太阳能电池介绍课件PPT
合集下载
《有机太阳能电池》课件
当前研究
重点在于提高光电转换效率和稳定 性,以及探索新型有机材料和结构 。
未来展望
随着技术的不断进步,有机太阳能 电池有望在可穿戴设备、便携式电 源等领域得到广泛应用。
02
有机太阳能电池的材料
电子给体材料
电子给体材料是用于吸收太阳光并将电子转移到受体材料的有机材料。常见的电子 给体材料包括聚合物和低分子量有机化合物。
工作原理
光吸收
有机太阳能电池中的有机材料能够吸收 太阳光。
激子产生
吸收的光能转化为激子,即电子-空穴 对。
激子分离与传输
激子在有机材料中分离并向电极传输。
电极收集
传输的电子和空穴分别被阴极和阳极收 集,形成电流。
历史与发展
起源
有机太阳能电池的研究始于20世纪 70年代。
早期研究
主要集中在染料敏化太阳能电池和 导电聚合物太阳能电池。Βιβλιοθήκη 未来发展与挑战01
02
03
04
技术创新
随着材料科学和制造技术的进 步,有机太阳能电池的效率和 稳定性将得到进一步提升。
降低成本
通过规模化生产和优化工艺, 降低有机太阳能电池的生产成 本,使其更具市场竞争力。
环境影响
关注有机太阳能电池的废弃处 理和循环再利用,减少对环境
的负面影响。
并网与储能
解决有机太阳能电池的并网控 制和储能技术问题,提高其在 可再生能源系统中的稳定性。
水。
活性层制备
03
共混法
交替堆叠法
热聚合法
将给体和受体材料混合在一起形成活性层 ,是最常用的方法之一。
将给体和受体材料交替堆叠形成多层结构 ,可以提高光电转换效率。
在高能辐射或加热条件下使聚合物材料形 成微晶或高分子链聚集态,具有较高的光 电转换效率和稳定性。
有机柔性太阳能电池课件
特点
具有轻便、可弯曲、可穿戴、可 印刷等优点,同时有机材料来源 广泛,成本低廉,适合大规模生 产。
工作原理
工作原理
有机柔性太阳能电池利用光电效应将太阳光转化为电能。当太阳光照射到有机材 料上时,光子能量被吸收并传递给电子,电子从束缚态跃迁至自由态,形成电流 。
光电效应
光电效应是指光子照射在物质上时,物质吸收光子能量并释放电子的现象。在有 机柔性太阳能电池中,有机半导体材料作为光敏剂吸收太阳光,产生电子-空穴 对,电子和空穴在电场的作用下分离,形成光电流。
光电性能
光电转换效率
有机柔性太阳能电池的光电转换 效率是其重要的性能指标,主要 受到材料、结构、工艺等因素的
影响。
光谱响应范围
有机柔性太阳能电池的光谱响应范 围越宽,其光电转换效率越高,能 够吸收更多的太阳光。
光照稳定性
有机柔性太阳能电池在光照下的稳 定性也是其重要的性能指标,能够 保证其在长时间使用过程中性能的 稳定。
02
有机柔性太阳能电池的材料
有机半导体材料
有机半导体材料是柔性太阳能电池的重要组成部分,它们具有轻便、可弯曲和可折 叠的特性,能够适应不同形状和结构的电池设计。
有机半导体材料的种类繁多,包括共轭高分子、聚合物、小分子等,它们可以通过 不同的合成方法获得。
有机半导体材料的性能与太阳能电池的光电转换效率和稳定性密切相关,因此选择 合适的有机半导体材料是制造高性能柔性太阳能电池的关键。
金属电极材料
金属电极材料在有机柔性太阳能 电池中起到导电的作用,它们需 要具有良好的导电性能和可弯曲
性。
常用的金属电极材料包括铜、银 、铝等,这些金属材料具有较高 的导电性能和稳定性,能够满足
柔性太阳能电池的需求。
具有轻便、可弯曲、可穿戴、可 印刷等优点,同时有机材料来源 广泛,成本低廉,适合大规模生 产。
工作原理
工作原理
有机柔性太阳能电池利用光电效应将太阳光转化为电能。当太阳光照射到有机材 料上时,光子能量被吸收并传递给电子,电子从束缚态跃迁至自由态,形成电流 。
光电效应
光电效应是指光子照射在物质上时,物质吸收光子能量并释放电子的现象。在有 机柔性太阳能电池中,有机半导体材料作为光敏剂吸收太阳光,产生电子-空穴 对,电子和空穴在电场的作用下分离,形成光电流。
光电性能
光电转换效率
有机柔性太阳能电池的光电转换 效率是其重要的性能指标,主要 受到材料、结构、工艺等因素的
影响。
光谱响应范围
有机柔性太阳能电池的光谱响应范 围越宽,其光电转换效率越高,能 够吸收更多的太阳光。
光照稳定性
有机柔性太阳能电池在光照下的稳 定性也是其重要的性能指标,能够 保证其在长时间使用过程中性能的 稳定。
02
有机柔性太阳能电池的材料
有机半导体材料
有机半导体材料是柔性太阳能电池的重要组成部分,它们具有轻便、可弯曲和可折 叠的特性,能够适应不同形状和结构的电池设计。
有机半导体材料的种类繁多,包括共轭高分子、聚合物、小分子等,它们可以通过 不同的合成方法获得。
