二次函数的实际应用(面积最值问题)
2022年初中数学《二次函数在面积最值问题中的应用》精品教案

21.4二次函数的应用第1课时二次函数在面积最值问题中的应用 教学目标1.经历数学建模的根本过程,能分析实际问题中变量之间的二次函数关系;2.会运用二次函数的性质,建立二次函数的数学模型求实际问题中的最大值或最小值。
教学重难点【教学重点】利用二次函数求实际问题的最值。
【教学难点】对实际问题中数量关系的分析。
课前准备课件等。
教学过程一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如以下图的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究探究点:利用二次函数求最大面积【类型一】利用二次函数求最大面积例1 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,那么另一边长为60-2x 2,从而表示出面积;(2)利用配方法求出顶点坐标.解:(1)根据题意,得S =60-2x 2·x = -x 2+30x .自变量x 的取值范围是0<x <30;(2)S =-x 2+30x =-(x -15)2+225,因为a =-1<0,所以S 有最大值,即当x =15(米)时,S最大值是225(平方米).方法总结:二次函数与日常生活中的例子还有很多,表达了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件例2 用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y 平方米.(1)求y关于x的函数关系式;(2)当x为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)矩形的面积,可以转化为解一元二次方程;(3)判断能否围成,其实就是利用根的判别式判断一元二次方程是否有实数根,也可用配方法判断.解:(1)y=x(16-x)=-x2+16x(0<x<16);(2)当y=60时,-x2+16x=60,解得x1=10,x2=6.所以当x=10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y=70时,-x2+16x=70,整理,得x2-16x+70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:当y=70时,-x2+16x=70,整理,得x2-16x+70=0,配方,得(x-8)2=-6,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】利用二次函数确定最大面积的条件例3 现有一块矩形场地,如以下图,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式,并写出自变量的取值范围;(2)当x是多少时,种植菊花的面积最大?最大面积是多少?解析:这是花草种植面积的最优化问题,先根据矩形的面积公式列出y与x之间的函数关系式,再利用配方法或公式法求得最大值.解:(1)由题意知,B 场地宽为(30-x )m ,∴y =x (30-x )=-x 2+30x ,自变量x 的取值范围为0<x <30;(2)y =-x 2+30x =-(x -15)2+225,当x =15m 时,种植菊花的面积最大,最大面积为225m 2.【类型四】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如以下图).(1)直接写出点M 及抛物线顶点P 的坐标;(2)求出这条抛物线的函数关系式;(3)施工队方案在隧道门口搭建一个矩形“脚手架〞ABCD ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架〞三根木杆AB 、AD 、DC 的长度之和的最大值是多少?请你帮施工队计算一下.解:(1)M (12,0),P (6,6);(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得a =-16, 所以这条抛物线的函数关系式为y =-16(x -6)2+6,即y =-16x 2+2x ; (3)设OB =m ,那么点A 的坐标为(m ,-16m 2+2m ), 所以AB =DC =-16m 2+2m . 根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC=-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m -3)2+15. 所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计图形面积最大值⎩⎪⎨⎪⎧1.利用二次函数求最大面积2.利用二次函数确定最大面积的条件3.利用函数判断面积取值成立的条件4.最大面积方案设计教学反思教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,建立二次函数模型,解决实际问题.第2课时利用移项解一元一次方程教学目标1.掌握移项变号的根本原那么;2.会利用移项解一元一次方程。
考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。
2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。
3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。
二次函数的应用课件面积问题(共10张PPT)

请同学们完成这个 问题的解答
你会解吗?
例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。窗框 的长、宽各为多少时,它的透光面积最大?最大透光面积是多少?
解:设矩形的宽为x米,矩形的透光面积为y米。由题 意得:
y=x· 6-3x 2
(0<x<2)
即:y=- 3 x2+3x
2
配方,得:
的距离)能否通过此隧道? 如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1
米为数轴的单位长度,建立平面直角坐标系,
A CB
)
(6)y=- x2-4x+1
值范围; 例6:用6m长的铝合金型材料做一个形状如图所示的矩形窗框。
该店想通过降低售价、增加销售量的办法来提高利润。
O x
(2) 有一辆宽2.8米,高3米的 y=x·
(0<x<2)
∴当x=5,y最大值=50
农用货车(货物最高处与地面AB y随着x的增大而减小。
(4)y=100-5x2 将这个函数关系式配方,得:
y=- 3 (x-1)2+ 3
2
2
∴它的顶点坐标是(1,1.5)
∴当x=1,y最大值=1.5
因为x=1时,满足0<x<2,这时
6-3x 2
=1.5
答:当矩形窗框的宽为5m时,长为1.5m时,它的透光
面积最大,最大面积为1.5m2。
1.求下列函数的最大值或最小值:
(1)y=x2-3x+4
(2)y=1-2x-x2
物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角
二次函数的应用《图形面积的最大值》

h= 30t - 5t 2
20
O 1 2 34 5 6
t/s
小球运动的时间是 3s 时,小球最高.小球运动中的 最大高度是 45 m.
