第22章二次函数同步练习题含答案

合集下载

人教版初中数学九年级上册第22章:二次函数 练习题(含答案)

人教版初中数学九年级上册第22章:二次函数 练习题(含答案)

人教版初中数学九年级上册第22二次函数练习题一、选择题221axx a++-)提示:对于122-++=axaxy的图象,对称轴是直线ax21-=,当0>a时,021<-a,则抛物线的对称轴在y轴左侧,A、B、C、D四个选项均不符合;当0<a时,021>-a,则抛物线的对称轴在y轴右侧,只有B项图象符合,故选B2.抛物线247y x x=--的顶点坐标是()A.(211)-,B.(27)-,C.(211),D.(23)-,提示:11)2(114474222--=-+-=--=xxxxxy所以顶点坐标为(211)-,选A3.二次函数y=ax2+bx+c图象如图1所示,则点A(ac,bc)在().A、第一象限B、第二象限C、第三象限D、第四象限提示:由二次函数y=ax2+bx+c图象可知:0,0><ca,∵对称轴0>x,在y轴右侧,即02>-ab,所以0>b,∴0,0><bcac,即点A(ac,bc)在第二象限选B4.把抛物线22y x=-向上平移1个单位,得到的抛物线是()A.22(1)y x=-+B.22(1)y x=--C.221y x=-+D.221y x=--提示:备选答案A是向左移,备选答案B是向右移,备选答案D是向下移,所以选D5.已知二次函数)0(2≠++=acbxaxy的图象如图2所示,有下列5个结论:①0>abc;②cab+<;③024>++cba;④bc32<;⑤)(bammba+>+,(1≠m的实数)其中正确的结论有()A. 2个B. 3个C. 4个D. 5个A B C D图2提示:由图象可知:12,0,0=-><a b c a ,即b a 21-= ∴0>b 故①不正确;由1-=x 时,0<y 得0<+-c b a ,∴c a b +>,所以②不正确;由2=x 时,0>y ,即024>++c b a ,所以③正确;由b a 21-=及0<+-c b a 得④也正确;由1=x 时y 取最大值,故⑤正确,所以选B6.已知一次函数y = ax + b 的图象过点(-2,1),则关于抛物线y = ax 2-bx + 3的三条叙述: ① 过定点(2,1), ② 对称轴可以是x = 1,③ 当a <0时,其顶点的纵坐标的最小值为3.其中所有正确叙述的个数是( )A .0B .1C .2D .3提示:把(-2,1)代入b ax y +=得b a +-=21 把(-2,1)代入32+-=bx ax y 得3241++=b a ,上述两个同解,所以①成立,由对称轴1=x 得12=ab,得a b 2=,与b a +-=21矛盾,所以②不成立;由于y = ax 2-bx + 3与y 轴交于点(0,3),所以抛物线的顶点最小值为3,③成立 ,所以选C二、填空题72+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 的值为__________.提示:选择两组y x ,的值代入c bx x y ++=2得⎩⎨⎧++=-++=-c b c 12001 解得⎩⎨⎧-=-=12c b ∴122--=x x y 把2=x 代入122--=x x y 得 1144-=--=y 即1-=m8.抛物线y =ax 2+2ax +a 2+2的一部分如图3所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是_________ 提示:抛物线y =ax 2+2ax +a 2+2的对称轴为122-=-=aax 由图象可知抛物线与x 轴的一个交点为(-3,0),到直线1-=x 的距离为2,∴另一个交点为(1,0)9.将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为 .提示:将抛物线22(1)3y x =+-向右平移1个单位为322-=x y ,再向上平移3个单位得到3322+-=x y 即22x y =图310.已知二次函数22y x x m =-++的部分图象如图4所示,则关于x 的一元二次方程220x x m -++=的解为 .提示:由图象可知抛物线对称轴为1=x ,与x 轴交点(3,0),可知另一交点为(-1,以一元二次方程220x x m -++=的解为11x =-,23x =;11.已知二次函数2y ax bx c =++的图象如图5所示,则点()P a bc ,在第 象限. 提示:由图象可知02,0,0<-><abc a ,所以0,0<<bc b 所以点()P a bc ,在第三象限12.如图6所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .提示:∵抛物线过原点O (0,0),∴012=-a∴1±=a ,又∵抛物线开口向下,∴0<a ∴1-=a13.如图7是一种带有黑白双色、边长是20cm 的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图8的图案.已知制作图7这样的瓷砖,其黑、白两部分所用材料的成本分别为0.02元/2cm 和0.01元/2cm ,那么制作这样一块瓷砖所用黑白材料的最低成本是元(π取3.14,结果精确到0.01元).图7 图8提示:设41圆半径为x ,阴影部分面积为40020441)20(2022+-=+-⨯=x x x x S ππ 因为阴影部分成本高,所以S 取最小值π400400-=最小S ,π400=白S图4图5图6所以最低成本=73.68840001.040040002.0≈-⨯+-⨯πππ=)((元)三、解答题14.已知一抛物线与x 轴的交点是)0,2(-A 、B (1,0),且经过点C (2,8)。

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)

第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。

第二十二章-二次函数-单元测试(含答案)

第二十二章-二次函数-单元测试(含答案)

第二十二章二次函数学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知二次函数223y x x =--,点P 在该函数的图象上,点P 到x 轴、y 轴的距离分别为1d 、2d .设d d d =+,下列结论中:①④231(x 4点B C .52D .535.已知二次函数2y x bx c =++的图象上有三个点()11,y -)、()21,y 、()33,y ,若13y y =,则( ).A .21y c y >>B .12c y y <<C .12c y y >>D .21y c y <<6.已知二次函数y=ax 2+bx+c (a≠0)的图象如图,在下列代数式中(1)a+b+c >0;(2)﹣4a <b <﹣2a (3)abc >0;(4)5a ﹣b+2c <0; 其中正确的个数为( )78①93的“特征数”为[1,2,3]-.若“特征数”为12,2,2m m m --⎢⎥⎣⎦的二次函数的图象与x 轴只有一个交点,则m的值为( )A .2-或2B .12-C .2-D .210.某同学在体育训练中掷出的实心球的运动路线呈如图所示的抛物线形,若实心球运动的抛物线的解析式为()21349y x =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离,则该同学此次掷球的成绩(即OA 的长度)是( )A .4mB .6mC .8mD .9m11.已知函数223y x x =-+,当0x m ≤≤时,有最大值3,最小值2,则m 的取值范围是( )A .1m ≥B .02m ≤≤C .12m ≤≤D .2m ≤12.有一拱桥洞呈抛物线状,这个桥洞的最大高度是16 m ,跨度为40 m ,现把它的示意图(如图)放在平面直角坐标系中,则抛物线的表达式为( )A .281255x y x =+B .218255y x x =-+C .251825y x x =--D .25125168y x x +=+ 二、填空题13.已知抛物线22161y x x =-+,则这条抛物线的对称轴是直线 .14.已知抛物线()21433y x =--的部分图象如图所示,则图象再次与x 轴相交时的坐标是 .15.已知抛物线()20y ax bx c a =++≠图象的顶点为()2,3P -,且过()3,0A -,则抛物线的关系式为 .16.已知222b c c a a bk a b c+++===,0a b c ++≠,将抛物线22y x =向右平移k 个单位,再向上平移2k 个单位后,所得抛物线的表达式为 .对于平移后的抛物线,当25x ……时,y 的取值范围是 .17.设关于x 的方程()2440x k x k +--=有两个不相等的实数根12,x x ,且1202x x <<<,那么k 的取值范围是 .三、解答题18.己知二次函数y =ax 2+bx +c (a ,b ,c 均为常数且0a ≠).(1)若该函数图象过点(1,0)A -,点(3,0)B 和点(0,3)C ,求二次函数表达式:(2)若21b a =+,2c =,且无论a 取任何实数,该函数的图象恒过定点,求出定点的坐标.(4)将这个函数的图象向右平移2个单位长,向上平移1个单位长,写出平移后的二次函数解析式.20.高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x (元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?21.珊珊度假村共有客房50间供游客居住,当每个房间的定价为每天200元时,所有房间刚好可以住满,根据经验发现,每个房间的定价每增加10元,就会有1个房间空闲,对有游客入住的房间,宾馆需对每个房间支出每天20元的各种费用.设每个房间的定价增加x元,每天的入住量为y个,度假村住宿每天的利润为w元.(1)求y与x的函数关系式;(2)求w与x的函数关系式,并求客房收入每天的最大利润是多少?(3)当x为何值时,客房收入每天的利润不低于10350元?22.篮球是一项广受喜爱的运动.学习了二次函数后,小江同学打篮球时发现,篮球投出时在空中的运动可近似看作一条抛物线,于是建立模型,展开如下研究:如图,篮框距离地面3m,某同学身高2m,站在距离篮球架4mL 处,从靠近头部的O点将球正对篮框投出,球经过最高点时恰好进入篮框,球全程在同一水平面内运动,轨迹可看作一条抛物线C.不计篮框和球的大小、篮板厚度等.(1)求抛物线C的表达式;(2)研究发现,当球击在篮框上方0.2m及以内范围的篮板上时,球会打板进框.若该同学正对篮框,改用跳投的方式,出手点O位置升高了0.5m,要能保证进球,求L的取值范围.(计算结果保留小数点后一位)23.如图1,在平面直角坐标系中,是坐标原点,抛物线与轴正半轴交于点,与轴交于点,连接,点分别是的中点.,且始终保持边经过点,边经过点,边与轴交于点,边与轴交于点.(1)填空,的长是 ,的度数是 度(2)如图2,当,连接①求证:四边形是平行四边形;②判断点是否在抛物线的对称轴上,并说明理由;(3)如图3,当边经过点时(此时点与点重合),过点作,交延长线上于点,延长到点,使,过点作,在上取一点,使得(若在直线的同侧),连接,请直接写出的长.24.如图,抛物线239344y x x =-++与x 轴交于点A ,与y 轴交于点B .在线段OA 上有一动点(m,0)E (不与,O A 重合),过点E 作x 轴的垂线交AB 于点N ,交抛物线于点P ,过点P 作PM AB ⊥于点M .(1)求直线AB的函数解析式;(参考答案:题号12345678910答案B D B A D A C D C D 题号1112 答案CB1.B 2.D 3.B 4.A 5.D 6.A 7.C 8.D 9.C 10.D 11.C 12.B 13.4x =14.(7,0)15.23129y x x =---16.22(1)2y x =+-1670x ……17.-2<k <0 18.(1)223y x x =-++(2)()0,2,()2,0-19.(1)221y x =-;(2)17;(3)略;(4)2288y x x =-+.20.(1)y=-110x+30;(2)z=-110x 2+34x-3200;(3)第二年的销售单价应确定在不低于120元且不高于220元的范围内.21.(1)5010x y =-(2)(3)22(2)2312 24。

最新人教版九年级上数学第22章二次函数同步练习题含答案

最新人教版九年级上数学第22章二次函数同步练习题含答案

九年级数学上册第22章《二次函数》同步练习一、选择题1.抛物线2256y x x =-+的对称轴是( )A 、54x = B 、52x = C 、54x =- D 、52x =- 2.抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系的图象可能是( )3.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能15≤x≤22,那么一周可获得最大利润是( ) A.20 B .1508 C .1550 D .1558 4.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )5.抛物线y=x 2向下平移一个单位得到抛物线( ) A.y=(x+1)2 B.y=(x ﹣1)2 C.y=x 2+1 D.y=x 2﹣16.已知二次函数y=ax 2+bx+c 的图像如图,则下列结论:①ac >0②a-b+c=0 ③ x<0时,y <0;④ax2 + bx + c=0(a≠0)有两个不小于-1的实数根。

其中错误..的结论有()(A)①②(B)③④(C)①③(D)②④7.二次函数y=mx2+x-2m(m是非0常数)的图象与x轴的交点个数为()A.0个 B.1个 C.2个 D.1个或2个8.若二次函数y=x2-6x+c的图象过A(-1,y1),B(2,y2),C(32,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1>y3>y2 C.y2>y1>y3 D.y3>y1>y29.x2+y=3,当-1≤x≤2时,y的最小值是()D.3 A.-1 B.2 C.11410.抛物线y=a(x-h)2+k向左平移2个单位,再向下平移3个单位得到y=x2+1,则h、k的值是()A.h=-2,k=-2 B.h=2,k=4C.h=1,k=4 D.h=2,k=-2二、填空题11.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为.12.如图是二次函数y=a 2x +bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,1y ),(32,2y )是抛物线上两点,则1y >2y ,其中正确的序号是 .13.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(a ,0),那么代数式a 2﹣a+2014的值为 .14.抛物线y=﹣x 2+4x ﹣1的顶点坐标为 .15.已知A (﹣2,y 1)、B (0,y 2)、C (1,y 3)三点都在抛物线y=kx 2+2kx+k 2+k (k <0)的图象上,则y 1、y 2、y 3的大小关系是 .16.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是 .17.设抛物线y=-x 2+2x+3的顶点为E ,与y 轴交于点C ,EF ⊥x 轴于点,若点M (m ,0)是x 轴上的动点,且满足以MC 为直径的圆与线段EF 有公共点,则实数m 的取值范围是 . 18.若二次函数y=ax 2+bx+c (a <0)的对称轴为直线x=-1,图象经过点(1,0),有下列结论:①abc <0;②2a-b=0;③a+b+c >0;④b 2>5ac ,则以上结论一定正确的个数是 。

人教版九年级数学上册第二十二章 二次函数练习(含答案)

人教版九年级数学上册第二十二章 二次函数练习(含答案)