有机半导体材料的性能与太阳能电池的光电转换效率和稳定性密切相关,因此选择 合适的有机半导体材料是制造高性能柔性太阳能电池的关键。
金属电极材料
金属电极材料在有机柔性太阳能 电池中起到导电的作用,它们需 要具有良好的导电性能和可弯曲
性。
常用的金属电极材料包括铜、银 、铝等,这些金属材料具有较高 的导电性能和稳定性,能够满足
柔性太阳能电池的需求。
《太阳能电池板》课件
太阳能充电器:利用太阳能电池板将光能转化为电能,通过充电器将电能 储存到电池中,为各种设备提供充电功能
太阳能储能系统:利用太阳能电池板将光能转化为电能,通过储能系统将 电能储存起来,以备在需要时使用
太阳能光伏电站:利用太阳能电池板将光能转化为电能,通过光伏电站将 电能输送到电网中,为整个地区提供电力供应
太阳能热水器
优点:环保、节能、安全、 可靠
工作原理:利用太阳能光热 转换技术,将太阳能转化为 热能
应用领域:家庭、酒店、医 院等场所
发展趋势:智能化、多功能 化、个性化
太阳能灯具
太阳能灯具的应用领域
太阳能灯具的种类和特点
太阳能灯具的安装和使用方 法
太阳能灯具的优缺点及市场 前景
太阳能充电设备
太阳能充电板:利用太阳能光照射在太阳能电池板上,将光能转化为电能, 为各种电子设备提供充电功能
能量转换比:太阳能电池板单位面积产生的电能与太阳能辐射量的比值,是评价太阳能电池板性能的重 要指标。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。
耐候性、稳定性和可靠性等评价标准
合要求
安装位置选择: 选择阳光充足、 通风良好的位 置,确保电池 板能够充分吸
收阳光
安装过程:按 照厂家提供的 指南,逐步完 成安装,确保 电池板稳定、
安全
注意事项:注 意安全,避免 触电等意外情 况发生,同时 注意保护电池 板,避免损坏
常见故障分析与排除方法
* 原因分析:电池板表面有灰尘、污垢或遮挡物 * 排除方法:定期清洁电池板表面,确保没有遮挡物
转换效率:太阳能电池板的转换效 率是指其将太阳能转换为电能的效 率,通常以百分比表示
太阳能储能系统:利用太阳能电池板将光能转化为电能,通过储能系统将 电能储存起来,以备在需要时使用
太阳能光伏电站:利用太阳能电池板将光能转化为电能,通过光伏电站将 电能输送到电网中,为整个地区提供电力供应
太阳能热水器
优点:环保、节能、安全、 可靠
工作原理:利用太阳能光热 转换技术,将太阳能转化为 热能
应用领域:家庭、酒店、医 院等场所
发展趋势:智能化、多功能 化、个性化
太阳能灯具
太阳能灯具的应用领域
太阳能灯具的种类和特点
太阳能灯具的安装和使用方 法
太阳能灯具的优缺点及市场 前景
太阳能充电设备
太阳能充电板:利用太阳能光照射在太阳能电池板上,将光能转化为电能, 为各种电子设备提供充电功能
能量转换比:太阳能电池板单位面积产生的电能与太阳能辐射量的比值,是评价太阳能电池板性能的重 要指标。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。 以上内容仅供参考,具体参数和评价标准可能因不同品牌和型号的太阳能电池板而有所差异。
耐候性、稳定性和可靠性等评价标准
合要求
安装位置选择: 选择阳光充足、 通风良好的位 置,确保电池 板能够充分吸
收阳光
安装过程:按 照厂家提供的 指南,逐步完 成安装,确保 电池板稳定、
安全
注意事项:注 意安全,避免 触电等意外情 况发生,同时 注意保护电池 板,避免损坏
常见故障分析与排除方法
* 原因分析:电池板表面有灰尘、污垢或遮挡物 * 排除方法:定期清洁电池板表面,确保没有遮挡物
转换效率:太阳能电池板的转换效 率是指其将太阳能转换为电能的效 率,通常以百分比表示
太阳能电池优秀课件
2 、光电导效应
电子能量
在光线作用下,电子吸收光
子能量从束缚状态过渡到自由
hv
状态,而引起材料电导率的变
导带 Eg
价带
化,这种现象被称为光电导效
应。
当光照射到半导体光电导材料上时,若光辐
射能量足够强,材料价带上的电子将被激发到导
带,从而使材料中的自由载流子增加,致使材料
的电导变大。
光电导产生的条件
6、温度效应
太阳能电池用半导体的禁带 宽度的温度系数为负,随温度 上升带隙变窄,会使短路电流 略有上升,但同时会使I0增加, Voc下降。
综合所有参数,转换效率随 温度上升而下降。
7、辐照效应 作为卫星和飞船的电源,太阳电池必然暴露
在外层空间的高能粒子的辐照下。高能粒子 辐照时通过与晶格原子的碰撞,将能量传给 晶格,当传递的能量大于某一阈值时,便使 晶格原子发生位移,产生晶格缺陷。这些缺 陷将起复合中心的作用,从而降低少子寿命。 大量研究工作表明,寿命参数对辐照缺陷最 为灵敏,也正因为辐照影响了寿命值,从而 使太阳电池性能下降。