典例精析 例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变 化而变化.当l是多少时,场地的面积S最大?
问题1 矩形面积公式是什么? 问题2 如何用l表示另一边?
设垂直于墙的边长为x m,
60-2x
问题3 面积S的函数关系式是什么?
S=x(60-2x)=-2x2+60x.
问题4 如何求自变量x的取值范围?墙长32m对此题有什么作用?
0<60-2x≤32,即14≤x<30.
问题5 如何求最值最?值在顶点处,即当x=15m时,S=450m2.
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个 矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
知识要点
二次函数解决几何面积最值问题的方法 1.求出函数解析式和自变量的取值范围; 2.配方变形,或利用公式求它的最大值或最小值, 3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取 值范围内.
典例精析
例2 用某建筑物的窗户如图所示,它的上半部分是半圆,下半部分是矩形, 制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户 通过的光线最多?(结果精确到0.01m)此时,窗户的面积是多少?(结果精 确到0.01m2)
当 x b 时,
2a
二次函数 y = ax 2 + bx + c 有最小(大)
值
y
4ac b2 .
4a
讲授新课
求二次函数的最大(或最小)值
典例精析 例1 写出下列抛物线的最值. (1)y=x2-4x-5;
实际问题与二次函数(利用函数求面积最值问题)

实际问题与二次函数利用二次函数解决面积最大问题杨店中学九4班王玉倩复习导入1.抛物线y=a x 2+bx +c 的最值问题(1)若a >0,则当x =时,y min =;(2)若a <0,则当x =时,y max =。
2. 填空(1)二次函数y=2(x −3)2+5的对称轴是,顶点坐标是,当x =时,y 的值是.(2)二次函数y=-3(x +4)2-1的对称轴是,顶点坐标是,当x =时,y 的值是.-b2a -b 2a4ac −b 24a 4ac −b 24a 直线x =3(3,5)3最小5直线x =-4(-4,-1)-4最大-13.练习:求出函数的顶点坐标和最值S=-2x2+12x=-2(x2-6x)=-2(x2-6x+9-9)=-2(x−3)2+18所以顶点坐标是(3,18),即x=3时,最大值S=18你能用这个式子想出一个符合条件的实际问题吗?学习目标:知识与技能:能根据具体几何问题中的数量关系,列出二次函数解析式,并能应用二次函数的相关性质解决实际几何问题,体会二次函数是刻画现实世界的有效数学模型。
过程与方法:1.从“数”(解析式)和“形”(图象)的角度理解二次函数与实际生活中“最值”问题之间的联系,体会“数形结合”的思想。
2.通过转化模型,让学生学会合作、交流。
情感态度与价值观:通过用二次函数解决实际生活中的问题,体验函数知识的实际应用价值,感受数学与人类生活的密切关系。
教学重难点:重点:应用二次函数解决几何图形中有关的最值问题难点:函数特征与几何特征的相互转化以及讨论最值在何处取得探究新知例1:如图,一边靠学校院墙,其他三边用12m 长的篱笆围成一个矩形花圃,设矩形ABCD 的边AB=x m ,面积为S m2(1)写出S 与x 之间的函数关系式;(2)当x 取何值时,面积S 最大,最大值是多少?AB CD解:(1)S=x (12-2x )x12-2xx即S=-2x 2+12x(?)(2) S=-2x 2+12x=-2(x −3)2+18 (0<x <6)即:当AB 边长为3m 时,S 的面积最大,为18m20510152002468S/m 2x /mx …12345…S…1016181610…思考:1.解决实际问题中最值问题就是求二次函数的什么量?2.对这种类型的题应该先怎么做?要注意些什么?小结实际问题数学模型(二次函数)数学问题的解(图象、性质)实际问题的解抽象(转化)求解(最值)检验合作探究如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB 为x 米,面积为S 平方米.(1)求S 与x 的函数关系式及自变量的取值范围;(2)当x 取何值时所围成的花圃面积最大,最大值时多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.(提示:注意第(2)问与第(3)问区别)ABCDxxx x 24-4x解:(1)∵AB 的长为x 米,篱笆长为24米,∴花圃的宽为(24-4x )米∴S=x (24-4x )=-4x 2+24x (0<x <6)(2)当x =-b2a=3m 时,S 最大值=4ac−b 24a=36m 2(3)∵墙的可用长度为8米,∴0<24-4x ≤8,∴4≤x <6∴当x =4m 时, S 最大值=32m 2.归纳总结求实际问题极值的一般步骤:(1)求出函数解析式,写出自变量取值范围;(2)画出大致图像;(3)用配方法或者公式法求最大值或最小值,或根据自变量的取值范围求最大值或最小值.1.本节课学习的主要内容是什么?2.学习过程中的数学思想有哪些?(1)数学建模思想;(2)数形结合思想课后巩固书:习题22.3 复习巩固第3、4题课时练:第47页要点突破1;第48页要点突破2。
初中数学专题复习-二次函数的实际应用面积最值问题

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=Θ[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=2 x x 3442+-= 4289)417(42+--=x ∵104340≤-<x∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴PHBH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10] )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12 m AB CD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )。
