(完整版)一次函数概念的练习题

合集下载

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质(考点与练习)(原卷版)

第01讲 一次函数的概念、图像与性质一、一次函数的概念1、概念:一般地,解析式形如y kx b =+(k 、b 是常数,且0k ≠)的函数叫做一次函数。

定义域:一切实数。

2、一次函数与正比例函数的关系:正比例函数一定是一次函数,但一次函数不一定是正比例函数。

3、常值函数一般的,我们把函数()y c c =为常数叫做常值函数。

二、一次函数的图像与性质1、 一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线. 2、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标是(0)b ,,直线y kx b =+(0k ≠)的截距是b .3、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移b 个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”) 4、 直线位置关系:如果12b b ≠,那么直线1y kx b =+与直线2y kx b =+平行.反过来,如果直线11y k x b =+与直线22y k x b =+平行,那么12k k =,12b b ≠.5、一次函数的增减性:一般地,一次函数y kx b =+(,k b 为常数,0k ≠)具有以下性质:当0k >时,函数值y 随自变量x 的值增大而增大,图像为上升; 当0k <时,函数值y 随自变量x 的值增大而减小,图像为下降. 6、一次函数图像的位置情况:直线y kx b =+(0k ≠,0b ≠)过(0,)b 且与直线y kx =平行,由直线y kx =在平面直角坐标系内的位置情况可知:(要用图像的平移推导可得) 当0k >,且0b >时,直线y kx b =+经过一、二、三象限; 当0k >,且0b <时,直线y kx b =+经过一、三、四象限; 当0k <,且0b >时,直线y kx b =+经过一、二、四象限; 当0k <,且0b <时,直线y kx b =+经过二、三、四象限.考点一:一次函数识别【例题1】(2021·上海普陀·八年级期中)下列四个函数中,一次函数是( ) A .y =x 2﹣2xB .y =x ﹣2C .11y x=+D .y x +1【变式训练1】(2021·上海奉贤·八年级期中)下列函数中是一次函数的是( ) A .y =2x B .2y x=C .y =x 2D .y =kx +b (k ,b 为常数)考点二:根据一次函数的定义求参数【例题2】(2021·上海市川沙中学南校八年级期中)当k ______时,y kx x =+是一次函数.【变式训练1】(2021·上海普陀·八年级期中)若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.【变式训练2】(2021·上海民办华二宝山实验学校八年级阶段练习)已知关于x 函数224(5)1m y m x m -=-++,若它是一次函数,则m =______.考点三:求一次函数的自变量与值域【例题3】(2021·上海杨浦·八年级期末)如果点A(3,)a 在一次函数31yx 的图像上,则a =__________.【变式训练1】(2021·上海市川沙中学南校八年级期中)已知一次函数24y x =+的图象经过点(),8A m ,那么m 的值等于______. 考点四:列一次函数的解析式并求值【例题4】(2021·上海市松江区新桥中学八年级期中)汽车油箱中现有汽油60升,若每小时耗油10升,则油箱中剩余油量y (升)与燃烧的时间x (小时)之间的函数关系式是______.【变式训练1】(2020·上海浦东新·八年级期末)汽车以60千米/时的平均速度,由A 地驶往相距420千米的上海,汽车距上海的路程s (千米)与行驶时间t (时)的函数关系式是_____.考点五:一次函数平移【例题5】(2021·上海市松江区新桥中学八年级期中)将直线112y x =--向上平移4个单位所得的直线表达式为______.【变式训练1】(2021·上海杨浦·八年级期中)将一次函数y =2x ﹣3的图象向上平移___个单位后,图象过原点.【变式训练2】(2021·上海浦东新·八年级期末)如果将函数31y x =-的图象向上平移3个单位,那么所得图象的函数解析式是________. 考点六:一次函数与坐标轴交点【例题6】(2021·上海普陀·八年级期末)将平面直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标轴三角形.如图中的一次函数图像与,x y 轴分别交于点,,A B 那么ABO 为此一次函数的坐标轴三角形.一次函数142y x =-+的坐标轴三角形的面积是_____.【变式训练1】(2021·上海杨浦·八年级期中)一次函数y =﹣2x ﹣3的截距是_____. 【变式训练2】(2021·上海·八年级期中)直线36y x =-与坐标轴所围成的三角形的面积是_____.【变式训练3】(2021·上海奉贤·八年级期末)直线21y x =-与x 轴交点坐标为_____________.考点七:根据一次函数解析式判断其经过象限【例题7】(2021·上海·上外附中八年级期末)一次函数y =2(x +1)﹣1不经过第( )象限 A .一B .二C .三D .四【变式训练1】(2021·上海徐汇·八年级期末)一次函数21y x =-+的图象经过哪几个象限( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限 【变式训练2】(2021·上海崇明·八年级期末)一次函数53y x =-+的图象不经过( ). A .第一象限B .第二象限C .第三象限D .第四象限【变式训练3】(2021·上海金山·八年级期末)在直角坐标系中,一次函数y =12x ﹣1的图像不经过第____象限.考点八:已知函数经过的象限求参数范围【例题8】(2019·上海市西延安中学八年级期中)在同一真角坐标平面中表示两个一次函数y 1=kx +b ,y 2=−bx +k ,正确的图像为( )A .B .C .D .【变式训练1】(2020·上海市奉贤区弘文学校八年级期末)正比例函数()0y mx m =≠的图像在第二、四象限内,则点(--1m m ,)在( ) A .第一象限B .第二象限C .第三象限D .第四象限【变式训练2】(2020·上海金山·八年级阶段练习)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0【变式训练3】(2019·上海市闵行区七宝第二中学八年级期中)如果关于x 的一次函数(3)y m x m =-+的图像不经过第三象限,那么m 的取值范围________.【变式训练4】(2021·上海静安·八年级期末)已知一次函数y =(k ﹣1)x +1的图像经过第一、二、三象限,那么常数k 的取值范围是____.【变式训练5】(2021·上海·上外附中八年级期末)一次函数y =(2m ﹣1)x +m ﹣7的图像不经过第二象限,则m 的取值范围是 ___.【变式训练6】(2017·上海嘉定·八年级期中)若正比例函数25m m y mx +-=的图像经过第二、四象限,则m =____________【变式训练7】(2018·上海普陀·八年级期末)如果关于x 的一次函数y =mx +(4m ﹣2)的图象经过第一、三、四象限,那么m 的取值范围是_____. 考点九:已知两条直线位置关系求参数【例题9】直线2(13)(22)y k x k =-+-与已知直线21y x =-+平行,且不经过第三象限,求k 的值.1.已知一次函数21544m y x +=-与233my x =-+的图像在第四象限内交于一点,求整数m 的值.2.已知两个一次函数144b y x =--和212y x a a=+;(1)a、b为何值时,两函数的图像重合?(2)a、b满足什么关系时,两函数的图像相互平行?(3)a、b取何值时,两函数图像交于x轴上同一点,并求这一点的坐标.3.(1)一次函数3y x b=+的图象与两坐标轴围成的三角形的面积为48,求b的值;(2)一次函数y kx b=+的图像与两坐标围成的三角形的面积是105,求一次函数的解析式.4.1)求直线14222y x y x=-=+和与y轴所围成的三角形的面积;(2)求直线24y x=-与直线31y x=-+与x轴所围成的三角形的面积.5.如图,已知由x轴、一次函数4(0)y kx k=+<的图像及分别过点C(1,0)、D(4,0)两点作平行于y轴的两条直线所围成的图形ABDC的面积为7,试求这个一次函数的解析式.6.在式子()y kx b k b =+,为常数中,3119x y -≤≤≤≤当时,,kb 求的值.7.已知一次函数1121y x k =+-中y 随x 的增大而增大,它的图像与两坐标轴构成的直角三 角形的面积不超过32,反比例函数23k y x-=的图像在第二、四象限,求满足以上条件的k 的 整数值.8.如图,已知函数1y x=+的图象与y轴交于点A,一次函数y kx b=+的图象经过点B(0,1-),并且与x轴以及1y x=+的图象分别交于点C、D;(1)若点D的横坐标为1,求四边形AOCD的面积(即图中阴影部分的面积);(2)在第(1)小题的条件下,在y轴上是否存在这样的点P,使得以点P、B、D为顶点的三角形是等腰三角形;如果存在,求出点P坐标;如果不存在,说明理由;(3)若一次函数y kx b=+的图象与函数1y x=+的图象的交点D始终在第一象限,则系数k 的取值范围是________(请直接写出结果)题组A 基础过关练一、单选题1.下列关于x的函数中,是一次函数的是()222211.3(1) (3)A y xB y xC y xD y x xx x=-=+=-=+-2.正比例函数y=(1-2m)x的图象经过点(x1,y1)和点(x2,y2)当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<12D.m>123.(2018·上海金山·八年级期中)一次函数51y x=-的图像经过的象限是()A.一、二、三B.一、三、四C.二、三、四D.一、二、四分层提分4.(2018·上海金山·八年级期中)一次函数图像如图所示,当2y >时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <5.(2020·上海浦东新·八年级期末)直线y =2x ﹣1在y 轴上的截距是( ) A .1 B .﹣1C .2D .﹣2二、填空题6.(2019·上海普陀·八年级期中)如果将直线22y x =-向上平移3个单位,那么所得直线的表达式是___________.7.(2019·上海普陀·八年级期末)已知直线(2)3y k x =-+与直线32y x =-平行,那么k =_______.题组B 能力提升练1.一次函数(2)3y k x k =-+-的图像能否可以不经过第三象限?为什么?2.已知直线26x y k -=-+和341x y k +=+,若它们的交点第四象限,那么k 的取值范围是______________.3.如图,据函数y kx b =+的图像,填空:(1) 当1x =-时,y =____________;(2) 图像与坐标轴的交点坐标是_________________; (3) 当24x -≤≤时,y 的取值范围是______________.4.根据下列条件求解相应函数解析式: (1)直线经过点(45),且与y=2x +3轴无交点; (2)直线的截距为3(123).5.已知函数1y x =+与3y x =-+,求: (1)两个函数图象交点P 的坐标.(2)这两条直线与x 轴围成的三角形面积.6.把一次函数的图像向上平移323y x =-,求平移前的函数图像与函数23y x =--题组C 培优拔尖练1.直线31y =+和x 轴、y 轴分别相交于点A 、点B ,以线段AB 为边在第一象限内作等边三角形ABC ,如果在第一象限内有一点P (12m ,)且△ABP 的面积与△ABC 的面积相等,求m 的值.2.函数12y y y =+且12y x m =+,2131y x m =+-. (1)若12y y 与图像的交点的纵坐标为4,求y 关于x 的函数解析式;(2)若(1)中函数y 的图像与x 轴、y 轴交于A 、B 两点,若将此函数绕A 点顺时针旋转90°后交y 轴于C 点,求直线AC 的解析式.3.如图所示,直线323y x =-+与x 轴、y 轴分别交于点A 和点B ,D 是y 轴上的一点,若将DAB ∆沿直线DA 折叠,点B 恰好落在x 轴正半轴上的点C 处,求直线CD 的解析式.4.直线31y =+与x 轴、y 轴分别交于点A 、点B ,以线段AB 为直角边在第一象限内作等腰Rt ABC ∆,且90BAC ∠=,如果在第二象限内有一点P (a ,12),且ABP ∆的面积与Rt ABC∆的面积相等,求a 的值.。

