二次根式全章总复习

合集下载

二次根式综合复习提优

二次根式综合复习提优

课 题 二次根式全章综合复习学习目标 1、理解二次根式的概念,并利用a a ≥0的意义解答具体题目2、理解a a ≥0是一个非负数和a 2=aa ≥0并利用它们进行计算和化简3、二次根式的运算与化简求值学习重点 二次根式的性质及其运算知识点一:二次根式的概念知识要点二次根式的定义:形如的式子叫二次根式,其中叫被开方数,只有当是一个非负数时,才9有意义. 典型例题例1、下列各式122211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________填序号.练习:二次根式易错及高频考题1. 要使错误!有意义,则x 的取值范围是2. 若y=错误!+错误!+错误!,则x+y 2003= 知识要点1、确定运算顺序;2、灵活运用运算定律;3、正确使用乘法公式;4、大多数分母有理化要及时;5、在有些简便运算中也许可以约分,不要盲目有理化;典型习题例16、已知:,求的值.练习:1、已知:,求的值.2、已知、是实数,且,求的值. 3、已知()()()()200620070225522522a =+--++-,求24a a +的值 .4、计算25+1211++321++431++ (100991)3. 若最简根式错误!与错误!是同类二次根式,则m=4. 若错误!的整数部分是a,小数部分是b,则a -错误!=5.计算:()221-=______;()()332>-x x =______,()y x y xy x <+-222=________ 6.若1<x <2,则()213-+-x x =_______ 7.实数P 在数轴上的位置如图所示:则222144p p P p -+-+=__________.8、把1(1)1a a ---中根号外的(1)a -移人根号内得__________ 9、若1122=+-+a a a ,则a 的取值范围是________10、若化简式子|1-x|-2x -8x+162x-5的结果是,则x 的取值范围是_________ 11、式子5454--=--x x x x 成立的条件是________ 12y m y=,则21y y +的结果为________ 13.若246m -234m -,则m 的值为________ 14.若0xy ≠,32x y xy x =-________15.若01x <<,221144x x x x ⎛⎫⎛⎫-++- ⎪ ⎪⎝⎭⎝⎭_____ 16. ()()222112a a --的值是A. 0B. 42a -C. 24a -D. 24a -或42a -17. 把的根号外的因式移到根号内等于 ;18. 若23a ,A. 52a -B. 12a -C. 25a -D. 21a -19有意义的未知数x 有 个.A .0B .1C .2D .无数20、若0x <,x 等于A0 B 2x - C 2x D0或2x21.已知,a b 是实数,b a =-,则a 与b 的大小关系是 A a b < B a b > C a b ≥ D a b ≤22. 已知2310x x -+=,;23. 已知,a b 为实数,(10b -=,求20052006a b -的值;24. 化简:25. 把根号外的因式移到根号内:26、计算)()20002001232______________+=。

2025年沪科版八年级下册数学期末大单元复习第16章 二次根式

2025年沪科版八年级下册数学期末大单元复习第16章 二次根式
(1)______的解法是错误的;
小亮
(2)仿照上面正确所以 ,所以
,当时,原式 .
15.(13分)【发现问题】在数学活动课上,李老师给出如下一列式子:; ; ; ;….爱思考的小辉同学发现,任意一个奇数,都可以写成两个相邻整数的平方差.
【提出问题】小辉同学根据上述式子的规律,结合本学期学习的二次根式,提出这样一个问题:若与 是两个相邻的整数,其中,则 .
期末大单元复习
第16章 二次根式
大单元串联
“题串考点”是将本章重要考点全部融入题中,高效复习本章内容.
要点知识(1)当时有意义.(2)最简二次根式满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.化成最简二次根式以后,如果被开方数相同,这样的二次根式叫做同类二次根式,合并同类二次根式与合并同类项类似.
1.[2024·安庆期末] 下列是最简二次根式的是( )
B
A. B. C. D.
2.下列各式计算正确的是( )
D
A. B. C. D.
3.[2023·蚌埠月考] 估计 的值应在( )
B
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
4.[2024·淮南期末] 已知是正整数,是整数,则 的最小值是( )
三、解答题(共45分)
12.(8分)[2024·蚌埠月考] 计算:
(1) ;
解:原式 .
(2) .
解:原式 .
13.(12分)[2023·滁州月考] 已知, ,求下列各式的值:
(1) ;
解:原式 .
(2) .
解:原式 .
14.(12分)先化简,再求值: ,其中 .如图是小亮和小芳的解答过程.

数学 八年级下册 人教版 二次根式 单元复习(+答案)

数学 八年级下册 人教版 二次根式 单元复习(+答案)

第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是( ) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为( )A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是( )A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是( )A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.( )A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是( )A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为( )A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则( )A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是( )A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是( )A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x-3有意义,则x的取值范围是____.12.(内蒙古乌兰察布模拟)2-5 的倒数是__ __.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __ __.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =____.15.(青海玉树模拟)计算:(12 -43 )×3 =__ __.16.当x =__ __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__ __. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__ __ __.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2) (仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4,其中a =2 .21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =1248 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1) 仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1)的值(结果保留根号).第十六章单元复习二次根式一、选择题1.(青海海东模拟)下列的式子一定是二次根式的是(C) A.-x-2B.x C.x2+2D.x2-22.(新疆和田质检)要使x+12有意义,则x的取值范围为(B)A.x>0 B.x≥-1 C.x<0 D.x>-13.(内蒙古包头模拟)下列二次根式中,为最简二次根式的是(B)A.45B.a2+b2C.12D. 3.64.(重庆中考)计算14×7-2的结果是(B)A.7 B.62C.72D.275.(恩施中考)从2,-3,-2这三个实数中任选两数相乘,所有积中小于2的有________个.(C)A.0 B.1 C.2 D.36.(河北中考)与32-22-12结果相同的是(A)A.3-2+1 B.3+2-1 C.3+2+1 D.3-2-17.(甘肃定西模拟)实数a在数轴上的位置如图所示,则(a-5)2+(a-13)2化简后为(A)A.8 B.-8 C.2a-18 D.无法确定8.设a=7+2,则(C)A.2<a<3 B.3<a<4C.4<a<5 D.5<a<69.(宁夏石嘴山模拟)若x为实数,在“(3+1)□x”的“□”中添上一种运算符号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,则x不可能是(C)A.3+1 B.3-1 C.23D.1-310.(兰州模拟)甲、乙两人计算a+1-2a+a2的值,当a=5的时候得到不同的答案,甲的解答是a+1-2a+a2=a+(1-a)2=a+1-a=1;乙的解答是a+1-2a+a2=a+(a-1)2=a+a-1=2a-1=9.下列判断正确的是(D)A.甲、乙都对B.甲、乙都错C.甲对,乙错D.甲错,乙对二、填空题11.(衡阳中考)若二次根式x -3 有意义,则x 的取值范围是__x ≥3__.12.(内蒙古乌兰察布模拟)2-5 的倒数是.13.若两个连续整数x ,y 满足x <5 +1<y ,则x +y 的值是 __7__.14.(荆州中考)已知:a =(12 )-1+(-3 )0,b =(3 +2 )(3 -2 ),则a +b =__2__.15.(青海玉树模拟)计算:(12 -43 )×3 =__4__.16.当x =__52 __时,2x -5 有最小值.17.(安徽中考)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形.底面正方形的边长与侧面等腰三角形底边上的高的比值是5 -1,它介于整数n 和n +1之间,则n 的值是__1__. 18.(新疆阿勒泰模拟)若|1 001-a |+a -1 002 =a ,则a -1 0012=__1__002__.三、解答题19.(1)(上海中考)计算:912 +|1-2 |-2-1×8 .(2)(仙桃中考)计算:(3-2 )0×4-(23 -6)+3-8 +12 .【解析】(1)原式=912 +2 -1-12 ×22 =912 +2 -1-2 =812 .(2)原式=1×4-23 +6-2+23 =4-23 +6-2+23 =8. 20.(宁夏中考)先化简,再求值:(a +1a +2 +1a -2 )÷2a 2-4 ,其中a =2 .【解析】原式=(a +1)(a -2)+a +2a 2-4 ·a 2-42 =a 2-a -2+a +22 =a 22 , 当a =2 时,原式=(2)22=1.21. (甘肃嘉峪关模拟)已知长方形的长为a ,宽为b ,且a =32 12 ,b =12 48 .(1)求长方形的周长;(2)当S 长方形=S 正方形时,求正方形的周长.【解析】(1)∵a =32 12 =3 3 ,b =12 48 =23 ,∴长方形的周长是:2(a +b )=2(3 3 +2 3 )=10 3 . (2)设正方形的边长为x ,则有x 2=ab , ∴x =ab =33×2 3 =18 =3 2 ,∴正方形的周长是4x =12 2 . 22.已知a ,b ,c 满足|a -8 |+b -5 +(c -3 2 )2=0.(1)求a ,b ,c 的值.(2)试问以a ,b ,c 为边能否构成三角形?如果能构成,请求出三角形的周长,如果不能,请说明理由.【解析】(1)根据题意得,a -8 =0,b -5=0,c -3 2 =0, 解得a =2 2 ,b =5,c =3 2 .(2)∵2 2 +3 2 >5,即a +c >b ,∴能构成三角形, ∴C △ABC =2 2 +3 2 +5=5 2 +5. 23.(乌鲁木齐模拟)观察、思考、解答:( 2 -1)2=( 2 )2-2×1×2 +12=2-2 2 +1=3-2 2 , 反之3-2 2 =2-2 2 +1=( 2 -1)2. ∴3-2 2 =( 2 -1)2,∴3-2 2 = 2 -1.(1)仿上例,化简:6-2 5 .(2)若a +2b =m +n ,则m ,n 与a ,b 的关系是什么?并说明理由.(3)已知x =4-12 ,求⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) 的值(结果保留根号).【解析】(1)6-2 5 =5-25+1 =(5-1)2 = 5 -1.(2)a =m +n ,b =mn ,理由:∵a +2 b =m +n , ∴a +2 b =m +2mn +n ,∴a =m +n ,b =mn ;(3)∵x =4-12 =3-23+1 =(3-1)2 = 3 -1,∴⎝ ⎛⎭⎪⎫1x -2+1x +2 ·x 2-42(x -1) =x +2+x -2(x -2)(x +2) ·(x -2)(x +2)2(x -1) =2x (x -2)(x +2) ·(x -2)(x +2)2(x -1) =x x -1. 当x = 3 -1时,原式=3-13-1-1 =3-13-2 =(3-1)(3+2)(3-2)(3+2)=-1- 3 .。