第4课二次函数的实际应用(面积最值问题)(教师)

第4课时 二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点: 1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值; 3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少? (2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积. 解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x≤4) 易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H 则有△AFB ∽△BHP ∴PHBHBF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x≤5时,函数值y 随x 的增大而增大, 对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省? 解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点 按顺(逆)时针方向旋转90°后得到的, 故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元 那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x-×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m 解:AB =x m ,AD=b ,长方形的面积为y m 2∵AD ∥BC ∴△MAD ∽△MBN ∴MB MA BN AD =,即5512x b -=,)5(512x b -=)5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值.4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 mB .12 mC .8 mD .10m解:令0=y ,则:02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a 令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B ) A .4.6m B .4.5m C .4m D .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少? 解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x-米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米)即:鸡场的长度为25米时,面积最大. (2) 中间有n 道篱笆,则宽为250+-n x米,设面积为S 平方米.则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米. 即:使面积最大的x 值与中间有多少道隔墙无关.10.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.ABCD PQ解:∵∠APQ=90°, ∴∠APB+∠QPC=90°. ∵∠APB+∠BAP=90°,∴∠QPC=∠BAP ,∠B=∠C=90° .∴△ABP ∽△PCQ.,86,yxx CQ BP PC AB =-= ∴x x y 34612+-=.11.(2006年南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少? 解:∵矩形MFGN ∽矩形ABCD ∴MF=2MN =2x ∴ EM=10-2x ∴S=x (10-2x )=-2x 2+10x=-2(x-2.5)2+12.5 ∵1020<<x ,∴50<<x当x=2.5时,S 有最大值12.512.(2008四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 0.5 米.答案:如图所示建立直角坐标系则:设c ax y +=2将点)1,5.0(-,)5.2,1(代入,⎩⎨⎧+=+-⨯=ca c a 5.2)5.0(12,解得⎩⎨⎧==5.02c a 5.022+=x y 顶点)5.0,0(,最低点距地面0.5米.13.(2008黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解:(1)根据题意,得x x x xS 3022602+-=⋅-=自变量的取值范围是(2)∵01<-=a ,∴S 有最大值当时,答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.14.(2008年南宁市)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量成正比例关系,如图12-①所示;种植花卉的利润与投资量成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元)(1)分别求出利润与关于投资量的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少? 解:(1)设=,由图12-①所示,函数=的图像过(1,2),所以2=,故利润关于投资量的函数关系式是=;因为该抛物线的顶点是原点,所以设2y =,由图12-②所示,函数2y =的图像过(2,2),所以,故利润2y 关于投资量的函数关系式是2221x y =; (2)设这位专业户投入种植花卉万元(),则投入种植树木(x -8)万元,他获得的利润是万元,根据题意,得==+21y y +== ∵021>=a ∴当时,的最小值是14;∴他至少获得14万元的利润. 