第1讲 一次函数的概念及图像(练习)原卷版

第1讲 一次函数的概念及图像(练习)原卷版

第1讲 一次函数的概念及图像(练习)夯实基础一、单选题1.下列函数中,一次函数是( )A .21y x =-B .23y x =+C .3y x =D .y k b =+(k 、b 是常数)2.下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数3.函数y =12x ﹣3的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限4.直线21y x =-的截距是( )A .1B .1-C .2D .2-5.一次函数y kx k =+的图象可能是( )A .B .C .D .6.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <0二、填空题7.若函数y=(m-2)x+5是一次函数,则m 满足的条件是____________.8.已知一次函数()32f x x =+,那么()1f -=______.9.如果23(2)2m y m x -=-+是一次函数,那么m 的值是__________.10.已知某汽车油箱中剩余油量y (升)与汽车行驶里程数x (千米)是一次函数关系,油箱中原有油100升,行驶60千米后的剩余油量为70升,那么行驶120(千米)后油箱中剩余油量为_______.11.把直线y =2x ﹣3沿y 轴方向向上平移4个单位后,所得直线的表达式_____.12.若正比例函数y kx =(k 是常数,0k ¹)的图象经过第二、四象限,则的值可以是_______(写出一个即可).13.已知一次函数y =kx +b 的图象经过点(0,3),则截距为_____.三、解答题14.如图,是甲、乙两种机器人根据电脑程序工作时各自工作量y 关于工作时间x 的函数图像,线段OA 表示甲机器人的工作量1y (吨)关于时间x (时)的函数图像,线段BC 表示乙机器人的工作量2y (吨)关于时间x (时)的函数图像.根据图像信息回答下列填空题.(1)甲种机器人比乙种机器人早开始工作 小时;甲种机器人每小时的工作量是 吨;(2)直线BC 的表达式为 ;当乙种机器人工作5小时后,它完成的工作量是 吨.能力提升一、单选题1.下列函数关系式:①y =2x ;②y =2x +11;③y =3﹣x ;④y =2x.其中一次函数的个数是( )A .1个B .2个C .3个D .4个2.下列函数中图象不经过第三象限的是( )A .y =﹣3x ﹣2B .yC .y x +1D .y =3x +23.一次函数1y ax b =+与2y bx a =+在同一坐标系中的图像可能是( )A .B .C .D .4.在同一平面直角坐标系中的图像如图所示,则关于21k x k x b <+的不等式的解为( ).A .1x >-B .2x <-C .1x <-D .无法确定5.已知正比例函数y kx =(k 是常数,0k ¹)的函数值y 随x 的增大而减小,则一次函数y x k =-+的图象大致是( )A .B .C .D .6.若直线y=kx+b 经过第一、二、四象限,则直线y=bx+k 的图象大致是( )A .B .C .D .7.如图,已知一次函数y =kx+b 的图象经过A 、B 两点,那么不等式kx+b >0的解集是( )A .x >3B .x <3C .x >5D .x <5二、填空题8.已知点A (2,0)和C (4,0),点P 在正比例函数2y x =上,且A C P S =4,D 则点P 的坐标是__________9.已知:y=(m ﹣1)x |m|+4,当m= _________ 时,图象是一条直线.10.(1)已知函数y =3+(m ―3)x m 是一次函数,则m=________.(2)若函数y =(k +2)x +(k 2―4)是正比例函数,则k =_________.11.我们知道:当2x =时,不论k 取何实数,函数(2)3y k x =-+的值为3,所以直线(2)3y k x =-+一定经过定点(2,3);同样,直线(2)3y k x k =-+一定经过的定点为______.12.已知点()11,x y ,()22,x y 是直线4y kx =-上的两点,且当 1x <2x 时,1y >2y ,则该直线经过______________象限.13.已知,一次函数y kx b =+的图像经过点A (2,1)(如下图所示),当1y ³时,x 的取值范围是______14.己知(),4P a 是直线2y x =+上的一个点,点M 在坐标轴正半轴上,当PM=5时,那么点M 的坐标是___________三、解答题15.已知点A (﹣1,1)是直线y =kx +3上的一点,若该直线和x 轴相交于点B ,求点B 的坐标.16.已知一次函数y=(1-2m)x+m+1(m ≠12),函数值y 随自变量x 值的增大而减小.(1)求m 的取值范围;(2)在平面直角坐标系xOy 中,这个函数的图象与x 轴的交点M 位于x 轴的正半轴还是负半轴?请简述理由.17.已知正比例函数图象经过(﹣2,4).(1)如果点(a ,1)和(﹣1,b )在函数图象上,求a ,b 的值;(2)过图象上一点P 作y 轴的垂线,垂足为Q ,S △OPQ =154,求Q 的坐标.18.一次函数图像经过点(4,-1),且与直线122y x =+平行,求一次函数解析式和这个函数图像与两坐标轴围成的三角形的面积.19.如图,直线3y kx =+与x 轴、y 轴分别相交于E F 、.点E 的坐标为()40-,,点P 是线段EF 上的一点.(1)求k 的值;(2)若OPE D 的面积为2,求点P 的坐标.。