二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义

二次根式章节分类总复习 八年级数学下学期重难点及章节分类精品讲义

第02讲 《二次根式》章节分类总复习考点一 二次根式有意义的条件 知识点睛:1. 二次根式的定义:非负数a 的算术平方根a 叫做二次根式 ☆:二次根式的判断不需要化简,直接根据定义判断即可, 易错类型:因为24=,误认为4不是二次根式2. 二次根式有意义的条件a 中a 叫做被开方数,其中二次根式有意义的条件就是a ≥0;☆1:当二次根式和分式结合时,要注意分式的分母≠0 ☆2:a 的双重非负性⎩⎨⎧≥≥0.0.本身②被开方数①a a ;故有:a 前无“-”,a 本身值不可能是负的 类题训练1.下列式子,哪些是二次根式,哪些不是二次根式:,,,(x >0),,,﹣,,(x ≥0,y ≥0).【分析】一般地,我们把形如 (a ≥0)的式子叫做二次根式.结合所给式子即可作出判断. 【解答】解:符合二次根式的定义;是三次根式;是分式,不是二次根式; (x >0)符合二次根式的定义; 是二次根式; 是四次根式; ﹣符合二次根式的定义; 是分式,不是二次根式;(x ≥0,y ≥0)符合二次根式的定义.2.(2021春•下城区期末)已知二次根式,当x =1时,此二次根式的值为( ) A .2 B .±2 C .4D .±4【分析】将x的值代入二次根式,然后利用二次根式的性质化简求解.【解答】解:当x=1时,原式=,故选:A.3.(2021春•阳谷县期末)已知是整数,则正整数n的最小值是【分析】因为是整数,且=2,则6n是完全平方数,满足条件的最小正整数n为6.【解答】解:∵=2,且是整数,∴2是整数,即6n是完全平方数;∴n的最小正整数值为6.故答案为:6.4.(2021秋•普陀区期中)若是二次根式,那么x的取值范围是.【分析】二次根式要求被开方数是非负数,即10﹣5x≥0,从而解得x的取值范围.【解答】解:∵是二次根式,∴10﹣5x≥0,∴x≤2.故答案为:x≤2.5.(2021春•余杭区期中)当x=时,的值最小.【分析】根据二次根式的性质即可求出答案.【解答】解:当x=3时,此时2x﹣6=0,的最小值为0,故答案为:36.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.【分析】(1)根据二次根式的定义得出3﹣x≥0,解之可得答案;(2)将x=﹣2代入计算可得;(3)当被开方数为0时,二次根式的值即为0,据此列出关于x的方程求解可得.【解答】解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.7.已知x、y为实数,且满足,求5x+|2y﹣1|﹣的值.【分析】先根据二次根式的性质列出不等式组,求出x的取值,再把x的值代入所求代数式即可解答.【解答】解:则;==2.考点二二次根式相关概念知识点睛:1.最简二次根式:满足以下2个条件的二次根式成为最简二次根式①被开方数的因数是整数,因式是整式;②不含开的尽方的因数或因式☆:判断最简二次根式,被开方数的字母部分次数最高为1次,且不含分母二次根式的运算,最后结果都要求必须化为最简二次根式2.同类二次根式:所含被开方数相同的最简二次根式叫做同类二次根式类题训练1.(2021秋•桐柏县期中)下列二次根式中的最简二次根式是()A.B.C.D.【分析】根据最简二次根式的定义即可求出答案.【解答】解:A、原式=3,故A不符合题意.B、原式=3,故B不符合题意.C、是最简二次根式,故C符合题意.D、原式=2,故D不符合题意.故选:C.2.把下列根式化成最简二次根式.(1)5(2)6(3)(a>0)(4)(n<0)【分析】(1)直接利用二次根式的性质化简得出答案;(2)直接利用二次根式的性质化简得出答案;(3)直接利用二次根式的性质化简得出答案;(4)直接利用二次根式的性质化简得出答案.【解答】解:(1)5=5×2=10;(2)6=6×=6×=;(3)(a>0)=5a;(4)(n<0)=×=﹣.3.(2021春•岳麓区校级期末)下列式子能与合并的是()A.B.C.D.【分析】根据二次根式的性质把各个二次根式化简,根据同类二次根式的概念判断即可.【解答】解:A、==4,能与合并,符合题意;B 、=2,不能与合并,不符合题意;C 、=,不能与合并,不符合题意;D 、=,不能与合并,不符合题意;故选:A . 4.如果最简二次根式与2是同类二次根式,则a = .【分析】根据同类二次根式的定义列出方程,解方程得到答案. 【解答】解:∵最简二次根式与2是同类二次根式,∴3a ﹣8=17﹣2a , 解得,a =5, 故答案为:5.考点三 二次根式的运算知识点睛:二次根式乘法公式:())(③②)(①0b ,0··)0()0(022≥≥=⎩⎨⎧≤-≥==≥=a b a b a a a a a a a a a a 二次根式除法公式:()()()()ba b a c b a b a b a c ba ca aa ab b ab b a b a b a ba ba --=-+-=+=≥==≥=)0(1)0,0()0,0(>>变形公式:>④类题训练1.(2021秋•拱墅区期中)下列计算正确的是( ) A .B .C .D .【分析】根据平方根的性质、立方根的性质以及绝对值的性质即可求出答案. 【解答】解:A 、原式=0.3,故A 不符合题意.公式①、②、③常用于以下两种题型:(1)化简求值(2)无理数比较大小常见比较大小的三种方式:(1)利用近似值比较大小(2)把系数移到根号内比较(3)分别平方,然后比较大小以上方法注意两数的正负号公式④及其变形常用于分母有理化的化简,即分式的分子分母同乘分母的无理化因式,使分母变为整数。

二次根式知识点总结大全

二次根式知识点总结大全

第二十一章二次根式【知识要点1.二次根式:式子a(a≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)(a)2=a(a≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就能够用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也能够将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0);=b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1其中是二次根式的是_________(填序号).a(a>0)==aa2a-(a<0)0 (a=0);例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x 例3、 在根式1) 222;2);3);4)275x a b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。

求代数式22,211881-+-+++-+-=x y y x x y y x x x y例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a 移到根号内,得 ( )A. ;B. -;C. -;D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-. 例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---3、在实数范围内分解因式例. 在实数范围内分解因式。

八年级数学下册二次根式(全章)习题及答案(含答案)

八年级数学下册二次根式(全章)习题及答案(含答案)

二次根式16.1 二次根式:1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x 的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. 若1a b -+互为相反数,则()2005_____________a b -=。

13. )()()230,2,12,20,3,1,x y y x xx x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )15. 若23a ,则)A. 52a -B. 12a -C. 25a -D. 21a -16. 若A ==( )A. 24a + B. 22a + C. ()222a + D. ()224a +17. 若1a≤)A. (1a-B. (1a-C. (1a-D. (1a-18.=x的取值范围是()A. 2x ≠ B. 0x≥ C. 2x D. 2x≥19.)A. 0B. 42a- C. 24a- D. 24a-或42a-20. 下面的推导中开始出错的步骤是()()()()()2311223224==-==∴=-∴=-A. ()1B. ()2C. ()3D. ()421.2440y y-+=,求xy的值。

22. 当a取什么值时,代数式1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20052006a b -的值。

16.2 二次根式的乘除1. 当0a ≤,0b__________=。

二次根式全章同步练习(含答案)

二次根式全章同步练习(含答案)

同步练习 (2)二次根式 (2)第1课时21.1二次根式(1) (2)第2课时21.1二次根式(2) (3)第3课时21.1二次根式(3) (3)第4课时21.2二次根式的乘除(1) (4)第5课时21.2二次根式的乘除(2) (6)第6课时21.2二次根式的乘除(3) (7)第7课时21.3二次根式的加减(1) (8)第8课时21.3 二次根式的加减(2) (9)第9课时21.3 二次根式的加减(3) (10)第10课时第21章二次根式单元复习(1) (12)第11课时第21章二次根式单元复习(2) (13)第12课时二次根式全章练习 (14)第13课时21.3二次根式的加减 (17)答案: (19)二次根式的乘除 (22)第1课时课堂练习 (22)第1课时课堂练习答案 (24)第2课时课堂练习 (24)第2课时课堂练习答案 (25)第3课时课堂练习 (26)第3课时课堂练习答案 (28)二次根式的加减 (29)答案 (32)同步练习二次根式第1课时21.1二次根式(1)一、选择题1.下列式子中,是二次根式的是()D.x2.下列式子中,不是二次根式的是()D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,x+x2在实数范围内有意义?3.4.x有()个.A.0B.1C.2D.无数5.已知a、b,求a、b的值.第2课时 21.1二次根式(2)一、选择题1.、个数是( ).A.4B.3C.2D.12.数a 没有算术平方根,则a 的取值范围是( ).A.a>0B.a ≥0C.a<0D.a=0二、填空题1.()2=________.2.x+1是一个_______数.三、综合提高题1.计算(1)2 (2)-2 (3)(12)2 (4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3.=0,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-5第3课时 21.1二次根式(3)一、选择题的值是().A.0B.23C.423D.以上都不对2.a≥0比较它们的结果,下面四个选项中正确的是().二、填空题2.是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求的值,甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│。

二次根式(巩固篇)(专项练习)

二次根式(巩固篇)(专项练习)