因为,所以在对称轴2=x 的右侧, z 随x 的增大而增大所以,当8=x 时,z 的最大值为32.15.(08山东聊城)如图,把一张长10cm ,宽8cm 的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.解:(1)设正方形的边长为cm,则.即.解得(不合题意,舍去),.剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为cm,盒子的侧面积为cm2,则与的函数关系式为:.即.改写为.当时,.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.(3)有侧面积最大的情况.设正方形的边长为cm ,盒子的侧面积为cm 2.若按图1所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=22102)28(2 即.当时,.若按图2所示的方法剪折, 则与的函数关系式为:x xx x y ⋅-⋅+-=2282)210(2. 即.当时,.比较以上两种剪折方法可以看出,按图2所示的方法剪折得到的盒子侧面积最大,即当剪去的正方形的边长为cm 时,折成的有盖长方体盒子的侧面积最大,最大面积为cm 2.16.(08兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式; (2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.解:(1)根据题目条件,的坐标分别是.设抛物线的解析式为,月 日11 将的坐标代入, 得 解得. 所以抛物线的表达式是.(2)可设,于是从而支柱的长度是米.(3)设是隔离带的宽,是三辆车的宽度和,则点坐标是. 过点作垂直交抛物线于, 则.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.。
10.二次函数的应用题(面积最值问题

二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为米,面积为平方米x S则长为:(米)x x 4342432-=+-则:)434(x x S -=x x 3442+-= 4289417(42+--=x ∵104340≤-<x ∴ 2176<≤x ∵,∴与的二次函数的顶点不在自变量的范围内, 6417<S x x 而当内,随的增大而减小, 2176<≤x S x ∴当时,(平方米) 6=x 6042894176(42max =+--=S 答:可设计成宽米,长10米的矩形花圃,这样的花圃面积最大. 6[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴,即, PHBH BF AF =3412--=y x ∴, 521+-=x y , x x xy S 5212+-==)42(≤≤x 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值随的增大而增大,y x 对于来说,当x=4时,. 42≤≤x 12454212=⨯+⨯-=最大S 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形. (2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10])24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x 当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度(单位:米)与小球运动时间h t (单位:秒)的函数关系式是,那么小球运动中的最大高度 4.9米 .=最大h 2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .mB .6 mC .15 mD .m 42425解:AB =x m ,AD=,长方形的面积为y m 2b ∵AD ∥BC ∴△MAD ∽△MBN ∴,即, MB MA BN AD =5512x b -=)5(512x b -=, 当时,有最大值. )5(512)5(5122x x x x xb y --=-⋅==5.2=x y 4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C )A .7B .6C .5D .4 5.如图,铅球运动员掷铅球的高度(m)与水平距离(m)之间的函数关系式是:y x ,则该运动员此次掷铅球的成绩是( D ) 35321212++-=x x y A .6 mB .12 mC .8 mD .10m 解:令,则:0=y 02082=--x x 0)10)(2(=-+x x(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面m ,则水流落地点B 340离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为,设,将点代入, )340,1(340)1(2+-=x a y )10,0(310-=a 令,得:,所以OB=3 0340)1(3102=+--=x y 4)1(2=-x7.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解: )240(x x y -=)20(22x x --=200)10(22+--=x ∵152400≤-<x ∴205.12<≤x ∵二次函数的顶点不在自变量的范围内,x 而当内,随的增大而减小,205.12<≤x y x ∴当时,5.12=x (平方米)5.187200)105.12(22max =+--=y 答:当米时花园的面积最大,最大面积是187.5平方米.5.12=x9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为米,设面积为平方米. 350x -S )50(313502x x x x S --=-⋅=。
2019中考数学狙击重难点系列专题3----二次函数的实际应用之面积最大值问题