第二十二章 二次函数一、单选题1.下列函数一定是关于x 的二次函数的是( )A .2(1)(1)y x x x -=+-B . y ax bx =+C .22y x x -=+D .22(1)y m x =- 2.二次函数y =2x 2的顶点坐标是( )A .(﹣2,0)B .(2,0)C .(0,2)D .(0,0) 3.抛物线2(1)2y x =-+的对称轴是 ( )A .直线x =-1B .直线x =1C .直线x =-2D .直线x =2 4.对于抛物线()231y x =+-有下列说法:①顶点坐标为()3,1-;②开口方向向上;③当3x >-时,y 随x 的增大减小;④与x 轴有两个不同交点,其中说法正确的有( )个. A .1 B .2 C .3 D .45.将二次函数23y x =-的图象沿x 轴向左平移2个单位长度后得函数为( ) A .()232y x =-- B .232y x =-- C .232y x =-+ D .()232y x =-+ 6.若点()13,A y ,()20,B y ,3(2,)C y -在抛物线24y x x k =-+上,则1y ,2y ,3y 的大小关系是( )A .231y y y >>B .213y y y >>C .321y y y >>D .123y y y >> 7.如图是二次函数y =ax 2+bx +c 的部分图象,y <0时自变量x 的取值范围是( )A .﹣1<x <5B .x >﹣1或 x <5C .x <﹣1且x >5D .x <﹣1或x >58.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.给出四个结论:①b 2 > 4ac ;①2a +b=0;①a -b +c=0;① abc <0.其中正确结论有( )A .1个B .2个C .3个D .4个9.竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s 是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为( )A .23.5mB .22.5mC .21.5mD .20.5m 10.如图,正方形ABCD 边长是4cm ,点P 从点A 出发,沿A B C →→的路径运动,则C 点停止运动,点Q 从点C 出发,在BC 延长线上向右运动,点P 与点Q 同时出发,点P停止运动时,点Q 也停止运动,点P ,点Q 的运动速度都是1cm/s ,下列函数图象中能反映PDQ ∆的面积()2cm S 与运动时间()t s 的函数关系的是( )A .B .C .D .二、填空题11.关于x 的函数()||24m y m x =--是二次函数,则m=__________.12.已知二次函数2()2y x h =-+-,当x <-3时,y 随x 的增大而增大,当x >-3时,y 随x 的增大而减小,则h 的值是___________________13.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.14.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端B 处有一个喷水孔,喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,则水管AB 的长为_____m .三、解答题15.已知()2k k 4y k 1x +-=-是二次函数,(1)若其图像开口向下,求k 的值;(2)若当x 0<时,y 随x 的增大而减小,求函数关系式.16.如图,已知抛物线y=x2+2x-3,与x轴的两个交点分别是A,B(A在B的左侧).(1)求A,B的坐标;(2)利用函数图象,求当y<5时x的取值范围.17.如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(2,﹣3),该图象与x 轴相交于点A,B,与y轴相交于点C,其中点A的横坐标为﹣1.(1)求该二次函数的表达式;(2)点P是直线BC下方,抛物线上的一个动点,当△PBC面积取得最大值时,求点P的坐标和△PBC面积的最大值.18.某名贵树木种植公司计划从甲,乙两个品种中选取一个种植并销售,市场预测每年产销x棵,已知两个品种的有关信息如表:其中a为常数,且7≤a≤10,销售甲,乙两个品种的年利润分别为y1万元,y2万元.(1)直接写出y1与x的函数关系式为.y2与x的函数关系式为.(2)分别求出销售这两个品种的最大年利润.(3)为了获得最大年利润,该公司应该选择哪个品种?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.A2.D3.B4.B5.D6.C7.D8.A9.C10.D11.2-12.313.414.9415.(1)k=-3;(2)2y x =.16.(1)()()3,0,1,0A B -;(2)42x -<<17.(1)2145333y x x =--;(2)535,212⎛⎫- ⎪⎝⎭P .最大面积12524 18.(1)y 1=(12﹣a )x ﹣20,(0<x ≤160);y 2=﹣0.05x 2+10x ﹣60.(0<x ≤80);(2)x =160时,y 1的值最大=(1900﹣160a )万元,x =80时,y 2最大值=420万元;(3)当a =9.25时,选择甲乙两个品种的利润相同;当7≤a <9.25时,选择甲品种利润比较高;当9.25<a ≤10时,选择乙品种利润比较高.19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m。

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)

人教版九年级上册数学第二十二章二次函数综合训练题(含简单答案)人教版九年级上册数学第二十二章二次函数综合训练题一、单选题1.在下列表达式中,x是自变量,是二次函数的是()A.B.C.D.2.下列二次函数的图象与x轴没有交点的是()A.B.C.D.3.对于二次函数,当时,y随x的增大而增大,则满足条件的m的取值范围是()A.B.C.D.4.已知二次函数的图像上有三点,则的大小关系为()A.B.C.D.5.将抛物线向右平移1个单位,再向上平移2个单位后所得到的抛物线为()A.B.C.D.6.抛物线的部分图象如图所示,则一元二次方程的根为()A.B.,C.,D.,7.根据下列表格的对应值,判断方程(,、、为常数)一个解的范围是()A.B.C.D.8.如图,抛物线的对称轴为直线,与x轴的一个交点坐标为,如图所示,下列结论:①;②方程的两个根是;③;④当时,x的取值范围是;⑤当时,y随x增大而增大,其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题9.抛物线与y轴的交点坐标为.10.已知二次函数的图象经过点,且顶点坐标为,则二次函数的解析式为.11.抛物线向上平移1个单位长度,再向左平移3个单位长度后,得到的抛物线顶点坐标是.12.抛物线的二次项系数是;一次项系数是.13.已知函数的图象过原点,则a的值为14.若抛物线的图象与坐标轴只有两个公共点,则m的值为.15.一名学生推铅球,铅球行进高度(单位:)与水平距离(单位:)之间的关系是,则该学生推铅球的水平距离为.16.如图,抛物线与x轴交于两点,与y轴交于C点,在该抛物线的对称轴上存在点Q使得的周长最小,则的周长的最小值为.三、解答题17.抛物线经过点.(1)求这个二次函数的关系式;(2)为何值时,的值随着的增大而增大?18.抛物线的对称轴是直线,且过点.(1)求抛物线的解析式;(2)求抛物线的顶点坐标.19.如图,抛物线与x轴交于A、B两点,与y轴交于C点.(1)求A点和点B的坐标;(2)判断的形状,证明你的结论;(3)直接写出当时,自变量x的取值范围.20.如图,抛物线与x轴交于,两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上运动到什么位置时,满足,并求出此时P点的坐标;(3)点Q是直线下方抛物线上一点,当Q运动到什么位置,的面积最大,求出面积的最大值和此时点Q的坐标.21.二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:… 0 1 2 …… 0 5 …(1)直接写出表格当中的m值:_________;(2)直接写出这个二次函数的表达式_________;(3)在图中画出这个二次函数的图象.(4)直接写出当时,y的取值范围是_________.(5)直接写出当时,x的取值范围是_________.22.有一长为的篱笆,一面利用墙(墙的最大可用长度a为),围成中间隔着一道篱笆的长方形花圃,花圃的宽为,面积为.(1)求S关于x的函数解析式;(2)如果要围成面积为的花圃,的长是多少m?(3)能围成面积比更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.23.某网店以每件60元的价格购进一批商品,若以单价80元销售,每月可售出300件.调查表明:单价每上涨1元,该商品每月的销售量就减少10件.(1)请写出每月销售该商品的利润y(元)与单价上涨x(元)间的函数关系式;(2)单价定为多少元时,每月销售商品的利润最大?最大利润为多少?24.如图是二次函数的图象,其顶点坐标为.(1)求出图象与x轴的交点A,B的坐标;(2)在二次函数的图象上是否存在点P,使,若存在,求出P点的坐标;若不存在,请说明理由.(3)在y轴上存在一点Q,使得周长最小,求此时构成的的面积.参考答案:1.D2.B3.D4.B5.D6.D7.C8.D9.10.11.12. 1 413.214.15.16./17.(1)(2)18.(1);(2);19.(1)A、B的坐标分别为:,,(2)是直角三角形,(3)有图像可得:时,或.20.(1)(2)或(3)当轴时,的面积最大,最大值为1,此时点Q的坐标为21.(1)0(2)(4)(5)22.(1)(2)花圃的长为(3)能;围法:花圃的长为,宽为,这时有最大面积23.(1)(2)当售价为65元时,每月销售该商品的利润最大,最大利润为6250元.24.(1),(2)存在,或(3)3。

人教版九年级数学上册 22.1.3.1 二次函数y=ax2+k的图象和性质 同步练习题(含答案,教师版)

人教版九年级数学上册 22.1.3.1 二次函数y=ax2+k的图象和性质 同步练习题(含答案,教师版)

人教版九年级数学上册第22章22.1.3.1 二次函数y =ax 2+k 的图象和性质 同步练习题一、选择题1.二次函数y =x 2+1的图象大致是(B)2.下列关于抛物线y =-x 2+2的说法正确的是(D) A .开口向上 B .顶点坐标为(-1,2)C .对称轴是直线x =1D .在对称轴的左侧,y 随x 的增大而增大3.与抛物线y =-45x 2-1的顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数解析式是(B)A .y =-45x 2-1B .y =45x 2-1C .y =-45x 2+1D .y =45x 2+14.函数y =13x 2+1与y =13x 2的图象的不同之处是(C)A .对称轴B .开口方向C .顶点D .形状5.一次函数y =ax +b(a ≠0,b ≠0)的图象如图所示,则二次函数y =bx 2+a 的大致图象是(C)6.已知y =ax 2+k 的图象上有三点A(-3,y 1),B(1,y 2),C(2,y 3),且y 2<y 3<y 1,则a 的取值范围是(A)A .a>0B .a<0C .a ≥0D .a ≤07.已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等.当x取x1+x2时,函数值为(D)A.a+c B.a-c C.-c D.c二、填空题8.抛物线y=2x2-1在y轴右侧的部分是上升(填“上升”或“下降”)的.9.二次函数y=3x2-3的图象开口向上,顶点坐标为(0,-3),对称轴为y轴,当x>0时,y随x的增大而增大;当x<0时,y随x的增大而减小.因为a=3>0,所以y有最小值,当x=0时,y的最小值是-3.10.抛物线y=ax2-1(a>0)上有两点A(1,y1),B(3,y2),则y1<y2.(填“>”“<”或“=”)11.如果将抛物线y=-3x2向上平移2个单位长度,那么得到的新抛物线的解析式为y=-3x2+2.12.对于二次函数y=-2x2+4,当-2<x≤1时,y的取值范围是-4<y≤4.13.已知函数y=ax2+k的图象与函数y=-3x2-2的图象关于x轴对称,则a=3,k=2.三、解答题14.在同一平面直角坐标系中画出二次函数y=-2x2,y=-2x2+3的图象.(1)分别指出它们的开口方向、对称轴以及顶点坐标;(2)抛物线y=-2x2+3可由抛物线y=-2x2向上平移3个单位长度得到.解:如图所示.抛物线y=-2x2开口方向向下,对称轴为y轴,顶点坐标为(0,0).抛物线y=-2x2+3开口方向向下,对称轴为y轴,顶点坐标为(0,3).15.能否通过适当地上下平移二次函数y =13x 2的图象,使得到的新的函数图象过点(3,-3)?若能,请说出平移的方向和距离;若不能,请说明理由.解:能.把函数y =13x 2的图象沿y 轴向下平移6个单位长度,得到新的函数y =13x 2-6的图象过点(3,-3).16.如图是一个半圆和抛物线的一部分围成的“芒果”.已知点A ,B ,C ,D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为y =32x 2-32,求CD 的长.解:令y =32x 2-32=0,解得x =1或-1.∴AB =2. ∴CO =12AB =1.令x =0,解得y =-32.即OD =32.∴CD =CO +OD =1+32=52.17.已知抛物线y =ax 2+k 向下平移2个单位长度后,所得抛物线为y =-3x 2+2. (1)试求a ,k 的值;(2)分别指出两条抛物线的开口方向、对称轴和顶点.解:(1)因为抛物线y =ax 2+k 向下平移2个单位长度后,所得抛物线为y =ax 2+k -2.所以根据题意,得⎩⎪⎨⎪⎧a =-3,k -2=2.解得⎩⎪⎨⎪⎧a =-3,k =4.(2)抛物线y =-3x 2+2的开口方向向下,对称轴为y 轴,顶点坐标为(0,2); 抛物线y =-3x 2+4的开口方向向下,对称轴为y 轴,顶点坐标为(0,4).18.已知抛物线y =14x 2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等.如图,点M 的坐标为(3,3),P 是抛物线y =14x 2+1上一个动点,求△PMF 周长的最小值.解:过点M 作ME ⊥x 轴于点E ,交抛物线y =14x 2+1于点P ,此时△PMF 的周长最小.∵F(0,2),M(3,3),∴ME =3,FM =(3-0)2+(3-2)2=2. 又由题意可知PF =PE ,∴当ME ⊥x 轴于点P 时,PF +PM 最短为PE +PM =ME. ∴△PMF 周长的最小值为ME +FM =3+2=5.。

