and the characteristics of existed encapsulation structures,a new encapsulating method has been designed.The performance test of the made FBG temperature sensor has been made, which is not only in lab, but also in some specific industries occasions.The way of installation of the FBG temperature sensor in the field and some notes in that progress are also described in the paper.The performance indicators of FBG temperature sensor consistent with the field of industrial applications completely are verified with the successful implementation of the engineering of Switchgear Fire Alarm System.KEY WORDS: fiber grating,sensing technology,temperature sensor,electric power system目录摘要 (I)ABSTRACT ......................................................................................................................... I I 第一章绪论 (1)1.1温度测量现状 (1)1.1.1 温度测量技术介绍 (1)1.1.2 温度传感器 (3)1.2光纤光栅传感技术的应用现状 (4)1.3主要研究内容 (6)第二章光纤光栅传感的基本理论 (8)2.1光纤光栅结构及传感原理 (8)2.2光纤光栅传感模型 (9)2.2.1 应变传感器模型 (10)2.2.2 温度传感器模型 (10)2.3光纤光栅传感系统和传感网络基本构成 (11)2.3.1 传感检测系统 (11)2.3.2 传感网络 (11)2.4光纤光栅温度传感器特性 (12)2.4.1 光纤光栅温度特性 (12)2.4.2 实际光栅温度传感器的温度特性 (13)2.4.3 光纤光栅温度传感器的传感原理 (13)2.5小结 (14)第三章光纤光栅传感器的研制 (16)3.1光纤光栅温度传感器封装结构的研究现状 (16)3.2光纤光栅温度传感器的设计要求 (17)3.3实验装置及方法 (18)3.3.1实验装置 (18)3.3.2实验方法 (19)3.4实验数据处理方法 (20)3.4.1 传感器的特性分析与技术指标 (20)3.4.2 实验数据处理方法 (22)3.5光纤光栅温度传感器结构的设计 (22)3.5.1 封装结构的提出 (22)3.5.2 对封装方法的进一步改进 (26)3.6封装结构对灵敏度影响的分析 (27)3.6.1光纤光栅温度特性实验 (27)3.6.2实验数据分析 (29)3.7封装工艺对传感器性能影响的分析 (30)3.7.1 传感器性能对比实验 (30)3.7.2 实验数据分析 (30)3.8其他性能指标的测试结果说明 (31)第四章光纤光栅传感器在电力系统测温中的应用 (34)4.1光纤光栅电力测温系统的组成 (34)4.1.1 光纤光栅测温系统组成 (34)4.1.2 FBG测温系统在开关柜上的具体组成部分 (35)4.2光纤光栅电力测温系统的特点 (36)4.3光纤光栅电力测温系统的技术指标 (36)4.4电力测温中光纤光栅传感器与传统传感器的比较 (37)4.5光纤光栅测温在电力系统中的应用范围 (37)4.6FBG温度传感器的现场安装方式 (39)4.6.1 光纤光栅温度传感器的安装方式 (39)4.6.2 传输光缆的安装方法 (40)4.7小结 (41)第五章总结和展望 (42)5.1总结 (42)5.2展望 (42)参考文献 (44)第一章绪论1.1 温度测量现状温度作为七大基本物理量之一,它是表示物质冷热程度的物理量,与我们的生活息息相关,小至与我们生活环境相关的环境温度,大至在工程上比如发电厂、城市供配电网中,温度的监测越来越重要,然而由于电缆用量越来越多,要是温度监测不够精确,电缆接头温度过高往往都可能成为电缆火灾的元凶,电缆接头过热引起的电缆断路、短路、爆炸甚至引发重大火灾事故的案例屡见不鲜[1]。