20.1 一次函数的概念(作业)原卷版

20.1 一次函数的概念(作业)原卷版

20.1 一次函数的概念(作业)一、单选题1.(2019·上海普陀区·八年级期末)下列函数中,一次函数是( ).A .y x =B .y kx b =+C .11y x =+D .22y x x=-2.(2020·上海市静安区实验中学八年级课时练习)下列说法中不成立的是( )A .在y=3x ﹣1中y+1与x 成正比例B .在y=﹣2x 中y 与x 成正比例C .在y=2(x+1)中y 与x+1成正比例D .在y=x+3中y 与x 成正比例3.(2020·上海市南汇第四中学八年级月考)下列函数:(1)2y x =-;(2)8y x=-;(3)22y x =;(4)1y x =-+;(5)21y x =+,(6)y kx b =+(k 是常数),其中一次函数的个数是( )A .0个B .1个C .2个D .3个4.(2019·上海市敬业初级中学八年级月考)下列命题错误的是( )A .正比例函数是一次函数B .反比例函数不是一次函数C .如果1y -和x 成正比例,那么y 是x 的一次函数D .一次函数也是正比例函数5.(2020·上海市静安区实验中学八年级课时练习)若函数y=(2m+6)x 2+(1﹣m )x 是正比例函数,则m 的值是( )A .m=﹣3B .m=1C .m=3D .m >﹣3二、填空题6.(2018·上海民办浦东交中初级中学八年级月考)己知一次函数2 4y x =-+的图像经过(),8m ,则m =_______.7.(2019·上海八年级课时练习)把2x ﹣y=3写成y 是x 的函数的形式为 _________ .8.(2019·上海八年级课时练习).如果函数y=(a ﹣2)x+3是一次函数,那么a _________9.(2019·上海八年级课时练习)关于x 的一次函数y=x+5m-5,若使其成为正比例函数,则m 应取_________。

一次函数概念及习题

一次函数概念及习题

一次函数一、1.1.定义定义定义 ((1)在变化过程中有两个变量;)在变化过程中有两个变量;(2)一个变量的数值随着另一个变量的数值的变化而发生变化;)一个变量的数值随着另一个变量的数值的变化而发生变化;(3)自变量的每一个确定值,函数有且只有一个(唯一)值与之对应,即单值对应。

)自变量的每一个确定值,函数有且只有一个(唯一)值与之对应,即单值对应。

二、一次函数(——正比例函数)1.定义1)函数为一次函数Û其解析式可化为y kx b =+(,k b 为常数,0k ¹)的形式。

)的形式。

(2)一次函数y kx b =+结构特征:0k ¹;自变量x 次数为1;常数b 可为任意实数。

可为任意实数。

(3)一般情况下,一次函数中自变量的取值范围是全体实数。

)一般情况下,一次函数中自变量的取值范围是全体实数。

(4)若0k =,则y b =(b 为常数),这样的函数叫做常函数,它不是一次函数;,这样的函数叫做常函数,它不是一次函数; 若0b =,则y=kx (k 为常数),这样的函数叫做正比例函数。

,这样的函数叫做正比例函数。

2.图像:一次函数的图像是一条直线,确定两点,便能确定其图像。

图像:一次函数的图像是一条直线,确定两点,便能确定其图像。

3.性质(1)增减性:0k >时,y 随着x 的增大而增大;0k <时,y 随着x 的增大而减小。

的增大而减小。

(2)图像位置:直线y kx b =+过两个象限或三个象限,由,k b 的符号共同决定。

的符号共同决定。

【问题1】已知函数(12)1y k x k =--+.(1) 当k 取何值时,这个函数是正比例函数;取何值时,这个函数是正比例函数; (2) 当k 取何值时,这个函数是一次函数.取何值时,这个函数是一次函数.注:理解正比例函数和一次函数的概念(整理成一般形式)注:理解正比例函数和一次函数的概念(整理成一般形式) 练习:(1)已知函数23(2)my m x -=-是正比例函数,则m 的值为的值为 .(2)下列函数中,是一次函数的有)下列函数中,是一次函数的有 (填序号)(填序号)① 2c r p =;②;② 2(3)y x =-;③;③ 22n m -=; ④ (50)s x x =-;⑤;⑤ 100t v=. 【问题2】已知y 是x 的一次函数,且当2x =-时,7y =;当3x =时,5y =-.求当0y = 时,自变量x 的值.的值.注:利用待定系数法求函数解析式(基本步骤)注:利用待定系数法求函数解析式(基本步骤)练习:(1)已知100y -与x 成正比例关系,且当10x =时,600y =.求y 关于x 的函数解析式.的函数解析式.(2)已知y m +与x n -成正比例(其中m ,n 是常数).如果当15y =-时,1x =-;当7x =时,1y =.求y 关于x 的函数解析式.的函数解析式.1.已知23(2)3my m x-=-+,当m 为何值时,y 是x 的一次函数?的一次函数?2.2.已知一次函数已知一次函数(2)(1)y m x m =++-,若y 随x 的增大而减小,且该函数图象与x 轴的交点在原点右侧,求m 的取值范围。

(完整版)一次函数经典题型+习题(精华,含答案)(可编辑修改word版)

(完整版)一次函数经典题型+习题(精华,含答案)(可编辑修改word版)

一次函数MQ= ; E (2, -1), F (2, -8),则EF 两点之间的距离是;已题型一、点的坐标方法:x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b 的范围为;3、已知A(4,b),B(a,-2),若A,B 关于x 轴对称,则a= ,b= ;若A,B 关于y 轴对称,则a= ,b= ;若若A,B 关于原点对称,则a= ,b= ;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB∥x 轴,则A(x A , 0), B(x B , 0) 的距离为x A -x B ;若AB∥y 轴,则A(0, y A ), B(0, y B ) 的距离为y A -y B ;知点G(2,-3)、H(3,4),则G、H 两点之间的距离是;4、两点(3,-4)、(5,a)间的距离是2,则a 的值为;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k≠0),这时,y叫做x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k≠0)1、当k 时,y =(k -3)x2++2x -3 是一次函数;2、当m 时,y =(m - 3)x2m+1+ 4x - 5 是一次函数;3、当m 时,y =(m - 4)x2m+1+ 4x - 5 是一次函数;题型四、函数图像及其性质☆一次函数 y=kx+b(k≠0)中 k、b 的意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y 轴交点的,也表示直线在y 轴上的。

完整版)一次函数专项练习题

完整版)一次函数专项练习题

完整版)一次函数专项练习题一次函数专项练题题型一、点的坐标在x轴上的点,其纵坐标为0,在y轴上的点,其横坐标为0.若两个点关于x轴对称,则它们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数。

1、若点A(m,n)在第二象限,则点(|m|,-n)在第三象限;2、若点P(2a-1,2-3b)是第二象限的点,则a的范围为(0,1/2],b的范围为(0,2/3];3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=4,b=-(-2)=2;若A,B关于y轴对称,则a=-4,b=b;若A,B关于原点对称,则a=-4,b=-b;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第一象限。

题型二、关于点的距离的问题点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示。

任意两点A(xA,yA),B(xB,yB)的距离为√[(xA-xB)²+(yA-yB)²];A(xA,0),B(xB,0)的距离为|xA-xB|;若AB∥y轴,则A(0,yA),B(0,yB)的距离为|yA-yB|;点A(xA,yA)到原点之间的距离为√(xA²+yA²)。

1、点B(2,-2)到x轴的距离是2;到y轴的距离是2;2、点C(0,-5)到x轴的距离是5;到y轴的距离是0;到原点的距离是5;3、点D(a,b)到x轴的距离是|b|;到y轴的距离是|a|;到原点的距离是√(a²+b²);4、已知点P(3,0),Q(-2,0),则PQ=5;已知点M(0,1),N(0,-1),则MN=2;已知点E(2,-1),F(2,-8),则EF的距离是7;已知点G(2,-3)、H(3,4),则GH两点之间的距离是7.5、求出点(3,-4)和(5,a)间的距离为2,可以利用两点间距离公式:$\sqrt{(5-3)^2+(a+4)^2}=2$,化简后得到$(a+4)^2=4$,解得$a=-2,2$。