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案

人教版九年级数学上册第22章二次函数二次函数的图象和性质二次函数同步训练题含答案同步训练题1. 以下函数中是二次函数的是( )A .y =2x +1B .y =-2x +1C .y =x 2+2 D .y =12x -2 2. 二次函数y =1-3x +5x 2,那么它的二次项系数a ,一次项系数b ,常数项c 区分是( )A .1,-3,5B .1,3,5C .5,3,1D .5,-3,13. 一台机器原价60万元,假设每年的折旧率是x ,两年后这台机器的价钱为y 元,那么y 与x 之间的函数关系式为( )A .y =60(1-x )2B .y =60(1-x )C .y =60-x 2D .y =60(1+x )24. 在一定条件下,假定物体运动的路段s (米)与时间t (秒)之间的关系为s =5t 2+2t ,那么当t =4秒时,该物体所经过的路程为( )A .28米B .48米C .68米D .88米5. 函数y =(m -3)x |m |-1+3x -1是二次函数,那么m 的值是( )A .3B .-3C .±2D .±36. 二次函数y =2x (x -4)的二次项系数与一次项系数的和为( )A .10B .-10C .6D .-67. 在二次函数y =(a -3)x 2+x -2中,a 的取值范围是 .8. 把函数y =(2-3x )(6-x )化成y =ax 2+bx +c 的方式为 .9. 矩形的长为4cm ,宽为3cm ,假设将长与宽都添加x cm ,那么面积添加y cm 2,那么y 与x 之间的函数关系式为y = .10. 〝五一〞时期市工会组织篮球竞赛,赛制为单循环赛(每两队之间竞赛一场),参与这次竞赛的x 支球队共停止y 场竞赛,那么y 与x 之间的函数关系是 ,它 (填〝是〞或〝不是〞)二次函数.11. 当时,函数y=(m2-2m-8)x2+(m+2)x+m是二次函数,当时,这个函数是一次函数.12. 某商店运营一种水产品,本钱为每千克40元,据市场剖析,假定按每千克50元销售,一个月能售出500千克;销售价每涨1元,月销售就增加10千克,设下跌x元后,总利润为y元,那么y与x的函数关系式为.13. 以下函数中,哪些是二次函数?哪些不是?假定是二次函数,请指出a、b、c 的值.(1)y=x(x-1)+1;(2)y=2x(1-x)+2x2;(3)y=(x+3)(3-x).14. 函数y=(a2-4)x2+(a+2)x+3.(1)当a为何值时,此函数是二次函数;(2)当a为何值时,此函数是一次函数.15. 当m为何值时,y=(m+1)xm2-2m-1+(m-3)x+m是二次函数?16. 为了改善小区环境,某小区决议要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).假定设绿化带的BC边长为x m,绿化带的面积为y m2,求y与x之间的函数关系式,并写出自变量x的取值范围.17. 用一根长50cm的细绳围成一个矩形.设矩形的一边长为x cm,面积为y cm2.(1)求y与x的函数关系式;(2)该细绳能围成面积为160cm2的矩形吗?假定能,求出此时的x的值;假定不能,请说明理由.18. 某公司研制出一种新型产品,每件的消费本钱为18元,按定价40元出售,每月可销售20万件.为了添加销量,公司决议采取降价的方法,经市场调研,每降价1元,月销售量可添加2万件,设每件产品的售价为x元.(1) 设月销售利润W(万元),请用含有销售单价x(元)的代数式表示W;(2) 为使月销售利润到达480万元,且按物价部门规则此类商品每件的利润率不得高于80%,每件产品的售价为多少?参考答案:1---6 CDADB D7. a≠38. y =3x 2-20x +129. x 2+7x10. y =12x(x -1) 是 11. m≠4且m≠-2 m =412. y =-10x 2+400x +500013. 解:(1)是,a =1,b =-1,c =1.(2)不是.(3)是,a =-1,b =0,c =9.14. 解:(1)由题意得:a 2-4≠0解得a ≠±2即:当a ≠±2时,此函数是二次函数.(2)由题意得:⎩⎪⎨⎪⎧ a 2-4=0a +2≠0解得:a =2即:当a =2时,此函数是一次函数.15. 解:依据题意得,假定原函数为二次函数,那么有⎩⎪⎨⎪⎧ m +1≠0,m 2-2m -1=2解得m =3.即当m =3时,y =(m +1)xm 2-2m -1+(m -3)x +m 是二次函数.16. 解:由题意,得y =x×40-x 2=-12x 2+20x ,自变量x 的取值范围是0<x≤25. 17. 解:(1)依据题意,得y =x (25-x )=-x 2+25x(2)假定能围成面积为160cm2的矩形,那么-x2+25x=160,即x2-25x+160=0 ∵b2-4ac=(-25)2-4×1×160=-15<0∴方程没有实数根,∴不能围成面积为160cm2的矩形.18. 解:(1)依据题意可得函数解析式:W=(x-18)[20+2(40-x)]=-2x2+136x-1800,即月销售利润W=-2x2+136x-1800;(2)当W=480时,-2x2+136x-1800=480解得x1=30,x2=38又∵38>18×(1+80%),∴x=30答:每件产品的售价为30元.。

第22章 二次函数 教材同步作业【名校试卷+详细解答】

第22章 二次函数 教材同步作业【名校试卷+详细解答】

人教版九年级数学上册 第22章 二次函数 教材同步作业一、选择题1.在下列y 关于x 的函数中,一定是二次函数的是( ) A .y=x 2 B .y= C .y=kx 2 D .y=k 2x2.是二次函数,则m 的值为( )A .0,﹣2B .0,2C .0D .﹣23.对于二次函数y=(x-1)2+2的图象,下列说法正确的是( ) A 、开口向下 B 、对称轴是x=-1 C 、顶点坐标是(1,2) D 、与x 轴有两个交点4.抛物线()21232y x =--的顶点坐标是( )A .()2,3-B .()2,3C .()2,3-D .()2,3--5.下列函数中是二次函数的是( ) A .y =x +12B . y =3 (x -1)2C .2y ax bx c =++ D .y =1x2 -x6. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++C .()231y x =--D .()233y x =-+ 7. 抛物线y=(x+1)2+2的对称轴是( )A .直线x=-1B .直线x=1C .直线y=-1D .直线y=18.某同学在用描点法画二次函数y=ax 2+bx+c 的图象时,列出下面的表格:x … ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 … y…﹣7.5﹣2.50.51.50.5…根据表格提供的信息,下列说法错误的是( ) A .该抛物线的对称轴是直线x=﹣2B .该抛物线与y 轴的交点坐标为(0,﹣2.5)C .b 2﹣4ac=0D .若点A (0,5,y 1)是该抛物线上一点.则y 1<﹣2.5 9.关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上B .与x 轴有两个重合的交点C .对称轴是直线x=1D .当x >1时,y 随x 的增大而减小 10. 抛物线2256y x x =-+的对称轴是( )A 、54x =B 、52x =C 、54x =-D 、52x =- 二、填空题11、二次函数y=x 2+2x+2的最小值为 .12、已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.13、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。

2023-2024学年九年级数学上册《第二十二章 二次函数》单元测试卷及答案(人教版)

2023-2024学年九年级数学上册《第二十二章 二次函数》单元测试卷及答案(人教版)

2023-2024学年九年级数学上册《第二十二章二次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数表达式中,一定为二次函数的是()A.y=2x−5B.ℎ=12t2C.y=ax2+bx+c D.y=x2+1x2.抛物线y=2x2−4x+1的对称轴是直线()A.x=−3B.x=−32C.x=1D.x=−13.同一坐标系中作y=3x2,y=−3x2,y=13x2的图像,它们的共同特点是()A.关于y轴对称,抛物线开口向上B.关于y轴对称,抛物线开口向下C.关于y轴对称,抛物线的顶点在原点D.关于x轴对称,抛物线的顶点在原点4.已知二次函数y=3(x+2)2的图象上有三点A(1,y1),B(2,y2),C(−3,y3)则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1 5.将y=x2+6x+7进行配方,正确的结果是()A.y=(x−3)2−2B.y=(x−3)2+2C.y=(x+3)2−16D.y=(x+3)2−26.对于二次函数y=x2−4x−1的图象,下列说法错误的是()A.开口向上B.与x轴有两个交点C.抛物线的顶点坐标是(2,-5)D.当x≥2时,y随x的增大而减小7.如图所示二次函数y=ax2+bx+c的图象的一部分,图象过点(﹣3,0),对称轴为直线x=﹣1,以下结论:①2a﹣b=0;②abc<0;③当﹣3<x<1时,y>0;④对于a的每一个确定值,若一元二次方程ax2+bx+c=t(t为常数,t≥0)的根为整数,则t的值只有3个.其中正确的有()A.4个B.3个C.2个D.1个8.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数解析式是y=−112x2+23x+53,则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m二、填空题9.如果函数y=(k-2)x k2−2k+2+kx+1是关于x的二次函数,那么k的值是。

九年级数学上册第二十二章二次函数经典大题例题(带答案)

九年级数学上册第二十二章二次函数经典大题例题(带答案)