面积最大值问题1. 如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B (4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.2. 如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.3. 如图,二次函数y=ax 2+2x+c 的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求该二次函数的表达式;(2)过点A 的直线AD ∥BC 且交抛物线于另一点D ,求直线AD 的函数表达式;(3)在(2)的条件下,请解答问题: 动点M 以每秒1个单位的速度沿线段AD 从点A 向点D 运动,同时,动点N 以每秒个单位的速度沿线段DB 从点D 向点B 运动,问:在运动过程中,当运动时间t 为何值时,△DMN 的面积最大,并求出这个最大值.4. 如图,在平面直角坐标系中,二次函数y=﹣x 2+bx+c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0).(1)求该二次函数的表达式及点C 的坐标; (2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .求S 的最大值;5. 如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.7.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求△PCE面积最大时P点的坐标;8.如图,在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;①求S与t的函数关系式;②当t是多少时,△PBF的面积最大,最大面积是多少?9.如图,曲线y1抛物线的一部分,且表达式为:y 1=(x2﹣2x﹣3)(x≤3)曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点D作CD∥x轴交曲线y1于点D,连接AD,在曲线y2上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.、(备用图)(1)求点A,点B和点D的坐标;(2)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.11.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y 轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,求t的值;12.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B 两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;13.已知在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx的图象经过点A(﹣1,4),交x轴于点B(a,0).(1)求a与b的值;(2)如图1,点M为抛物线上的一个动点,且在直线AB下方,试求出△ABM 面积的最大值及此时点M的坐标;14.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC 于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?15.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M 从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;16.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;答案解析部分一、综合题1.【答案】(1)解:设抛物线解析式为y=ax 2+bx+c ,把A 、B 、C 三点坐标代入可得,解得 ,∴抛物线解析式为y=x 2﹣3x ﹣4; (2)解:∵点P 在抛物线上, ∴可设P (t ,t 2﹣3t ﹣4),过P 作PE ⊥x 轴于点E ,交直线BC 于点F ,如图2,∵B (4,0),C (0,﹣4), ∴直线BC 解析式为y=x ﹣4, ∴F (t ,t ﹣4),∴PF=(t ﹣4)﹣(t 2﹣3t ﹣4)=﹣t 2+4t ,∴S △PBC =S △PFC +S △PFB =PF•OE+ PF•BE= PF•(OE+BE )= PF•OB=(﹣t 2+4t )×4=﹣2(t ﹣2)2+8,∴当t=2时,S △PBC 最大值为8,此时t 2﹣3t ﹣4=﹣6,∴当P 点坐标为(2,﹣6)时,△PBC 的最大面积为8.2.【答案】(1)解:把点(﹣2,2),(4,5)代入y=ax 2+c 得,解得, 所以抛物线解析式为y= x 2+1;(2)解:作QE ∥y 轴交AB 于E ,如图2,当k=1时,一次函数解析式为y=x+2,解方程组 得 或,则B (1+ ,3+ ),设Q (t , t 2+1),则E (t ,t+2), ∴EQ=t+2﹣(t 2+1)=﹣t 2+t+1,∴S △QBF =S △EQF +S △EQB =•(1+ )•EQ= •(1+ ))(﹣t 2+t+1)=﹣(t ﹣2)2+ +1,当t=2时,S △QBF 有最大值,最大值为 +1,此时Q 点坐标为(2,2). 3.【答案】(1)解:由题意知:,解得,∴二次函数的表达式为y=﹣x 2+2x+3 (2)解:在y=﹣x 2+2x+3中,令y=0,则﹣x 2+2x+3=0,解得:x1=﹣1,x2=3,∴B(3,0),由已知条件得直线BC的解析式为y=﹣x+3,∵AD∥BC,∴设直线AD的解析式为y=﹣x+b,∴0=1+b,∴b=﹣1,∴直线AD的解析式为y=﹣x﹣1.(3)解:过点B作BF⊥AD于F,过点N作NE⊥AD于E,在Rt△AFB中,∠BAF=45°,∴sin∠BAF=,∴BF=,BD=,∴sin∠ADB=,∵DM=5-t,DN=t,又∵sin∠ADB=,NE=,∴∴当t=时,S△MDN的最大值为4.