(完整版)初中数学一次函数练习题及答案

(完整版)初中数学一次函数练习题及答案

一次函数测试题(考试时间为 90 分钟,满分 100 分)一、选择题(每题 3 分,共 30 分)1.直线y = 9 - 3x 与x 轴交点的坐标是,与y 轴交点的坐标是.1 12.把直线y =x -1向上平移个单位,可得到函数.2 23.若点P1(–1,3)和P2(1,b)关于y 轴对称,则b= .4.若一次函数y=mx-(m-2)过点(0,3),则m= .5.函数y =的自变量x 的取值范围是.6.如果直线y =ax +b 经过一、二、三象限,那么ab 0 (“<”、“>”或“=”).7.若直线y = 2x -1和直线y =m -x 的交点在第三象限,则m 的取值范围是.8.函数y= -x+2 的图象与x 轴,y 轴围成的三角形面积为.9.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 立方米的,按每立方米m 元水费收费;用水超过10 立方米的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为立方米.10.有边长为 1 的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是 2、3、4…的等边三角形(如图).根据图形推断每个等边三角形卡片总数S 与边长n 的关系式.二、选择题(每题 3 分,共 18 分)x - 211.函数 y=x + 2的自变量x 的取值范围是()A.x≥-2 B.x>-2 C.x≤-2 D.x<-212.一根弹簧原长12cm,它所挂的重量不超过10kg,并且挂重1kg 就伸长1.5cm,写出挂重后弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10)B.y=1.5x+12 (0≤x≤10)C.y=1.5x+10 (0≤x)D.y=1.5(x-12) (0≤x≤10)13.无论m 为何实数,直线y =x + 2m 与y =-x + 4 的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限14.某兴趣小组做实验,将一个装满水的啤酒瓶倒置(如图),并设法使瓶里的水从瓶中匀速流出.那么该倒置啤酒瓶内水面高度h 随水流出的时间t 变化的图象大致是()hx-55 31A. B. C. D.115. 已知函数 y = - 2x + 2 ,当-1<x≤1 时,y 的取值范围是( )A. - < y ≤ 2 2B. 3 < y < 5 2 2C. 3 < y ≤ 5 2 2D. 3 ≤ y < 5 2 2 16. 某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是( ) A.45.2 分钟 B.48 分钟 C.46 分钟D.33 分钟三、解答题(第 17—20 题每题 10 分,第 21 题 12 分,共 52 分)17. 观察图,先填空,然后回答问题: (1) 由上而下第 n 行,白球有 个;黑球有 个.(2) 若第 n 行白球与黑球的总数记作 y, 则请你用含 n 的代数式表示 y,并指出其中 n 的取值范围.18. 已知,直线 y=2x+3 与直线 y=-2x-1. (1) 求两直线与 y 轴交点 A ,B 的坐标; (2) 求两直线交点 C 的坐标; (3) 求△ABC 的面积.19. 旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费 y (元)可以 x (千克)的一次函数为 y = x - 5 .画出这个函数的图象,并求 y(克 克 )6看成他们携带的行李质量旅客最多可以免费携带多少千克的行李? 62yA CBx- 2 - t(克克 )120. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量 y 与时间t 之间近似满足如图所示曲线:(1) 分别求出t ≤1和t ≥2 1时,y 与 t 之间的函数关系式;2(2) 据测定:每毫升血液中含药量不少于 4 微克时治疗疾病有效,假如某病人一天中第一次服药为 7:00,那么服药后几点到几点有效?21. 某军加油飞机接到命令,立即给另一架正在飞行的运输飞机进行空中加油.在加油的过程中,设运输飞机的油箱余油量为 Q 1 吨,加油飞机的加油油箱的余油量为 Q 2 吨,加油时间为 t 分钟,Q 1、Q 2 与 t 之间的函数关系如图.回答问题:(1) 加油飞机的加油油箱中装载了多少吨油?将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量 Q 1(吨)与时间 t (分钟)的函数关系式;(3) 运输飞机加完油后,以原速继续飞行,需 10 小时到达目的地,油料是否够用?请通过计算说明理由.参考答案1.(3,0)(0,9)2.y=0.5x-0.53. 34.–15.x≥56. >7. m <-18. 2 9. 13 10. s = n 211. B12. B13. C14. A15. D16. A17.(1) n,2n-1; (2) y= 3n-1 (n 为正整数)18. (1) A (0,3),B (0,-1); (2) C(-1,1); △ABC 的面积=(3)+1⨯1⨯ 1=2 219.(1)y=12x (0≤ t ≤ 1 2 1);y=-0.8x+6.4 ( t ≥ 1)2(2) 若 y≥4 时, 则 3≤ x ≤ 3 ,所以 7:00 服药后,7:20 到 10:00 有效20. 函数 y = x - 5 (x≥30)的图象如右图所示.6当 y =0 时,x =30.所以旅客最多可以免费携带 30 千克的行李.21.(1) 30 吨油,需 10 分钟(2) 设 Q1=kt+b,由于过(0,30)和(10,65)点,可求得:Q1=2.9t+36(0≤t≤10)(3)根据图象可知运输飞机的耗油量为每分钟 0.1 吨,因此 10 小时耗油量为10×60×0.1=60(吨)<65(吨),所以油料够用。

(word完整版)一次函数、正比例函数的定义 练习题

(word完整版)一次函数、正比例函数的定义 练习题

17.3 一次函数、正比例的定义 练习题班级______________ 姓名___________一、填空题: 1. 如图(1),在直角坐标系中,直线l 所表示的函数是_______2. 函数21-+=x x y 中,自变量x 的取值范围是__________。

3. 函数82)3(-+=m x m y 是正比例函数,则=m __________,y 随x 的增大而__________。

4. 正比例函数图象经过两点A (2-,4)B (4,m ),则=m __________.5. (1)已知函数4)36(-+-=n x m y ,若它是一次函数,则应满足条件____________________;若它是正比例函数,则它应满足条件______________。

(2)设函数1)2(||2++-=-m x m y m ,当m =____________时,它是一次函数;当m=________时它是正比例函数。

6. 如图2直线ABC为甲地向乙地打长途电话所需付的话费y(元)与通话时间t(分钟)之间的函数关系的图象,当t≥3时,该图象的解析式为 ;从图象可知,通话2分钟需付电话费为 元;通话7分钟需付电话费 元.7、y -2与x 成正比例,当x=2 时,y=4 ,则x= _______时,y=-4 .8、已知y 与3x 成正比例,且当x=8 时,y=12 则y 与x 的函数解析式 9、已知一次函数y=kx+5的图象经过点(-1,2),则k= 。

10、某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表由上表得y与x之间的关系式是 .220y x图111、已知y —2与x 成正比例,当x =3时,y =1,则y 与x 之间的函数关系式为_____________. 12、正方形ABCD 的边长为5,P 为BC 边上一动点,设BP 长x ,△PCD 的面积y 与x 的函数关系式为_________________________,自变量x 的取值范围是_________________________。

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案1. 某超市每天固定开销为200元,每卖出一个商品,能够获得5元的利润。

设售出商品的数量为x个,利润为y元,则利润与售出商品的数量之间的关系可以表示为以下的一次函数:y = 5x - 2002. 一辆汽车以每小时60公里的速度行驶,行驶x小时后所走的距离可以表示为以下的一次函数:y = 60x3. 小明妈妈提醒小明,每晚洗碗时间不得超过30分钟。

设小明每晚洗碗时间为x分钟,洗完碗后剩余时间为y分钟,则剩余时间与洗碗时间之间的关系可以表示为以下的一次函数:y = 30 - x4. 一包含有n个人的旅行团,每人缴纳团费250元,另外还需要支付每人40元的交通费。

设团费总支出为y元,旅行团的人数为x人,则团费总支出与旅行团的人数之间的关系可以表示为以下的一次函数: y = 250x + 405. 某商店推出打折活动,折扣力度为8折,原价为x元的商品,在活动期间的售价为y元。

则售价与原价之间的关系可以表示为以下的一次函数:y = 0.8x6. 一个数增加了7倍后变成了48,设原数为x,增加后的数为y,则原数与增加后的数之间的关系可以表示为以下的一次函数: y = 7x7. 一块面积为x平方米的正方形花坛,边长可以表示为以下的一次函数:y = √x8. 一个图形的周长与边长之间的关系为一次函数。

设该图形的周长为y,边长为x,则周长与边长之间的关系可以表示为以下的一次函数: y = Kx以上是一些关于一次函数的练习题和答案,通过这些题目的练习,可以帮助同学们巩固和深入理解一次函数的概念和性质。

希望同学们能够通过大量的练习,熟练掌握一次函数的相关知识,提高数学解题能力。

在真实的应用中,一次函数是非常常见的数学模型,掌握一次函数的概念和运用对数学学习和实际生活都非常有帮助。

祝同学们在数学学习中取得更好的成绩!。

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)(原卷版)

20.1一次函数的概念(4种题型基础练+提升练)
题型一:识别一次函数
题型二:根据一次函数的定义求参数
题型三:求一次函数自变量或函数值
一、单选题
1.(2023下·上海·八年级专题练习)已知点()1,2A 在一次函数3y x m =-的图象上,则m 等于( )A .3
-B .2-C .0D .1
二、填空题
题型四:列一次函数解析式并求值
一、填空题
二、解答题
一、单选题
二、填空题
三、解答题
(1)求A,C坐标;
(2)若点Q(a,2a﹣6)位于第一象限内,问点
若能,请求出此时a的值,若不能,请说明理由.
(1)当△ABC是以BC为底的等腰三角形时,求点A的坐标;
(2)当△ABC的面积为4时,求点A的坐标;
(3)在直线l上是否存在点A,使∠BAC=90°?若存在,求出点A的坐标;若不存在请说明理由.。