理想情况下的效率
舍弃太阳光中波长大于长波限的光 谱,在理想情况下,能量大于禁带宽 度的光子全部被材料吸收形成光电流, 显然,最大短路电流Isc仅与材料的带隙 有关。
理想情况下Voc为:
Voc
kT q
ln
I ph I0
1
式中Iph为光生电流,I0为二 极管饱和电流:
I0
A
qDn
n2 i
LN nA
图一
将表面制成金字塔型的组织结构,以减少光的反射 量。
将金属电极埋入基板中,以减少串联电阻。(图二)
图二
减少背电极与硅的接触面积,以减少因金属与硅的 接合处引入的缺陷, (图三)
太阳能电池ppt
太阳能电池ppt
xx年xx月xx日
contents
目录
• 太阳能电池概述 • 太阳能电池的技术发展 • 太阳能电池的应用领域 • 太阳能电池的优缺点分析 • 太阳能电池的未来发展趋势 • 太阳能电池的案例分析
01
太阳能电池概述
太阳能电池的定义
1
太阳能电池是一种利用太阳光照射在半导体材 料上产生电流的装置。
详细描述
该公司的钙钛矿太阳能电池采用了新型材料和结构设 计,具有高效、色彩可调、可定制等优点。这些优点 使得钙钛矿太阳能电池可以方便地应用于建筑领域, 为建筑物的能源供应和外观美化提供了重要的技术支 持。同时,该公司的钙钛矿太阳能电池还具有较高的 光电转换效率和长寿命的优点,可以为建筑物提供持 久稳定的能源供应。
自行车、摩托车等小型交通工具
太阳能电池板也可以为自行车、摩托车等小型交通工具提供电力,方便用户在户 外或没有电源的情况下使用。
04
太阳能电池的优缺点分析
优点分析
环保
太阳能电池使用太阳能作为能源,无需燃 烧化石燃料,从而减少对环境的污染。
节能
太阳能电池能够有效地利用太阳能,将其 转化为电能,从而节省能源。
制造工艺简单
01
薄膜太阳能电池采用薄膜技术制造,生产过程简单,能耗低。
轻便灵活
02
薄膜太阳能电池具有轻便灵活的特点,适用于移动设备和曲面
结构。
转化效率低
03
由于薄膜太阳能电池的厚度较薄,其光电转换效率相对较低。
多结太阳能电池
高转换效率
多结太阳能电池采用多个结结 构,能够充分利用太阳光谱,
提高光电转换效率。
详细描述
该公司的薄膜太阳能电池采用了先进的材料和制造技术,具有轻便、可弯曲、高效等优点。这些优点使得薄膜 太阳能电池可以方便地应用于手机、平板电脑、可穿戴设备等移动设备领域。同时,该公司的薄膜太阳能电池 还具有较高的光电转换效率和可靠的稳定性,可以为移动设备提供持续稳定的能源供应。
xx年xx月xx日
contents
目录
• 太阳能电池概述 • 太阳能电池的技术发展 • 太阳能电池的应用领域 • 太阳能电池的优缺点分析 • 太阳能电池的未来发展趋势 • 太阳能电池的案例分析
01
太阳能电池概述
太阳能电池的定义
1
太阳能电池是一种利用太阳光照射在半导体材 料上产生电流的装置。
详细描述
该公司的钙钛矿太阳能电池采用了新型材料和结构设 计,具有高效、色彩可调、可定制等优点。这些优点 使得钙钛矿太阳能电池可以方便地应用于建筑领域, 为建筑物的能源供应和外观美化提供了重要的技术支 持。同时,该公司的钙钛矿太阳能电池还具有较高的 光电转换效率和长寿命的优点,可以为建筑物提供持 久稳定的能源供应。
自行车、摩托车等小型交通工具
太阳能电池板也可以为自行车、摩托车等小型交通工具提供电力,方便用户在户 外或没有电源的情况下使用。
04
太阳能电池的优缺点分析
优点分析
环保
太阳能电池使用太阳能作为能源,无需燃 烧化石燃料,从而减少对环境的污染。
节能
太阳能电池能够有效地利用太阳能,将其 转化为电能,从而节省能源。
制造工艺简单
01
薄膜太阳能电池采用薄膜技术制造,生产过程简单,能耗低。
轻便灵活
02
薄膜太阳能电池具有轻便灵活的特点,适用于移动设备和曲面
结构。
转化效率低
03
由于薄膜太阳能电池的厚度较薄,其光电转换效率相对较低。
多结太阳能电池
高转换效率
多结太阳能电池采用多个结结 构,能够充分利用太阳光谱,
提高光电转换效率。
详细描述
该公司的薄膜太阳能电池采用了先进的材料和制造技术,具有轻便、可弯曲、高效等优点。这些优点使得薄膜 太阳能电池可以方便地应用于手机、平板电脑、可穿戴设备等移动设备领域。同时,该公司的薄膜太阳能电池 还具有较高的光电转换效率和可靠的稳定性,可以为移动设备提供持续稳定的能源供应。
太阳能电池介绍ppt课件
金属与半导体的区别: 金属的导带和价带重叠在一起,不存在禁带,在一切条件 下具有良好的导电性。 半导体有一定的禁带宽度,价电子必须获得一定的能量 (>Eg)“激发”到导带才具有导电能力。激发的能量可以 是热或光的作用。 常温下,每立方厘米的硅晶体,导带上约有l010个电子, 每立方厘米的导体晶体的导带中约有1022个电子。 绝缘体禁带宽度远大于半导体,常温下激发到导带上的电 子非常少,固其电导率很低 。