【答案】(1)解:把A(0,8),B(﹣4,0)代入y=﹣x2+bx+c得,解得,所以抛物线的解析式为y=﹣x2+x+8;当y=0时,﹣x2+x+8=0,解得x1=﹣4,x2=8,所以C点坐标为(8,0)(2)解:①连结OF,如图,设F(t,﹣t2+t+8),∵S四边形OCFD=S△CDF+S△OCD=S△ODF+S△OCF,∴S△CDF=S△ODF+S△OCF﹣S△OCD= •4•t+ •8•(﹣t2+t+8)﹣•4•8=﹣t2+6t+16=﹣(t﹣3)2+25,当t=3时,△CDF的面积有最大值,最大值为25,∵四边形CDEF为平行四边形,∴S的最大值为50;5.【答案】(1)解:∵二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+ x+4(2)解:△ABC是直角三角形.令y=0,则﹣x2+ x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形(3)解:设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴,∵MN∥AC∴,∴,∵OA=4,BC=10,BN=n+2∴MD= (n+2),∵S△AMN=S△ABN﹣S△BMN= BN•OA﹣BN•MD= (n+2)×4﹣× (n+2)2=﹣(n﹣3)2+5,∴当△AMN面积最大时,N点坐标为(3,0)6.【答案】(1)答案解:设直线的解析式为y=kx+b.∵将A(﹣4,0),B(0,4)代入得:,解得k=1,b=4,∴直线AB的解析式为y=x+4.设物线的解析式为y=ax2+4.∵将A(﹣4,0)代入得:16a+4=0,解得a=﹣,∴抛物线的解析式为y=﹣x2+4.(2)解:如图1所示,过点P作PQ⊥x轴,交AB于点Q.设点P的坐标为(a,﹣+4),则点Q的坐标为(a,a+4).则PQ=﹣+4﹣(a+4)=﹣﹣a.∵S△ABP的面积= PQ•(x B﹣x A)= ×4×(﹣﹣a)=﹣a2﹣2a=﹣(a+2)2+2,∴当a=﹣2时△ABP的面积最大,此时P(﹣2,2).7.【答案】(1)解:根据题意得:,解得:,所以该抛物线的解析式为:y= x2+x﹣4;(2)解:令y=0,即x2+x﹣4=0,解得x1=﹣4,x2=2,∴A(﹣4,0),S△ABC= AB•OC=12设P点坐标为(x,0),则PB=2﹣x.∵PE∥BC,∴∠BPE=∠BAC,∠BEP=∠BCA,∴△PBE∽△BAC,∴△△=()2,即△ =()2,化简得:S△PBE= (2﹣x)2.S△PCE=S△PCB﹣S△PBE= PB•OC﹣S△PBE= ×(2﹣x)×4﹣(2﹣x)2=﹣x2﹣x+ =﹣(x+1)2+3∴当x=﹣1时,S△PCE的最大值为3.8.【答案】(1)解:(法一)设抛物线的解析式为y=ax2+bx+c(a≠0),把A(﹣1,0),B(5,0),C(0,2)三点代入解析式得:,解得;∴;(法二)设抛物线的解析式为y=a(x﹣5)(x+1),把(0,2)代入解析式得:2=﹣5a,∴;∴,即(2)解:①过点F作FD⊥x轴于D,当点P在原点左侧时,BP=6﹣t,OP=1﹣t;在Rt△POC中,∠PCO+∠CPO=90°,∵∠FPD+∠CPO=90°,∴∠PCO=∠FPD;∵∠POC=∠FDP,∴△CPO∽△PFD,∴;∵PF=PE=2PC,∴FD=2PO=2(1﹣t);∴S△PBF= =t2﹣7t+6(0≤t<1);当点P在原点右侧时,OP=t﹣1,BP=6﹣t;∵△CPO∽△PFD,∴FD=2(t﹣1);∴S△PBF= =﹣t2+7t﹣6(1<t<6);②当0≤t<1时,S=t2﹣7t+6;此时t在t=3.5的左侧,S随t的增大而减小,则有:当t=0时,Smax=0﹣7×0+6=6;当1<t<6时,S=﹣t2+7t﹣6;由于1<3.5<6,故当t=3.5时,Smax=﹣3.5×3.5+7×3.5+6=6.25;综上所述,当t=3.5时,面积最大,且最大值为6.25 9.【答案】(1)解:在y1=(x2﹣2x﹣3)中,令y1=0,则有0=(x2﹣2x﹣3),解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),又∵C为与y轴的交点,∴C(0,),又曲线y2与曲线y1关于直线x=3对称,∴曲线y2可由曲线y1关向右平移4个单位得到,∴y2=(X2-10X+21)(x≥3)(2)解:若AD垂直平分CM,则可知CDMA为菱形,此时点M(1,0),显然不在y2上;故直线CM垂直平分AD,取AD中点P,易求其坐标为(1,),故直线CN的解析式为:y CN=x-,求其与y2的交点坐标:,解得:x1=,x2=(不合舍去),∴x=(3)解:因为MN的长度固定,故点P到MN的距离最大时,△PMN的面积最大,∴可设另一直线y=x+b与y2相交于点P,很显然它们只有一个交点时,满足条件.即:只有唯一一个解的时候,这个点就是点P,即方程x+b=(x2﹣10x+21)有唯一一个解,解得:x=,将x=代入y2=(X2-10X+21) ,解得y=,故点P的坐标为(,)10.【答案】(1)解:当y=0时,x2-4x+3=0.解得x1=1,x2=3,∵点B在点A的右侧,∴点A的坐标为(1,0),点B的坐标为(3,0),∵y=x 2-4x+3=(x-2)2-1, ∴点D 的坐标为(2,0)(2)解:设点M 运动的时间为ts , ∵AB=2,∴BM=2-t ,DN=2t ,∴S △MNB ==-t 2+2t=-(t-1)2+1,∴当t=1时,△MNB 的面积最大,最大面积为1, 此时M (2,0),N (2,2)或(2,-2),∴当点M 运动到(2,0),点N 运动到(2,2)或(2,-2)时,△MNB 的面积最大,最大面积为111.【答案】(1)解:设抛物线的解析式为:y=a (x+3)(x+1), ∵抛物线经过点C (0,3), ∴3=a×3×1,解得a=1.∴抛物线的解析式为:y=(x+3)(x+1)=x 2+4x+3(2)证明:在抛物线解析式y=x 2+4x+3中,当x=﹣4时,y=3,∴P (﹣4,3). ∵P (﹣4,3),C (0,3), ∴PC=4,PC ∥x 轴.∵一次函数y=kx ﹣4k (k≠0)的图象交x 轴于点Q ,当y=0时,x=4, ∴Q (4,0),OQ=4. ∴PC=OQ ,又∵PC ∥x 轴,∴四边形POQC 是平行四边形, ∴∠OPC=∠AQC(3)解:在Rt △COQ 中,OC=3,OQ=4,由勾股定理得:CQ=5. 