(word完整版)一次函数习题集锦(含答案),推荐文档

(word完整版)一次函数习题集锦(含答案),推荐文档

2 ⎪ 数学八年级上册一次函数练习题一、试试你的身手(每小题 3 分,共 24 分)11.正比例函数 y = - 2x 中,y 值随 x 的增大而. 2. 已知 y=(k-1)x+k 2-1 是正比例函数,则 k =.3. 若 y+3 与 x 成正比例,且 x=2 时,y=5,则 x=5 时,y=.4.直线 y=7x+5,过点( ,0),(0,).5.已知直线 y=ax-2 经过点(-3,-8)和⎛ 1 ,b ⎫两点,那么 a= ,b=.⎝ ⎭6. 写出经过点(1,2)的一次函数的解析式为(写出一个即可).1 x +1 , y = 1 x -1, y = 1 x 的图象有什么特点7. 在同一坐标系内函数 y =2 2 2.8. 下表中,y 是 x 的一次函数,则该函数解析式为,并补全下表.x -2 -10 12y26二、相信你的选择(每小题 3 分,共 24 分)1. 下列函数中是正比例函数的是()A. y = 8 xB. y = 82C . y = 2(x -1)D . y = -( 2 +1)x32. 下列说法中的两个变量成正比例的是( )A .少年儿童的身高与年龄B .圆柱体的体积与它的高C .长方形的面积一定时,它的长与宽D .圆的周长 C 与它的半径 r 3.下列说法中错误的是( ) A .一次函数是正比例函数 B .正比例函数是一次函数C .函数 y=|x |+3 不是一次函数D .在 y=kx+b(k 、b 都是不为零的常数)中, y-b 与 x 成正比例4. 一次函数 y=-x-1 的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限5.函数 y=kx-2 中,y 随 x 的增大而减小,则它的图象可以是()6. 如图 1,一次函数的图象经过 A 、B 两点,则这个一次函数的解析式为()A. y = 3x - 22B. y = 1x - 22C. y = 1x + 22 D. y = 3x + 227.若函数y=kx+b(k、b 都是不为零的常数)的图象如图2 所示,那么当y>0 时,x 的取值范围为()A.x>1 B.x>2 C.x<1 D.x<28.已知一次函数y=kx-k,若y 随x 的增大而减小,则该函数的图象经过()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限三、挑战你的技能(共30 分)1.(10 分)某函数具有下列两条性质:(1)它的图象是经过原点(0,0)的一条直线;(2)y 的值随 x 的值增大而减小.请你写出一个满足上述两个条件的函数解析式.2.(10 分)已知一次函数 y=kx+b 的图象经过 A(2,4)、B(0,2)两点,且与 x 轴相交于C 点.(1)求直线的解析式.(2)求△AOC的面积.3.(10 分)已知一个正比例函数和一个一次函数的图象交于点 P(-2,2),且一次函数的图象与 y 轴相交于点 Q(0,4).(1)求这两个函数的解析式.(2)在同一坐标系内,分别画出这两个函数的图象.(3)求出△POQ的面积.四、拓广探索(共 22 分)1.(11 分)如图 3,在边长为 2 的正方形 ABCD 的一边 BC 上的点 P 从B 点运动到 C 点,设PB=x,梯形 APCD 的面积为 S.(1)写出 S 与x 的函数关系式;(2)求自变量 x 的取值范围;(3)画出函数图象.2.(11 分)小明在暑期社会实践活动中,以每千克 0.8 元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了 40 千克西瓜之后,余下的每千克降价 0.4 元,全部售完.销售金额与售出西瓜的千克数之间的关系如图 4 所示.请你根据图象提供的信息完成以下问题:(1)求降价前销售金额 y(元)与售出西瓜 x(千克)之间的函数关系式. (2)小明从批发市场共购进多少千克西瓜?(3)小明这次卖瓜赚了多少钱?一、1.减小2.-1参考答案3.17 4.-5,5 5.2 ,-176.略(答案不惟一)7.三条直线互相平行8.y = 2x + 2 ,表格从左到右依次填-2 ,0 ,4二、1.D 2.D 3.A 4.A 5.D 6.A 7.D 8.B三、1.y =-x (答案不惟一)2.(1)y =x + 2(2)43.(1)正比例函数的解析式为y=-x.一次函数的解析式为y =x + 4(2)图略;(3)4四、1.(1)S = 4 -x ;(2)0 <x < 2 ;(3)图略2.(1)y =8x(0 ≤≤x540) ;(2)50 千克;(3)36 元. . . . .一次函数测试题一、填空1、已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是。

最全一次函数概念的图像和性质练习题2018.5完整版.doc

最全一次函数概念的图像和性质练习题2018.5完整版.doc

一次函数的图像和性质练习题一、填空题1.正比例函数(0)y kx k =≠一定经过 点,经过(1), ,一次函数(0)y kx b k =+≠经过(0), 点,(0) ,点. 2.直线26y x =-+与x 轴的交点坐标是 ,与y 轴的交点坐标是 。

与坐标轴围成的三角形的面积是 。

3.若一次函数(44)y mx m =--的图象过原点,则m 的值为 .4.如果函数y x b =-的图象经过点(01)P ,,则它经过x 轴上的点的坐标为 .5.一次函数3+-=x y 的图象经过点( ,5)和(2, )6.已知一次函数y=23x+m 和y=-21x+n 的图像都经过点A(-2,0), 且与y 轴分别交于B,C 两点,求△ABC 的面积。

7.某函数具有下面两条性质:(1)它的图象是经过原点的一条直线;(2)y 随x 的增大而减小.请你写出一个满足上述条件的函数8.在同一坐标系内函数y=2x 与y=2x+6的图象的位置关系是 . 9.若直线y=2x+6与直线y=mx+5平行,则m=____________.10.在同一坐标系内函数y=ax+b 与y=3x+2平行,则a, b 的取值范围是 .11.将直线y= -- 2x 向上平移3个单位得到的直线解析式是 ,将直线y= -- 2x 向下移3个单得到的直线解析式是 .将直线y= -- 2x+3向下移2个单得到的直线解析式是 . 12.一次函数(2)4y k x k =-+-的图象经过一、三、四象限,则k 的取值范围是 . 13.已知点A(-4, a),B(-2,b)都在一次函数y=21x+k(k 为常数)的图像上,则a 与b 的大小关系是a____b(填”<””=”或”>”)14.直线y kx b =+经过一、二、三象限,则k 0,b 0,经过二、三、四象限,则有k 0,b 0,经过一、二、四象限,则有k 0,b 0.15.如果直线3y x b =+与y 轴交点的纵坐标为2-,那么这条直线一定不经过第 ------------象限. 16、直线152y x =-与轴的交点坐标是_______,与轴的交点坐标是_______. 17、直线23y x =-可以由直线2y x =沿轴_______而得到;直线32y x =-+可以由直线3y x =-轴_______而得到.18、已知一次函数()()634y m x n =++-. (1)当m______时,y 随x 的增大而减小;(2)当m______,n______时,函数图象与y 轴的交点在x 轴的下方; (3)当m______,n______时,函数图象过原点. 二、选择题1.已知函数(3)2y m x =+-,要使函数值y 随自变量x 的增大而减小,则m 的取值范围是( ) A.3m -≥B.3m >-C.3m -≤D.3m <-2.一次函数(1)5y m x =++中,y 的值随x 的减小而减小,则m 的取值范围是( ) A.1m >-B.1m <-C.1m =-D.1m <3.已知直线y kx b =+,经过点11()A x y ,和点22()B x y ,,若0k <,且12x x <,则1y 与2y 的大小关系是( )A.12y y >B.12y y <C.12y y =D.不能确定4. 若直线23y mx m =--经过第二、三、四象限,则m 的取值范围是( ) A.32m <B.302m -<< C.32m >D.0m >5.一次函数31y x =-的图象不经过( )A.第一象限B.第二象限 C.第三象限D.第四象限6.如果点P(a,b)关于x 轴的对称点p ,在第三象限,那么直线y=ax+b 的图像不经过 ( ) A.第一象限 B.第二象限 C.第三象限 ........... D.第四象限 7.若一次函数y=kx+b 的图像经过(-2,-1)和点(1,2),则这个函数的图像不经过 ( ) A.第一象限 B.第二象限 C.第三象限 ........... D.第四象限 8.下列图象中不可能是一次函数(3)y mx m =--的图象的是( )9.两个一次函数1y ax b =+与2y bx a =+,它们在同一直角坐标系中的图象可能是( )10yD.C.B .A .1x1x2D.C.B . A .A 、y=32x -8 B 、y=-x+3 C 、y=2x+5 D 、y=7x -6 11、在一次函数()15y m x =++中,的值随值的增大而减小,则的取值范围是( ) A 、1m <- B 、1m >- C 、1m =- D 、1m <12、若一次函数b kx y +=的图象经过一、二、三象限,则b k ,应满足的条件是:( ) A.0,0>>b k B.0,0<>b k C.0,0><b k D.0,0<<b k 13、将直线y=2x 向上平移两个单位,所得的直线是 ( ) A 、y=2x+2 B 、y=2x -2 C 、y=2(x -2) D 、y=2(x+2)14.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )15.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )三、解答题1、在同一个直角坐标系中,画出函数21y x =-与34y x =-+的图象,并判断点A (1,1)、B (-2,10)是否在所画的图象上?在哪一个图象上?2.已知一次函数y=(3-k)x-2k+18, (1) k 为何值时,它的图像经过原点; (2) k 为何值时,它的图像经过点(0,-2);(3) k 为何值时,它的图像与y 轴的交点在x 轴的上方; (4) k 为何值时,它的图像平行于直线y=-x; (5) k 为何值时,y 随x 的增大而减小.3、已知一次函数y=kx+b (k 、b 为常数且k≠0)的图象经过点A (0,﹣2)和点B (1,0), 求此函数的解析式4、求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.5、根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).6、某摩托车的油箱最多可存油5升,行驶时油箱内的余油量y (升)与行驶的路程x(km)成一次函数关系,其图象如图。