光纤温度传感器的研究和应用

光纤温度传感器的研究和应用
光纤温度传感器的研究和应用
01 引言
03 应用场景 05 结论
目录
02 原理与技术 04 研究方法与成果 06 参考内容
引言
随着科学技术的发展,传感器在各个领域的应用越来越广泛。其中,光纤温度 传感器作为一种高灵敏度、高分辨率的传感器,引起了人们的广泛。光纤温度 传感器基于光纤传感技术,通过测量光纤中光的干涉效应或传输特性来推导被 测温度场的分布情况,具有抗干扰能力强、稳定性高、响应速度快、测量范围 广等优点。本次演示将从原理与技术、应用场景、研究方法与成果、结论等方 面介绍光纤温度传感器的研究和应用。
光纤温度传感器的主要技术包括光纤传感技术、光学信号处理技术和计算机技 术等。其中,光纤传感技术是光纤温度传感器的核心,包括干涉仪、光纤 Bragg光栅、光纤F-P腔等。这些技术可以实现对光的干涉、反射、透射等特 性的测量,从而实现温度的测量。
光学信号处理技术则包括光路准直技术、光调制技术、信号解调技术等,可以 对光学信号进行处理和解析,提高测量的准确性和稳定性。计算机技术则用于 实现数据采集、处理和输出等功能,使传感器具有更好的可操作性和可维护性。
3、生物医学:在医疗领域,光纤温度传感器可用于实时监测病患的体温变化, 为医生提供准确的诊断依据。
4、环境监测:在环境监测领域,光纤温度传感器可用于监测土壤、水质、空 气等环境参数的变化,为环境保护提供数据支持。
优势分析
光纤温度传感器相比传统温度传感器具有以下优势:
1、测量精度高:由于光纤对温度的敏感性,光纤温度传感器可以实现高精度 的温度测量。
近年来,随着计算机技术和数值计算方法的不断发展,仿真研究在光纤温度传 感器的研究中越来越受到重视。研究人员通过建立精细的光纤温度传感器模型, 对各种影响其性能的因素进行全面分析,并开展大量的优化设计工作,取得了 一系列重要的研究成果。例如,研究人员通过对光纤传感器的优化设计,成功 提高了其测量准确度和稳定性;同时,还探究了不同环境因素对光纤温度传感 器性能的影响,为实际应用提供了重要的参考依据。

基于光纤传感技术的温度传感器设计与制作

基于光纤传感技术的温度传感器设计与制作

基于光纤传感技术的温度传感器设计与制作随着科技的发展,光纤传感技术在各行各业中被广泛应用。

光纤传感技术的优势在于对环境的侵扰小、可靠性高,同时具有灵敏度高、线性好等特点,可以实现对各种参数的高精度测量。

其中之一的应用就是温度传感技术。

基于光纤传感技术的温度传感器不仅可以实现高精度测量,还具有抗干扰能力强等优势,成为工业领域中常用的一种传感技术。

一、基本原理及光纤温度传感技术的特点基于光纤传感技术的温度传感器原理是利用光纤的光学特性,将传感器与被测物体相连,当被测温度发生变化时,通过光纤的传输,产生不同的光学信号,通过分析这些信号的变化,即可得到被测物体的温度值。