专题1.12 二次根式(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.若3x =时,2x a -当5x =时,2x a -则a 的值可能是( )A .4B .8C .12D .162.下列二次根式中,是最简二次根式的是( )A 2B 12C 8D 123.若0xy <,则2x y ) A .xy B .x y -C .x y --D .x y -42243 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间5371115,,,…,则311 )A .第23项B .第24项C .第19项D .第25项625x -1x -+x 值是( )A .3-B .2C .3-或2D .不存在7.下列计算正确的是( )A .3553=B 236=C 235=D 12348.已知a b 、为实数,m n 、分别表示574am bn +=,则37a -+=( ) A .1 B .32 C .52 D .2 9.当12022x +=3420252022x x --的值为( ) A .3B .3-C .1D .1-10.观察下列二次根式的化简( )1221111111212S =+++-; 2222211111111111112231223S ⎛⎫⎛⎫+++++-++- ⎪ ⎪⎝⎭⎝⎭; 3222222111111111111111111122334122334S ⎛⎫⎛⎫⎛⎫=+++++++-++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 则20222022S =( ) A .20222021 B .20242023 C .12022 D .12024二、填空题11.已知1()2f x x=+,那么(3)f =_____. 12.求值:()(202220232332⋅+=______.132b +152b --a b -=________. 14.已知a 10b 是它的小数部分,则210a b +=______.15.若两不等实数a ,b 满足38a b +=,38b a +=,a b ab _____. 16.已知整数x ,y 满足2022202220222022x y x x y xy ,7x y --的最小值为 _____.17.已知等腰ABC 的两边长分别为37,则等腰ABC 的周长是______.18.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“112233445OA A A A A A A A A →→→→……”的路线运动.设第n 秒运动到点n P (n 为正整数),则点2023P 的坐标是_______________.三、解答题19.当2022a =时,求221a a a -+(1) 的解法是错误的;(2) 错误的原因在于未能正确地运用二次根式的性质: ;(3) 当3a >2691a a a -+-的值.20.计算: (1)148318243 (2) 03(51)(51)(2)27+-21.计算及解方程组: (1)1324126-() (2) )26221532+22.已知32x =32y =,求下列各式的值:(1) 22x y -: (2) 222x xy y ++.23.小明在解决问题:已知23a =+2281a a -+的值.他是这样分析与解的:∵()()2323232323a -=++- ∵23a -=-∵()2223,443a a a -=-+=,∵241a a -=-,∵()()222812412111a a a a -+=-+=⨯-+=-. 请你根据小明的分析过程,解决如下问题: (1) 1315375121119+++++ (2) 若121a , ∵求2481a a -+的值;∵直接写出代数式的值3231a a a ++-=___________.24.探究题(1) 用“=”、“>”、“<”填空: 4+3 243⨯1+16 2116⨯,5+5 255. (2) 由(1)中各式猜想m +n 与mn m ≥0,n ≥0)的大小,并说明理由.(3) 请利用上述结论解决下面问题:某园林设计师要对园林的一个区域进行设计改造,将该区域用篱笆围成矩形的花圃.如图所示,花圃恰好可以借用一段墙体,为了围成面积为200m 2的花圃,所用的篱笆至少需要 m .参考答案1.B【分析】二次根式有意义的条件是被开方数是非负数,根据这个条件列不等式即可. 解:∵当3x =2x a -∵230a ⨯-<,解得6a >,∵当5x =2x a -∵250a ⨯-≥,解得10a ≤,∵610a <≤,∵a 的值可能是8,故选:B .)0a a ≥叫二次根式.关键是掌握二次根式中的被开方数必须是非负数,否则二次根式无意义.2.A【分析】根据二次根式化简方法和最简二次根式的概念进行化简辨别即可.解:A 2B 12434323⨯=12不是最简二次根式,该选项不符合题意;C 8424222⨯8D 1122212不是最简二次根式,该选项不符合题意; 故选:A .【点拨】本题考查二次根式的化简,对于最简二次根式要满足两个条件:被开方数不含开的尽方得因数,被开方数不含分母,准确理解最简二次根式的概念,并能对二次根式进行正确的化简是解决问题的关键.3.D【分析】根据0xy <2x y 0,0x y <>,进而即可求解.解:∵0xy <2x y∵0,0x y <>, 2x y y x y ==-故选:D .【点拨】本题考查了二次根式有意义的条件,根据二次根式的性质化简,得出0,0x y <>是解题的关键.4.B【分析】利用二次根式的混合运算将原式化简,再进行无理数的估算即可. 2243263=433=33=∵252736<<,∵5276<,即5336<, 22435和6之间,故选:B【点拨】本题考查了二次根式的混合运算以及估算无理数的大小,27的范围是解此题的关键.5.D【分析】通过观察,得出第n 项为:41n -再根据31199得出方程4199n -=,解出即可得出答案.解:∵371115,,,…, ∵通过观察,可得:第n 41n - ∵31191191199⨯∵4199n -=,解得:25n =,∵31125项.故选:D【点拨】本题考查了数字规律问题、二次根式的乘法,解本题的关键在正确找出已知数列的规律.6.A【分析】根据同类最简二次根式的定义求解即可解:根据题意得:215x x --+250x -≥,10x -+≥, 215x x --+∵215x x --+=,解得:3x =-或2x =(舍),∵3x =-,故选:A【点拨】本题考查了同类最简二次根式的定义,掌握同类最简二次根式的定义是解决问题的关键7.B【分析】根据二次根式的加减乘除运算法则求解判断即可.解:A 、35525B 236=C 23D 12312342=÷=,计算错误,不符合题意,选项错误,故选B .【点拨】本题考查二次根式的加减乘除运算,熟练掌握相关运算法则是解题关键.8.D7m n 、的值,再代入计算即可.解:∵72<<3,∵372-<<-,∵72<5<3,∵57-2m =,小数部分57237n ==∵4am bn +=,∵(2374a b +=,∵372a -=, 故选:D .【点拨】本题考查估算无理数的大小,二次根式的混合运算,掌握算术平方根的定义是正确解答的前提.9.D【分析】根据12022x +=2442021x x -=,然后将多项式3420252022x x --转化为22(442021)(442022)x x x x x --+--,然后代入计算即可.解:12022x += 2(21)2022x ∴-=,24412022x x ∴-+=,2442021x x ∴-=,∴多项式3420252022x x --22(442021)(442022)x x x x x =--+--(20212021)20212022x =-+-020212022=+-1=-,故选:D .【点拨】本题难度较大,需要对要求的式子进行变形,同学们要学会转化的思想,这是数学中一种很重要的思想.10.B【分析】根据题目中给定的计算方法求出2022S ,再进行求解即可. 解:221111111212++=+-221111112323++=+-221111113434++=+-,…∵221111112022202320222023++=+-, ∵1221111111212S =++=+-, 2222211111111111112231223S ⎛⎫⎛⎫=++++=+-++- ⎪ ⎪⎝⎭⎝⎭, 322222111111111111111111122334122334S ⎛⎫⎛⎫⎛⎫=+++++++-++-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, …∵20221111111111111111223342021202220222023S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-++-++-+++-++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1202220221202220232023=+-=+, ∵则20222022202212024202312022202220232023S +==+=. 故选B . 【点拨】本题考查二次根式化简中的简便运算.熟练掌握题目中给定的计算方法是解题的关键.11.23【分析】根据1()2f x x =+代入计算即可; 解:∵1()2f x x =+, ∵()()23(3)23232323f -==++- 故答案是:23.【点拨】本题主要考查了代数式求值和分母有理化,准确利用平方差公式计算是解题的关键.12.322+ 【分析】先根据积的乘方得到原式=20222022322322322-++()()(),然后利用平方差公式计算. 解:原式=20222023322322-+()()=20222022322322322-++()()()=(202298322-⨯+() =322+故答案为:322+【点拨】本题考查了二次根式的混合运算:熟练掌握二次根式的性质、二次根式的乘法法则和积的乘方与幂的乘方是解决问题的关键.13.2【分析】根据最简二次根式、同类二次根式的性质计算,即可得到a 和b 的值;再将a和b 的值代入到代数式,通过计算即可得到答案.解:根据题意得:12a -=∵3a =∵2b +152b --∵252b b +=-∵1b =∵312a b -=-=故答案为:2.【点拨】本题考查了二次根式的知识;解题的关键是熟练掌握最简二次根式、同类二次根式、代数式的性质,从而完成求解.14.3【分析】由于34a <<,则3a =,103b =,然后代入所求代数式进行计算即可. 解:3104<<,3a ∴=,103b =,2106103103a b ∴+=.故答案为:3.【点拨】本题考查了估算无理数的大小,二次根式的加减,解题的关键是利用完全平方数和算术平方根对无理数的大小进行估算.15.4【分析】3a b =1ab ,然后代入原式即可求出答案.解:∵38a b +,38b a +, ∴33a a b b ++1633a b b a ++, ∴330b a b a +-, ∴30a ba b a b =-, ∵a b , 0a b , 3a b =,∵1633a b b a =++,∴7a b +=, ∵22a b a b ab =++()212a b a b ab -+=∴原式=314+=.故答案为:4. 【点拨】本题考查二次根式的混合运算,解题的关键是a b a b a b -=,本题属于基础题型.16.18 2()2022()202220220xy x y x y xy =,然后因式分解为(2022)(2022)0x y xy =,20220xy =,进而分析得出337x =,6y =,则答案可得. 解:2022202220222022x y y x x y xy =, 2()2022()202220220xy x y x y xy , ∵(2022)(2022)0x y xy =, 20220xy =,∵202223337xy ==⨯⨯,∵x ,y 均为整数,70x y -->,7x y --337x =,6y =,7x y --3376732418--==.故答案为:18. 20220xy . 17.1423+2314 【分析】分两种情况:当等腰ABC 的腰长为37时,当等腰ABC 的腰长为7,底边长为23解:分两种情况:当等腰ABC的腰长为237时,233437+,∴不能组成三角形;当等腰ABC的腰长为7,底边长为3∴等腰ABC的周长773143=++=+综上所述:等腰ABC的周长是1423+故答案为:143+【点拨】本题考查了等腰三角形的性质,三角形的三边关系,分两种情况进行计算是解题的关键.18.3⎛⎝⎭【分析】每630,30,3,0,点的横坐标规律:12,1,32,2,52,3,…,2n,即可求解.解:如图,过1A作1A H x⊥轴于H,则130OA H∠=︒,而11OA=,∵12OH=,2211312A H⎛⎫=-=⎪⎝⎭,∵每630,30,3,0,∵20236337÷=余1,∵点2023P3由题意可知动点P 每秒的横坐标规律:12,1,32,2, 52 ,3,…,2n , ∵点2023P 的横坐标为1011.5, ∵点2023P 的坐标3⎛ ⎝⎭, 故答案为3⎛ ⎝⎭. 【点拨】本题考查点的规律;理解题意,根据所给图形的特点,结合平面直角坐标系中点的特点及正三角形边的特点,确定点的坐标规律是解题的关键.19.(1)小亮 2||a a (3)-2【分析】(1)根据二次根式的性质化简即可求出答案.(2)根据二次根式的性质化简即可求出答案.(3)根据a 的范围判断3a -与1a -的符号,然后根据二次根式的性质以及绝对值的性质进行化简即可求出答案. 解:(1)原式2(1)a a =-1a a =+-,∵2022a =,∵10<-a ,∵原式1212202214043a a a =+-=-=⨯-=,故小亮的解法错误,故答案为:小亮. (22a a ,2a a .(3)∵3a >,30a ∴->,10a -<, ∵原式2(3)1a a =--,31a a =---()31a a =-+-31a a =-+-2=-.【点拨】本题考查二次根式的化简求值,解题的关键是熟练运用二次根式的性质,本题属于基础题型.20.(1)46 (2)2【分析】(1)直接利用二次根式的乘除运算法则、二次根式的性质化简,进而得出答案;(2)将原式用平方差公式化简,再求值即可(1148318243148318263=÷⨯16626=46=(2)03(51)(51)(2)27+-25113=-+-53=-2=【点拨】本题主要考查了二次根式的混合运算,解题的关键是熟练掌握二次根式的性质和混合运算法则. 21.(1)71210 (2)3107-【分析】(1)先计算括号,再计算除法,最后计算加减.(2)按照完全平方公式,二次根式的乘法计算即可. 解:(113242126-() 63621(2 32156 3221==71210(2)26221532+ =331073-=3107-.【点拨】本题考查了二次根式的乘法,除法,完全平方公式,绝对值的化简,熟练掌握二次根式的乘除运算是解题的关键.22.(1)6 (2)12【分析】(1)先计算出x y +和x y -,再利用乘法公式得到()()22x y x y x y -=+-;(2)利用乘法公式得到222)2(x xy y x y =+++,然后利用整体代入的方法计算. (1)解:32x =+32y =,23x y ∴+=22x y -=()()22232246x y x y x y -=+-==(2)由(1)知3x y +=∵22222()(23)12x xy y x y ++=+==.【点拨】本题考查了二次根式的运算,完全平方公式、平方差公式等知识点.题目难度不大,注意整体代入思想的运用.23.(1)5 (2)∵5,∵0【分析】(1)原式各项分母有理化,计算即可求出值;(2)∵先把a 分母有理化可得到21a ,从而得到221a a -=,再把式子进行整理,将221a a -=代入计算即可求出值;∵将式子整理成()2221a a a a a --++,再代入221a a -=,即可求解. (11315375121119++++++ 13153751211192=+- ()112112= 1102=⨯5=;(2)解:∵∵()()122122211a -+-,∵12a -= ∵()2212,212a a a --=+=,∵221a a -=,∵()224814214115a a a a -+=-+=⨯+=; ∵∵221a a -=,∵3231a a a -++()2221a a a a a =--++21a a a =-++()221a a =--+=11-+0=.故答案为:0【点拨】本题考查了分母有理化,二次根式的化简求值,正确读懂例题,对二次根式进行化简是关键.24.(1)>,>,=, (2)m +n mn (3)40【分析】(1)分别进行计算,比较大小即可;(2)根据第(1)问填大于号或等于号,所以猜想m +n mn 比较大小,可以作差,m +n -mn(3)设花圃的长为a 米,宽为b 米,需要篱笆的长度为(a +2b )米,利用第(2)问的公式即可求得最小值.(1)解:∵4+3=7,43⨯3∵2749=,2(43)48=,∵49>48,∵4+3>43⨯∵1+16=76>1,116⨯61,∵1+16>116⨯;∵5+5=10,55⨯,55⨯故答案为:>,>,=;(2)解:m+n mn m≥0,n≥0).理由如下:当m≥0,n≥0时,∵2()0m n≥,∵22()2()0m m n n-≥,∵m-mn n≥0,∵m+n mn(3)解:设花圃的长为a米,宽为b米,则a>0,b>0,S=ab=200,根据(2)的结论可得:222222220022040a b a b ab+≥⋅==⨯⨯=,∵篱笆至少需要40米.故答案为:40.【点拨】本题主要考查了二次根式的应用,体现了由特殊到一般的思想方法,解题的关键是联想到完全平方公式,利用平方的非负性求证.。