一次函数经典例题20题

一次函数经典例题20题

一次函数经典例题20题(最新版)目录1.题目概述2.一次函数的基本概念3.一次函数的性质4.例题解析5.总结正文一次函数经典例题 20 题一次函数是数学中的基本概念之一,它在各个领域的数学问题中都有广泛的应用。

本文将通过 20 个经典例题,介绍一次函数的基本概念和性质,并解析如何解决一次函数的题目。

一、一次函数的基本概念一次函数是指形如 y=ax+b 的函数,其中 a 和 b 是常数,且 a 不等于 0。

在这个函数中,x 的次数为 1,因此称为一次函数。

其中,y 表示函数的输出,x 表示函数的输入,a 表示斜率,b 表示截距。

二、一次函数的性质1.斜率斜率是指函数图像在坐标系中的倾斜程度。

在一次函数 y=ax+b 中,斜率 a 表示函数图像的倾斜程度。

当 a>0 时,函数图像是向上倾斜的;当 a<0 时,函数图像是向下倾斜的。

2.截距截距是指函数图像与坐标轴的交点。

在一次函数 y=ax+b 中,截距 b表示函数图像与 y 轴的交点。

当 b>0 时,函数图像与 y 轴的交点在 y 轴的正半轴上;当 b<0 时,函数图像与 y 轴的交点在 y 轴的负半轴上。

3.函数的单调性一次函数的单调性是指函数值随着自变量的增大或减小而单调增加或单调减少的性质。

当斜率 a>0 时,函数图像是向上倾斜的,函数值随着 x 的增大而单调增加;当斜率 a<0 时,函数图像是向下倾斜的,函数值随着 x 的增大而单调减少。

三、例题解析以下是 20 个一次函数的经典例题及其解析:1.已知函数 y=2x+3,求当 x=2 时的函数值。

解:将 x=2 代入函数 y=2x+3 中,得到 y=2×2+3=7。

2.已知函数 y=-x+7,求当 x=5 时的函数值。

解:将 x=5 代入函数 y=-x+7 中,得到 y=-5+7=2。

3.已知函数 y=3x-2,求函数的斜率。

解:函数的斜率是 3。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案本文将为大家提供一系列有关一次函数的练习题,同时附带相应的答案。

一次函数,也叫线性函数,是初中数学中的重要知识点之一。

希望通过这些练习题的训练,大家能够更好地掌握一次函数的概念、性质和解题方法。

一、选择题1.已知函数y=3x+2,则它的斜率是多少?– A. 2– B. 3– C. -2– D. -3答案:B2.若一次函数图像上两点的坐标分别为(1,4)和(3,y),则y的值是多少?– A. 10– B. 12– C. 14– D. 16答案:D3.已知函数经过点(−2,1)和(4,y),则y的值是多少?– A. -5– B. 0– C. 3– D. 6答案:C二、填空题1.若一次函数y=kx+3经过点(2,5),则k的值为 \\\_。

答案:12.一次函数y=−2x+b经过点(3,−1),则b的值为 \\\_。

答案:53.若一次函数图像上两点的坐标分别为(1,y1)和(2,y2),则$\\frac{{y_1}}{{y_2}}$ 的值为 \\\_。

答案:$\\frac{1}{2}$三、计算题1.求函数y=2x−1和y=x+3的交点坐标。

解:将两个方程联立起来,得到方程组:$$ \\begin{cases} y = 2x - 1\\\\ y = x + 3\\\\ \\end{cases} $$解方程组可得:$$ x + 3 = 2x - 1 \\\\ \\Rightarrow x = 4 $$将x=4代入其中一个方程,得到y=8−1=7。