与传统温度测量技术相比,基于光纤传感技术的温度传感器具有以下特点:1. 高精度:光纤传感技术可以实现高精度的温度测量,达到0.1℃的测量精度。

2. 可靠性高:光纤传感器不易受到电磁波等外部干扰,具有较高的抗干扰能力,并且可以在高温和高压的环境下正常工作。

3. 多路传感:光纤传感技术可以实现多路温度传感,一个系统中可以同时测量不同位置的温度。

4. 线性优良:基于光纤传感技术的温度传感器具有线性好的特点,可以实现稳定的测量结果。

5. 远程监控:基于光纤传感技术的温度传感器可以实现远程监控,可以将多个传感器的数据通过网络传输到控制中心,方便管理和处理。

二、基于光纤传感技术的温度传感器设计方案1. 光纤传感层设计传感层是光纤传感器的关键结构,主要包括光纤、保护层、镀金层和高温隔离层。

在选用光纤时,需要选择具有高纯度、高抗拉强度、低吸水率的光纤。

保护层主要是为了保护光纤免受外部损伤,一般采用耐腐蚀性能较好的镀铝层或氧化锌保护膜。

高温隔离层主要用于隔离光纤传感层和被测物体之间的温度,同时也起到保护光纤不受高温侵袭的作用。

2. 光纤耦合器设计光纤耦合器主要用于将光纤传感层中的光信号转换成电信号,以方便后续的数据处理。

光纤耦合器包括探头、光耦合引线、探头基座和分光器。

光纤温度传感器的设计与实现

光纤温度传感器的设计与实现
图 3 光路准直示意图 (2) 产生的现象 根据前面论述的方案 ,通过光路调整等一系列过程 , 得到干涉图像如图 4 所示 。通过使光纤的感温部分受热 , 可以在监视器上观察到条纹的变化 。当温度升高时 ,条纹 几近匀速地向右移动 ; 当温度降低时 ,条纹向相反的方向 移动 。这样的变化较为规律 , 但是对于温度检测电路来 说 ,要求温度变化可测 ,从而得到定量的关系 ;对于图像检 测而言 ,条纹要尽量清晰 ,明暗对比强烈 ,才能在图像处理 时减少不必要的误差 。
Design and implementation of optical f iber temperature sensor
Wang Haito ng Yuan J unfei Liu Jiaojiao (Depart ment of communication , Armed Police Engineering College , Xiπan 710086)
为参考因素 ,以 60 s 为一个阶段 ,测量一次热敏电阻两端
电压 ,记录电压值 ,并根据公式得对应的温度 ,求得Δt 。同
时记录在这些点间的条纹移动数量 ,记为Δn。根据Δt 和
Δn 可得到温度与条纹之间的函数关系 。
(4) 结果分析
设条纹变化数为Δy ,温度变化数为Δx ,则根据实验数
据可以得到这样一个近似线性的函数关系式 :Δy = 8. 30Δx 。
(2) 结果分析 通过上面的程序计算 ,得到距离标志位 32 最近的亮 条纹位置 R 的变化情况 (见图 9) 。可看出 , R 的值是有规 律地在变化 ,表明 R 存在周期性 。通过程序中得到的 r(条 纹边缘像素) 计算周期 ,即 T = 22 。根据相位展开的相关原Biblioteka 图 8 条纹记数程序流程图

光纤温度传感器的研究

光纤温度传感器的研究

光纤温度传感器的研究(三号加黑)学生:XXX(五号宋体)指导老师:韩颖(五号宋体)摘要:光纤温度传感器是20世纪70年代发展起来的一种新型传感器,与传统的温度传感器相比,它具有灵敏度高、体积小、质量轻、易弯曲、抗电磁干扰等优点;特别适用于易爆、易燃、腐蚀性强等苛刻环境下的温度检测。

因此,光纤温度传感器得到迅速发展。

本文根据双光束干涉原理,自行构成了一个干涉型光纤温度传感器,观察干涉图样,对其进行了实验研究,阐述了它的原理,实验步骤,将得到的数据进行了分析处理,验证了本实验测量温度的可行性,并对实验装置进行了改造。

关键词:光导纤维光纤温度传感器干涉原理干涉型光纤温度传感器(至少四个关键词)Abstract :Optical fiber temperature sensor is a new developed type of sensor in the 70s of the Twentieth Century. Compared with the traditional temperature sensors,it owns a lot of advantages,such as higher sensitivity,smaller volume,slighter mess ,easier to bend and stronger capacity of Shielding the electro-magnetic interference. Particularly,it can be applied to detect the temperature of the explosive,flammable and corrosive matters in harsh environment. Therefore, optical fiber sensor developed rapidly in recent years.This paper bases on the interference principle, it construct a interference optical fiber temperature sensor. Observing the interference fringe, analyzing the experiment result, detailing its principle and experiment steps, then I can get some data to deal with the data. The data copes the theory perfectly. At last, I propose some advices to improve this experiment.Key word :Optical fiber Optical fiber temperature sensorInterference principle interference optical fiber temperature sensor.1. 引言(四号加黑)(正文小四号宋体一倍行距)温度是度量物理冷热程度的物理量,许多物理现象和化学现象都是在一定的温度下进行的。

光纤温度传感器的发展与应用

光纤温度传感器的发展与应用

光纤温度传感器的发展与应用温度传感器是基于一个基本的物理量“温度”,其是指能感受温度并转换成可用输出信号的传感器。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

自然界中的一切过程无不与温度密切相关。

从伽利略发明温度计开始,人们开始利用温度进行测量。

温度传感器是最早开发、应用最广的一类传感器。

但真正把温度变成电信号的传感器是由德国物理学家赛贝发明的,就是后来的热电偶传感器。

50年以后,德国人西门子发明了铂电阻温度计。

在半导体技术的支持下,本世纪相继开发了包含半导体热电偶传感器在内的多种温度传感器。

与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。

而光纤自20世纪70年代问世以来,随着激光技术的发展,从理论和实践上都已证明光纤具有一系列的优越性,光纤在传感技术领域中的应用也日益受到广泛重视,随着科学技术的发展,涌现了许许多多的光纤温度传感器,并且可以预料,在新技术革命的浪潮中,光纤温度传感器必将得到广泛的应用,并发挥出更多的作用。

光纤温度传感器的基本工作原理是将来自光源的光经过光纤送入调制器,待测参数温度与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位等)发生变化,称为被调制的信号光。