3.1 太阳能光伏发电原理
硅晶体和所有的晶体都是由原子(或离子、分子)在空间按 一定规则排列而成。这种对称的、有规则的排列叫做晶体 的晶格。一块晶体如果从头到尾都按一种方向重复排列, 即长程有序,就称其为单晶体。在硅晶体中,每个硅原子 近邻有四个硅原子,每两个相邻原子之间有一对电子,它 们与两个相邻原子核都有相互作用,称为共价键。正是靠 共价键的作用,使硅原子紧紧结合在一起,构成了晶体。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
3.1 太阳能光伏发电原理
8.载流子的输运 半导体中存在能够导电的自由电子和空穴,这些载流子 有两种输运方式:漂移运动和扩散运动。 载流子在热平衡时作不规则的热运动,与晶格、杂质、 缺陷发生碰撞,运动方向不断改变,平均位移等于零,这 种现象叫做散射。散射不会形成电流。 半导体中载流子在外加电场的作用下,按照一定方向的 运动称为漂移运动。外界电场的存在使载流子作定向的漂 移运动,并形成电流。 扩散运动是半导体在因外加因素使载流子浓度不均匀而 引起的载流子从浓度高处向浓度低处的迁移运动。 扩散运动和漂移运动不同,它不是由于电场力的作用产 生的,而是由于载流子浓度差的引起的。
3.1 太阳能光伏发电原理
硅晶体和所有的晶体都是由原子(或离子、分子)在空间按 一定规则排列而成。这种对称的、有规则的排列叫做晶体 的晶格。一块晶体如果从头到尾都按一种方向重复排列, 即长程有序,就称其为单晶体。在硅晶体中,每个硅原子 近邻有四个硅原子,每两个相邻原子之间有一对电子,它 们与两个相邻原子核都有相互作用,称为共价键。正是靠 共价键的作用,使硅原子紧紧结合在一起,构成了晶体。
“雪亮工程"是以区(县)、乡(镇) 、村( 社区) 三级综 治中心 为指挥 平台、 以综治 信息化 为支撑 、以网 格化管 理为基 础、以 公共安 全视频 监控联 网应用 为重点 的“群 众性治 安防控 工程” 。
3.1 太阳能光伏发电原理
8.载流子的输运 半导体中存在能够导电的自由电子和空穴,这些载流子 有两种输运方式:漂移运动和扩散运动。 载流子在热平衡时作不规则的热运动,与晶格、杂质、 缺陷发生碰撞,运动方向不断改变,平均位移等于零,这 种现象叫做散射。散射不会形成电流。 半导体中载流子在外加电场的作用下,按照一定方向的 运动称为漂移运动。外界电场的存在使载流子作定向的漂 移运动,并形成电流。 扩散运动是半导体在因外加因素使载流子浓度不均匀而 引起的载流子从浓度高处向浓度低处的迁移运动。 扩散运动和漂移运动不同,它不是由于电场力的作用产 生的,而是由于载流子浓度差的引起的。
《太阳能电池》课件
交通工具用电
太阳能汽车
利用太阳能电池板为电动汽车提供动力,减少对传统能源的依赖。
太阳能飞机
在飞机上安装太阳能电池板,为飞机提供辅助动力,减少燃油消耗。
04
太阳能电池的优缺点
优点
环保性
太阳能电池利用太阳能 进行发电,不产生任何 污染物,对环境友好。
可持续性
太阳能资源丰富,且可 再生,使用太阳能电池 有助于实现能源的可持
多元化应用
除了家庭和工业应用外,太阳 能电池在交通、航空航天等领
域的应用也将得到拓展。
05
太阳能电池的制造与维护
制造过程
制造流程
制造设备
从原材料的选取、加工、组装到成品 测试,太阳能电池的制造过程需要经 过多个环节。
制造太阳能电池需要一系列专业设备 ,包括晶体生长炉、表面处理设备、 电极制备设备等。
更换损坏组件
对于损坏或老化严重的组件,需要及时更换,以保证整个系统的 稳定性和效率。
使用注意事项
安装角度与方向
安装太阳能电池板时,应考虑当地的气候和太阳高度角,使电池 板与太阳光垂直,以获得最大的能量转换效率。
避免遮挡
确保太阳能电池板周围没有遮挡物,以免影响光线的照射和能量的 转换。
定期检查系统
定期检查整个太阳能发电系统,包括电池板、控制器和储能设备等 ,确保系统正常运行并延长使用寿命。
商业用电
商业屋顶光伏电站
大型商业建筑如商场、办公楼等可安 装太阳能电池板,满足部分电力需求 ,降低运营成本。
光伏照明系统
太阳能路灯、景观灯等为商业区提供 照明,节能环保且维护成本低。
公共设施用电
01
公共建筑如图书馆、博物馆等可 利用太阳能电池板提供部分电力 ,降低建筑运营成本。
太阳能电池的分类-及光伏发电的优缺点PPT课件
多元化合物太阳能电池
硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,在广泛深入 的应用研究基础上,国际上许多国家的碲化镉薄膜太阳电池已由实验室研究阶段开始走向规模工业化生产。 1、硫化镉太阳能电池:虽然光电效率已提高到9%,但是仍无法与多晶硅太阳能电池竞争。与非晶硅薄膜 电池相比,制造工艺比较简单。 2、砷化镓太阳能电池:砷化镓与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性 能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳能电池。由于镓比较稀缺,砷有毒, 制造成本高,此种太阳能电池的发展受到影响。 3、铜铟硒太阳能电池:以铜、铟、硒三元化合物半导体为基本材料制成的太阳能电池。它是一种多晶薄 膜结构,材料消耗少,成本低,性能稳定,光电转换效率在10%以上。因此是一种可与非晶硅薄膜太阳能 电池相竞争的新型太阳能电池。
纳米晶体化学太阳能电池
染料敏化纳米晶体太阳能电池(DSSCs)主要包括镀有透明导电膜的玻璃基底, 染料敏化的半导体材料、对电极以及电解质等几部分。其阳极为染料敏化半导 体薄膜(TiO2膜),阴极为镀铂的导电玻璃。纳米晶体TiO2太阳能电池的优点 在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上, 制作成本仅为硅太阳电池的1/5~1/10,.寿命能达到20年以上。
柔性太阳能电池
柔性太阳能电池板采用高晶硅材料制成,并用高强度、透光性 能强的太阳能专用钢化玻璃以及高性能、耐紫外线辐射的专用 密封材料层压制而成,有能抗冰雪、抗震、防压等多种优点, 即使在温度剧变的恶劣条件下也能正常使用,。所以柔性电池 能用在平板类太阳能电池难以胜任的许多领域,例如太阳能汽 车、飞机、飞艇、建筑、纺织品、帐篷、服装、头盔,玩具等 特殊曲面上。
太阳能电池ppt
多晶硅5万吨以上。 同国际先进水平相比,国内多晶硅生产企业在产业化方面的差距主要表现在以 下几个方面: 1、产能低,供需矛盾突出。2005年中国太阳能用单晶硅企业开工率在20%- 30%,半导体用单 晶硅企业开工率在80%-90%,无法实现满负荷生产,多晶硅技术和市场仍牢牢 掌握在美、日、德国的少数几个生产厂商中,严重制约我国产业发展。 2、生产规模小、现在公认的最小经济规模为1000吨/年,最佳经济规模在 2500吨/年,而我国现阶段多晶硅生产企业离此规模仍有较大的距离。 3、工艺设备落后,同类产品物料和电力消耗过大,三废问题多,与国际水平 相比,国内多晶硅生产物耗能耗高出1倍以上,产品成本缺乏竞争力。 4、千吨级工艺和设备技术的可靠性、先进性、成熟性以及各子系统的相互匹 配性都有待生产运行验证,并需要进一步完善和改进。 5、国内多晶硅生产企业技术创新能力不强,基础研究资金投入太少,尤其是 非标设备的研发制造能力差。 6、地方政府和企业项目投资多晶硅项目,存在低水平重复建设的隐忧。
太阳能电池
太阳能电池产业链 太阳能电池(单晶硅电池、多晶硅电池)
一、太阳能电池、类型 二、电池片产生的基本流程 三、国际多晶硅电池产业概况 四、国内电池片的生产状况 五、影响太阳能电池片价格的因素 太阳能电池组件价格成本分析 一、太阳能组件构成材料 二、电池组件各单件构成材料分析 太阳能应用系统构成分析
3.非晶硅电池:杂质较多,成本低,但商业效能转换率在1-4%左右。由于 效能转换率较低,太阳能电池组件是不使用该材料的。例如我我们的计算器 里使用的电池。
三、国际多晶硅电池产业概况
当前,晶体硅材料(包括多晶硅和单晶硅)是最主要的光伏材料,其市场占有 率在90%以上,而且在今后相当长的一段时期也依然是太阳能电池的主流材料。 多晶硅材料的生产技术长期以来掌握在美、日、德等3个国家7个公司的10家工 厂手中,形成技术封锁、市场垄断的状况。 世界多晶硅主要生产企业有日本的Tokuyama、三菱、住友公司、美国的 Hemlock、Asimi、SGS、MEMC公司,德国的Wacker公司等,其年产能绝大 部分在1000吨以上,其中Tokuyama、Hemlock、Wacker三个公司生产规模 最大,年生产能力均在3000-5000 吨。
《太阳能电池》PPT课件
精选ppt
6
太阳能电池的原理
• 最基本的原理——光伏效应(Photovoltaic Effect缩写PV)
• 太阳能电池(光伏)材料主要包括:产生光 伏 效应的半导体材料、薄膜衬底材料、减反 射膜材料、电极与导线材料、组件封装材 料等。
精选ppt
7
• 电池的分类 单晶硅太阳能电池 多晶硅太阳能电池 薄膜光伏电池