因此,交点坐标为(4,7)。

2.已知函数y=3x+b经过点(2,−1),求b的值。

解:代入点(2,−1),得到方程 $-1 = 3 \\cdot 2 + b$,解方程可得b=−7。

3.一辆汽车以匀速行驶,开车起点距离目的地 600 公里。

如果行驶 4小时后,已行驶距离为 320 公里,求每小时行驶的公里数。

解:设每小时行驶的公里数为x,根据题意可得方程 $\\frac{320}{4} = x$,解方程可得x=80。

(完整版)一次函数基础练习题

(完整版)一次函数基础练习题

一次函数基础练习题1. 已知函数(12)1y k x k =--+.(1) 当k 取何值时,这个函数是正比例函数; (2) 当k 取何值时,这个函数是一次函数. 2、(1)已知函数23(2)my m x -=-是正比例函数,则m 的值为 .(2)下列函数中,是一次函数的有 (填序号) ① 2c r π=;② 2(3)y x =-;③ 22n m -=; ④ (50)s x x =-;⑤ 100t v =.3 、 .已知y 是x 的一次函数,且当2x =-时,7y =;当3x =时,5y =-.求当0y = 时,自变量x 的值.4.(1)已知100y -与x 成正比例关系,且当10x =时,600y =. 求y 关于x 的函数解析式.(2)已知y m +与x n -成正比例(其中m ,n 是常数).如果当15y =-时,1x =-;当7x =时,1y =.求y 关于x 的函数解析式.5. 在平面直角坐标系中,画出函数23y x =--的图像.(1)标出图像与坐标轴的交点,并求出交点坐标;(2)若直线23y x =--与x 、y 轴的交点分别为A 、B ,求直线与坐标轴围成的三角形ABO 的面积.6、(1)一次函数223y x =-的图像与x 轴的交点坐标 ,与y 轴的交点为 . (2)直线66y x =-+与坐标轴围成的三角形的面积为 .(3)直线2y x b =+与坐标轴围成的三角形的面积为6,则这条直线的函数解析式为 . (4) 试判断在平面直角坐标系中的三点A 213(,)33-、B (1,1)、C (4,5)-是否在同一直线上? 7、 (1)下列哪个点不在一次函数34y x =-的图像上( ) A 、(2,10)-- B 、(3,6) C 、317(,)22--D 、(4,0)- (2)已知一次函数2y kx =-经过点(1,3)--、(1,)m ,则m 的值为 . (3)在平面直角坐标系中,直线23y x =+上有一点P 到x 轴的距离为3,那么这个点到y 轴的距离为 .8、 在平面直角坐标系中,直线y kx b =-与直线2y x =-平行,且经过点(0,5)-, 那么这条直线的函数解析式为 .9、若两个一次函数的图像互相平行,则k 相等;b 是一次函数图像与y 轴的交点的纵坐标. 10、 (1)将直线31y x =+沿x 轴的正方向平移3个单位,那么平移后得到的直线的函数解析式为 .(2)已知一次函数2y x b =--,将它的图像向y 轴的正方向平移3个单位后,所得的图像经过点(0,1),那么b = .(3)已知一次函数y kx b =+的图像与一次函数2133y x =-的图像平行,且它的图像与y 轴的交点到x 轴的距离为3,那么这个一次函数的解析式为 .11. 若直线2y x b =+经过第一、三、四象限,那么直线2y bx =-+必经过( ) A 、第一、二、三象限 B 、第二、三、四象限C 、第一、三、四象限D 、第一、二、四象限12. 一次函数图像经过的象限由k 、b 决定,k 确定图像的方向,b 确定与y 轴的交点. 13. (1)一次函数(0)y kx b k =+≠的图象如右图,则k 和b 的取值范围是( )A .k >0,b >0B .k <0,b >0C .k >0,b <0D .k <0,b <0(2)下面图象中,关于x 的一次函数y =-mx -(m -3)的图象不可能是( )(3)已知m 是整数,且一次函数y =(m +4)x +m +2的图象不经过第二象限,那么m =___. (4)图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,0mn ≠)图象的是( )14.已知点1(4,)y -,2(2,)y 都在直线y x m =-+上,则1y 、2y 大小关系是( )A .12y y >B .12y y =C .12y y <D .不能比较yxO AyxOByxO CyxOD15:(1)对于函数132y x =-+,下列说法错误的是 ( ) A .图象经过点(2,2) B .y 随着x 的增大而减少C .图象与y 轴的交点是(6,0)D .图象与坐标所围成的三角形面积是9(2)已知一次函数(3)21y m x m =-++的图像经过点11(,)x y 、22(,)x y ,且12x x >,12y y >,则m 的取值范围是 .16(1)对于函数23y x =--,当13x -<<时,则y 的取值范围为 . (2)已知0.52y x =+,当13y -<<时,则x 的取值范围为 . 17.(1)由图像可知,对于一次函数112y x =-+,当 时,01y ≤≤ (2)已知一次函数y kx b =+的图象(如图6), 当x <0时,y 的取值范围是( )A .y >0B .y <0C .-2<y <0D .y <-2(3)若一次函数y kx b =+的图像与x 轴交于点(4,0) 则当0y >时,x 的取值范围是 . 18、在平面直角坐标系中,直线2y x =-+与直线112y x =+19、(1)如图10—1,直线l 1:11y k x b =+与直线l 2:22y k x b =+的交点坐标为 .(2)若直线23y x =+与32y x b =-相交于x 轴,则b 的值是( A .3- B .32-C .6D .94- (3)若直线y =2x -1与y =x -k 的交点在第四象限,则k 的取值范围是 . (4)已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,那么m 的值为( )A .±2B .±4C .2D .-2 20.已知一次函数y =kx -k +4的图象与y 轴的交点坐标是(0,-2),那么这个一次函数的表达______. 21.写出同时具备下列两个条件的一次函数表达式(写出一个即可) . (1)y 随着x 的增大而减小, (2)图象经过点(1,-3).22.函数y =(m +1)x -(4m -3)的图象在第一、二、四象限,那么m 的取值范围是( ) (A .34m <(B .314m -<< (C .1m <- (D .1m >- 23. 点A (– 5,y 1)和B (– 2,y 2)都在直线y = – 12 x +b 上,则y 1与y 2的关系是 ( )A .y 1≤y 2B .y 1=y 2C .y 1<y 2D .y 1>y 22b 1图10—126.函数y = k(x–k)(k<0)的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限27.一次函数y = 3x + p和y = x + q的图象都经过点A(– 2,0),且与y轴分别交于B、C两点,那么△ABC的面积是()A.2 B.4 C.6 D.828.如图,(1)求S△AOB;(2)求一条过点A且将△AOB的面积分为1:3的直线的解析式.。

(完整版)一次函数练习题及答案

(完整版)一次函数练习题及答案

八年级一次函数练习题1、直线y=kx+2过点(—1,0),则k 的值是 ( ) A .2 B .—2 C .—1 D .12. 直线62-=x y 关于y 轴对称的直线的解析式为 ( )A .62+=x yB .62+-=x yC .62--=x yD .62-=x y 3、直线y=kx+2过点(1,—2),则k 的值是( ) A .4 B .-4 C .—8 D .84、打开某洗衣机开关,在洗涤衣服时(洗衣机内无水),洗衣机经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y (升)与时间x(分钟)之间满足某种函数关系,其函数图象大致为( )5.点P 关于x 轴对称的点是(3,-4),则点P 关于y 轴对称的点的坐标是_______.6.若1)7(0=-x ,则x 的取值范围为__________________.7.已知一次函数1-=kx y ,请你补充一个条件______________,使函数图象经过第二、三、四象限.8、0(1)π- = . 9、在函数2-=x y 中,自变量x 的取值范围是______.10、把直线y =错误!x +1向上平移3个单位所得到的解析式为______________. 11、已知y 与x 成正比例,且当x =1时,y =2,那么当x =3时,y =_______. 12、在平面直角坐标系中.点P (-2,3)关于x 轴的对称点13.(9分)已知一次函数的图象经过(3,5)和(-4,-9)两点. 求这个一次函数的解析式;(2)若点(a ,2)在这个函数图象上,求a 的值.14.如图,直线y=-2x +4分别与x 轴、y 轴相交于点A 和点B ,如果线段CD 两端点在坐标轴上滑动(C 点在 y 轴上,D 点在x 轴上),且CD=AB . 当△COD 和△AOB 全等时,求C 、D 两点的坐标;15、已知直线3y kx =-经过点M ,求此直线与x 轴,y 轴的交点坐标.16、如图,直线1l 与2l 相交于点P ,1l 的函数表达式y=2x+3,点P 的横坐标为-1,且2l 交y 轴于点A (0,-1).求直线2l 的函数表达式.xyOAB3y kx =- yxOM11 2-17、已知如图,一次函数y=ax+b 图象经过点(1,2)、点(-1,6)。

一次函数练习题及答案

一次函数练习题及答案

一次函数练习题及答案一、选择题1. 一次函数y = 2x - 3的斜率是:A. 2B. -3C. -2D. 3答案:A2. 如果一次函数y = kx + b的图象经过点(1, 0)和(0, -1),那么k 的值是:A. 1B. -1C. 0D. 2答案:A3. 函数y = 3x + 5与x轴的交点坐标是:A. (-5/3, 0)B. (0, 5)C. (1, 0)D. (-1, 0)答案:A二、填空题4. 已知一次函数y = 4x + 1,当x = 2时,y的值为________。

答案:95. 一次函数y = -2x + 4的图象与y轴的交点坐标是________。

答案:(0, 4)三、解答题6. 已知直线y = 3x + 2与直线y = -x + 4相交于点P,求点P的坐标。

解:将两个方程联立求解:\[ \begin{cases} y = 3x + 2 \\ y = -x + 4 \end{cases} \]解得:\[ x = \frac{2}{4}, y = 3 \times \frac{2}{4} + 2 \] 所以点P的坐标为(\(\frac{1}{2}\), 3)。

7. 一次函数y = kx + b的图象经过点A(-1, -2)和点B(2, 6),求k 和b的值。

解:将点A和点B的坐标代入一次函数方程得:\[ \begin{cases} -k + b = -2 \\ 2k + b = 6 \end{cases} \] 解得:\[ k = 2, b = 0 \]8. 已知直线y = 5x - 7在x轴上的截距为a,在y轴上的截距为b,求a和b的值。

解:当y = 0时,x = \frac{7}{5},所以a = \frac{7}{5};当x = 0时,y = -7,所以b = -7。

四、应用题9. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。

已知当生产x件时,利润为y元,且利润函数为y = 20x - 30。

一次函数基础练习题

一次函数基础练习题

1.知识点:变量及函数概念 一、选择题:1.在圆的周长公式2C r =π中,下列说法错误的是( )A .C r π,,是变量,2是常量B .C r ,是变量,2π是常量 C .r 是自变量,C 是r 的函数D .将2C r =π写成2Cr =π,则可看作C 是自变量,r 是C 的函数2.在某个变化过程中,有两个变量x 与y ,下列关系中,一定能称y 是x 的函数是( ) A.y 由x 值确定 B.给定一个x 值,就能确定一个y 值 C.给定一个y 值,就能确定一个x 值 D.给定出2个x 值,就能确定出一个y 值 二、解答题:3.地壳的厚度为8-40km,在地表以下不太深的地方,温度可按y=3.5x+t 计算,其中x 是深度,t 是地球表面温度,y 是所达深度的温度。