九年级数学上册第二十二章二次函数经典大题例题单选题1、已知实数x,y满足x+y=12,则xy−2的最大值为()A.10B.22C.34D.142答案:C分析:利用二次函数的性质求解即可.解:∵x+y=12,∴y=12-x,∴xy-2=x(12-x)-2=-x2+12x-2=-(x-6)2+34,∵-1<0,∴当x=6时,xy-2有最大值,最大值为34,故选:C.小提示:本题考查二次函数的性质,会利用二次函数的性质求最值是解答的关键.2、已知二次函数y=ax2+bx−c(a≠0),其中b>0、c>0,则该函数的图象可能为()A.B.C.D.答案:C分析:利用排除法,由−c<0得出抛物线与y轴的交点应该在y轴的负半轴上,排除A选项和D选项,根据B选项和C选项中对称轴x=−b>0,得出a<0,抛物线开口向下,排除B选项,即可得出C为正确答案.2a解:对于二次函数y=ax2+bx−c(a≠0),令x=0,则y=−c,∴抛物线与y轴的交点坐标为(0,−c)∵c>0,∴−c<0,∴抛物线与y轴的交点应该在y轴的负半轴上,∴可以排除A选项和D选项;B选项和C选项中,抛物线的对称轴x=−b>0,2a∵b>0,∴a<0,∴抛物线开口向下,可以排除B选项,故选C.小提示:本题考查二次函数的图象的性质,熟练掌握二次函数图象与三个系数之间的关系是解题的关键.3、二次函数y=ax2+bx+c(a≠0)的部分图像如图所示,图像过点(−1,0),对称轴为直线x=2,下列结论:,y2)、点(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(−3,y1),点B(−12C(7,y3)在该函数图像上,则y1<y3<y2;(5)若方程a(x+1)(x−5)=−3的两根为x1和x2,且x1<x2,2则x1<−1<5<x2.其中正确的结论有()A.2个B.3个C.4个D.5个答案:B分析:①正确,根据对称轴公式计算即可.②错误,利用x=-3时,y<0,即可判断,③正确.由图像可知抛物线经过(-1, 0)和(5, 0)列出方程组求出a、b即可判断.④错误,利用函数图像即可判断.⑤正确,利用二次函数与二次不等式关系即可解决问题.①正确:∵-b2a=2,所以4a+b=0.故①正确.②错误:∵x=-3时,y<0,∴9a- 3b+c<0,∴9a+c<3b,故②错误.③正确,由图像可知抛物线经过(- 1,0)和(5,0) ,∴a-b+c= 025a + 5b+c= 0解得b= -4a,c= -5a,∴8a+7b+2c=8a-28a-10a=-30a,∵a<0,∴8a+ 7b+2c>0 ,故③正确.④错误,∵点A(-3,y1)、点B(-12,y2)、点C(72,y3)∵3.5-2= 1.5,2-(-0.5)=2.5 ,∴1.5< 2.5点C离对称轴的距离近,∴y3>y2,∵a<0 </span>, -3< -0.5<2</span>,∴y1<y2∴y1<y2<y3,故④错误.⑤正确.∵a<0 </span>,∴(x+1)(x-5)=-3>0 ,a即(x+1)(x-5)>0 ,故x<-1或x>5 ,故⑤正确.∴正确的有三个,故选B.小提示:本题考查抛物线和x轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图像信息解决问题,属于中考常考题型.4、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可.解:设每月总利润为w,依题意得:w=y(x−50)=(−5x+550)(x−50)=−5x2+800x−27500=−5(x−80)2+4500∵−5<0,此图象开口向下,又x≥50,∴当x=80时,w有最大值,最大值为4500元.故选:B.小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.5、已知抛物线y=(x−2)2+1,下列结论错误的是()A.抛物线开口向上B.抛物线的对称轴为直线x=2C.抛物线的顶点坐标为(2,1)D.当x<2时,y随x的增大而增大答案:D分析:根据二次函数的开口方向、对称轴、顶点坐标以及增减性对各选项分析判断即可得解.解:抛物线y=(x−2)2+1中,a>0,抛物线开口向上,因此A选项正确,不符合题意;由解析式得,对称轴为直线x=2,因此B选项正确,不符合题意;由解析式得,当x=2时,y取最小值,最小值为1,所以抛物线的顶点坐标为(2,1),因此C选项正确,不符合题意;因为抛物线开口向上,对称轴为直线x=2,因此当x<2时,y随x的增大而减小,因此D选项错误,符合题意;故选D.小提示:本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).6、下列函数中,是二次函数的是()A.y=8x2+1B.y=8x+1C.y=8x D.y=8x2答案:A分析:根据二次函数的定义:形如y=ax2+bx+c( a≠0)的函数叫二次函数,直接判断即可.解:A、y=8x2+1符合二次函数的定义,本选项符合题意;B、y=8x+1是一次函数,不符合题意;C、y=8x是反比例函数,不符合题意;D、y=8x2不是二次函数,不符合题意;故选:A.小提示:本题主要考查二次函数的定义,熟练掌握二次函数的定义是解题的关键.7、如图,抛物线y=ax2+bx+c(a≠0)的对称轴为x=−2,下列结论正确的是()A.a<0B.c>0C.当x<−2时,y随x的增大而减小D.当x>−2时,y随x的增大而减小答案:C分析:由图像可知,抛物线开口向上,因此a>0.由图像与y轴的交点在y轴负半轴上得c<0.根据图像可知,在对称轴左侧y随x的增大而减小,在对称轴右侧y随x的增大而增大.抛物线开口向上,因此a>0,故A选项不符合题意.抛物线与y轴的交点在y轴的负半轴上,因此c<0,故B选项不符合题意.抛物线开口向上,因此在对称轴左侧,y随x的增大而减小,故C选项符合题意.抛物线开口向上,因此在对称轴右侧y随x的增大而增大,故D选项不符合题意.故选C小提示:本题考查了二次函数图像的性质,掌握二次函数图像的性质是解题的关键.8、一次函数y=ax+b与二次函数y=ax2+bx在同一平面直角坐标系中的大致图象可能是()A.B.C.D.答案:B分析:本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx的图象相比是否一致.解:A.由抛物线可知,a>0,x=−b2a>0,得b<0,由直线可知,a>0,b>0,故本选项不符合题意;B.由抛物线可知,a>0,x=−b2a>0,得b<0,由直线可知,a>0,b<0,故本选项符合题意;C.由抛物线可知,a<0,x=−b2a>0,得b>0,由直线可知,a>0,b>0,故本选项不符合题意;D.由抛物线可知,a<0,x=−b2a>0,得b>0,由直线可知,a>0,b<0,故本选项不符合题意.故选:B.小提示:本题考查抛物线和直线的性质,用假设法以及数形结合的方法是解题的关键.9、下列函数表达式中,一定为二次函数的是()A.y=2x﹣5B.y=ax2+bx+c C.h=t22D.y=x2+1x答案:C分析:根据二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数进行分析.解:A.是一次函数,故此选项错误;B.当a≠0时,是二次函数,故此选项错误;C.是二次函数,故此选项正确;D.含有分式,不是二次函数,故此选项错误;故选:C.小提示:本题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.10、已知二次函数y=2x2−4x−1在0≤x≤a时,y取得的最大值为15,则a的值为()A.1B.2C.3D.4答案:D分析:先找到二次函数的对称轴和顶点坐标,求出y=15时,x的值,再根据二次函数的性质得出答案.解:∵二次函数y=2x2-4x-1=2(x-1)2-3,∴抛物线的对称轴为x=1,顶点(1,-3),∵1>0,开口向上,∴在对称轴x=1的右侧,y随x的增大而增大,∵当0≤x≤a时,即在对称轴右侧,y取得最大值为15,∴当x=a时,y=15,∴2(a-1)2-3=15,解得:a=4或a=-2(舍去),故a的值为4.故选:D.小提示:本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.填空题11、已知函数y=mx2+2mx+1在−3⩽x⩽2上有最大值4,则常数m的值为 __.答案:3或−38分析:分两种情况:m>0和m<0分别求y的最大值即可.解:y=mx2+2mx+1=m(x+1)2+1−m.当m>0时,当x=2时,y有最大值,∴4m+4m+1=4,∴m=3;8当m<0时,当x=−1时,y有最大值,∴m−2m+1=4,∴m=−3,综上所述:m的值为3或−3.8或−3.故答案是:38小提示:本题考查了二次函数的最值,熟练掌握二次函数的图象及性质,解题时,注意要分类讨论,以防漏解.12、抛物线y=ax2+bx+c(a,b,c为常数)的部分图象如图所示,设m=a-b+c,则m的取值范围是______.答案:−4<m<0分析:由抛物线开口方向,对称轴位置,抛物线与y轴交点位置及抛物线经过(1,0)可得a,b,c的等量关系,然后将x=-1代入解析式求解.解:∵抛物线开口向上,∴a>0,∵抛物线对称轴在y轴左侧,∴-b<0,2a∴b>0,∵抛物线经过(0,-2),∴c=-2,∵抛物线经过(1,0),∴a+b+c=0,∴a +b =2,b =2-a ,∴y =ax 2+(2-a )x -2, 当x =-1时,y =a +a -2-2=2a -4,∵b =2-a >0,∴0<a <2,∴-4<2a -4<0,所以答案是:-4<m <0.小提示:本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系.13、对于任意实数a ,抛物线y =x 2+2ax +a +b 与x 轴都有公共点.则b 的取值范围是_______. 答案:b ≤−14 分析:由题意易得4a 2−4a −4b ≥0,则有b ≤a 2−a ,然后设t =a 2−a ,由无论a 取何值时,抛物线y =x 2+2ax +a +b 与x 轴都有公共点可进行求解.解:由抛物线y =x 2+2ax +a +b 与x 轴都有公共点可得:Δ≥0,即4a 2−4a −4b ≥0,∴b ≤a 2−a ,设t =a 2−a ,则b ≤t ,要使对于任意实数a ,抛物线y =x 2+2ax +a +b 与x 轴都有公共点,则需满足b 小于等于t 的最小值即可, ∴t =a 2−a =(a −12)2−14,即t 的最小值为−14, ∴b ≤−14;故答案为b ≤−14.小提示:本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键.14、若点P(m,n)在二次函数y =x 2+2x +2的图象上,且点P 到y 轴的距离小于2,则n 的取值范围是____________.答案:1≤n <10分析:先判断−2<m <2,再根据二次函数的性质可得:n =m 2+2m +2=(m +1)2+1,再利用二次函数的性质求解n的范围即可.解:∵点P到y轴的距离小于2,∴−2<m<2,∵点P(m,n)在二次函数y=x2+2x+2的图象上,∴n=m2+2m+2=(m+1)2+1,∴当m=−1时,n有最小值为1.当m=2时,n=(2+1)2+1=10,∴n的取值范围为1≤n<10.所以答案是:1≤n<10小提示:本题考查的是二次函数的性质,掌握“二次函数的增减性”是解本题的关键.15、将抛物线y=x2沿直线y=3x方向移动√10个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是__________.答案:y=(x−1)2+3分析:设抛物线y=x2沿直线y=3x方向移动√10个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式.设抛物线y=x2沿直线y=3x方向移动√10个单位长度后顶点坐标为(t,3t),∴t2+(3t)2=(√10)2,解得:t=1或t=-1(舍去),∴平移后的顶点坐标为(1,3),∴移动后抛物线的解析式是y=(x−1)2+3.所以答案是:y=(x−1)2+3.小提示:本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型.解答题16、如图1所示的某种发石车是古代一种远程攻击的武器,发射出去的石块的运动轨迹是抛物线的一部分,且距离发射点20米时达到最大高度10米.将发石车置于山坡底部O 处,山坡上有一点A ,点A 与点O 的水平距离为30米,与地面的竖直距离为3米,AB 是高度为3米的防御墙.若以点O 为原点,建立如图2所示的平面直角坐标系.(1)求石块运动轨迹所在抛物线的解析式;(2)试通过计算说明石块能否飞越防御墙AB ;(3)在竖直方向上,试求石块飞行时与坡面OA 的最大距离.答案:(1)y =﹣140x 2+x (0≤x ≤40)(2)能飞越,理由见解析(3)8.1米分析:(1)设石块运行的函数关系式为y =a (x ﹣20)2+10,用待定系数法求得a 的值即可求得答案;(2)把x =30代入y =﹣140x 2+x ,求得y 的值,与6作比较即可; (3)用待定系数法求得OA 的解析式为y =110x ,设抛物线上一点P (t ,﹣140t 2+t ),过点P 作PQ ⊥x 轴,交OA 于点Q ,则Q (t ,110t ),用含t 的式子表示出d 关于t 的表达式,再利用二次函数的性质可得答案;(1)解:设石块的运动轨迹所在抛物线的解析式为y =a (x ﹣20)2+10.把(0,0)代入,得400a +10=0,解得a =﹣140.∴y =﹣140(x ﹣20)2+10.即y =﹣140x 2+x (0≤x ≤40). (2)解:把x =30代入y =﹣140x 2+x ,得y =﹣140×900+30=7.5.∵7.5>3+3,∴石块能飞越防御墙AB .(3)解:设直线OA 的解析式为y =kx (k ≠0).把(30,3)代入,得3=30k ,∴k =110. 故直线OA 的解析式为y =110x . 设直线OA 上方的抛物线上的一点P 的坐标为(t ,﹣140t 2+t ).过点P 作PQ ⊥x 轴,交OA 于点Q ,则Q (t ,110t ).∴PQ =﹣140t 2+t ﹣110t =﹣140t 2+910t =﹣140(t ﹣18)2+8.1. ∴当t =18时,PQ 取最大值,最大值为8.1.答:在竖直方向上,石块飞行时与坡面OA 的最大距离是8.1米.小提示:本题考查了二次函数在实际问题中的应用,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.17、如图,抛物线y =x 2+bx +c 经过点A (−1,0),点B (2,−3),与y 轴交于点C ,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使△PBC 的面积是△BCD 面积的4倍,若存在,请直接写出点P 的坐标:若不存在,请说明理由.答案:(1)y =x 2−2x −3(2)存在,P 1(1+√5,1),P 2(1−√5,1)分析:(1)将点A (−1,0),点B (2,−3),代入抛物线得{1−b +c =04+2b +c =−3,求出b ,c 的值,进而可得抛物线的解析式.(2)将解析式化成顶点式得y =x 2−2x −3=(x −1)2−4,可得D 点坐标,将x =0代入得,y =−3,可得C 点坐标,求出S △BCD =1的值,根据S △PBC =4S △BCD 可得S △PBC =4,设P (m,m 2−2m −3),则S △PBC =12×2×(m 2−2m −3+3)=4,求出m 的值,进而可得P 点坐标.(1)解:∵抛物线y =x 2+bx +c 过点A (−1,0),点B (2,−3),∴{1−b +c =04+2b +c =−3, 解得{b =−2c =−3, ∴抛物线的解析式为:y =x 2−2x −3.(2)解:存在.∵y =x 2−2x −3=(x −1)2−4,∴D (1,−4),将x =0代入得,y =−3,∴C (0,−3),又∵B (2,-3),∴BC //x 轴,∴D 到线段BC 的距离为1,BC =2,∴S △BCD =12×2×1=1,∴S △PBC =4S △BCD =4,设P (m,m 2−2m −3),由题意可知点P 在直线BC 上方,则S △PBC =12×2×(m 2−2m −3+3)=4,整理得,m 2−2m =4,解得m 1=1+√5,或m 2=1−√5,∴P 1(1+√5,1),P 2(1−√5,1),∴存在点P ,使△PBC 的面积是△BCD 面积的4倍,点P 的坐标为P 1(1+√5,1),P 2(1−√5,1).小提示:本题考查了待定系数法求二次函数解析式,二次函数顶点式,二次函数与三角形面积综合等知识.解题的关键在于对知识的熟练掌握与灵活运用.18、在“乡村振兴”行动中,某村办企业以A ,B 两种农作物为原料开发了一种有机产品,A 原料的单价是B 原料单价的1.5倍,若用900元收购A 原料会比用900元收购B 原料少100kg .生产该产品每盒需要A 原料2kg 和B 原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.答案:(1)每盒产品的成本为30元.(2)w=−10x2+1400x−33000;(3)当a≥70时,每天的最大利润为16000元;当60<a<70时,每天的最大利润为(−10a2+1400a−33000)元.分析:(1)设B原料单价为m元,则A原料单价为1.5m元.然后再根据“用900元收购A原料会比用900元收购B原料少100kg”列分式方程求解即可;(2)直接根据“总利润=单件利润×销售数量”列出解析式即可;(3)先确定w=−10x2+1400x−33000的对称轴和开口方向,然后再根据二次函数的性质求最值即可.解:(1)设B原料单价为m元,则A原料单价为1.5m元.依题意,得900m −9001.5m=100.解得,m=3,1.5m=4.5.经检验,m=3是原方程的根.∴每盒产品的成本为:4.5×2+4×3+9=30(元).答:每盒产品的成本为30元.(2)w=(x−30)[500−10(x−60)]=−10x2+1400x−33000;(3)∵抛物线w=−10x2+1400x−33000的对称轴为w=70,开口向下∴当a≥70时,a=70时有最大利润,此时w=16000,即每天的最大利润为16000元;当60<a<70时,每天的最大利润为(−10a2+1400a−33000)元.小提示:本题主要考查了分式方程的应用、二次函数的应用等知识点,正确理解题意、列出分式方程和函数解析式成为解答本题的关键.。

九年级上册数学《二次函数》同步练习题含答案

九年级上册数学《二次函数》同步练习题含答案

九年级上册数学《二次函数》同步练习题含答案九年级数学第22章《二次函数》同步练一、选择题1.已知反比例函数y=k/x的图象如图,则二次函数y=2kx^2-4x+k^2的图象大致为()2.(2020•牡丹江)抛物线y=3x^2+2x-1向上平移4个单位长度后的函数解析式为().A。

y=3x^2+2x-5B。

y=3x^2+2x-4C。

y=3x^2+2x+3D。

y=3x^2+2x+43.“一般的,如果二次函数y=ax^2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax^2+bx+c=0有两个不相等的实数根.--苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x^2-2x=(1/x)-2实数根的情况是()A。

有三个实数根B。

有两个实数根C。

有一个实数根D。

无实数根4.已知二次函数y=ax^2+bx+c自变量x与函数值y之间满足下列数量关系:x=2.y=45;x=37.y=374.那么 (a+b+c)/2a的值为()A。

24B。

20C。

10D。

45.对于二次函数y=(x-1)^2+2的图象,下列说法正确的是()A。

开口向下B。

对称轴是x=-1C。

顶点坐标是(1,2)D。

与x轴有两个交点6.(2020•天水)二次函数y=ax^2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是()A。

-3B。

-1C。

2D。

37.将函数y=x^2+6x+7进行配方正确的结果应为()A。

y=(x+3)^2+2B。

y=(x-3)^2+2C。

y=(x+3)^2-2D。

y=(x-3)^2-28.抛物线y=(1/2)(x-2)^2-3的顶点坐标是()A。

(2,-3)B。

(2,3)C。

(-2,3)D。

(-2,-3)二、填空题29.如图,是二次函数y=ax+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,2),则由图象可知,不等式ax+bx+c<0的解集是()。

10.已知函数y=-x^2+ax-(2/a),当-1≤x≤1时的最大值是2,则实数a的值为()。

第22章(二次函数与一元二次方程关系)同步练习题(含答案)

第22章(二次函数与一元二次方程关系)同步练习题(含答案)