目前对于某一种光电池材料,只是与其对应的光 谱段。所以,对单晶硅能量转化的效率的理论极限为 27.8%。太阳光中有大量的低能长波光子,降低了太阳 能电池的效率。
提高转换效率和降低成本是太阳能电池制备中考 虑的两个因素,对于目前的硅系太能电池,要想再进 一步提高转换效率是比较困难的。
精选ppt
22
新型太阳能电池 ——铁电太阳能电池
精选ppt
8
单晶硅太阳能电池
• P型晶体硅经过掺杂磷可 得N型硅,形成P-N结。
• 当光线照射太阳电池 表面 时,一部分光子被硅材料 吸收;光子的能量传递给 了硅原子,使电子发生了 越迁,成为自由电子在PN结两侧集聚形成了电位 差,当外部接通电路时, 在该电压的作用下,将会 有电流流过外部电路产生 一定的输出功率。
精选ppt
12
在军事上的应用
精选ppt
13
在航空领域的应用
精选ppt
14
卫星上的太阳能电池
精选ppt
15
在生活中的应用
精选ppt
16
精选ppt
17
汽车上的太阳能电池
精选ppt
18
电动玩具上的太阳能电池
精选ppt
19
在公共设施上的应用
精选ppt
20
在工农业上的应用
《太阳能电池材料》课件
薄膜太阳能电池
利用薄层材料制作,材料用量少,制造成本低,但转 换效率相对较低。
太阳能电池的应用
光伏发电站
利用大规模的太阳能电池阵列 ,将光能转换为电能,通过电
网输送给用户。
分布式发电系统
利用小型太阳能电池系统,为 建筑物、家庭、企业等提供电 力,可与电网并网运行。
移动能源应用
利用太阳能电池为电动汽车、 无人机、船舶等提供动力或辅 助能源。
将组件放入层压机中加热加压,使组件内的电池片、电极和 玻璃紧密结合在一起,同时保护电池片免受外界环境的影响 。
05
CATALOGUE
太阳能电池的未来发展
提高光电转换效率
研发新型材料
探索和开发新型太阳能电池材料,如钙钛矿 太阳能电池等,以提高光电转换效率。
优化结构设计
通过改进太阳能电池的结构设计,如采用多结太阳 能电池、叠层太阳能电池等,提高光电转换效率。
缺陷和杂质检测
利用电子显微镜、X射线衍射等方法检测太阳能电池材料中的缺陷和杂质。
电池片制造
表面处理
对硅片进行抛光、蚀刻等处理,提高其表面质量。
扩散制结
通过扩散工艺在硅片表面形成PN结,是太阳能电池制造中的关键步骤。
组件封装
焊接和串焊
将电池片连接起来形成组件,通过焊接或串焊的方式实现电 气连接。
层压和密封
是指当太阳光照射在半导体材料 上时,光子能量会激发电子从束 缚状态进入自由状态,从而产生 电流的物理现象。
太阳能电池的分类
单晶硅太阳能电池
利用高纯度单晶硅作为基底,通过掺杂其他元素提高 导电性能。转换效率较高,但制造成本也较高。
多晶硅太阳能电池
利用多晶硅材料制作,晶粒较小,制造成本相对较低 ,但转换效率略低于单晶硅。
利用薄层材料制作,材料用量少,制造成本低,但转 换效率相对较低。
太阳能电池的应用
光伏发电站
利用大规模的太阳能电池阵列 ,将光能转换为电能,通过电
网输送给用户。
分布式发电系统
利用小型太阳能电池系统,为 建筑物、家庭、企业等提供电 力,可与电网并网运行。
移动能源应用
利用太阳能电池为电动汽车、 无人机、船舶等提供动力或辅 助能源。
将组件放入层压机中加热加压,使组件内的电池片、电极和 玻璃紧密结合在一起,同时保护电池片免受外界环境的影响 。
05
CATALOGUE
太阳能电池的未来发展
提高光电转换效率
研发新型材料
探索和开发新型太阳能电池材料,如钙钛矿 太阳能电池等,以提高光电转换效率。
优化结构设计
通过改进太阳能电池的结构设计,如采用多结太阳 能电池、叠层太阳能电池等,提高光电转换效率。
缺陷和杂质检测
利用电子显微镜、X射线衍射等方法检测太阳能电池材料中的缺陷和杂质。
电池片制造
表面处理
对硅片进行抛光、蚀刻等处理,提高其表面质量。
扩散制结
通过扩散工艺在硅片表面形成PN结,是太阳能电池制造中的关键步骤。
组件封装
焊接和串焊
将电池片连接起来形成组件,通过焊接或串焊的方式实现电 气连接。
层压和密封
是指当太阳光照射在半导体材料 上时,光子能量会激发电子从束 缚状态进入自由状态,从而产生 电流的物理现象。
太阳能电池的分类
单晶硅太阳能电池
利用高纯度单晶硅作为基底,通过掺杂其他元素提高 导电性能。转换效率较高,但制造成本也较高。
多晶硅太阳能电池
利用多晶硅材料制作,晶粒较小,制造成本相对较低 ,但转换效率略低于单晶硅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1 太阳能光伏发电原理
3.1.2 p-n结
n型半导体和p型半导体紧密接触,在交界处n区中电子 浓度高,要向p区扩散,在N区一侧就形成一个正电荷的区 域;同样,p区中空穴浓度高,要向n区扩散,p区一侧就形 成一个负电荷的区域。这个n区和p区交界面两侧的正、负 电荷薄层区域称为“空间电荷区”,即p-n结—内建电场