(1)在这个变化过程中,自变量和因变量分别是什么?(2)分别计算当x 为1km,5km,10km,20km 时地壳的温度(地表温度为2℃)2..知识点:定义域 一、填空题: 1.函数2y x =-中自变量x 的取值范围是 .2.圆的面积2S r =π中,自变量r 的取值范围是 .3.函数31y x =-中自变量的取值范围为 . 4.y=2x+1中自变量x 的取值范围为 . 二、解答题:5.已知钢笔每只1.8元,则买笔费y(元)与钢笔支数x 之间的函数关系式是什么?其中自变量x 的取值范围是什么?1.知识点:变量及函数概念 一、选择题:1.在下表中,设x 表示乘公共汽车的站数,y 表示应付的票价(元)x (站)1 2 3 4 5 6 7 8 9 10 y (元)1122233344根据此表,下列说法正确的是( ) A .y 是x 的函数B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对2.下面分别给出了变量x 与y 之间的对应关系,其中y 是x 函数的是( )3.如图1所示,第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么设第n 个图案中有白色地面砖m 块,则m 与n 的函数关系式正确的是( )A .m =5nB .m =5+nC .m =5+2nD .m =4n +2二、填空题:4.下列:①2y x =;②21y x =+;③22(0)y x x =≥;④(0)y x x =±≥,具有函数关系(自变量为x )的是 . 2..知识点:定义域 一、选择题:1.n 边形的内角和S=(n-2)·180°,其中自变量n 的取值范围是( ) A .全体实数 B .全体整数C .3n ≥D .大于或等于3的整数二、填空题:2.函数中21x y x +=-自变量x 的取值范围是 .3.函数y=2332x x -+-中自变量x 的取值范围 三、解答题:4.某人在银行的信用卡中存入2万元,每次取出50元,若卡内余钱数为y(元),取钱的次数可为x(利息忽略不计)(1)写出y与x的函数关系式。

一次函数练习题与答案

一次函数练习题与答案

一次函数练习题与答案一次函数练习题与答案一次函数是初中数学中的重要知识点,也是解决实际问题中常用的数学模型。

它的一般形式为y=ax+b,其中a和b为常数,x为自变量,y为因变量。

一次函数的图像是一条直线,具有许多有趣的性质和应用。

下面,我们将通过一些练习题来加深对一次函数的理解,并给出详细的答案解析。

练习题1:已知一次函数y=2x+1,求当x=3时的函数值。

解析:将x=3代入函数中,得到y=2×3+1=7。

所以当x=3时,函数值为7。

练习题2:已知一次函数y=-3x+5,求使得函数值等于0的x的值。

解析:当函数值等于0时,即-3x+5=0。

解这个方程得到x=5/3。

所以使得函数值等于0的x的值为5/3。

练习题3:已知一次函数y=4x-2和y=-2x+6,求它们的交点坐标。

解析:当两个函数的函数值相等时,即4x-2=-2x+6。

解这个方程得到x=1。

将x=1代入其中一个函数中,得到y=4×1-2=2。

所以它们的交点坐标为(1, 2)。

练习题4:已知一次函数的图像通过点(2, 3)和(-1, 1),求这个函数的解析式。

解析:设这个函数的解析式为y=ax+b。

将点(2, 3)代入函数中,得到3=2a+b;将点(-1, 1)代入函数中,得到1=-a+b。

解这个方程组,得到a=2,b=-1。

所以这个函数的解析式为y=2x-1。

练习题5:已知一次函数的图像与x轴交于点(3, 0),求这个函数的解析式。

解析:当函数与x轴交于点(3, 0)时,即y=a×3+b=0。

解这个方程得到a=-b/3。

所以这个函数的解析式为y=(-b/3)x+b。

通过以上练习题,我们可以看到一次函数的一些基本特点和求解方法。

一次函数的图像是一条直线,它的斜率决定了直线的倾斜程度。

当斜率为正数时,直线向上倾斜;当斜率为负数时,直线向下倾斜;当斜率为零时,直线平行于x 轴。

截距则决定了直线与y轴的交点。

一次函数的应用非常广泛,可以用来解决许多实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【问题1】已知函数(12)1y k x k =--+.
(1) 当k 取何值时,这个函数是正比例函数;
(2) 当k 取何值时,这个函数是一次函数.
注:理解正比例函数和一次函数的概念(整理成一般形式)
练习:(1)已知函数23(2)m y m x -=-是正比例函数,则m 的值为 .
(2)下列函数中,是一次函数的有 (填序号)
① 2c r π=;② 2(3)y x =-;③ 22n m -=; ④ (50)s x x =-;⑤ 100t v
=. 【问题2】已知y 是x 的一次函数,且当2x =-时,7y =;当3x =时,5y =-.
求当0y = 时,自变量x 的值.
注:利用待定系数法求函数解析式(基本步骤)
练习:(1)已知100y -与x 成正比例关系,且当10x =时,600y =.
求y 关于x 的函数解析式.
(2)已知y m +与x n -成正比例(其中m ,n 是常数).
如果当15y =-时,1x =-;当7x =时,1y =.求y 关于x 的函数解析式.
【问题3】求下列函数自变量的取值范围(使函数式有意义):
(1)243x y -=; (2)21
x y x -=-; (3)y =
注:一般函数自变量的取值范围使解析式有意义
练习:求下列函数自变量的取值范围(使函数式有意义):
(1)12y x =-; (2)223
y x =
-; (3)y =
待定系数法求函数关系式
1、 根据下列条件写出相应的函数关系式.
(1)若直线y =m +1经过点(1,2),则该直线的解析式是
(2)一次函数y=kx + b 的图像如图所示,则k,b 的值分别为( )
A.-21,1
B.-2,1
C. 21
,1 D.2,1
(3)已知一次函数的图像经过点A(-3,-2)和点B(1,6).
①求此一次函数的解析式, 并画出图像;
②求此函数图像与坐标轴围成的三角形的面积.
(1) 一次函数中,当x =1时,y =3;当x =-1时,y =7.
2、求满足下列条件的函数解析式:
(1)图像经过点(1,-2)的正比例函数的解析式;
(2)与直线y=-2x 平行且经过点(1, -1)的直线的解析式;
(3)经过点(0,2)和(1,1)的直线的解析式;
(4)直线y=2x -3关于x 轴对称的直线的解析式;
(5)把直线Y==2x+1向下平移两个单位,再向右平移3个单位后所得直线的解析式.
3、已知y 与x -3成正比例,当x =4时,y =3.
(1)写出y 与x 之间的函数关系式;
(2)y 与x 之间是什么函数关系;
(3)求x =2.5时,y 的值.
4、已知直线y kx b =+的图像经过点(2,0),(4,3),(m ,6),求m 的值。

5、点(1,1)、(2,0)、(3,-1)是否在同一条直线上?
6、 已知A 、B 两地相距30千米,B 、C 两地相距48千米.某人骑自行车以每小时12千米的速度从A 地出发,经过B 地到达C 地.设此人骑行时间为x (时),离B 地距离为y (千米).
(1)当此人在A 、B 两地之间时,求y 与x 的函数关系及自变量x 取值范围.
(2)当此人在B 、C 两地之间时,求y 与x 的函数关系及自变量x 的取值范围.
分析:(1)当此人在A 、B 两地之间时,离B 地距离y 为A 、B 两地的距离与某人所走
的路程的差.
(2)当此人在B、C两地之间时,离B地距离y为某人所走的路程与A、B两地的距离的差.
解(1) y=30-12x.(0≤x≤2.5)
(2) y=12x-30.(2.5≤x≤6.5)
7、按照我国税法规定:个人月收入不超过800元,免交个人所得税.超过800元不超过1300元部分需缴纳5%的个人所得税.试写出月收入在800元到1300元之间的人应缴纳的税金y(元)和月收入x(元)之间的函数关系式.
例1:已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x轴交点的横坐标是6,求这个一次函数的解析式。

例2:.已知2y-3与3x+1成正比例,且x=2时,y=5,(1)求y与x之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .
一、考察一次函数定义
1、若函数()213m y m x =-+是一次函数,求m 的值,并写出解析式。

2、要使
y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .
1. 已知y=(m 2-m)x 1m +,当m 取何值时,y 是x 的正比例函数。

2. 下列函数中,哪些是一次函数?哪些是正比例函数?
(1)y=-15x + (2)y=-5
x (3)y=-2x -1 (4)y=-3-5x (5)y=x 2-(x-1)(x-2) (6)x 2-y=1 (二)对函数关系的考查
1.已知y-2与x 成正比例,当x=3时,y=1,求y 与x 之间
的函数关系式,并判断它是不是正比例函数。

2. 已知y+m 与x+n (m,n 为常数)成比例,试判断y 与x
成什么函数关系?若x=3时,y=5;x=5时,y=11.试求出
y 与x 之间的函数表达式。

相关文档
最新文档