专题01 二次根式的概念及性质(知识精讲+综合训练)(解析版)

专题01 二次根式的概念及性质(知识精讲+综合训练)(解析版)

章节复习知识精讲与综合训练专题01 二次根式的概念及性质知识点01 二次根式的概念1、二次根式的概念(1(0a ³)叫做二次根式,读作“根号a ”,其中a 是被开方数.(2)二次根式有意义的条件是被开方数是非负数.即两个特性(双重非负性)⎩⎨⎧³³00a a 【典例分析】1.下列式子一定是二次根式的是( )ABCD【答案】.B【分析】根据二次根式的定义判断即可;【详解】A 错误;B 正确;C 错误;a 的取值范围,故D 错误;故选B .【点睛】本题主要考查了二次根式的定义应用,准确分析判断是解题的关键.2是整数,则a 能取的最小整数为( )A .0B .1C .2D .3【答案】.A【分析】首先根据二次根式有意义的条件确定a是整数,知识精讲即可求得a 能取的最小整数.【详解】解:成立,410a \+³,解得14a ³-,又\a 能取的最小整数为0,故选:A .【点睛】本题考查了二次根式有意义的条件,熟练掌握和运用次根式有意义的条件是解决本题的关键.3a 的取值范围为( )A .1a ³-B .2a ¹C .1a ³-且2a ¹D .1a >-【答案】.C【分析】二次根式有意义的条件和分式分母有意义的条件即可解得.【详解】∵∴10a +³,-20a ¹解得-1a ³且2a ¹故选:C .【点睛】此题考查了二次根式和分式有意义的条件,解题的关键是列出不等式求解.4.若2m =,则m n -=( )A .425B .254C .254-D .425-【答案】A【分析】先根据二次根式的意义求出n ,再求出m ,最后根据负整数指数幂的运算法则得到最终解答.【详解】解:由题意可得:2n -5=5-2n =0,∴52n =,m =0+0+2=2,∴n-m =225242525-æöæö==ç÷ç÷èøèø,故选A .【点睛】本题考查二次根式和负整数指数幂的综合应用,熟练掌握二次根式有意义的条件及负整数指数幂的计算方法是解题关键.5=-,则a 的取值范围是( )A .20a -££B .0a £C .a<0D .2a ³-【答案】A【分析】根据二次根式的性质列出不等式,解不等式即可解答.【详解】=-,∴020a a £+³,,∴-20a ££.故选A .【点睛】本题考查二次根式的性质,根据二次根式的性质列出不等式是解题的关键知识点02 二次根式的性质1、二次根式的性质(1)二次根式的性质:性质1(0)a a =³;性质2:2(0)a a =³;性质3=0a ³,0b ³);性质4=(0a ³,0b >).(2与a的关系:(0)0(0)(0)a a a a a >=-<.【典例分析】6====….请你按照规律写出第n (1n ³)个式子是()A (n=-B=C (n=+D =【答案】.C【分析】观察等式,找出规律,写出第n 个式子即可.【详解】解:由规律可得,第n 个式子为:(n =+.故选项A 、B 、D 错误,选项C 正确故选:C .【点睛】本题主要考查了二次根式,解题的关键是观察等式,找出规律.7.实数a 、b 在数轴上对应点的位置如图所示,化简b )A .2a b -+B .2b a -C .aD .B【答案】.B【分析】由数轴知,a <0<b ,得到a-b <0,进而根据二次根式的性质化简即可求解.【详解】解:∵由数轴知,a <0<b ,∴a-b <0,∴b +2b b a b a+-=-故选:B .【点睛】此题考查了利用数轴比较数的大小,化简二次根式,正确利用数轴比较数的大小是解题的关键.8.已知xy >0,化简二次根式-的正确结果( )A B C .D .【答案】.B 【分析】根据二沉池根式有意义的条件求出2x y -≥0,求出x 、y 的范围,再根据二根式的性质进行化简即可.【详解】解:由二次根式有意义的条件可得20x y ->,∵xy >0,∴x <0,y <0,∴-==故选:B.【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.9.实数a、b的结果是()A.- 2a B.2(a+b)C.2b D.- 2b【答案】.C【分析】根据数轴判断a、b、a+b与0的大小关系,然后根据二次根式的性质即可求出答案.【详解】解:由数轴可知:a<-b<0<b,∴a<0,b>0,a+b<0,∴原式=|a|+|b|-|a+b|=-a+b+(a+b)=-a+b+a+b=2b,故选:C.【点睛】本题考查二次根式的性质与化简、化简绝对值、数轴,解题的关键是熟练运用二次根式的性质,本题属于基础题型.10.实数a,b)A.2b-D.0b a-B.2a-C.22【答案】.A【分析】先根据数轴判断出a、b和a-b的符号,然后根据二次根式的性质化简求值即可.【详解】解:由数轴可知:a<0,b>0,a-b<0=a b a b---=-a -b +a -b=2b-故选A .【点睛】此题考查的是二次根式的化简,掌握利用数轴判断字母符号和二次根式的性质是解决此题的关键.123x =+,则x 取值范围为( )A .2233x -££B .203x -££C .203x ££D .23x £-或23x ³2.当1a <- )A .1-B .1C .21a +D .12a--3.已知0xy <).AB.CD .4.实数a ,b ||a b +化简的结果为( )A .aB .2a b +C .2a b-D .2a b -+5.在下列各式中,计算正确的是( )综合训练A 9=-B .3=C .(22=-D 1-6,3,…,,3,L ;若()14,,()23, )A .()64,B .()53,C .()52,D .()65,7.若实数a 、b 、c 在数轴上的对应点如图所示,( )A .a c -B .2a b c --+C .a c --D .a c-+8.下列二次根式中,是最简二次根式的是( )A B C D9.x )A .0B .1-C .2-D .3-10)A 5=±B 142=C =D 210-=-二、填空题11.对于任意两个不相等的数a ,b ,定义一种运算※如下:a b =※,例如23==※62=※____________.12.实数a ,b ___________.13)12x <<=___________.14有意义,则a 的取值范围是_____________________.15.已知等腰三角形ABC 0BC =,则此三角形的周长为___________.16.如果2、5、m _____.17=_____.18.若22m n x y --与423m n x y +是同类项,则3m n -的平方根是____________.19a =,则a =_____________.20.若3y ,则xy =________.三、解答题21.求代数式a 2022a =-.如图,小芳和小亮的解题过程,都是把含有字母式子先开方再进行运算的方法,请认真思考、理解解答过程,回答下列问题.(1)___________的解法是错误的;(2)求代数式a +的值,其中4a =22.已知关于x 、y 的二元一次方程组325342x y a x y a +=⎧⎨+=-⎩①②的解互为相反数.(1)求a 的值;(2)若b 为3c23.当2022a =时,求a(1)__________的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:____________________;a>|1|a-的值.(3)当3参考答案:1.B【分析】根据算术平方根的非负性可得230x +³,23x =+可得x x =-,据此即可作答.【详解】∵23x =+,∴230x +³,∴23x ³-,23x =+,∴()()222323x x -=+,∴2291249124x x x x -+=++,∴x x =-,∴0x £,∴x 取值范围:203x -££,故选:B .【点睛】本题主要考查了算术平方根的非负性,二次根式的化简以及绝对值的知识,掌握二次根式的化简以及算术平方根的非负性是解答本题的关键.2.A【分析】根据1a <-去绝对值计算即可.【详解】∵1a <-∴11a a +=--,a a=-1)()1a a ----=-故选:A .3.C【分析】根据二次根式有意义的条件求出20xy -³,求出x 、y 的范围,再根据二次根式的性质进行化简即可.【详解】解:由二次根式有意义的条件求出20xy -³,∵0xy <,∴0x <,0y >,==故选:C .【点睛】本题考查了二次根式的性质与化简和二次根式有意义的条件,能熟记二次根式的性质是解此题的关键.4.D 【分析】根据题意可得:a b >,0a b <<,从而可得0a b +<,0b a ->,然后利用二次根式的性质,绝对值的意义,进行化简计算,即可解答.【详解】解:∵a b >,0a b <<,∴0a b +<,0b a ->,||a b ++a b a a b =+--+a b a a b =-+-++2a b =-+故选:D【点睛】本题考查了二次根式的性质与化简,实数与数轴,整式的加减,准确熟练地进行计算是解题的关键.5.D【分析】根据立方根,算术平方根,二次根式的性质计算判断即可.【详解】解:|9|9=-=,∴A 不符合题意;∵-=∴B 不符合题意;∵(22=,∴C 不符合题意;1=-,∴D 符合题意;故选D .【点睛】本题考查了求立方根,算术平方根,二次根式的性质,熟练掌握求立方根的方法和二次根式的性质是解题的关键.6.A【分析】由题意可知,每行5个数,数的被开方的规律是3n 29个数,6行的第4个数.【详解】解:一组数据的排列变形为L ;由题意可知,每行5个数,∵87=3×29,29个数,∵2955¸=…4,6行的第4个数,()64,,故选:A .【点睛】本题考查数字的变化规律,能够根据所给的数的特点,找到数的排列规律是解题的关键.7.C【分析】根据题意0a b c <<<,从而可得0b c -<,然后利用二次根式的性质,以及绝对值的意义进行计算即可得出答案.a b c b---+【详解】由题意得0a b c <<<,∴0b c -<,b ()ac b =+--,()a b c b =-+--+,a b c b =---+,a c =--,故选:C .键.8.C【分析】根据最简二次根式的概念逐项判断即可.【详解】解:A.=A 不符合题意;B. ===,故B 不符合题意;C.是最简二次根式,故C 符合题意;D. 1=-,故D 不符合题意.故选:D .【点睛】本题考查了最简二次根式,掌握最简二次根式的特点①被开方数不含分母,②被开方数不含能开得尽方的因数或因式是解答本题的关键.9.A【分析】根据二次根式有意义求出x 的取值范围,即可得出答案.【详解】解:由题意得,210x +³,解得:21x ³-,∴只有A 选项符合题意,故选:A .【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练掌握二次根式有意义的条件是被开方数为非负数.10.C 【分析】根据求一个数的算术平方根及立方根,幂的乘方运算的逆用,即可一一判定.【详解】解:5=,故该选项错误,不符合题意;==,故该选项错误,不符合题意;=210-==,故该选项错误,不符合题意;故选:C .【点睛】本题考查了求一个数的算术平方根及立方根,幂的乘方运算的逆用,熟练掌握和运用各运算法则是解决本题的关键.11【分析】根据新定义运算进行运算,即可求得.【详解】解:2==6※【点睛】本题考查了新定义运算,二次根式的性质,理解题意,正确进行运算是解决本题的关键.12.b【详解】由数轴得:0a b <<,∴a a =- ,a b a b-=-+()b a a b a b--=-+--=故答案为:b .13.21及1的符号,去绝对值化简即可.+1-∵12x <<,∴011x <-<,∴01<<,∴110-<<10>,∴原式11=2=,故答案为:2.【点睛】题目主要考查二次根式的化简及完全平方公式,化简绝对值,熟练掌握二次根式的化简方法是解题关键.14.2a £【分析】根据二次根式有意义的条件列式计算可求解.【详解】解:由题意得20a -³,解得2a £,故答案为2a £.【点睛】本题主要考查二次根式有意义的条件,根据二次根式有意义时被开方数为非负数求解是解题的关键.15.15【分析】根据二次根式和绝对值的非负性得出,AB BC 的值,然后结合三角形三边关系进行计算即可.【详解】解:0BC =,30AB \-=,60BC -=,解得:3AB =,6BC =,若等腰三角形ABC 的三边分别为3,3,6,则336+=,不能构成三角形;若等腰三角形ABC 的三边分别为3,6,6,则此三角形周长为36615++=,故答案为:15.【点睛】本题考查了二次根式和绝对值的非负性,等腰三角形的定义,三角形三边关系的应用,熟练掌握基础知识点是解本题的关键.16.4【分析】根据三角形三边的关系得到37m <<,再根据二次根式的性质得原式37m m =-+-,然后根据m 的取值范围去绝对值后合并即可.【详解】解:∵2、5、m 为三角形三边,∴37m <<,∴原式()3737374m m m m m m =-+-=---=--+=,故答案为:4.熟练掌握知识点是解题的关键.17.5【分析】直接根据二次根式的性质进行化简即可得到答案.|5|5=-=故答案为:5(0)0(0)a a a a >-<⎩是解答本题的关键.18.±【分析】利用同类项的含义可得4,22m n m n -=⎧⎨+=⎩再解方程组可得m ,n 的值,再求解3m n -及其平方根即可.【详解】解:∵22m n x y --与423m n x y +是同类项,∴4,22m n m n -=⎧⎨+=⎩解得:2,2m n =⎧⎨=-⎩ ∴()32328,m n -=-´-=∴3m n -的平方根是±故答案为:±【点睛】本题考查的是利用同类项的含义求解未知系数的值,求解非负数的平方根,二元一次方程组的解法,二次根式的化简,掌握“同类项的定义及求解平方根的方法”是解本题的关键.19.13【分析】由二次根式有意义的条件可得4,a ³ 3=再利用算术平方根的含义解方程可得答案.a =,∴40,a -³解得:4,a ³∴3,a a -+=3,=∴49,a -=解得:13a =,经检验符合题意;故答案为:13.【点睛】本题考查的是二次根式有意义的条件,算术平方根的含义,掌握“判断题干当中的隐含条件4a ³”是解本题的关键.20.6【分析】先根据二次根式有意义的条件求出x 的值,进而得出y 的值,再求出xy 的值即可.【详解】解:∵∴2020x x -³⎧⎨-³⎩,解得x =2,∴y =3,∴xy =2×3=6.故答案为:6.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.21.(1)小亮(2)2+【分析】(1)根据二次根式的性质,完全平方公式进行化简即可.(2)先化简,代入计算即可.【详解】(1)因为a=1a a a =+-,因为2022a =-,所以10a -<,所以原式=11a a +-=,所以小亮的解法错误,故答案为:小亮.(2)因为a +=23a a a +=+-,因为4a =-,所以43,所以原式=2(3)6a a a +-=-,当4a =-原式=642-=【点睛】本题考查了二次根式的性质,完全平方公式,绝对值的化简,熟练掌握二次根式的性质是解题的关键.22.(1)1(2)2【分析】(1)先应用求二元一次方程组的解法进行计算,求出x ,y ,再根据题意可得0x y +=,代入计算即可得出答案;(2)根据估算无理数大小的方法,计算出b ,c 出答案.【详解】(1)325342x y a x y a +=⎧⎨+=-⎩①②①×3-②得:484x a =-∴21x a =-把21x a =-代入①得:()32142a y a -+=-∴78y a=-∴x 、y 互为相反数∴0x y +=∴()()21870a a -+-+=∴1a =.(2)23,12,<<<<Q536,\<+<5,1,b c \=-====2=【点睛】本题主要考查了估算无理数的大小及解二元一次方程组,熟练掌握估算无理数的大小及解二元一次方程组的方法进行求解是解决本题的关键.23.(1)小亮||a =(3)2-【分析】(1)根据二次根式的性质即可判断答案.(2)根据二次根式的性质即可判断答案.(3)根据a 的范围判断3a -与1a -的符号,然后根据绝对值的性质以及二次根式的性质即可求出答案.【详解】(1)原式a =|1|a a =+-,2022a =Q ,10a \-<,\原式1212202214043a a a =+-=-=´-=,故小亮的解法错误.故答案为:小亮.(2||a =.||a =.(3)原式|1|a -|3||1|a a =---,3a >Q ,30a \->,10a -<,原式3(1)a a =-+-31a a=-+-2=-.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.。

八下数学第12章二次根式复习(2)