如答图1所示,过点N 作ND ⊥x 轴于点D ,则ND ∥OC ,∴△QND ∽△QCO , ∴,即,解得:ND=3﹣t .设S=S △AMN , 则:S=AM•ND=•3t•(3﹣t )=﹣(t ﹣)2+.又∵AQ=7,∴点M 到达终点的时间为t=, ∴S=﹣(t ﹣)2+(0<t≤). ∵﹣<0,<,且x <时,y 随x 的增大而增大, t=2.5时已超过运动时间又因为开口向下所以取,∴当t=时,△AMN 的面积最大.12.【答案】(1)解:当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1.联立两个解析式,得:x 2﹣1=x+1, 解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3, ∴A (﹣1,0),B (2,3) (2)解:方法一:设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB = PF (x F ﹣x A )+ PF (x B ﹣x F )= PF (x B ﹣x A )=PF∴S △ABP= (﹣x 2+x+2)=﹣ (x ﹣ )2+当x= 时,y P =x 2﹣1=﹣.∴△ABP 面积最大值为 ,此时点P 坐标为(,﹣)方法二:过点P 作x 轴垂线,叫直线AB 于F ,设P (t ,t 2﹣1),则F (t ,t+1)∴S △ABP =(F Y ﹣P Y )(B X ﹣A X ),∴S △ABP =(t+1﹣t 2+1)(2+1), ∴S △ABP =﹣t 2+t+3,当t=时,S △ABP 有最大值,∴S △ABP =13.【答案】(1)解:把A (﹣1,4)代入y=x 2+bx 得到4=1﹣b , ∴b=﹣3, ∴y=x 2﹣3x ,∵B (a ,0)在函数图象上, ∴a 2﹣3a=0,∴a=3或0(舍弃), ∴a=3(2)解:如图1中,作MG ∥y 轴交AB 于G .设直线AB 解析式为y=kx+b ,把(﹣1,4),(3,0)代入得,解得, ∴y=﹣x+3,设M (x ,x 2﹣3x ),则G (m ,﹣m+3),∴S △ABM =S △AMG +S △BMG =×4×[(﹣x+3)﹣(x 2﹣3x )=﹣2x 2+4x+6=﹣2(x ﹣1)2+8,∵﹣2<0,∴当x=1时,△ABM 的面积最大,最大值为8, 此时M (1,﹣2). 14.【答案】(1)解:在y =-x +3中,令y =0,得x =3;令x =0,得y =3, ∴B (3,0),C (0,3)∵抛物线y =-x 2+bx +c 经过B 、C 两点∴解得∴抛物线的函数表达式为y =-x 2+2x +3(2)解:∵P (m ,0),PD ∥y 轴交直线BC 于D ,交抛物线于E ∴D (m ,-m +3),E (m ,-m 2+2m +3)∴DE =-m 2+2m +3-(-m +3)=-m 2+3m =-(m - )2+∴当m =时,DE 有最大值, 由题意可知四边形DEFG 为矩形 ∵OB =OC =3,∴∠DBP =∠BDP =∠EDF =∠EFD =45° ∴DE =EF ∴四边形DEFG 为正方形 ∴S =DE 2∴当m = 时,S 有最大值; 17.【答案】(1)解:由题意,A (6,0)、B (0,8),则OA=6,OB=8,AB=10;当t=3时,AN=t=5= AB ,即N 是线段AB 的中点; ∴N (3,4).设抛物线的解析式为:y=ax (x ﹣6),则:4=3a (3﹣6),a=﹣;∴抛物线的解析式:y=﹣x (x ﹣6)=﹣x 2+x (2)解:过点N 作NC ⊥OA 于C ;由题意,AN= t ,AM=OA ﹣OM=6﹣t ,NC=NA•sin ∠BAO= t• =t ;则:S △MNA = AM•NC= ×(6﹣t )× t=﹣(t ﹣3)2+6.∴△MNA 的面积有最大值,且最大值为616.【答案】(1)解:方法一: ∵对称轴为直线x=2,∴设抛物线解析式为y=a (x ﹣2)2+k . 将A (﹣1,0),C (0,5)代入得:,解得, ∴y=﹣(x ﹣2)2+9=﹣x 2+4x+5 (2)解:方法一:当a=1时,E (1,0),F (2,0),OE=1,OF=2.设P (x ,﹣x 2+4x+5),如答图2,过点P 作PN ⊥y 轴于点N ,则PN=x ,ON=﹣x 2+4x+5, ∴MN=ON ﹣OM=﹣x 2+4x+4.S 四边形MEFP =S 梯形OFPN ﹣S △PMN ﹣S △OME= (PN+OF )•ON ﹣ PN•MN﹣OM•OE=(x+2)(﹣x 2+4x+5)﹣x•(﹣x 2+4x+4)﹣×1×1 =﹣x 2+x+=﹣(x ﹣ )2+∴当x= 时,四边形MEFP 的面积有最大值为,把x=时,y=﹣( ﹣2)2+9=.此时点P 坐标为( ,)方法二:连接MF ,过点P 作x 轴垂线,交MF 于点H ,显然当S △PMF 有最大值时,四边形MEFP 面积最大. 当a=1时,E (1,0),F (2,0), ∵M (0,1),∴l MF :y=﹣x+1,设P (t ,﹣t 2+4t+5),H (t ,﹣t+1),∴S △PMF =(P Y ﹣H Y )(F X ﹣M X ),∴S △PMF =(﹣t 2+4t+5+t ﹣1)(2﹣0)=﹣t 2+t+4, ∴当t=时,S △PMF 最大值为,∵S △MEF =EF×MY=×1×1=, ∴S 四边形MEFP 的最大值为+=。
2025中考复习数学考点突破课件:第三章 函数 考点16 二次函数的实际应用

射平台试飞该航模飞机.根据上面的探究发现解决下列问题.
(1)若发射平台相对于安全线的高度为0 m,求飞机落到安全线时飞行的水平
距离;
问题解决
2
(1)依题意,得- t +12 t =0,解得
t1=0(舍去), t2=24,当 t =24时, x =5×24=
120.
答:飞机落到安全线时飞行的水平距离为120 m.
∵-3<0,∴当 x =20时, S 取得最大值1 200,
∴120-3 x =120-3×20=60,
∴花园面积最大时,垂直于墙的边长为20米,平行于墙的边长为60
米,花园面积最大为1 200平方米.