二次函数与一元二次方程的关系同步练习题一、单选题(每小题3分,共66分)1.抛物线y=x 2﹣2x+1与坐标轴交点个数为( )A . 无交点B . 1个C . 2个D . 3个2.抛物线y=2(x+1)2﹣2与y 轴的交点的坐标是( )A . (0,﹣2)B . (﹣2,0)C . (0,﹣1)D . (0,0)3.若二次函数y=x 2+bx+c 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,且过点(5,5),则关于x 的方程x 2+bx+c=5的解为( )A .x 1=0或x 2=4B .x 1=1或x 2=5C .x 1=﹣1或 x 2=5D .x 1=1或x 2=﹣54.如图是二次函数y=ax 2+bx+c 的部分图象,由图象可知不等式ax 2+bx+c>0的解集是( ).A .B .C . 且D . 或5.二次函数与 的图像与x 轴有交点,则k 的取值范围是( )A .B . 且C .D . 且6.如图,二次函数 的图象交 轴于 , 两点,交 轴于 ,则 的面积为( )A .B .C .D .7.抛物线 的对称轴是( )A .B .C .D .8.二次函数 2y ax bx =+ 的图象如图,若一元二次方程2ax bx k 0++= 有实数解,则k 的最小值为( ) A . -4 B . -6 C . -8 D . 09.已知二次函数y =x 2-2x +c 的图象与x 轴的一个交点为(-3,0),则方程x 2-2x +c =0的两个根是( )A . -3,1B . 5,-3C . 4,-3D . 3,-310.若二次函数y =x 2+(m +1)x -m 的图象与坐标轴只有两个交点,则满足条件 的m 的值有( )A . 1个B . 2个C . 3个D . 4个11.在-3≤x≤0范围内,二次函数y=ax 2+bx+c(a≠0)的图像如图所示.在这个范围内,下列结论:①y 有最大值1,没有最小值;②当-3<x<-1时,y 随着x 的增大而增大;③方程ax 2+bx+c-12=0有两个不相等的实数根 .其中正确结论的个数是( ) A . 0个 B . 1个 C . 2个 D . 3个12.若抛物线y=x 2-6x+m-2(m 是常数)与x 轴只有一个交点A ,则点A 坐标为( )A . (-3,0)B . (-2,0)C . (3,0)D . (6,0)13.如果二次函数2y ax bx c =++(a>0)的顶点在x 轴的上方,那么( )A .240b ac -≥B .240b ac -<C .240b ac ->D .240b ac -=14.将二次函数y =2 x 2-4x -1的图像向右平移3个单位,则平移后的二次函数的 顶点是( )A .(-2,-3)B .(4,3)C .(4,-3)D .(1,0)15.函数y=ax 2﹣2x+1和y=ax+a (a 是常数,且a≠0)在同一直角坐标系中的图象 可能是( )16.如图是二次函数y=ax 2+bx+c 的图象,其对称轴为x=1,下列结论:①abc >0; ②2a+b=0;③4a+2b+c <0;④若 , , , 是抛物线上两点,则y 1<y 2其中结论正确的是( )A .①②B .②③C .②④D .①③④17.如图是二次函数y=ax 2+bx+c 的图象,下列结论:①二次三项式ax 2+bx+c 的最大值为4; ②4a+2b+c <0;③一元二次方程ax 2+bx+c=1的两根之和为﹣1;④使y≤3成立的x 的取值范围是x≥0.其中正确的个数有( )A . 1个B . 2个C . 3个D . 4个18.二次函数y=ax 2+bx+c 的图象如图所示对称轴是x=-1以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A . 1B . 2C . 3D . 419.一次函数 与二次函数在同一个坐标系中的图象可能是( )20.在同一平面直角坐标系内,一次函数y=ax+b与二次函数y=ax2+5x+b的图象可能是()21.二次函数y=x2+bx﹣1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A.t ≥﹣2 B.﹣2≤t<7 C.﹣2≤t<2 D.2<t<722.如果二次函数的图象在轴的下方,则的取值范围为()A.B.C.D.二、填空题(每小题3分,共24分)23.已知抛物线与轴一个交点的坐标为,则一元二次方程ax2-2ax+c=0的根为__________.24.抛物线y=ax2+bx+c与x轴的公共点是(﹣1,0),(3,0),则关于x的方程ax2+bx+c=0的两个根是_____.25.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m的最小值为.26.若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是_____.27.如图所示,抛物线y=ax2+bx+c(a0)与轴的两个交点分别为A(-1,0)和B(2,0),当y<0时,x的取值范围是___________.28.抛物线与轴的交点坐标是________,与轴的交点坐标是________.29.直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是_____.30.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是.(只填写序号)三、解答题(每小题10分,共30分)31.已知二次函数y=-x2+bx+c的图象经过A(2,0),B(0,-6)两点.(1)求这个二次函数的解析式;(2) 设该二次函数图象的对称轴与x轴交于点C,连接BA,BC,求ABC的面积和周长.32.如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相=kx+b经过点B,C.交于点C,直线y(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.33.如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的解析式;(2)设P为对称轴上一动点,求APC周长的最小值;(3)求△ABC的面积.二次函数与一元二次方程的关系同步练习题参考答案1.C 2.D 3.C 4.A 5.D 6.C 7.B 8.A 9.B 10.C 11.C 12.C 13.B 14.C 15.C.16.C 17.B 18.C 19.D 20.C.21.B 22.A 23.x1=-1、x2=324.x1=﹣1,x2=3 25.﹣3.26.m>927.x<-1或x>2 28.,,29.1<x<2.30.②⑤.31.(1)二次函数的解析式是y=-x2+4x-6;(2) S△ABC=6,△ABC的周长= 2+2+2.32.(1)y=x-3;(2)当y1>y2时,x<0和x>3.33.(1)y=x2-4x+3;(2)△APC的周长=3;(3)S△ABC=3.。

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)

九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?参考答案一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故答案为:﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故答案为:2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故答案为:﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故答案为:2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。