八下数学第12章二次根式复习(2)

a,如图 试化简
.
2A
3
(a 2)2 (a 3)2
(四) 二次根式的非负性:
例题4.(1)已知: a 1 b 1 0
试求a b的值. ab
(2)已知: y 2x 1 1 2x
x 试求 y的值.
才艺展示
1. 如果 y 2x 3 , 3 2x 2 试求
2x+3y的平方根.
(一)整体思想:
例题1.化简: m n (m 0, n 0且m n)
m n
练习:化简 a b 2 ab a b b a (a 0,b 0)
a b
ab
(二)分类思想: 例题2.化简: x2 x2 2x 1
练习:化简 2 a2 4a 4
(三)数形结合:
例题3.已知:数轴上的点A表示实数为
二次根式复习(2)
重点回顾
1.二次根式的化简步骤:
(1)一分:分解因数(因式)、平方 数(式);
(2)二移:根据算术平方根的概念, 把根号内的平方数或者平 方式移到根号外面;
(3)三化:化去被开方数中的分母.
2.二次根式混合运算的步骤: (1)乘方运算: (2)乘除运算: (3)加减运算.
ቤተ መጻሕፍቲ ባይዱ拨矫正
2.已知 a b 6与 a b 8 ,互为相反
数,试求a、b的值. 3. 已知三角形的三边长分别是a、b、c,且
a c ,那么 c a (a c b)2 = .
4.已知x、y是实数,且
y x2 4 4 x2 ,1 试求
x2
3x+4y的值.
5.已知 x 3 2 、y 3 2 ,
3 2
3 2
求x2y+xy2的值.
6.已知:a、b、c在数轴上的位置示,

二次根式全章复习

二次根式全章复习

①都是形如 a 的式子,
②a都是非负数.
一般地,形如 a(a≥0)的式子叫做二次根式.
其中a为整式或分式,a叫做被开方式.
1.判断下列各式是否是二次根式.
5 ( × ) a (a 0)( × ) 3 8 ( × ) a (a 0)( √ )
2. 下列各式一定是二次根式的是( C ).
A. x +1 B. x2 1
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
B
①则AD=__2__ BC=__1__
DP C
拓展2
已知△ABP的一边AB= 10,
(1)在如图所示的4×4的方格中画出格点△ABP,使
三角形的三边为 5, 5, 10,
(2)如图所示,AD⊥DC于D,
A
BC⊥CD于C,
若点P为线段CD上动点。
1
a +1
2 1
1 2a
3 a 32
解:(1)由题意得:
a +1 0 a 1
即当 a 1 时, a +1 有意义.
(2)a 1 2
a (3) 为任意实数
求二次根式中字母的取值范围的基本依据:
①被开方数不小于零;
②分母中有字母时,要保证分母不为零。
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
B
② 设DP=a,请用含a的代数式表
示AP,BP。则AP=___a_2_+_4____,
D
PC
B③P=当__a_(=_31__a时)_2_+,_1_则。PA+PB=__2__5__,当a=3,则PA+PB=_1_+__1_3_

人教版八年级二次根式知识点总结课件

人教版八年级二次根式知识点总结课件
B
A≥0且B≠0.
练一练
1.下列各式: 3; 5; a2 ; x 1 x≥1;3 27; x2 2x 1.
一定是二次根式的有
( B)
A.3个 B.4个 C.5个 D.6个
2.(1)若式子 x 1 在实数范围内有意义,则x的取值 2 范围是_x__≥_1___;
(2)若式子
x
1
2
x 在实数范围内有意义,则x的
人教版八年级二次根式 全章知识点总结课件
一.二次式的概念及有关性质
1.理解二次根式的概念.(重点) 2.掌握二次根式有意义的条件.(重点) 3.会利用二次根式的非负性解决相关问题.(难点)
问题引入
问题1 什么叫做平方根? 一般地,如果一个数的平方等于a,那么这个数叫
做a的平方根.
问题2 什么叫做算术平方根? 如果 x2 = a(x≥0),那么 x 称为 a 的算术平方根.
总结
利用二次根式的除法法则进行计算,被开方数相 除时,可以用“除以一个不为零的数等于乘这个数的 倒数”进行约分、化简.
1 计算:
(1) 72 ; 6
(2) 48 ; 2 3
(3) 1 1 1; 26
(4)
4
a
1
3
b
a
b
1
(a>1,b>0).
导引: (1)直接利用二次根式的除法法则进行计算;(2)(4)要
典例解析
例2 当x是怎样的实数时, x 2在实数范围内有 意义?
解:由x-2≥0,得 x≥2.
当x≥2时, x 2 在实数范围内有意义.
典例解析
【变式题1】 当x是怎样的实数时,下列各式在实数范围内
有意义?
(1) 1 ; x 1