再经过光纤送入光探测器,经解调后,获得被测参数。

光纤温度传感器种类很多,但概括起来按其工作原理可分为功能型和传输型两种。

功能型光纤温度传感器是利用光纤的各种特性(相位、偏振、强度等)随温度变换的特点,进行温度测定。

这类传感器尽管具有传、感合一的特点,但也增加了增敏和去敏的困难。

传输型光纤温度传感器的光纤只是起到光信号传输的作用,以避开测温区域复杂的环境。

对待测对象的调制功能是靠其他物理性质的敏感元件来实现的。

这类传感器由于存在光纤与传感头的光耦合问题,增加了系统的复杂性,且对机械振动之类的干扰比较敏感。

光纤温度传感器的设计与测试

光纤温度传感器的设计与测试

光纤温度传感器的设计与测试随着工业自动化、环境监测、医疗设备等领域的发展,温度传感器在各种应用场景中发挥着重要的作用。

在高温、高压、强电磁等恶劣环境下,电子传感器往往难以正常工作,因此光纤温度传感器越来越受到人们的关注。

本文将介绍一种基于光纤的温度传感器的设计与测试。

一、光纤温度传感器的原理光纤温度传感器是一种通过光学信号来测量温度的传感器。

其原理基于热致光学效应,即当光纤受到热量影响时,其折射率发生改变。

通过光纤的入射光信号和反射光信号之间的差异,可以计算出温度的数值。

二、光纤温度传感器的设计1. 光纤选取一条质量好的光纤非常关键。

一般来说,采用单模光纤可以获得更好的精度和稳定性。

由于光纤本身的折射率对于温度变化的响应速度很快,而且热膨胀系数和热传导系数较小,因此非常适合于温度传感器的使用。

2. 光源和探测器光源和探测器也是光纤温度传感器中的关键部件。

在光源方面,我们一般采用线性调制的半导体激光器,其输出波长可以选择780nm到1550nm之间的任何一个波长。

探测器的类型和使用场景有很大关系,一般选择具有高灵敏度和快速响应速度的光电探测器。

3. 光纤耦合器光纤耦合器在光纤温度传感器中起到了关键的作用。

它能够将光纤入射光线与反射光线耦合在一起,从而实现光学信号的交叉检测。

在设计中,需要注意光纤耦合器的插损和带宽等参数,以达到最佳的检测效果。

4. 信号分析光纤温度传感器的信号处理需要进行两种操作:增益控制和分析。

增益控制通常采用自适应放大器来实现,而信号分析则利用光电转换和信号变换的原理,将信号转换为温度数据。

三、光纤温度传感器的测试在制作完光纤温度传感器后,需要进行一系列的测试,以验证其性能和稳定性。

以下是几个需要测试的关键指标:1. 精度精度是光纤温度传感器最重要的指标之一。

其精度通常以绝对误差或者百分之几的误差来表示。

在测试中,可以通过比对标准温度传感器的数据来进行验证。

2. 稳定性由于光纤温度传感器的结构较为复杂,其稳定性也是一个需要注意的问题。

(完整word版)光纤温度传感器的研究与应用

(完整word版)光纤温度传感器的研究与应用

光纤温度传感器的研究与应用宋晓斌2011094141摘要: 分析了光纤温度传感器在温度探测中的优势,综述了光纤温度传感器的发展现状和应用。

分别介绍了分布式光纤温度传感器、光纤光栅温度传感器、干涉型光纤温度传感器、光纤荧光温度传感器和基于弯曲损耗的光纤温度传感器的工作原理和研究现状,详细介绍了各种传感器的特点及各自的研究方向。

关键词:光纤传感器温度研究现状应用Development and application of optical fiber temperature sensorSongXiao-binAbstract:The specific advantage of optical fiber temperature sensors in detecting temperature is analyzed。

De-velopment status and application of optical fiber temperature sensors are broadly discussed.The operating principle and Development status of several typical optical fiber temperature sensors based on distributed,Bragg grating,interference,fluorescence and bending loss,respectively,are introduced.The characteristic andthe future of the typical optical fiber temperature sensors are analyzed detailedly.Key words: optical fiber sensor;temperature;development;application1 引言在科研和生产中,有很多温度测量问题。