九年级数学上册 第22章 二次函数章节同步检测(含解析)(新版)新人教版-(新版)新人教版初中九年级

九年级数学上册 第22章 二次函数章节同步检测(含解析)(新版)新人教版-(新版)新人教版初中九年级

第22章一、单选题1.已知二次函数(1)(1)37y x a x a a =---+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值X 围是() A .2a <B .1a >-C .12a -<≤D .12a -≤<2.为了响应“足球进校国”的目标,某某市某学校开展了多场足球比赛在某场比赛中,一个足球被从地面向上踢出,它距地面的高度h (m )可以用公式h =﹣5t 2+v 0t 表示,其中t (s )表示足球被踢出后经过的时间,v 0(m /s )是足球被踢出时的速度,如果要求足球的最大高度达到20m ,那么足球被踢出时的速度应该达到( ) A .5m /sB .10m /sC .20m /sD .40m /s3.二次函数2241y x x =--+在自变量21x -≤≤的取值X 围内,下列说法正确的是( ) A .最大值为3 B .最大值为1 C .最小值为1D .最小值为04.已知二次函数()20y ax bx c a =++≠的图象如图所示,给出以下结论: ①因为0a >,所以函数y 有最大值;②该函数的图象关于直线1x =-对称;③0a b c -+>;④当3x =-或1x =时,函数y 的值都等于0.其中正确结论的个数是( )A .4B .3C .2D .15.二次函数y=ax 2+bc+c 的图象如图所示,则下列判断中错误的是( )A .图象的对称轴是直线x=﹣1B .当x >﹣1时,y 随x 的增大而减小C .当﹣3<x <1时,y <0D .一元二次方程ax 2+bx+c=0的两个根是﹣3,16.如图,在△ABC 中,∠B=90°,AB=6cm ,BC=12cm ,动点P 从点A 开始沿边AB 向B 以1cm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以2cm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过( )秒,四边形APQC 的面积最小.A .1B .2C .3D .47.在同一平面直角坐标系中,函数y =ax 2+b 与y =bx 2+ax 的图象可能是( )A .AB .BC .CD .D8.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12<n 时,则12y y <;②关于x 的一元二次方程210-+-+=ax bx c m 无实数解,那么()A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 9.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值X 围是()A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤10.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是()A .B .C .D .11.已知二次函数22(2)(21)1y k x k x =-+++与x 轴有交点,则k 的取值X 围在数轴上表示正确的是() A . B .C .D .12.如图,平行于x 轴的直线AC 分别交函数 y 1=x 2(x≥0)与 y 2=13x 2(x≥0)的图象于 B ,C 两点,过点C 作y 轴的平行线交y 1=x 2(x≥0)的图象于点D ,直线DE ∥AC 交 y 2=13x 2(x≥0)的图象于点E ,则DEAB =( )A .3B .1C .2D .3﹣二、填空题13.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m²-m+2019的值为_______14.a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b____c (用“>”或“<”号填空) 15.已知二次函数y =(x ﹣2)2﹣3,当x_____时,y 随x的增大而减小.16.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB 、BC 两边).设AB m =,若在P 处有一棵树与墙CD 、AD 的距离分别是18m 和6m ,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S 的最大值为___2m .17.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的对称轴是直线x=﹣1,与x 轴的一个交点是A (﹣3,0)其图象的一部分如图所示,对于下列说法:①2a=b;②abc >0,③若点B (﹣2,y 1),C (﹣52,y 2)是图象上两点,则y 1<y 2;④图象与x 轴的另一个交点的坐标为(1,0).其中正确的是_____(把正确说法的序号都填上)18.已知方程2x 2﹣3x ﹣5=0两根为52,﹣1,则抛物线y =2x 2﹣3x ﹣5与x 轴两个交点间距离为_________.三、解答题19.如图,在直角坐标系xOy 中有一梯形ABCO ,顶点C 在x 正半轴上,A 、B 两点在第一象限;且AB ∥CO ,AO =BC =2,AB =3,OC =5.点P 在x 轴上,从点(﹣2,0)出发,以每秒1个单位长度的速度沿x 轴向正方向运动;同时,过点P 作直线l ,使直线l 和x 轴向正方向夹角为30°.设点P 运动了t 秒,直线l 扫过梯形ABCO 的面积为S 扫.(1)求A 、B 两点的坐标;(2)当t=2秒时,求S扫的值;(3)求S扫与t的函数关系式,并求出直线l扫过梯形ABCO面积的34时点P的坐标.20.某工厂制作,A B两种手工艺品,B每天每件获利比A多105元,获利30元的A与获利240元的B数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式.(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.21.已知关于x的二次函数y=ax2-(2a+2)x+b(a≠0)在x=0和x=6时函数值相等.(1)求a的值;(2)若该二次函数的图象与直线y=-2x的一个交点为(2,m),求它的解析式;(3)在(2)的条件下,直线y=-2x-4与x轴,y轴分别交于A,B,将线段AB向右平移n(n>0)个单位,同时将该二次函数在2≤x≤7的部分向左平移n个单位后得到的图象记为G,请结合图象直接回答,当图象G与平移后的线段有公共点时,n的取值X围.22.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x-6)2+h.已知球网与O点的水平距离为9m,高度为,球场的边界距O点的水平距离为18m.(1)当时,求y与x的关系式(不要求写出自变量x的取值X围)(2)当时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值X围.23.已知反比例函数kyx=的图象与直线y x1=+都过点()3,n-.()1求n,k的值;()2若抛物线22y x2mx m m1=-+++的顶点在反比例函数kyx=的图象上,求这条抛物线的顶点坐标.24.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么X围内?25.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?26.我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x万元,可获得利润当地政府拟在“十二•五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x万元,可获利润(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少?(3)根据(1)、(2),该方案是否具有实施价值?参考答案1.D 【解析】 【分析】由抛物线与x 轴没有公共点,可得∆<0,求得2a <,求出抛物线的对称轴为直线x a =,抛物线开口向上,再结合已知当1x <-时,y 随x 的增大而减小,可得1a ≥-,据此即可求得答案. 【详解】(1)(1)37y x a x a a =---+-+22236x ax a a =-+-+,抛物线与x 轴没有公共点,22(2)4(36)0a a a ∴∆=---+<,解得2a <,抛物线的对称轴为直线22ax a -=-=,抛物线开口向上, 而当1x <-时,y 随x 的增大而减小,1a ∴≥-,∴实数a 的取值X 围是12a -≤<,故选D .【点睛】本题考查了二次函数图象与x 轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键. 2.C 【解析】 【分析】因为-5<0,抛物线开口向下,有最大值,根据顶点坐标公式表示函数的最大值,根据题目对最大值的要求,求待定系数v 0. 【详解】解:h=-5t 2+v 0•t,其对称轴为t=010V ,当t=010V 时,h 最大=-5×(010V )2+v 0•010V=20,解得:v 0=20,v 0=-20(不合题意舍去),故选C .【点睛】本题考查的是二次函数的应用,关键是利用当对称轴为t=-010V 时h 将取到最大值. 3.A 【解析】 【分析】把函数解析式变成顶点式,然后根据二次函数的最值问题解答. 【详解】∵y =﹣2x 2﹣4x +1=﹣2(x +1)2+3,∴在自变量﹣2≤x ≤1的取值X 围内,当x =﹣1时,有最大值3,当x =1时,有最小值为y =﹣2﹣4+1=﹣5. 故选A .【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键. 4.C 【解析】 【分析】根据二次函数的图像与性质,对结论一一判断即可. 【详解】①a >0,二次函数的图像开口向上,y 有最小值,此结论错误;②对称轴为x =132+-()=﹣1,此结论正确;③令x =﹣1,y =a ﹣b +c ,由图像可得,x =﹣1时,y <0,所以a ﹣b +c <0,此结论错误;④由图像可得,x =﹣3或x =1时,函数y 的值都为0,此结论正确,正确的结论有2个. 故选C.【点睛】本题主要考查二次函数的图像与性质,需熟记相关结论. 5.B 【解析】 【分析】直接根据二次函数的性质对各选项进行逐一分析即可. 【详解】A选项:∵抛物线与x轴的交点分别为-3,1,∴图象的对称轴是直线x=312-+=-1,故本选项正确;B选项:∵抛物线开口向上,对称轴是直线x=-1,∴当x<-1时,y随x的增大而减小,故本选项错误;C选项:由函数图象可知,当-3<x<1时,y<0,故本选项正确;D选项:∵抛物线与x轴的交点分别为-3,1,∴一元二次方程ax2+bx+c=0的两个根是-3,1,故本选项正确.故选B.【点睛】考查的是二次函数的性质,熟知二次函数的增减性是解答此题的关键.6.C【解析】【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积-三角形PBQ的面积”列出函数关系求最小值.【详解】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC-S△PBQ=12×12×6-12(6-t)×2t=t2-6t+36=(t-3)2+27.∴当t=3s时,S取得最小值.故选C.【点睛】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.7.D【解析】【分析】根据两个函数的开口方向及第一个函数与y轴的交点,第二个函数的对称轴可得相关图象.【详解】解:A、两个函数的开口方向都向上,那么a>0,b>0,可得第一个函数的对称轴是y轴,与y轴交于正半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;B 、两个函数的开口方向都向下,那么a <0,b <0,可得第一个函数的对称轴是y 轴,与y 轴交于负半轴,第二个函数的对称轴在y 轴的左侧,故本选项错误;C 、D 、两个函数一个开口向上,一个开口向下,那么a ,b 异号,可得第二个函数的对称轴在y 轴的右侧,故C 错误,D 正确. 故选D .【点睛】本题考查二次函数图象的性质,用到的知识点为:二次函数的二次项系数大于0,开口方向向上,小于0,开口方向向下;二次项系数和一次项系数同号,对称轴在y 轴的左侧,异号在y 轴的右侧;一次项系数为0,对称轴为y 轴;常数项是二次函数与y 轴交点的纵坐标. 8.A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误. 【详解】解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中,△=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负. 9.C 【解析】 【分析】找到最大值和最小值差刚好等于5的时刻,则M 的X 围可知. 【详解】 解:如图1所示, ∵2(1)4y x =--, ∴顶点坐标为(1,4)-, 当0x =时,3y =-, ∴(0,3)A -, 当4x =时,5y =, ∴(4,5)C , ∴当0m =时,(4,5)D -,∴此时最大值为0,最小值为5-; 如图2所示,当1m =时, 此时最小值为4-,最大值为1. 综上所述:01m ≤≤, 故选C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m的值为解题关键.10.B【解析】分析:可先根据一次函数的图象判断a的符号,再判断二次函数图象与实际是否相符,判断正误即可.详解:A.由一次函数y=ax﹣a的图象可得:a<0,此时二次函数y=ax2﹣2x+1的图象应该开口向下.故选项错误;B.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0.故选项正确;C.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上,对称轴x=﹣22a->0,和x轴的正半轴相交.故选项错误;D.由一次函数y=ax﹣a的图象可得:a>0,此时二次函数y=ax2﹣2x+1的图象应该开口向上.故选项错误.故选B.点睛:本题考查了二次函数以及一次函数的图象,解题的关键是熟记一次函数y=ax﹣a在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.11.C【解析】【分析】直接利用根的判别式得到△=(2k+1)2-4×(k-2)2≥0,再利用二次函数的定义得到k-2≠0,然后解两不等式得到k的X围,从而对各选项进行判断.【详解】解:∵二次函数y=(k-2)2x 2+(2k+1)x+1与x 轴有交点, ∴△=(2k+1)2-4(k-2)2≥0,解得34k , ∵(k-2)2≠0,∴k≠2, ∴k 的取值X 围为:34k 且2k ≠. 故选:C .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.解题的关键是掌握根的判别式求参数的取值X 围. 12.D 【解析】 【分析】设点A 的纵坐标为b, 可得点B 的坐标为,b), 同理可得点C 的坐标为b,b),D 3b ),E 点坐标(,可得DEAB的值. 【详解】解:设点A 的纵坐标为b, 因为点B 在21y x =的图象上, 所以其横坐标满足2x =b, 根据图象可知点B 的坐标为,b), 同理可得点C 的坐标为∴所以点D 因为点D 在21y x =的图象上, 故可得y=2=3b ,所以点E 的纵坐标为3b, 因为点E 在2213y x =的图象上, ∴213x =3b ,因为点E 在第一象限, 可得E 点坐标为(故DE==(3所以DEAB=3 故选D.【点睛】本题主要考查二次函数的图象与性质. 13.2020【解析】【分析】把点(m,0)代入抛物线y=x²-x-1求出m²-m的值,再代入所求代数式进行计算即可.【详解】∵抛物线y=x²−x−1与x轴的一个交点为(m,0),∴m²−m−1=0,∴m²−m=1,∴原式=1+2019=2020.故答案为2020.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于利用待定系数法求解.14.<【解析】试题分析:将二次函数y=x2-2ax+3转换成y=(x-a)2-a2+3,则它的对称轴是x=a,抛物线开口向上,所以在对称轴右边y随着x的增大而增大,点A点B均在对称轴右边且a+1<a+2,所以b<c.15.<2【解析】【分析】根据二次函数的性质,找到解析式中的a为1和对称轴,由a的值可判断出开口方向,在对称轴的两侧可以讨论函数的增减性.【详解】解:在y=(x-2)2-3中,a=1,∵a>0,∴开口向上,由于函数的对称轴为x=2,当x<2时,y的值随着x的值增大而减小,当x>2时,y的值随着x的值增大而增大,故答案为:<2.【点睛】本题考查了二次函数的性质,找到的a的值和对称轴,对称轴方程是解题的关键.16.180【解析】【分析】根据长方形的面积公式可得S 关于m 的函数解析式,由树与墙CD ,AD 的距离分别是18m 和6m 求出m 的取值X 围,再结合二次函数的性质可得答案. 【详解】 解:∵AB =m 米, ∴BC =(28-m )米.则S =AB •BC =m (28-m )=-m 2+28m . 即S =-m 2+28m (0<m <28). 由题意可知,62818m m ≥⎧⎨-≥⎩, 解得6≤m ≤10.∵在6≤m ≤10内,S 随m 的增大而增大, ∴当m =10时,S 最大值=180, 即花园面积的最大值为180m 2. 故答案为180.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出S 与m 的函数关系式是解题关键. 17.①②④ 【解析】 【分析】根据抛物线的对称轴方程得到﹣2ba=﹣1,则可对①进行判断;利用抛物线开口方向得到a <0,利用对称轴位置得到b <0,利用抛物线与y 轴的交点在x 轴上方得c >0,则可对②进行判断;根据二次函数的性质对③进行判断;利用抛物线的对称性对④进行判断. 【详解】∵抛物线的对称轴为直线x =﹣2ba=﹣1,∴b =2a ,所以①正确; ∵抛物线开口向下,∴a <0,∴b =2a <0.∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以②正确;∵x<﹣1时,y随x的增大而增大,∴y1>y2,所以③错误;∵抛物线对称轴是直线x=﹣1,抛物线与x轴的一个交点是A(﹣3,0),∴抛物线与x轴的一个交点坐标为(1,0),所以④正确.故答案为①②④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).也考查了二次函数的性质.18.7 2【解析】试题分析:根据一元二次方程与二次函数的关系可知抛物线与x轴两交点的横坐标,再根据距离公式即可得出答案.解:∵方程2x2﹣3x﹣5=0两根为52,﹣1,∴抛物线y=2x2﹣3x﹣5与x轴两个交点的横坐标分别为52,﹣1,∴两个交点间距离为57(1)22 --=.故答案为72.19.(1)(1),(4);(2(3)22(02)4=3)7)t tS tt≤<-≤<⎪-≤≤⎪⎩扫;P的坐标为(5﹣,0).【解析】【分析】(1)两底的差的一半就是A 的横坐标;过A 、B 作x 轴的垂线,在构建的直角三角形中根据OA 的长及两底的差便可求出梯形的高即A 点的纵坐标.得出A 点坐标后向右平移3个单位就是B 点的坐标.(2)当t =2时,P 、O 两点重合,如果设直线l 与AB 的交点为D ,那么AD =2,而AD 边上的高就是A 点的纵坐标,由此可求出△ADO 的面积及直线l 扫过的面积. (3)本题要分三种情况进行讨论:①当P 在原点左侧,即当0≤t <2时,重合部分是个三角形,如果设直线l 与AO ,AB 分别交于E ,F ,可根据△AEF ∽△AOD ,用相似比求出其面积.即可得出S ,t 的函数关系式.②当P 在O 点右侧(包括和O 重合),而F 点在B 点左侧时,即当2≤t <3时,扫过部分是个梯形,可根据梯形的面积计算方法即可得出直线l 扫过部分的面积.也就能得出S ,t 的函数关系式.③当P 点在C 点左侧(包括和C 点重合),F 点在B 点右侧(包括和B 点重合),即当3≤t ≤7时,扫过部分是个五边形,可用梯形ABCO 的面积减去△MPC 的面积来得出S ,t 的函数关系式. 【详解】(1)过A 作AD ⊥OC 于D ,过B 作BE ⊥OC 于E ,则ADEB 是矩形. ∵ADEB 是矩形,∴AD =BE =3.∵AO =BC ,∴△AOD ≌△BCE ,∴OD =CE =(OC -AB )÷2=1.∵AO =2,∴AD ,∴A (1.∵OE =OD +DE =1+3=4,BE =AD B (4. ∵BC =2EC ,∴∠EBC =30°,∴∠OCB =60°.(2)当t =2时,P 、O 两点重合,如果设直线l 与AB 的交点为D ,那么AD =2,而AD 边上的高就是A 点的纵坐标,∴S 扫=122⨯.(3)分三种情况讨论:①当0≤t <2时,如图1,△AEF ∽△AOD,222AEF AODS SAE t SAO ===()(),∴S 扫=t 2;②当2≤t <3时,如图2,S 扫=S △AOD +S □DOPF =t ﹣2),∴S 扫= ③当3≤t ≤7时,如图3,过B 作直线EB ∥直线l 交OC 于E . ∵∠BEC =30°,∠OCB=60°,∴∠CBE =90°,∴EC =2BC=4,∴S △CEB =122⨯⨯=CP =7-t . ∵MP ∥BE ,∴27423CPM CPM CEB S S tS ()-==,∴S △CPM =274t -(),∴S 扫=S △CPM =4274t -(),∴S扫=2综上所述:22(02)4=3)7)t S t t ≤<⎪≤<⎪+≤≤⎪⎩扫.∵-234=⨯t 2﹣14t +41=0,t 1=7﹣,t 2=7(舍),∴P的坐标为(5﹣0).【点睛】本题考查了梯形的性质,相似三角形的判定和性质,二次函数的综合应用等知识点.主要考查了学生分类讨论和数形结合的数学思想方法.20.(1)制作一件A 获利15元,制作一件B 获利120元(2)16533y x =-+(3)此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为2198元 【解析】 【分析】(1)设制作一件A 获利x 元,则制作一件B 获利(105x +)元,由题意得:30240105x x =+;(2)设每天安排x 人制作B ,y 人制作A ,则2y 人制作C ,于是有:265y x y ++=;(3)列出二次函数,2221652130902130902100195033W x x y x x x x x ⎛⎫=-++=-++-+=-++ ⎪⎝⎭,再求函数最值即可.【详解】(1)设制作一件A 获利x 元,则制作一件B 获利(105x +)元,由题意得:30240105x x =+,解得:15x =, 经检验,15x =是原方程的根, 当15x =时,105120x +=,答:制作一件A 获利15元,制作一件B 获利120元.(2)设每天安排x 人制作B ,y 人制作A ,则2y 人制作C ,于是有:265y x y ++=,∴16533y x =-+ 答:y 与x 之间的函数关系式为∴16533y x =-+. (3)由题意得:2152[1202(5)]230213090W y x x y x x y =⨯⨯+--+⨯=-++,又∵16533y x =-+ ∴2221652130902130902100195033W x x y x x x x x ⎛⎫=-++=-++-+=-++ ⎪⎝⎭, ∵221001950W x x =-++,对称轴为25x =,而25x =时,y 的值不是整数,根据抛物线的对称性可得:当26x =时,22261002619502198W =-⨯+⨯+=最大元.此时制作A 产品的13人,B 产品的26人,C 产品的26人,获利最大,最大利润为2198元.【点睛】考核知识点:分式方程,二次函数应用.根据题意列出方程,把实际问题转化为函数问题是关键.21.(1) x=3,a=12(2) y=12x 2-3x(3)n=1或2≤n ≤4, 【解析】【分析】(1)可得二次函数x=3,可求得a 的值;(2)先求出交点为(2,-4),代入(1)解析式可得二次函数的解析式;(3)可先求得A 、B 点坐标及直线y=-2x-4向右平移n(n>0)个单位的表达式,二次函数在2≤x ≤7的部分向左平移n 个单位后得到的图象记为G ,可得G 的函数表达式,两者联立的方程有解,可得n 的取值X 围.【详解】(1)∵二次函数在x=0和x=6时函数值相等,∴该二次函数的对称轴为x=3∴x=()2232a a -+-=,解并检验得:a=12. (2)∵直线y=-2x 过点(2,m),∴m=-2×2=-4,由题意,点(2,-4)在抛物线上,且由(1)a=12,抛物线为y=12x 2-3x+b,可得:2-6+b=-4,解得b=0,∴抛物线的解析式为y=12x 2-3x. (3)①如图:当n=1时,一次函数为22y x =--(-1≤x ≤1),G 为20.52 2.5y x x =--(1≤x ≤6),有公共交点(1,-4),故n=1满足条件;②当n=2时, 2y x =-(0≤x ≤2), G 为20.54y x x =--(0≤x ≤5), 有公共交点(2,-4),故n=2满足条件 ③当n=4时, 24y x =-+(2≤x ≤4), G 为20.54y x x =+-(-2≤x ≤3),此时有公共点(2,0) 故:n=1或2≤n ≤4,【点睛】本题主要考查平移的性质,根的判别式及二次函数的综合.22.(1)y=160-(x -6)2 (2)球能越过网;球会过界(3)h≥83【解析】【分析】【详解】试题分析:(1)利用将点(0,2),代入解析式求出即可;(2)利用当x=9时,y=﹣160(x ﹣6)2,当y=0时,21(6) 2.6060x --+=,分别得出即可; (3)根据当球正好过点(18,0)时,抛物线y=a (x ﹣6)2+h 还过点(0,2),以及当球刚能过网,此时函数解析式过(9,),抛物线y=a (x ﹣6)2+h 还过点(0,2)时分别得出h 的取值X 围,即可得出答案. 试题解析:解:(1),球从O 点正上方2m 的A 处发出,∴抛物线y=a (x ﹣6)2+h 过点(0,2),∴2=a(0﹣6)2,解得:a=﹣160, 故y 与x 的关系式为:y=﹣160(x ﹣6)2, (2)当x=9时,y=﹣160(x ﹣6)2>, 所以球能过球网;当y=0时,21(6) 2.6060x --+=, 解得:x 1>18,x 2=6﹣(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y=a (x ﹣6)2+h 还过点(0,2),代入解析式得:236{0144a h a h=+=+, 解得:154{83a h =-=, 此时二次函数解析式为:y=﹣154(x ﹣6)2+83, 此时球若不出边界h≥83, 当球刚能过网,此时函数解析式过(9,),抛物线y=a (x ﹣6)2+h 还过点(0,2),代入解析式得:222.43=a 9-6+h 2=a 0-6+h⎧⎨⎩()()解得:432700{19375a h =-=, 此时球要过网h≥19375故若球一定能越过球网,又不出边界,h 的取值X 围是:h≥.考点:二次函数的应用23.(1)k 6=(2)()2,1--,()3,4【解析】【分析】(1)根据反比例函数y=k x的图象与直线y=x+1都过点(-3,n ),直接代入一次函数解析式求出即可,进而得出k 的值;(2)利用抛物线y=x 2-2mx+m 2+m+1的顶点在反比例函数y=k x 的图象上,表示出二次函数的顶点坐标,代入反比例函数解析式求出即可.【详解】()1∵反比例函数k y x=的图象与直线y x 1=+都过点()3,n -, ∴将点()3,n -,代入y x 1=+,∴n 31=-+,n 2=-,∴点的坐标为:()3,2--,将点代入k y x=, ∴xy k =, k 6=;()2∵抛物线22y x 2mx m m 1=-+++的顶点为:2b 4ac b ,2a 4a ⎛⎫-- ⎪⎝⎭ ∴b m 2a-=,()2224m m 14m 4ac b m 14a 41++--==+⨯, ∴抛物线22y x 2mx m m 1=-+++的顶点为:()m,m 1+,∵抛物线22y x 2mx m m 1=-+++的顶点在反比例函数k y x=的图象上, ∴()m m 16+=,∴()()m 2m 30-+=,∴1m 2=-,2m 3=,∴抛物线22y x 2mx m m 1=-+++的顶点为:()2,1--,()3,4. 【点睛】此题主要考查了反比例函数的综合应用以及二次函数顶点坐标的求法,求出二次函数顶点坐标再利用图象上点的性质得出()m m 16+=是解题关键.24.(1)y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)当x=80时,y 最大值=4500;(3)70≤x≤90.【解析】【分析】(1) 根据题目已知条件, 可以判定销量与售价之间的关系式为一次函数, 并可以进一步写出二者之间的关系式; 然后根据单位利润等于单位售价减单位成本, 以及销售利润等于单位利润乘销量, 即可求出每天的销售利润与销售单价之间的关系式.(2) 根据开口向下的抛物线在对称轴处取得最大值, 即可计算出每天的销售利润及相应的销售单价.(3) 根据开口向下的抛物线的图象的性质,满足要求的x 的取值X 围应该在﹣5(x ﹣80)2+4500=4000的两根之间,即可确定满足题意的取值X 围.【详解】解:(1)y=(x ﹣50)[50+5(100﹣x )]=(x ﹣50)(﹣5x+550)=﹣5x 2+800x ﹣27500,∴y=﹣5x 2+800x ﹣27500(50≤x≤100);(2)y=﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y 最大值=4500;(3)当y=4000时,﹣5(x ﹣80)2+4500=4000,解得x 1=70,x 2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点睛】本题主要考查二次函数的应用.25.(1) 2122s t t =- ;(2) 截止到10月末,公司累积利润可达到30万元;(3) 第8个月公司获利润万元.【解析】【分析】(1)本题是通过构建函数模型解答销售利润的问题,应根据图象以及题目中所给的信息来列出S 与t 之间的函数关系式; (2)把S =30代入累计利润S =12t 2﹣2t 的函数关系式里,求得月份; (3)分别t =7,t =8,代入函数解析S =12t 2﹣2t ,再把总利润相减就可得出. 【详解】(1)由图象可知其顶点坐标为(2,﹣2),故可设其函数关系式为:S =a (t ﹣2)2﹣2.∵所求函数关系式的图象过(0,0),于是得:a (0﹣2)2﹣2=0,解得:a =12,∴所求函数关系式为:S =12(t ﹣2)2﹣2,即S =12t 2﹣2t . 答:累积利润S 与时间t 之间的函数关系式为:S =12t 2﹣2t ; (2)把S =30代入S =12(t ﹣2)2﹣2,得:12(t ﹣2)2﹣2=30. 解得:t 1=10,t 2=﹣6(舍去).答:截止到10月末公司累积利润可达30万元.(3)把t=7代入关系式,得:S=12×72﹣2×7=10.5,把t=8代入关系式,得:S=12×82﹣2×8=16,16﹣10.5=5.5.答:第8个月公司所获利是万元.【点睛】本题主要考查了二次函数在实际生活中的应用,我们首先要吃透题意,确定变量,建立函数模型,尤其是对本题图象中所给的信息是解决问题的关键.26.(1)205(万元);(2)3175(万元);(3)有很大的实施价值.【解析】【分析】(1)由P=-(x-60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P1=41×5(万元)(2)若实施规划,在前2年中,当x=50时,每年最大利润为:P=-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,则其总利润W=[-(x-60)2+41+(-x2+x+160]×3=-3(x-30)2+3195,当x=30时,W的最大值为3195万元,(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.【详解】解:(1)由P=-(x-60)2+41知,每年只需从100万元中拿出60万元投资,即可获得最大利润41万元,则不进行开发的5年的最大利润P1=41×5=205(万元)(2)若实施规划,在前2年中,当x=50时,每年最大利润为:P=-(50-60)2+41=40万元,前2年的利润为:40×2=80万元,扣除修路后的纯利润为:80-50×2=-20万元.设在公路通车后的3年中,每年用x万元投资本地销售,而用剩下的(100-x)万元投资外地销售,则其总利润W=[-(x-60)2+41+(-x2+x+160]×3=-3(x-30)2+3195当x=30时,W的最大值为3195万元,∴5年的最大利润为3195-20=3175(万元)(3)规划后5年总利润为3175万元,不实施规划方案仅为205万元,故具有很大的实施价值.。