图3-10 光伏效应示意图
3.1 太阳能光伏发电原理
1.光伏效应— 太阳能电池 当太阳能电池的两端接上负载,光伏电动势就形成电流。
图3-11 太阳电池的发电原理
3.1 太阳能光伏发电原理
2.1.4太阳电池的结构和性能
1.太阳电池的结构 最简单的太阳电池是由p-n结构成的,如图3-142示,其 上表面有栅线形状的上电极,背面为背电极,在太阳电池 表面通常还镀有一层减反射膜。
由许多小颗粒单晶杂乱无章地排列在一起的固体称为多 晶体。
非晶体没有上述特征,但仍保留了相互间的结合形式, 如一个硅原子仍有四个共价键,短程看是有序的,长程无 序,这样的材料称为非晶体,也叫做无定形材料。
3.1 太阳能光伏发电原理
3. 能级和能带图 电子在原子中的轨道运动状态具有不同的能量—能级(E), 单一的电子能级,分裂成能量非常接近但又大小不同的许 多电子能级,形成一个“能带” 。
电导率:表征物体导电能力的物理量,用表示,=en
电阻:导体中的自由电子定向运动形成电流所受到的
“阻力”,它也表征表征物体导电能力。导体的电阻特
性用电阻
R l
率表示 (=1/ ) 。导体电阻
S
3.1 太阳能光伏发电原理
(3)导体、绝缘体和半导体 导体,导电能力强的物体,电阻率为10-9~l0-6cm ; 绝缘体,不能导电或者导电能力微弱到可以忽略不计的 物体 ,电阻率为108~l020cm ; 半导体,导电能力介于导体和绝缘体之间的物体,电阻 率为10-5~l07cm 。 导电机理: 金属导体导电是自由电子(n恒定)在电场力作用下的定 向运动, 电导率基本恒定; 半导体导电是电子和空穴在电场力作用下的定向运动。电 子和空穴的浓度随温度、杂质含量、光照等变化较大,影 响其导电能力。
图3-7 施主和受主能级
3.1 太阳能光伏发电原理
7.载流子的产生与复合 由于晶格的热振动,电子不断从价带被“激发”到导 带,形成一对电子和空穴(即电子-空穴对),这就是载流 子产生的过程。 电子和空穴在晶格中的运动是无规则的导带中的电子落 进价带的空能级,使一对电子和空穴消失。这种现象叫做 电子和空穴的复合,即载流子复合。 一定的温度下晶体内产生和复合的电子-空穴对数目达到 相对平衡,晶体的总载流子浓度保持不变,热平衡状态 。 由于光照作用,产生光生电子-空穴对,电子和空穴的产 生率就大于复合率,形成非平衡载流子,称为光生载流子。
扩散在n区形成带
扩散在p区形成带
正电的薄层A
负电的薄层B
图3-8 p-n结电子与空穴的扩散
3.1 太阳能光伏发电原理
3.1.2 p-n结
(a) 形成p-n结前载流子的扩散过程 (b) 空间电荷区和内建电场 图3-8 p-n结
3.1 太阳能光伏发电原理
3.1.2 p-n结—单向导电性
当p-n结加上正向偏压,外加电场的方向与内建电场的方 向相反,打破了扩散运动和漂移运动的相对平衡,形成通 过p-n结的电流(称为正向电流),较大;
3.1 太阳能光伏发电原理
8.载流子的输运 半导体中存在能够导电的自由电子和空穴,这些载流子 有两种输运方式:漂移运动和扩散运动。 载流子在热平衡时作不规则的热运动,与晶格、杂质、 缺陷发生碰撞,运动方向不断改变,平均位移等于零,这 种现象叫做散射。散射不会形成电流。 半导体中载流子在外加电场的作用下,按照一定方向的 运动称为漂移运动。外界电场的存在使载流子作定向的漂 移运动,并形成电流。 扩散运动是半导体在因外加因素使载流子浓度不均匀而 引起的载流子从浓度高处向浓度低处的迁移运动。 扩散运动和漂移运动不同,它不是由于电场力的作用产 生的,而是由于载流子浓度差的引起的。
1.光伏效应
p-n结及两边产生的光生载流子就被内建电场所分离,在p区聚集光 生空穴,在n区聚集光生电子,使p区带正电,n区带负电,在p-n结两 边产生光生电动势。上述过程通常称作光生伏特效应或光伏效应。光 生电动势的电场方向和平衡p-n结内建电场的方向相反。当太阳能电池 的两端接上负载,这些分离的电荷就形成电流。
3.1 太阳能光伏发电原理
(2)晶体中自由电子的运动
由于晶体内原子的振动,自由电子在晶体中做杂乱无章
的运动。
电流:导体中的自由电子在电场力作用下的定向运动形
成电流。
迁移率:在单位电场强度(1V/cm)下,定向运动的自
由电子的“直线速度”,称为自由电子的迁移率,用表
示,这也是决定物体导电能力的主要因素。
3.1 太阳能光伏发电原理