光纤光栅温度传感器的研究开题报告

光纤光栅温度传感器的研究开题报告
研究计划及进展安排:
(预计从 2013 年 1 月 7 日开始着手准备) 1-3 周:调研、收集资料(书籍和论文)、写开题报告; 4-7 周:整理资料,详细设计每章的内容,并撰写; 8-11 周:实验室进行实验; 12-14 周:论文整理、装订与提交,准备答辩。
参考文献:
[1]基于啁啾光纤光栅的温度自补偿移位传感器[J].光学学报,(2008)04-0779-04 [2]赵勇.光纤传感原理与应用技术[M].北京:清华大学出版社,2007. [3]廖延彪.光纤光学-原理与应用[M].北京:清华大学出版社,2010. [4]张颖,开桂云,关柏鸥等.基于预应变的光纤光栅传感头应变传感特性的研究
1、光纤光栅 Bragg 光栅温度传感器的独特优点使得它们很容易粘贴于结构表面 或者嵌入物体结构内部,实现对结构状态的温度实时测量。在物体结构制作期间, 可以用它们实时监测物体结构的质量状况;在物体结构建成后,可以通过它们来 实时监测物体结构的载荷分布情况。 2、在电力工业中,由于光纤 Bragg 光栅温度传感器具有良好的电磁干扰性,因 此它们也是电力工业中进行温度监测的理想元件。同时由于它具有强大的复用能 力,使得它们在长距离电力输电线载荷以及电力变压器绕组的分布式实时监测方 面具有独特的优势,近年来已相继开发出了较实用的传感系统。 3、在能源化工 中,同样, 基于传统电 测类传感器 和传统光纤 传器无可比 拟的优 点,采用光纤 Bragg 光栅传感系统可以有效地实现长距离油气管道温度状态及管 道油气泄漏的分布式实时在线监测。
迅速发展的功能型光纤传感元件具有其它种类的光纤传感器无可比拟的优点 ,
它在航天器及船舶航运、民用工程结构、电力工业、医学和化学传感、甚 至 文 物
保 护 等诸多领域得到了广泛的应用。可 以 毫不夸 张地说 ,从茫 茫的太空 ,到

分布式光纤温度传感器的设计和优化

分布式光纤温度传感器的设计和优化

上海交通大学硕士学位论文分布式光纤温度传感器的设计和优化姓名:周正仙申请学位级别:硕士专业:电子与通信工程指导教师:肖石林20090505分布式光纤温度传感器的设计和优化摘要分布式光纤传感技术于20世纪70年代末被提出。

近几十年来,研究了不同机理的分布式温度测量系统,并在多个领域得以逐步应用。

目前这项技术已成为光纤传感器技术中最具前途的技术之一。

分布式光纤温度测量系统能在整条光纤的长度上,以距离的连续函数形式传感出被测温度随光纤长度方向的变化。

分布式光纤温度传感器中的光纤既是传输介质又是传感介质,它还具有抗电磁干扰、防燃、尺寸小、对被测温度场的影响小等其它传感器无法比拟的优点。

分布式光纤温度传感器所探测到的含有温度信息的喇曼后向散射光十分微弱,甚至完全淹没在噪声中。

对反斯托克斯和斯托克斯后向散射光的消除噪声的水平直接关系到整个系统的测温精度,因此必须采用微弱信号检测技术。

本文对分布式光纤温度传感器进行了较全面的理论分析与实验研究,主要工作如下:(1)对光纤喇曼散射进行分析,研究喇曼散射与光纤所处环境温度的关系,进一步确定实际应用中反斯托克斯光与温度的关系,对分布式光纤温度传感系统的设计具有重要的指导性意义。