人教版-数学-八年级下册《二次根式》单元复习教案

人教版-数学-八年级下册《二次根式》单元复习教案

《二次根式》单元复习教案1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子.2.熟练地进行二次根式的加、减、乘、除混合运算.在复习过程中,体会知识的连贯性,以及提高对知识的应用能力.感受数学的实用价值,提高解决问题的能力.【重点】含二次根式的式子的混合运算.【难点】综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.二次根式专题一二次根式的定义和性质【专题分析】关于二次根式的定义和性质,主要考查求字母的取值范围,涉及单个知识点或与分式综合在一起考查,一般较为简单,题型以选择题、填空题为主.(2014·巴中中考)要使式子有意义,则m的取值范围是()A.m>-1B.m≥-1C.m>-1且m≠1D.m≥-1且m≠1〔解析〕根据二次根式有意义和分式有意义的条件,得出关于m的不等式组,然后进行求解,得出结论.由题意,得解得m≥-1且m≠1.故选D.几种常见求字母取值范围的类型:所给式子的形式x的取值范围整式全体实数分式使分母不为零的一切实数.注意不能随意约分,同时要区分“且”和“或”的含义偶次根式被开方式为非负数0次幂或负整数指数幂底数不为零复合形式列不等式组,兼顾所有式子同时有意义【针对训练1】(2014·金华中考)在式子,,,中,x可以取2和3的是()A. B.C. D.〔解析〕分别求出各式有意义的条件,再进行选择.当x≠2时,分式有意义;当x≠3时,分式有意义;当x≥2时,二次根式有意义;当x≥3时,二次根式有意义.综上所述,只有中的x可以取2和3.故选C.要求x可以取什么值,对于分式,只需分母不为0;对于二次根式,只需根号里面为非负数.(2014·镇江中考)若实数x,y满足+2(y-1)2=0,则x+y的值等于()A.1B.C.2D.〔解析〕由于,2(y-1)2都是非负数,两个非负数的和为0,故这两个数都等于0.由题意得解得∴x+y=.故选B.初中阶段学习了三种非负数,①|a|≥0;②a2≥0;③≥0(a≥0).若出现几个非负数的和为零,则说明这几个非负数的值都等于0,此时可得一个方程(组),解方程(组)即可求得未知数的值.【针对训练2】(2014·安顺中考)已知等腰三角形的两边长分别为a,b,且a,b满足+(2a+3b-13)2=0,则此等腰三角形的周长为()A.7或8B.6或10C.6或7D.7或10〔解析〕先根据二次根式的双重非负性、完全平方式的非负性列出二元一次方程组,解方程组得到a,b的值,进而求出等腰三角形的周长.∵+(2a+3b-13)2=0,∴解得∴等腰三角形的周长是7或8.故选A.二次根式具有双重非负性,即被开方数是非负数,二次根式为非负数,这一性质经常在化简问题中运用.专题二二次根式的最值问题【专题分析】涉及二次根式的最值问题,一般选择题、填空题或解答题的形式都可以出现,单独考查这一个知识点的情况较少,一般与其他知识点综合考查.当x取何值时,+3的值最小?最小值是多少?〔解析〕由二次根式的非负性可知≥0,即的最小值为0,因为3是常数,所以+3的最小值为3.解:∵≥0,∴+3≥3,∴当9x+1=0,即x=-时,+3有最小值,最小值为3.涉及二次根式的最值问题,应根据题目的具体情况来决定应采用的方法,不能一概而论,但一般情况下利用二次根式的非负性来求解.【针对训练3】代数式++的最小值为()A.0B.1+C.1D.不存在的〔解析〕由二次根式有意义知被开方数必须是非负数,所以x≥0,x-1≥0,x-2≥0,故x≥2,而被开方数越小,算术平方根的值就越小,所以当x=2时,++取得最小值,其值为+1.故选B.解决此类问题一定要熟练掌握二次根式的非负性,即≥0(a≥0),同时需要注意被开方数越小,算术平方根的值就越小.专题三最简二次根式【专题分析】主要考查最简二次根式的概念,考查单个知识点时一般较为简单,题型以选择题、填空题为主.在二次根式的计算中,结果必须要化成最简二次根式.下列式子中,属于最简二次根式的是()A. B. C. D.〔解析〕本题解题的关键在于紧扣住最简二次根式的概念逐个分析.选项A:=4,选项C:=2,选项D:=,根据最简二次根式的概念知选B.判断是不是最简二次根式的方法:在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;在被开方数中,每一个因数或因式如果幂的指数等于或大于2,也不是最简二次根式.【针对训练4】(2014·孝感中考)下列二次根式中,不能与合并的是()A.B.C.D.〔解析〕先将各式化成最简二次根式,再看哪一个被开方数与的被开方数相同即可.A. =,故能与合并;B.=2,故能与合并;C.=2,故不能与合并;D.=3,故能与合并.故选C.最简二次根式的被开方数相同,那么这几个二次根式才能合并.所以判断几个二次根式是否能合并,必须先化简,再判断.专题四二次根式的化简求值及混合运算【专题分析】二次根式的混合运算主要考查二次根式的加、减、乘、除的运算能力,题型为选择题、填空题和解答题均可.二次根式的化简求值主要考查化简的能力和代值计算的能力,化简根式的题目较少,一般是化简分式,然后代入值计算,一般难度不大,题型以解答题为主.计算×+()0的结果为()A.2+B.+1C.3D.5〔解析〕先分别进行二次根式的乘法运算和零指数幂的运算,然后再进行加法运算.原式=2+1=3.故选C.解决此类题目的关键是熟练掌握平方、立方、零指数幂、二次根式等式子的运算.在计算时,需要针对每个式子分别进行计算,然后根据实数的运算法则求得计算结果.【针对训练5】(2014·青岛中考)计算=.〔解析〕先用分子中的每一项与分母相除,然后化为最简二次根式.=+=+1=2+1.故填2+1.计算:(1-2)(1+2)-(2-1)2.〔解析〕可以用平方差公式计算(1-2)(1+2),用完全平方公式计算(2-1)2,再进行二次根式的加减运算,求出结果.解:原式=12-(2)2-=1-12-12+4-1=-24+4.一要注意运算顺序,二要注意利用乘法公式计算二次根式乘法可以使运算更简便.【针对训练6】(2014·凉山中考)已知x1=+,x2=-,则+=.〔解析〕观察x1和x2,正好是两数和、差,再对+运用完全平方公式进行变形,即可简化运算.∵x1=+,x2=-,∴x1+x2=2,x1x2=1.∴+=(x1+x2)2-2x1x2=(2)2-2=10.故填10.解决这类问题,一定要先观察已知条件和问题的特征,灵活运用所学的计算公式,体现最佳解题思路.乘法公式在进行代数式的有关运算中经常用到,要记住常用的乘法公式:①平方差公式:(a+b)(a-b)=a2-b2;②完全平方公式:(a±b)2=a2±2ab+b2.已知a+b=-3,ab=12,求b+a的值.〔解析〕在化为最简二次根式的过程中,要注意a,b的符号,本题中没明确a,b的符号,但可从a+b=-3,ab=12中分析得到.解:∵a+b=-3,ab=12,∴a<0,b<0.b+a=b·+a·=-2=-2=-4.本题最容易出现的错误就是不考虑a,b的符号,把所求的式子化简,直接代入.【针对训练7】先化简,再求值:÷,其中a=1+,b=1-.〔解析〕本题考查了分式的化简求值,以及二次根式的计算,正确地运用分式的运算法则将分式化简是解题的关键.本题应先将分式按照运算顺序进行化简,再将字母的值代入化简后的式子求值.解:原式=÷=÷=×=-.当a=1+,b=1-时,原式=-=-=-.专题五配方法【专题分析】配方法是初中数学中的一种重要的方法,主要是利用完全平方公式把一个式子写成一个二项式的完全平方加上或减去一个常数的形式,常用来解决最值问题.本章中主要是把被开方数配方,然后应用=|a|化简.小东在学习二次根式后,发现一些含根号的式子可以写成另一个含根号的式子的平方,如3+2=(1+)2,善于思考的小东进行了如下探索:设a+b=(m+n)2(其中a,b,m,n均为正整数),则有:a+b=m2+2mn+2n2,∴a=m2+2n2,b=2mn.这样,小东找到了把部分a+b形式的式子化为平方式的方法.请你仿照小东的方法探索并解决问题:(1)当a,b,m,n均为正整数时,若a+b=(m+n)2,用含m,n的式子分别表示a,b,得a=,b=;(2)利用所探索的结论,找一组正整数a,b,m,n填空:+=(+)2;(3)若a+4=(m+n)2,且a,b,m,n均为正整数,求a的值.〔解析〕(1)首先对所给材料认真阅读,分析探究小东解决问题的方法,然后进行归纳、迁移,从而可以求解.与小东做法基本一致,把右边完全平方式展开,然后左右式子进行对比,用含m,n的代数式表示出a,b.(2)此题可以采用与小东方法类似的解法,但也可以进行逆推,执果索因,即把m,n选定一组正整数,然后去括号,即可求解.这就是填空题的巧做方法.注意本题答案不唯一,只要符合题中正整数要求即可.(3)认真分析此题,与(1)进行对比,不难发现a 的值与(1)中的表示方法一样,而b=4,即4=2mn,所以mn=2,然后根据正整数的特点,进行分类讨论,即可确定出m,n的值,进而得解.解:(1)m2+3n22mn(2)21,12,3,2(答案不唯一)(3)由b=2mn得4=2mn,即mn=2,且m,n均为正整数,则m=1,n=2或m=2,n=1.当m=1,n=2时,a=m2+3n2=12+3×22=13.当m=2,n=1时,a=m2+3n2=22+3×12=7.综上,a的值为13或7.一般地,对于a±2型的根式,可采用观察法进行配方,即找出x,y(x>y>0),使得xy=b,x+y=a,则a±2=(±)2,于是== ±,从而使得到化简.