2.太阳电池的技术参数 (1)开路电压(Uoc) 受光照的太阳电池处于开路状态,光生载流子只能积累 于p-n结两侧产生光生电动势,这时在太阳电池两端测得的 电势差叫做开路电压,用符号Uoc表示。 (2)短路电流(Isc) 如果把太阳电池从外部短路测得的最大电流,称为短路 电流,用符号Isc表示。
晶格完整且不含杂质的半导体称为本征半导体。 硅半导体掺杂少量的五价元素磷(P)— N型硅 :自由电子数量多—多 数载流子(多子);空穴数量很少—少数载流子(少子)。电子型半导 体或n型半导体。 掺杂少量的三价元素硼(B) —P型硅:空穴数量多—多数载流子(多 子);自由电子数量很少—少数载流子(少子)。空穴型半导体或p型半 导体。
图3-12 太阳电池的结构和符号
3.1 太阳能光伏发电原理
1.太阳电池的结构 硅太阳电池一般制成p/n型结构或n/p型结构。 太阳电池输出电压的极性,p型一侧电极为正,n型一侧 电极为负。 根据太阳电池的材料和结构不同,分为许多种形式,如p 型和n型材料均为相同材料的同质结太阳电池(如晶体硅太阳 电池);p型和n型材料为不同材料的异质结太阳电池[硫化镉 /碲化镉(CdS/CdTe),硫化镉/铜铟硒(CdS/CulnSe2)薄膜太阳 电池];金属-绝缘体-半导体(MIS)太阳电池;绒面硅太阳电 池;激光刻槽掩埋电极硅太阳电池;钝化发射结太阳电 池;背面点接触太阳电池;叠层太阳电池等。
第3章 太阳能光伏电池
何 道 清 编制 2011.12
第3章 太阳能光伏电池
太阳能光伏电池——太阳能 电能
3.1 太阳能光伏发电原理
3.1.1半导体基础知识
1.导体、绝缘体和半导体 (1)自由电子与自由电子浓度 物质由原子组成,原子由原子核和核外电子组成 ,电子 受原子核的作用,按一定的轨道绕核高速运动。能在晶体 中自由运动的电子,称为“自由电子”,它是导体导电的 电荷粒子。 自由电子浓度:单位体积中自由电子的数量,称为自由 电子浓度,用n表示,它是决定物体导电能力的主要因素之 一。
表3-1 半导体材料的禁带宽度
材料
Si
Ge GaAs Cu(InGa)Se InP CdTe CdS
Eg/eV 1.12 0.7 1. 4
1.04
1.2 1.4 2.6
3.1 太阳能光伏发电原理
金属与半导体的区别: 金属的导带和价带重叠在一起,不存在禁带,在一切条件 下具有良好的导电性。 半导体有一定的禁带宽度,价电子必须获得一定的能量 (>Eg)“激发”到导带才具有导电能力。激发的能量可以 是热或光的作用。 常温下,每立方厘米的硅晶体,导带上约有l010个电子, 每立方厘米的导体晶体的导带中约有1022个电子。 绝缘体禁带宽度远大于半导体,常温下激发到导带上的电 子非常少,固其电导率很低 。
硅晶体中的硅原子在空间按面心立方晶格结构无限排列,长程有 序。每个硅原子近邻有四个硅原子,每两个硅原子间有一对电子与这
两 个原子的原子核都有相互作用,称为共价键。基于共价键作用,是硅
原 子紧密地结合在一起,构成晶体。
图3-2硅的晶胞结构
3.1 太阳能光伏发电原理
硅晶体和所有的晶体都是由原子(或离子、分子)在空间按 一定规则排列而成。这种对称的、有规则的排列叫做晶体 的晶格。一块晶体如果从头到尾都按一种方向重复排列, 即长程有序,就称其为单晶体。在硅晶体中,每个硅原子 近邻有四个硅原子,每两个相邻原子之间有一对电子,它 们与两个相邻原子核都有相互作用,称为共价键。正是靠 共价键的作用,使硅原子紧紧结合在一起,构成了晶体。
3.1 太阳能光伏发电原理
2.硅的晶体结构 (1)硅的原子结构 硅(Si)原子,原子序数14,原子核外14个电子,绕核运 动,分层排列:内层2个电子(满),第二层8个电子(满),第 三层4个电子(不满),如图3-1所示。
图3-1 硅的原子结构 及其原子能级
3.1 太阳能光伏发电原理
(2) 硅的晶体结构
3.1 太阳能光伏发电原理
5.电子和空穴 电子从价带跃迁到导带(自由电子)后,在价带中留下 一个空位,称为空穴,空穴移动也可形成电流。电子的这 种跃迁形成电子-空穴对。电子和空穴都称为载流子。 电子-空穴对不断产生, 又不断复合。
图3-5 具有一个断键的硅晶体
3.1 太阳能光伏发电原理
6. 掺杂半导体
图3-6 n型和p型硅晶体结构
3.1 太阳能光伏发电原理
6. 掺杂半导体-杂质能级 在掺杂半导体中,杂质原子的能级处于禁带之中,形成 杂质能级。五价杂质原子形成施主能级,位于导带的下 面;三价杂质原子形成受主能级,位于价带的上面(图3-7)。 施主(或受主)能级上的电子(或空穴)跳跃到导带 (或价带)中去的过程称为电离。电离过程所需的能量就 是电离能(很小0.04eV ),掺杂杂质几乎全部电离 。
而没有被电子填满、处于最高满带上的一个能带称为 “导带”。
3.1 太阳能光伏发电原理
4. 禁带、价带和导带