(2)从系统信噪比、温度灵敏度和工作稳定性等几个方面综合考虑系统工作的中心波长。

(3)设计了一种性能优越的激光脉冲驱动电路,对激光脉冲的形状、宽度进行有效的控制,为提高分布式光纤温度传感系统的性能提供了保障。

(4)针对分布式光纤温度传感系统信号的特点,对系统的各部分的设计进行分析和研究。

(5)研究了系统的空间分辨率,得出提高空间分辨率的方法。

(6)研究了系统的温度分辨率,得出提高温度分辨率的方法。

(7)研究了系统的稳定性,得出提高系统稳定性的方法。

关键词:光纤传感器,分布式光纤传感器,分布式光纤温度传感器,光时域反射,喇曼散射,喇曼波分复用Design and Optimization of Distributed Optical FiberTemperature SensorAbstractThe technology of fiber optic distributed sensing was brought forward in the end of 1970’s.Since then a series of distributed sensing systems based on different mechanism were studied and used in many fields gradually. Nowadays, this has been one of the most promising technologies in fiber optic sensor. The fiber optic distributed temperature sensor system can sense the change of temperature along the optical fiber by the form of continuous function of distance.The fiber used in fiber optic distributed sensor is not only transport media but also sensing media. It has the characteristics of resistance to electromagnetic interfere, against fire, small size and little effect to temperature field. The back scattering RAMAN signal with the information of temperature is quite weak and even completely submerged in noise. The measurement accuracy of the whole system has relationship with the denoising level to anti-Stokes and Stokes back scattering. Weak signal measurement is must be used in this system. This dissertation takesdeep research and analysis on the fiber optic distributed temperature sensor. The main contributions are as follows:(1) The RAMAN scattering in optical fiber is analyzed and the relationship between RAMAN scattering and the temperature of fiber in the sensing field is studied. Furthermore, the relationship between anti-Stokes light and temperature in practical use is established which has important instructional significance to the designation of fiber optic distributed temperature sensor.(2) The central wavelength is discussed based on the combination of signal-to-noise ratio, temperature sensitivity of system and operating stability.(3) An excellent driving circuit of laser was designed, which can control the shape and width of impulse light effectively and ensure the characteristic of distributed fiber optic temperature sensor system.(4) Each part of system is analyzed and researched based on the characteristics of distributed fiber optic temperature signal.(5) Spatial resolution of the system is researched, and get the method of improve the special resolution.(6) Temperature resolution of the system is researched, and get the method of improve the temperature resolution.(7) Stability of the system is researched, and get the method of improve the stability.Keywords:Optical fiber sensor, Optical fiber distributed sensor, Optical fiber distributed temperature sensor, Optical time-domain reflectometer, RAMAN scattering, RAMAN wavelength-division multiplexing第一章绪论1.1 引言温度是度量物体冷热程度的物理量,许多物理现象和化学过程都是在一定温度下进行,人们的日常生活也和温度密切相关。

光纤温度传感器的设计

光纤温度传感器的设计

光纤温度传感器的设计摘要:介绍了金属热膨胀式光纤温度传感器的设计,利用金属件的热膨胀的原理,通过绕制在金属件上的光纤损耗产生变化,当光源输出光功率稳定的情况下,探测器接收光功率受温度调制,通过光电转换,信号处理,完成温度的换算。

传感器以光纤为传输手段,以光作为信号载体,抗干扰能力强,测量结果稳定、可靠,灵敏度高。

关键词:光纤,传感器,光纤传感器,光纤温度传感器在光通信系统中,光纤是用作远距离传输光波信号的媒质。

在实际光传输过程中,光纤易受外界环境因素的影响;如温度、压力和机械扰动等环境条件的变化引起光波量,如发光强度、相位、频率、偏振态等变化。

因此,人们发现如果能测出光波量的变化,就可以知道导致这些光波量变化的物理量的大小,于是出现了光纤传感技术。

一:光纤传感器的基本原理在光纤中传输的单色光波可用如下形式的方程表示E=式中,是光波的振幅:w是角频率;为初相角。

该式包含五个参数,即强度、频率w、波长、相位(wt+)和偏振态。

光纤传感器的工作原理就是用被测量的变化调制传输光光波的某一参数,使其随之变化,然后对已知调制的光信号进行检测,从而得到被测量。

当被测物理量作用于光纤传感头内传输的光波时,使的强度发生变化,就称为强度调制光纤传感器;当作用的结果使传输光的波长、相位或偏振态发生变化时,就相应的称为波长、相位或偏振调制型光纤传感器。

(一)强度调制1.发光强度调制传感器的调制原理光纤传感器中发光强度的调制的基本原理可简述为,以被测量所引起的发光强度变化,来实现对被测对象的检测和控制。

其基本原理如图5-39所示。

光源S发出的发光强度为的光柱入传感头,在传感头内,光在被测物理量的作用下强度发生变化,即受到了外场的调制,使得输出发光强度产生与被测量有确定对应关系的变化。

由光电探测器检测出发光强度的信号,经信号处理解调就得到了被测信号。

2.发光强度调制的方式(1)利用光纤微弯效应;(2)利用被测量改变光纤或者传感头对光波的吸收特性来实现发光强度调制;(3)通过与光纤接触的介质折射率的改变来实现发光强度调制;(4)在两根光纤间通过倏逝波的耦合实现发光强度调制;(5)利用发送光纤和接收光纤作相对横向或纵向运动实现发光强度调制,这是当被测物理量引起接收光纤位移时,改变接收发光强度,从而达到发光强度调制的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤温度传感器的研制与开发摘要本文从光纤的基础入手,首先介绍了光纤的基础知识,诸如:光缆结构,光导纤维的导光原理等,然后结合传感器引入了光纤传感器的定义,分类及工作原理;而本次设计研究的对象是光纤温度传感器的定义,因此以温度为被测量对象,根据实际需要,结合具体传感器自身的特点,选用了半导体吸收型光纤传感器并介绍了其根本结构,基本原理,同时,针对这种方法所存在的缺点提出了几种改进方案并加以阐述;随后给出了半导体吸收型光纤温度传感器的实现电路,由此一个成熟的光纤温度传感器就设计完毕了。