2022年人教版数学九年级上册第二十二章《二次函数》同步练习(附答案)2(22.1)

2022年人教版数学九年级上册第二十二章《二次函数》同步练习(附答案)2(22.1)

第二十二章二次函数周周测2一、选择题〔共10小题,每题3分,共30分〕 1.假设y =(2-m )22m x 是二次函数,那么m 的值是〔 〕A .±2B .2C .-2D .不能确定 2.二次函数y =2(x -1)2+3的图象的顶点坐标是〔 〕A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3) 3.假设二次函数y =x 2+bx 的图象的对称轴是直线x =2,那么b 的值为〔 〕A .2B .-2C .4D .-44.将抛物线y =(x -1)2+2向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为〔 〕 A .y =(x -1)2+4 B .y =(x -4)2+4 C .y =(x +2)2+6 D .y =(x -4)2+6 5.抛物线y =x 2-mx -m 2+1的图象过原点,那么m 为〔 〕A .0B .1C .-1D .±16.二次函数的图象〔0≤x ≤3〕如下图,关于该函数在所给自变量取值范围内,以下说法正确的选项是〔 〕A .有最小值0,最大值3B .有最小值-1,最大值3C .有最小值-1,最大值0D .有最小值-1,无最大值7.二次函数y =x 2+2x +4的最小值为〔 〕 A .3B .4C .5D .68.二次函数y =ax 2+bx +c 的图象如下图,那么点(b ,ac)在〔 〕 A .第一象限B .第二象限C .第三象限D .第四象限9.二次函数y =x 2-2x -3的图象如下图,以下说法中正确的选项是〔 〕 A .函数图象与y 轴的交点坐标是(0,3) B .顶点坐标是(1,-3)C .函数图象与x 轴的交点坐标是(3,0)、(-1,0)D .当x <0时,y 随x 的增大而减小10.如图是二次函数y =ax 2+bx +c 图象的一局部,且过点A (3,0),二次函数图象的对称轴是直线x =1,以下结论正确的选项是〔 〕 A .b 2-4ac <0B .ac >0C .b =2aD .a -b +c =0二、填空题〔本大题共6个小题,每题3分,共18分〕11.将抛物线y =x 2的图象向上平移1个单位,那么平移后的抛物线的解析式为______________ 12.抛物线y =(x -1)2+2的对称轴是_________ 13.二次函数y =x 2+1的最小值是_________14.如下图,在同一坐标系中,作出:① y =3x 2;② 221x y;③ y =x 2的图象,那么图象从里到外的三条抛物线对应的函数依次是〔填序号〕___________15.如图,抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,顶点C 的纵坐标为-2.现将抛物线向右平移2个单位,得到抛物线y =a 1x 2+b 1x +c 1,那么阴影局部的面积为___________16.抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点〔点A 在点B 左侧〕,点C 关于x 轴的对称点为C ′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星〞抛物线,那么抛物线y =x 2-2x -3的“梦之星〞抛物线的解析式为___________ 三、解答题〔共8题,共72分〕17.〔此题8分〕通过配方,写出以下抛物线的开口方向、对称轴和顶点坐标 (1) y =x 2-4x +5 (2) y =-4x 2+3x18.〔此题8分〕抛物线y =-x 2+bx +c 经过点A (3,0)、B (-1,0) (1) 求抛物线的解析式 (2) 求抛物线的顶点坐标19.〔此题8分〕在平面直角坐标系中,抛物线y =x 2+5x +4的顶点为A ,对称轴交x 轴于B ,抛物线与y 轴交于C 点 (1) 求点A 、B 、C 的坐标(2) 将抛物线y =x 2+5x +4先向右平移1个单位长度后,再向下平移2个单位长度,求平移后的抛物线的解析式20.〔此题8分〕二次函数的图象经过点A (0,3)、B (-3,0)、C (2,-5) (1) 试确定此二次函数解析式(2) 判断点P(-2,3)是否在这个二次函数的图象上?如果在,请求出△P AB的面积;如果不在,请说明理由21.〔此题8分〕如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A 在x轴上,点B的横坐标为2,连结AM、BM(1) 求抛物线的函数关系式(2) 判断△ABM的形状,并说明理由2+bx+c中,函数y与自变量x的局部对应值如下表:x……-1 0 1 2 3 4 ……y……10 5 2 1 2 5 ……(1) 求该二次函数的关系式(2) 当x为何值时,y有最小值,最小值是多少?(3) 假设A(m,y1)、B(m+1,y2)两点都在该函数的图象,其中m<1,试比拟y1与y2的大小23.〔此题10分〕抛物线y=x2-x-6与x轴交于点A、B〔A在B的左边〕,与y轴交于点C (1) 求△ABC的面积(2) 假设M 在y 轴右侧的抛物线上,S △AMO =32S △COB ,求M 的坐标24.〔此题12分〕如图,抛物线C 1:y =a (x -1)2经过点A (3,4) (1) 求a 的值(2) 将抛物线C 1向下平移k 〔k >0〕个单位后,得到抛物线C 2,且C 2经过点B (3,0),求k 的值及C 2的解析式(3) 设抛物线C 2交y 轴于点D ,点P 是抛物线C 2的对称轴上一点,且△PBD 的为直角三角形,求P 点的坐标第二十四章 二次函数周周测1 一、选择题〔共16小题〕1.如图,△ABC 内接于⊙O ,AB=BC ,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么AB 的值为〔 〕A.3 B.2C.3D.22.如图,OA是⊙O的半径,弦BC⊥OA,D是⊙O上一点,假设∠ADB=28°,那么∠AOC 的度数为〔〕A.14°B.28°C.56°D.84°3.如图,⊙O的直径CD过弦EF的中点G,∠DCF=20°,那么∠EOD等于〔〕A.10°B.20°C.40°D.80°4.如图,点C,D是半圆上的三等分点,连接AC,BC,CD,OD,BC和OD相交于点E.那么以下结论:①∠CBA=30°,②OD⊥BC,③OE=AC,④四边形AODC是菱形.正确的个数是〔〕A.1 B.2 C.3 D.45.如图,圆心角∠BOC=78°,那么圆周角∠BAC的度数是〔〕A.156°B.78°C.39°D.12°6.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,那么∠BOC等于〔〕A.60°B.70°C.120°D.140°7.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,那么∠AEB的度数为〔〕A.36°B.46°C.27°D.63°8.如图,A、B、C是⊙O上的三点,且∠ABC=70°,那么∠AOC的度数是〔〕A.35°B.140°C.70°D.70°或140°9.以下四个图中,∠x是圆周角的是〔〕A.B.C.D.10.〔2021•龙岩〕如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,那么弦AB 的长为〔〕A.B.2 C.2D.411.如图,在⊙O中,∠OAB=22.5°,那么∠C的度数为〔〕A.135°B.122.5°C.115.5°D.112.5°12.如图,⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,那么∠BCD等于〔〕A.116°B.32°C.58°D.64°13.如图,在⊙O中,直径CD⊥弦AB,那么以下结论中正确的选项是〔〕A.AD=AB B.∠BOC=2∠D C.∠D+∠BOC=90°D.∠D=∠B14.如图,在⊙O中,∠CBO=45°,∠CAO=15°,那么∠AOB的度数是〔〕A.75°B.60°C.45°D.30°15.如图,⊙O是△ABC的外接圆,∠OCB=40°,那么∠A的度数是〔〕A.40°B.50°C.60°D.100°16.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,那么∠ABD=〔〕A.20°B.46°C.55°D.70°二、填空题〔共13小题〕17.如图,点A、B、C、D在⊙O上,OB⊥AC,假设∠BOC=56°,那么∠ADB=______度.18.如图,点A、B、C在⊙O上,假设∠C=30°,那么∠AOB的度数为______°.19.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,那么∠BOD=______.20.〔2021•盘锦〕如图,⊙O直径AB=8,∠CBD=30°,那么CD=______.21.在圆中,30°的圆周角所对的弦的长度为2,那么这个圆的半径是______.22.如图,⊙O是△ABC的外接圆,假设∠BOC=100°,那么∠BAC=______.23.如图,AB是⊙O的直径,点C在⊙O上,点P在线段OA上运动.设∠BCP=α,那么α的最大值是______.24.如图,P是⊙O外一点,A、B、C是⊙O上的三点,∠AOB=60°,PA、PB分别交于M、N两点,那么∠APB的范围是______.25.如下图⊙O中,∠BAC=∠CDA=20°,那么∠ABO的度数为______.26.点O是△ABC外接圆的圆心,假设∠BOC=110°,那么∠A的度数是______.27.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,那么⊙O的直径的长是______.28.如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,那么∠BOC=______度.29.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,那么∠AED的余弦值是______.三、解答题〔共1小题〕30.〔1〕甲市共有三个郊县,各郊县的人数及人均耕地面积如表所示:人均耕地面积/公郊县人数/万顷A 20B 5C 10求甲市郊县所有人口的人均耕地面积〔精确到0.01公顷〕;〔2〕先化简下式,再求值:,其中,;〔3〕如图,A,B,C,D是⊙O上的四点,延长DC,AB相交于点E,假设BC=BE.求证:△ADE是等腰三角形.答案一、选择题〔共16小题〕1.A;2.C;3.C;4.D;5.C;6.D;7.A;8.B;9.C;10.C;11.D;12.B;13.B;14.B;15.B;16.C;二、填空题〔共13小题〕17.28;18.60;19.80°;20.4;21.2;22.50°;23.90°;24.0°<∠APB<30°;25.50°;26.55°或125°;27.;28.52;29.;三、解答题〔共1小题〕30.。