【针对训练8】若x,y为实数,且y=++15,试求-的值.〔解析〕根据y=++15可以求出x,y的值,然后对-中的被开方数进行配方、化简.解:由二次根式的性质,得∴x=,∴y=15,∴x+y>0,x-y<0,xy>0.∴原式= - =·-=,当x=,y=15时,原式= =.对于形如++2或+-2的代数式,都可变为或的形式,当它们作为被开方数进行化简时,要注意x+y和x-y以及xy的符号.【针对训练9】化简.〔解析〕把5拆成3+2,于是将5-2配方,得5-2=()2+()2-2××=(-)2,然后应用=|a|化简.解:=== =|-|=-.专题六类比思想【专题分析】类比思想是初中重要的数学思想,数学中许多定理、公式和法则都是通过类比得到的,在解题过程中寻找问题的线索,往往要借助类比的方法,从而达到引发思路的目的.本章中二次根式的加法与整式加减法、二次根式的混合运算与有理数的混合运算进行类比.计算.(1)+4;(2)-++2.〔解析〕本题类比合并同类项,先将二次根式化成最简二次根式后,若被开方数相同,再进行合并.解:(1)原式=(1+4)=5.(2)原式=3-+2+2=2+4.整式的加减的实质就是合并同类项,而二次根式的加减实质就是合并被开方数相同的最简二次根式(同类二次根式);利用类比的思想可以归纳二次根式的加减的步骤:一化简,二寻找,三合并.【针对训练10】已知a=-,求 - 的值.〔解析〕先化简二次根式,要保证被开方数结果的正确性,这与a-和a+的结果有直接的关系.解:∵a=-,∴=+,∴a+>0,a-=(-)-(+)=-2<0.∴ - = - =a+--a=2a.当a=-时,原式=2×(-)=2-2.有理数的法则、性质、运算律、公式等,在实数范围内仍然适用,二次根式的运算的最后要注意把结果化成最简二次根式,二次根式的乘除运算要与二次根式的加减运算区分,避免互相干扰.化简求值的题,一定要先化简再代入求值,方法要灵活简便,注意完全平方公式的变形应用.专题七整体思想【专题分析】整体思想方法在二次根式的化简与求值问题中有广泛的应用,整体代入、整体运算、整体设元、整体处理等都是整体思想方法在解决数学问题中的具体运用.已知x=-1,y=+1,求+的值.〔解析〕本题可以直接将+通分,进而用xy和x+y表示,再求出具体的xy和x+y的值,进而代入求解即可.解:∵x=-1,y=+1,∴x+y=(-1)+(+1)=2,xy=(-1)(+1)=1.∴+====6.本题如果直接代入计算,则计算量较大,而且容易出错.通过观察已知条件和欲求值的式子,发现它们都可以化简,这样采取变更问题的条件和结论的方法,然后采取整体代入的思想,比较容易求出问题的解.【针对训练11】若-=2,求的值.〔解析〕将已知条件两边平方得出a+的值,并用含a+的代数式表示a2+,最后将a+视为一个整体代入求值即可.解:∵-=2,∴=4,∴a+=6,∴ = ===4.专题八分类讨论思想【专题分析】主要考查对和|a|形式的式子的化简,需要分情况讨论.一般以填空题和选择题的形式出现居多,分值在3分左右.已知|a|=5,=3,且ab>0,则a+b的值为()A.8B.-2C.8或-8D.2或-2〔解析〕∵|a|=5,=3,∴a=±5,b=±3.又∵ab>0,∴a,b同号,即a=-5,b=-3或a=5,b=3.∴a+b=±8.故选C.对于有的数学问题,可能有几种情况,在未具体指明哪种情况时,需要对各种情况分类讨论,保证解答完整准确,做到不重不漏.【针对训练12】若化简|1-x|-的结果为2x-5,则x的取值范围是()A.x为任意实数B.1≤x≤4C.x≥1D.x≤4〔解析〕由题意可知原式=|1-x|-|x-4|=2x-5,由此通过讨论各种情况可知,只有|1-x|=x-1,且|x-4|=4-x时,满足条件,故由绝对值的意义可得x-1≥0,且4-x≥0,所以1≤x≤4,即x的取值范围是1≤x≤4.故选B.对和|a|形式的式子的化简都应分类讨论.本章质量评估(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.要使+有意义,则x应满足()A.≤x≤3B.x≤3且x≠C.<x<3D.<x≤32.下列各式:①,②,③,④ (x>0)中,最简二次根式有()A.1个B.2个C.3个D.4个3.已知a<b,化简的结果是()A.-aB.-aC.aD.a4.(2015·荆门中考)当1<a<2时,代数式+|1-a|的值是()A.-1B.1C.2a-3D.3-2a5.化简÷(-1)的结果是()A.2-1B.2-C.1-D.2+6.化简× +的结果是()A.5B.6C. D.57.已知(a+1-)2+|b-|=0,那么(a-b)2016的值为()A.-1B.1C.31008D.-310088.下列运算中错误的是()A.×=B.2+3=5C.=D.=-9.设=a,=b,用含a,b的式子表示,则下列表示正确的是()A.0.3abB.3abC.0.1ab2D.0.1a2b10.计算(+2)2015×(-2)2016的结果是()A.2-B.2+C.1D.-1二、填空题(每小题4分,共32分)11.若最简二次根式与可以合并,则m=.12.计算÷ ×的值为.13.计算2 -6 +的结果是.14.(2014·德州中考)若y=-2,则(x+y)y=.15.已知a,b为有理数,m,n分别表示5-的整数部分和小数部分,且amn+bn2=1,则2a+b=.16.如图所示,将一个正方形分割成面积分别为S(平方单位)和3S(平方单位)的两个小正方形和两个长方形,那么图中两个长方形的面积和是(平方单位).17.实数a,b在数轴上的对应点如图所示,化简+|a+b|的结果为.18.当x=时,则-的值为.三、解答题(共58分)19.(8分)若最简二次根式与的被开方数相同,求a,b的值.20.(8分)把下列各式化成最简二次根式.(1) .(2)- .21.(10分)计算:(1)+-4 ;(2)(5-6+4)÷.22.(10分)如图所示,已知一块长方形木板的长和宽分别为3 cm和4 cm,现在想利用这块矩形木板裁出面积分别为6 cm2和18 cm2两种规格的正方形木板,能裁出大小正方形木板各几个?请你给出裁割方案,并通过计算说明理由.23.(10分)已知a=(+),b=(-),求a2b-ab2的值.24.(12分)阅读下面的问题:==-1;==-;==2-;….(1)求的值;(2)已知m是正整数,求的值;(3)计算+++…++.【答案与解析】1.D(解析:根据题意得解得<x≤3.故选D.)2.A(解析:因为②=,③=2,④ (x>0)=,所以其中的最简二次根式为①,共1个.故选A.)3.A(解析:先由被开方数-a3b≥0及a<b,判断出a≤0,再化简可得正确答案.=·=-a.故选A.)4.B(解析:∵1<a<2,∴a-2<0,1-a<0,∴+|1-a|=2-a+a-1=1.故选B.)5.D(解析:分子、分母同时乘(+1),则原式===2+.故选D.)6.D(解析:原式=+2=3+2=5.故选D.)7.B(解析:因为(a+1-)2≥0,|b-|≥0,而(a+1-)2+|b-|=0,所以解得所以(a-b)2016=(-1-)2016=1.故选B.)8.D(解析:选项D错误,其正确答案为=-.故选D.)9.A(解析:∵==0.3××,=a,=b,∴=0.3ab.故选A.)10.A(解析:原式=(+2)2015×(-2)2015×(-2)=2015×(-2)=(-1)2015×(-2)=2-.故选A.)11.6(解析:根据最简二次根式可以合并,可得被开方数相同,建立方程可得答案.由已知得6m-3=5m+3,解得m=6.)12.(解析:把除法化为乘法的形式,约分从而得解.原式=× × =.)13.3-2(解析:根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.2 -6 +=2×-6×+2=-2+2=3-2.)14.(解析:根据二次根式的性质得到x的值为4,∴y=-2=-2,∴(x+y)y=(4-2=.)15.2.5(解析:∵2<<3,∴2<5-<3,故m=2,n=5--2=3-.把m=2,n=3-代入amn+bn2=1,得2(3-)a+(3-)2b=1,化简得(6a+16b)-(2a+6b)=1,等式两边相对照,∵结果不含,∴6a+16b=1且2a+6b=0,解得a=1.5,b=-0.5.∴2a+b=3-0.5=2.5.)16.2S(解析:根据题意可知两个小正方形的边长分别是和,由图知长方形的长和宽分别为和,所以两个长方形的面积和为××2=2S.)17.-3b(解析:由题图可知b<a<0,∴a-2b>0,a+b<0.∴+|a+b|=+|a+b|=|a-2b|+|a+b|=a-2b-a-b=-3b.)18.(解析:原式=- ,∵x=,∴=2016,∴x<,∴原式=-+x=x,当x=时,原式=.)19.解:==|b|·.由题意得解得20.解:(1)原式= =×× =9 =3.(2)原式=-× =-.21.解:(1)+-4 =+3-4×=2(+1)+3-2=2+3.(2)(5-6+4)÷=(5×4-6×3+4)÷=(2+4)÷=2+4.22.解:如图所示.∵长方形木板的长和宽分别为3 cm和4 cm,面积为6 cm2的正方形B, 边长为 cm,面积为18 cm2的正方形A,边长为3 cm,∴只能裁出一个A,还能再裁出B,又∵2<4,∴一共能裁出两个B,∴一共能裁出一个面积为18 cm2和两个面积为6 cm2的正方形.23.解:a2b-ab2=ab(a-b),而ab=××(+)(-)=,a-b=(+)-(-)=,∴原式=.24.解:(1)==2-. (2)==-.(3)原式=-1+-+2-+…+-+-=-1=12-1.。