当然光纤温度传感器有多种实用的设计方法,本文在探讨了半导体吸收型光纤温度传感器之后,又提到了PN结或硅晶体三极管类型的传感器,并把他们进行了比较,并给出最终结论:本课题应用半导体吸收型光纤温度传感器这种方法。

关键词:光纤,温度,光纤传感器,半导体AbstractThis paper has introduced that how fiber-optic propagate light, and then introduced the definition, the sort, and the principle of fiber-optic sensors. Because of measuring the temperature, we choose a kind of sensor which uses the semiconductor according to the practice and the own characteristic of the fiber-optic sensors. For this kind of sensor has some disadvantage, we improved the scheme and then give an idea of the circuit of the sensor.There have so many kinds of sensors, we then introduced others including the sensor which uses bimetal and the sensor which uses PN-junction and then compared the latter schemes with the former one. At last, we give the conclusion that in this paper the scheme we has chosen is the sensor that uses semiconductor.Key words:Fiber-optic ,temperature, fiber-optic sensors, semiconductorAbstract ...................................................................................................................................................... i i 绪论 . (1)1.光纤的基础知识介绍 (3)1.1光纤的结构 (3)1.2光纤传输原理 (4)1.2.1传输条件 (4)1.3光纤的温度特性 (5)1.4光纤的机械特性 (6)2.传感器的基本概念 (7)2.1传感器的定义与组成 (7)2.2光纤传感器基本工作原理及类型 (8)2.2.1光纤传感器基本工作原理 (8)2.2.2光纤传感器的类型 (8)2.2.3传感器的数学模型 (9)2.3光纤传感器的调制原理 (10)2.4光纤传感器的发展趋势 (11)3.半导体吸收型光纤温度传感器 (13)3.1工作原理 (13)3.2 测量装置结构 (13)3.3光探测器的简要介绍 (14)3.3.1 PIN光电二极管 (14)3.3.2雪崩二极管(APD) (15)3.3.3半导体发光二极管(LED) (16)3.4 光纤传感器的光源要求 (17)4.光发射机与光接收机 (19)4.1调制方式 (19)4.2调制方式的比较 (19)4.3光发射机要求 (20)4.4 光接收机 (21)4.4.1光接收机的性能指标 (21)5.半导体吸收型光纤温度传感器实现电路 (24)5.1、LED数字式驱动电路 (24)5.2 半导体吸收型光纤传感器的接收电路 (25)6.其他几种有效的光纤温度传感器 (27)6.1.光纤微弯位移传感器 (27)6.2 测温PN结或硅晶体三极管作为传感器 (27)6.2.1测温原理 (27)6.2.2.PN结及晶体管的温度特性 (28)6.3基于位移的双金属片光纤温度传感器 (28)7.几种常见方案的比较 (30)结论 (31)绪论我们知道传感器(sensor)是实现测试和自动控制(包括遥感、遥测、遥控)的首要环节。

传感器亦称换能器、变换器,是将被测的某一物理量(或信号)按一定的规律转换成与其对应的另一种物理输出的装置,是将被测的非电物理量如温度等转换成与之对应的易于精确处理的电量或电参量(电压、频率等)输出的一种测量装置。

现代的非电量电测系统通常由传感器来采集信息,再进行信息的电量与电量的转换、传输;测量电路(放大整形调解器)。

信息的显示,信息的处理等系统组成,而传感器又有敏感元件和转换元件构成,其中转换元器件是将感受到的非电量直接转换为电量的器件。

温度(temperature)是反映物体分子热运动的一个物理参数,它是表示物体冷热程度的物理量。

温度的测量只能通过物体的某些物理性质随温度变化的参数来加以间接的测量,而用来测温度的物体的物理性质应当是温度的单值,连续函数,而且复合性要好,由此可知温度传感器(temperature sensor)是感受温度并将温度转换为相应的电信号输出传感器。

光纤测温传感器是用光纤来测量温度的。

有两种方法可实现。

一是利用被测表面辐射能随温度的变化而变化的特点;利用光纤将辐射能量传输到热敏元件上,经过转换再变成可供纪录和显示的电信号。

这种方法独特之处就是可以远距离测量;另外一种方法是利用光在光导纤维内传输的相位随温度参数的改变而改变的特点,光信号的相位随温度的变化是由于光纤材料的尺寸和折射率都随温度改变而引起的。