九年级数学上册第二十二章二次函数单元同步练习(含答案)(79)

九年级数学上册第二十二章二次函数单元同步练习(含答案)(79)

九年级数学上册第二十二章二次函数单元同步练习(含答案)二次函数()20y ax bx c a =++≠的图象如图所示,给出下列结论:①24b ac >;②0abc <;③20a b +>;④0a b c ++<;⑤0a b c -+=.其中正确的个数为( )A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】由抛物线与x 轴有2个交点得到240b ac ->,即24b ac >;由抛物线开口方向得到0a <,由抛物线的对称轴为直线12b x a==-得到20b a =,所以20a b +<;由抛物线与y 轴的交点在x 轴上方得到0c >,所以0abc >;由1x =时的函数值与3x =-时的函数值相同,均为负数得到0a b c ++<;由x =−1时,函数值为正数得到0a b c -+>.【详解】解:抛物线与x 轴有2个交点,∴240b ac ->,即24b ac >,故①正确;抛物线开口向下,0a ∴<, 抛物线的对称轴为直线12b x a==-, 20b a =, 20a b ,故③错误; 抛物线与y 轴的交点在x 轴上方,0c ∴>,0abc ∴>,故②错误;根据二次函数图像的对称性,1x =时的函数值与3x =-时的函数值相同且均为负数,0a b c ∴++<,故④正确;1x =时,0y >0a b c ∴-+>,故⑤错误;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质.47.求二次函数2(0)y ax bx c a =++≠的图象如图所示,其对称轴为直线1x =-,与x 轴的交点为()1,0x 、()2,0x ,其中101x <<,有下列结论:①0abc >;②232x -<<-;③421a b c -+<-;④()21a b am bm m ->+≠-;⑤13a >;其中,正确的结论有( )A .5B .4C .3D .2【答案】C【解析】【分析】 由抛物线开口方向得a >0,由抛物线的对称轴为直线12b x a=-=-得2b a =>0,由抛物线与y 轴的交点位置得c <0,则abc <0;由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性得到抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2;抛物线的对称轴为直线1x =-,且c <-1,2x =-时,421a b c -+<-;抛物线开口向上,对称轴为直线1x =-,当1x =-时,y a b c =-+最小值,当x m =得:2y am bm c =++,且1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +;对称轴为直线12b x a=-=-得2b a =,由于1x =时,0y >,则a b c ++>0,所以2a a c ++>0,解得13a c >-,然后利用1c <-得到13a >-. 【详解】∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线12b x a=-=-,∴b=2a >0, ∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①错误;∵抛物线2y ax bx c =++与x 轴一个交点在点(0,0)与点(1,0)之间,而对称轴为1x =-,由于抛物线与x 轴一个交点在点(0,0)与点(1,0)之间,根据抛物线的对称轴性,∴抛物线与x 轴另一个交点在点(-3,0)与点(-2,0)之间,即有-3<2x <-2,所以②正确;∵抛物线的对称轴为直线1x =-,且c <-1,∴当2x =-时,421a b c -+<-, 所以③正确;∵抛物线开口向上,对称轴为直线1x =-,∴当1x =-时,y a b c =-+最小值, 当x m =代入2y ax bx c =++得:2y am bm c =++,∵1m ≠-,∴y a b c =-+<最小值,即a b -<2am bm +,所以④错误;∵对称轴为直线12b x a=-=-,∴2b a =, ∵由于1x =时,0y >,∴a b c ++>0,所以2a a c ++>0,解得13a c >-, 根据图象得1c <-,∴13a >-,所以⑤正确. 所以②③⑤正确, 故选:C .【点睛】本题考查了二次函数的图象与系数的关系,以及抛物线与x 轴、y 轴的交点,二次函数y=ax 2+bx+c (a ≠0),a 决定抛物线开口方向;c 的符号由抛物线与y 轴的交点的位置确定;b 的符号由a 及对称轴的位置确定;当x =1时,y =a b c ++;当1x =-时,y a b c =-+.48.抛物线22y x x =++的图象上有三个点()3,a -,()2,b -,()3,c ,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【答案】C【解析】【分析】 根据二次函数的性质得到抛物线开口向上,求出抛物线的对称轴,则根据离对称轴越远的点对应的函数值越大求解即可.【详解】∵二次函数y=x 2+x+2中,a=1>0,∴开口向上,对称轴为x=122b a -=- ∴点(3,c)离对称轴最远,点(-2,b)离对称轴最近,∴c a b >>.故选:C .【点睛】本题考查了二次函数的性质.关键是找到二次函数的对称轴以及掌握二次函数y=ax 2+bx+c(a ≠0)的图象性质.49.在平面直角坐标系中,二次函数223y x x =+-的图象如图所示,点()11,A x y ,()22,B x y 是该二次函数图象上的两点,其中1230x x -≤<≤,则下列结论正确的是( )A.12>C.函数y的最小值是3-D.函数yy yy y<B.12的最小值是4-【答案】D【解析】【分析】根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【详解】223=+-=(x+3)(x−1),y x x则该抛物线与x轴的两交点横坐标分别是−3、1.又223=+-=()214y x xx+-,∴该抛物线的顶点坐标是(−1,−4),对称轴为x=-1.A. 无法确定点A. B离对称轴x=−1的远近,故无法判断y1与y2的大小,故本选项错误;B. 无法确定点A. B离对称轴x=−1的远近,故无法判断y1与y2的大小,故本选项错误;C. y的最小值是−4,故本选项错误;D. y的最小值是−4,故本选项正确。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学 上册 第22章《二次函数》同步练习一、选择题1.抛物线2256y x x =-+的对称轴是( )A 、54x =B 、52x =C 、54x =-D 、52x =- 2.抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系的图象可能是( )3.便民商店经营一种商品,在销售过程中,发现一周利润y (元)与每件销售价x (元)之间的关系满足y=-2(x-20)2+1558,由于某种原因,价格只能15≤x ≤22,那么一周可获得最大利润是( )A.20 B .1508 C .1550 D .15584.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )5.抛物线y=x 2向下平移一个单位得到抛物线( )A.y=(x+1)2B.y=(x ﹣1)2C.y=x 2+1D.y=x 2﹣16.已知二次函数y=ax 2+bx+c 的图像如图,则下列结论:①ac >0②a-b+c=0 ③ x <0时,y <0;④ax 2 + bx + c=0(a ≠0)有两个不小于-1的实数根。

其中错误..的结论有( )(A )①② (B )③④ (C )①③ (D )②④7.二次函数y=mx 2+x-2m (m 是非0常数)的图象与x 轴的交点个数为( )A .0个B .1个C .2个D .1个或2个8.若二次函数y=x 2-6x+c 的图象过A (-1,y 1),B (2,y 2),C (32 ,y 3),则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 3>y 1>y 29.x 2+y=3,当-1≤x ≤2时,y 的最小值是( )A .-1B .2C .114D .3 10.抛物线y=a (x-h )2+k 向左平移2个单位,再向下平移3个单位得到y=x 2+1,则h 、k 的值是( )A .h=-2,k=-2B .h=2,k=4C .h=1,k=4D .h=2,k=-2二、填空题11.将抛物线y=x 2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为 .12.如图是二次函数y=a 2x +bx+c (a ≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b ﹣2a=0;②4a ﹣2b+c <0;③a ﹣b+c=﹣9a ;④若(﹣3,1y ),(32,2y )是抛物线上两点,则1y >2y ,其中正确的序号是 .13.已知抛物线y=x 2﹣x ﹣1与x 轴的一个交点为(a ,0),那么代数式a 2﹣a+2014的值为 .14.抛物线y=﹣x 2+4x ﹣1的顶点坐标为 .15.已知A (﹣2,y 1)、B (0,y 2)、C (1,y 3)三点都在抛物线y=kx 2+2kx+k 2+k (k <0)的图象上,则y 1、y 2、y 3的大小关系是 .16.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是 .17.设抛物线y=-x 2+2x+3的顶点为E ,与y 轴交于点C ,EF ⊥x 轴于点,若点M (m ,0)是x 轴上的动点,且满足以MC 为直径的圆与线段EF 有公共点,则实数m 的取值范围是 .18.若二次函数y=ax 2+bx+c (a <0)的对称轴为直线x=-1,图象经过点(1,0),有下列结论:①abc <0;②2a-b=0;③a+b+c >0;④b 2>5ac ,则以上结论一定正确的个数是 。

三、计算题19.如图,已知抛物线212y x bx c =-++与坐标轴分别交于点A (0,8)、B (8,0)和点E ,动点C 从原点O 开始沿OA 方向以每秒1个单位长度移动,动点D 从点B 开始沿BO 方向以每秒1个单位长度移动,动点C 、D 同时出发,当动点D 到达原点O 时,点C 、D 停止运动.(1)直接写出抛物线的解析式: ;(2)求△CED 的面积S 与D 点运动时间t 的函数解析式;当t 为何值时,△CED 的面积最大?最大面积是多少?(3)当△CED 的面积最大时,在抛物线上是否存在点P (点E 除外),使△PCD 的面积等于△CED 的最大面积?若存在,求出P 点的坐标;若不存在,请说明理由.20.某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售总利润为y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k (0<k <100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案.21.某电子厂商投产一种新型电子产品,每件制造成本为18元,试销过程中发现,每月销售量y (万件)与销售单价x (元)之间的关系可以近似地看作一次函数2100y x =-+.(利润=售价﹣制造成本)(1)写出每月的利润z (万元)与销售单价x (元)之间的函数关系式;(2)当销售单价为多少元时,厂商每月能获得350万元的利润?当销售单价为多少元时,厂商每月能获得最大利润?最大利润是多少?(3)根据相关部门规定,这种电子产品的销售单价不能高于32元,如果厂商要获得每月不低于350万元的利润,那么制造出这种产品每月的最低制造成本需要多少万元?22.如图,在矩形OABC 中,AO=10,AB=8,沿直线CD 折叠矩形OABC 的一边BC ,使点B 落在OA 边上的点E 处.分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系,抛物线y=ax 2+bx+c 经过O ,D ,C 三点.(1)求AD 的长及抛物线的解析式;(2)一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点C 运动,同时动点Q 从点C 出发,沿CO 以每秒1个单位长的速度向点O 运动,当点P 运动到点C 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,以P 、Q 、C 为顶点的三角形与△ADE 相似?(3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请直接写出点M 与点N 的坐标(不写求解过程);若不存在,请说明理由.23.如图,在直角坐标系xOy 中,一次函数m x y +-=32(m 为常数)的图像与x 轴交于A (-3,0),与y 轴交于点C ;以直线1x =-为对称轴的抛物线c bx ax y ++=2(a ,b ,c 为常数,且a >0)经过A ,C 两点,与x 轴正半轴交于点B .(1)求一次函数及抛物线的函数表达式。

(2)在对称轴上是否存在一点P ,使得∆PBC 的周长最小,若存在,请求出点P 的坐标.(3)点D 是线段OC 上的一个动点(不与点O 、点C 重合),过点D 作DE ‖PC 交x 轴于点E ,连接PD 、PE 。

设CD 的长为m , ∆PDE 的面积为S 。

求S 与m 之间的函数关系式。

并说明S 是否存在最大值,若存在,请求出最大值:若不存在,请说明理由。

24.如图,抛物线y= -45x 2+417x+1与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0)(1)求直线AB 的函数关系式;(3分)(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N .设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(4分)(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?参考答案1.A2.A .3.D .4.C .5.D6.C7.C .8.B .9.A .10.B .11.y=(x+2)2﹣3.12.①③④13.201514.(2,3)15.y 1=y 2>y 316.6米.17.-54≤m ≤5. 18.2.19.(1)21382y x x =-++;(2)2152S t t =-+,当t=5时,S 最大=252;(3)存在,P (343,2009-)或P (8,0)或P (43,1009).20.(1)1600,2000;(2)有7种,当购进电冰箱34台,空调66台获利最大,最大利润为13300元;(3)当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大.21(1)z=﹣2x2+136x﹣1800;(2)销售单价定为25元或43元,厂商每月能获得350万元的利润;当销售单价为34元时,每月能获得最大利润,最大利润是512万元;(3)每月最低制造成本为648万元.22.(1)AD=3.y=﹣x2+x;(2)t=4013或257;(3)存在,①M1(-4,-32),N1(4,-38)②M2(12,-32),N2(4,-26)③M3(4,),N3(4,﹣).23.(1)223y x=--,224233y x x=+-;(2)P(1-,43-);(3)当1m=时有最大值34.24.(1)y=12x+1;(2)s= -45t2+154t(0≤t≤3);(3)当t=1或2时,四边形BCMN为平行四边形.当t=1时,四边形BCMN为菱形,当t=2时,四边形BCMN不是菱形.理由略。

相关文档
最新文档