1
2
3
4
5
回到目录
考点16
二次函数的实际应用
(2)在花园面积最大的条件下, A , B 两块内分别种植牡丹和芍药,每平方米
1
2
3
4
5
回到目录
考点16
二次函数的实际应用
要在拱门设置高为3 m的矩形框架,其面积越大越好(框架的粗细忽略不
计).方案一中,矩形框架 ABCD 的面积记为 S1,点 A , D 在抛物线上,边 BC
在 ON 上;方案二中,矩形框架A'B'C'D'的面积记为 S2,点A',D'在抛物线
上,边B'C'在ON'上.
两个方案中的拱门图形放入平面直角坐标系中,如图所示:
方案一,抛物线型拱门的跨度 ON =12 m,拱高 PE =4 m.其中,点 N 在 x 轴
上, PE ⊥ ON , OE = EN .
方案二,抛物线型拱门的跨度ON'=8 m,拱高P'E'=6 m.其中,点N'在 x 轴
二次函数解决实际问题(可用)

利用二次函数解决实际问题类型一:利用二次函数解决面积最值(面积优化问题)(不含相似形知识点)1、某广告公司设计一幅周长为20 m的矩形广告牌,设矩形的一边长为x m,广告牌的面积为S m2.(1)写出广告牌的面积S与边长x的函数关系式; (2)当x为何值时,广告牌面积S最大?最大值为几?2、如图,有长为24 m的篱笆,一面利用墙(墙的最大可用长度a为10 m),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45 m2的花圃,AB的长是多少米?(2)能围成面积比45 m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.3、用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对的一面开2米宽的门(不用篱笆),问养鸡场的边长为多少米时,养鸡场占地面积最大?最大面积是多少?4、明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?5、如图,已知正方形ABCD边长为8,E,F,P分别是AB,CD,AD上的点,(不与正方形顶点重合),且PE⊥PF,PE=PF,问当AE为多长时,五边形EBCFP面积最小?最小面积是多少?▲6、(探究)如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的x养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?x7、如图,在ABC ∆中,90B ∠=,12mm AB =,24mm BC =,动点P 从点A 开始沿边AB 向B 以2mm/s 的速度移动(不与点B 重合),动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动(不与点C 重合).如果P 、Q 分别从A 、B 同时出发,那么经过几秒,四边形APQC 的面积最小,最小面积为多少?☆类型二、利用二次函数解决利润最值问题(利润优化问题)1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?利润最多为多少元?▲2、(讨论)某商店经营T 恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?最大利润为多少?3、某种粮大户去年种植优质水稻360亩,今年计划增加承租x (100≤x ≤150)亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A 出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动.(1)运动第t秒时,△PBQ的面积y(cm²)是多少?(2)此时五边形APQCD的面积是S(cm²),写出S与t的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少? 答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S tt t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=x x 3442+-=4289)417(42+--=x ∵104340≤-<x ∴2176<≤x∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内,而当2176<≤x 内,S 随x 的增大而减小,∴当6=x 时,604289)4176(42max =+--=S (平方米)答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y , 则矩形PNDM 的面积S=xy (2≤x ≤4) 易知CN=4-x ,EM=4-y . 过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP ∴PHBH BFAF =,即3412--=y x ,∴521+-=x y ,x x xy S 5212+-==)42(≤≤x ,此二次函数的图象开口向下,对称轴为x=5, ∴当x ≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S .【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH是正方形.图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE=CF =CG.∴△CEF是等腰直角三角形因此四边形EFGH是正方形.(2)设CE=x, 则BE=0.4-x,每块地砖的费用为y元那么:y=x×30+×0.4×(0.4-x)×20+[0.16-x-×0.4×(0.4-x)×10](102+24.02.0)x-=x102+(3.2)1.0=x)4.0-<x0(<当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度 最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12m ABCD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )A .424m B .6 m C .15 m D .25m解:AB =x m ,AD=b ,长方形的面积为y m 2 ∵AD ∥BC ∴△MAD ∽△MBN ∴MBMA BNAD =,即5512xb -=,)5(512x b -= )5(512)5(5122x x x x xb y --=-⋅==, 当5.2=x 时,y 有最大值. 4.(2008湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( C ) A .7 B .6 C .5 D .45.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是:35321212++-=x x y ,则该运动员此次掷铅球的成绩是( D ) A .6 m B .12 m C .8 m D .10m解:令0=y ,则:02082=--x x0)10)(2(=-+x xxyOABM O(图5) (图6) (图7)6.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图6,如果抛物线的最高点M 离墙1 m ,离地面340m ,则水流落地点B 离墙的距离OB 是( B )A .2 mB .3 mC .4 mD .5 m 解:顶点为)340,1(,设340)1(2+-=x a y ,将点)10,0(代入,310-=a令0340)1(3102=+--=x y ,得:4)1(2=-x ,所以OB=37.(2007乌兰察布)小明在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,如图7所示,若命中篮圈中心,则他与篮底的距离L 是( B )A .4.6mB .4.5mC .4mD .3.5m8.某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m ²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围; (2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x ∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内, 而当205.12<≤x 内,y 随x 的增大而减小, ∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.9.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ? (2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米.)50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米.则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米)。