我们知道利用适当的仪器检出光纤中光信号相位的变化就可以测量温度。

由于应变或压力也会改变光导纤维的传输特性,使光信号相位变化,基于同一机理也可检测应变和压力。

对于单模光纤,检测相位变化的基本系统是马赫·曾德来干涉仪,在仪器中,来自信号光纤的光与一稳定的参考光来混合,由于信号光纤受被测参数的影响,其传播的光信号相位发生变化,因此两光束产生干涉。

原理上,用一适当的相位检测器可以检测小的变化,用条纹计数器可以检测大的变化,参考光束按应用状态不同可以经过或不经过频移,光的频移适常用布勒格盒完成。

一个主要难度就是光的偏振面经过光纤后散射,这样,有的因参考光束和信号光束正交偏振而观察不到干涉条纹。

光纤温度传感器是一种极灵敏的仪器,若参考光路平稳的话,则可测出几分之一摄氏温度变化,同时由于光纤传感器不受电磁辐射的影响,使用于电噪声环境中(如电力线、电器铁路和电气机械中)能避免产生火花,使用于油罐和易爆炸的气体中(如煤矿和石化工业)。

光纤绝缘材料做成,具有很好的电气绝缘性能,光纤电流传感器的吸引力在于它有可能取代现有电子系统中庞大昂贵的电流互感器,并且有很快的频响。

目前,国际上继续深入研究传感的理论技术,解决实用化问题,发展新原理的光纤传感原理。

其原理示意图如下。

图 光纤传感原理例如由于传感器用于实际测量的主要一个问题就是长时间漂移效应,单一光纤传感器无法通用于多参数多变量的测量,因此,国外就这些都进行着大量的研究。

在本次设计中,首先我们要探讨的是光纤传感器原理,就是光源的光经过光纤调制区,在调制区内外界被测参数与进入调制区的光相互作用,使光的光学性质如光的强度、波长(颜色)、频率、相位、偏振态等发生变化,成为被调制的信号光,再经过光纤传入光探测器,光纤传感器和传感型光纤传感器,传光型中光纤仅作为传播光的介质,而传感型光纤传感器是利用对外界信息具在敏感能力和检测功能的光纤作为传感元件,将“传”和“感”合为一体的传感器。

我们所要研究的是半导体吸收型光纤温度传感器是利用半导体材料的光吸收与温度的关系,做成透射式光纤温度传感器。

半导体材料吸收边的波长λg(T)随温度增加而向较长波长位移;选择适当的半导体发光二极管LED ,使其光谱范围正好落在吸收边的区域,这样,透过半导体材料的光强随温度T 的增加而减小,其中传感探头的内部结构是由两根光纤之间夹放一块半导体薄片,套入一根细的不锈钢之中固紧。

我们这次采用的传感器材料的半导体采用碲化镉和砷化镓,具体的有关此系统是怎样达到实际的可操作性将在后序中运用推导的方法来证明。

本设计从光纤的基础入手,在《光纤通信》的基础上,阐明光纤的导光原理。

然后去探索传感器的一些基本常识。

再把二者结合起来探讨光纤传感器定义分类和工作原理。

由于本次设计的是光纤温度传感器的设计,因此,我们主要弄清当测量对象为温度时的一系列要做的工作和注意事项。

了解半导体吸收型光纤温度传感器的基本结构和工作原理,在已有了光纤温度传感器设计的原则上检查所设计的光纤温度传感器的不足,从而对传感器的驱动电路和接受电路的方案进行改进,从而达到理想的效果。

1.光纤的基础知识介绍1.1光纤的结构光纤是由中心的纤芯和外围的包层组成的同轴圆柱形石英细丝。

纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯传输。

包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。

设纤芯和包层的折射率分别为1n 和2n ;光能量在光纤中传输的必要条件是1n >2n ,纤芯和包层的相对折射率差△=(1n -2n )/ 1n ,其典型值,单模光纤为 0.3%一0.6%,多模光纤为1%一2%。

△越大,把光能量束缚在纤芯的能力越强。

图1.1 实用光纤三种基本类型(a )突变型(SI )多模光纤(b )渐变型(GI )多模光纤(c )单模(SM )光纤作为信息传输波导、实用光纤有多模和单模两种基本类型。

图1.1示出光线在纤芯中传播1.2光纤传输原理1.2.1传输条件为简单和直观起见,以突变型光纤交轴(子午)光线为例,用光线光学方法说明光纤传输条件,如图1.2所示、光线在光纤端面以不同角度θ从空气入射到纤芯(0n <1n ),折射角为1θ门折射后的光线在纤芯与包层交界面以不同角度ϕ入射到包层(1n >2n ),此时不同θ相应的光线将发生反射或折射。

相关文档
最新文档