初二数学《二次根式》全章测试含答案

初二数学《二次根式》全章测试含答案

《二次根式》全章检测班级____________姓名_________________成绩_____________一、选择题:(每小题3分,共24分)1.若32-x 是二次根式,则x 应满足的条件是( ) A. 23>x B. 23≥x C. 23<x D. 23≤x 2.下列二次根式中,是最简二次根式的是( ) A .2.0B .x1C .22b a - D .a 43.下列变形中,正确的是( ) A. (23)2=2×3=6 B.2)52(-=-52C.169+=169+ D.)4()9(-⨯-=49⨯4.若a a -=-1)1(2,则a 的取值范围是( ) A .1a >B .1≥aC .1a <D .1≤a5.化简后,与2的被开方数相同的二次根式是( )A.12 B. 18 C.41D. 32 6.实数a 在数轴上的位置如图所示,化简2)2(1-+-a a =( ) A .23a - B. 3- C .1 D .1- 7.下列各式中,一定成立的是( ) A.2)(b a +=a +b B. 22)1(+a =a 2+1C.12-a =1+a ·1-a D.b a =b1ab8.等腰三角形两边分别为32和25,那么这个三角形的周长是( )1- 0 12aA.2534+B.21034+C.2534+或21032+D.21032+ 二、填空题:(每小题3分,共24分) 9.使1-x x有意义的x 的取值范围是_______________ 10.若0442=+-++y y y x ,则xy 的值为________ 11.若0<n ,则化简3227m n =12.在实数范围内分解因式:94-x =_____________________13.当21<x <1时,122+-x x -241x x +-=______________ 14.如果最简二次根式a b b -3和22+-a b 是同类二次根式,则ab =_____________15.若322--+-=x x y ,则y x 的值为__________16.已知b a 、分别是5的整数部分和小数部分,则ba 1-=_____________ 三、解答题:17.计算:(每小题5分,共30分) (1) 3118122++- (2)213675÷⨯(3) 2524(35)36-++(4) (33+22)(23-32)(5) 12112(322)(223)(336)+-+-(6)322327633aa a a a -+18.先化简,再求值:(每小题6分,共12分) (1)(6x y x +33xy y )-(4y xy+36xy ),其中x =32,y =3(2) 已知x 为偶数,且a a a a a a a aa a a 39612-1,3131222-+---+--=--求的值四、解答题:(每小题5分,共10分) 19.已知4,4=-=+ab b a ,求aba b a b +的值20.先观察规律:, (454)51,34341,23231,12121-=+-=--=+-=+再利用这一规律计算下列式子的值:)12002)(200120021 (3)41231121(+++++++++参考答案:1 2 3 4 5 6 7 8 BCDDBCBD910 111210≠≥x x 且-4 m mn 33-)3)(3)(3(2-++x x x13141516232+-x 1 81 5- 17. (1)33524- (2) 10 (3) 465230-++ (4) 636- (5) 30202- (6) 33a a18. (1) 223,--xy (2) 23,11a a +-19. 4,2--ab 20. 2001。

九年级数学二次根式全章

九年级数学二次根式全章

易错难点剖析及注意事项提醒
01
易错点一:忽视被开方数的非负性
02
在解决二次根式问题时,要确保被开方数是非负数,否则 二次根式无意义。
03
易错点二:忽视二次根式的化简
04
在进行二次根式运算时,要先将二次根式化为最简形式, 再进行运算,否则可能导致结果错误。
05
易错点三:忽视运算过程中的符号问题
06
在进行二次根式运算时,要注意符号问题,特别是在进行 加减运算时,要确保同类二次根式的符号一致。
应用场景
适用于含有公因式的二次根式化简。
示例
$sqrt{18a^3b^4c^5}=sqrt{9a^2b^4c^4
times
2ac}=sqrt{9a^2b^4c^4}
times
sqrt{2ac}=3ab^2c^2sqrt{2ac}$
典型例题解析与思路拓展
01
典型例题
$sqrt{75}-sqrt{54}+sqrt{96}-sqrt{108}$
03 二次根式化简技巧与方法
完全平方公式在化简中应用
完全平方公式
01
$(a+b)^2=a^2+2ab+b^2$ 和 $(a-b)^2=a^2-2ab+b^2$
应用场景
02
当二次根式中含有完全平方项时,可以直接应用完全平方公式
进行化简。
示例
03
$sqrt{4+4sqrt{3}+3}=sqrt{(2+sqrt{3})^2}=2+sqrt{3}$
九年级数学二次根式全章
目 录
• 二次根式基本概念与性质 • 二次根式四则运算规则 • 二次根式化简技巧与方法 • 二次根式在生活实际问题中应用 • 复杂二次根式处理和转换策略 • 总结回顾与拓展延伸

《实数和二次根式》全章复习与巩固(提高)知识讲解

《实数和二次根式》全章复习与巩固(提高)知识讲解

实数和二次根式》全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.5.理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.6.熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.7.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.【知识网络】【要点梳理】类型平方根立方根项目被开方数非负数任意实数3a符号表示a性质一个正数有两个平方根,且互为一个正数有一个正的立方根;要点二、无理数与实数有理数和无理数统称为实数. 1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点三、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质(1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2)a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 取何值,2a 意义.(32a a ,再根据绝对值的意义来进行化简. (42a 2()a 的异同2a a 可以取任何实数,而2a 中的a 必须取非负数;2a a ,2)a =a (0a ≥).相同点:被开方数都是非负数,当a 2a 2a .3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.如222,,3,ab x a b +等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如2与8,由于8=22,2与8显然是同类二次根式.要点四、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则逆用法则二次根式的乘法(0,0)a b ab a b ⨯=≥≥积的算术平方根化简公式:(0,0)ab a b a b =⨯≥≥二次根式的除法(0,0)a a a b b b=≥> 商的算术平方根化简公式:(0,0)a aa b b b=≥> 要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd ⋅=.(2)被开方数a b 、一定是非负数(在分母上时只能为正数).如(4)(9)49-⨯-≠-⨯-.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-.【典型例题】类型一、有关方根的问题【高清课堂:389318 实数复习,例1】1、已知31233-+-+-=x x x y ,求y x 2的值.【思路点拨】由被开方数是非负数,分母不为0得出x 的值,从而求出y 值,及y x 2的值. 【答案与解析】 解:由题意得303030x x x ⎧-≥⎪-≥⎨⎪-≠⎩,解得x =-3 31233-+-+-=x x x y =-2∴y x 2=()()23218-⨯-=-.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到y x 2的值. 举一反三: 【变式1】已知322+-+-=x x y ,求x y 的平方根。

第16章《 二次根式》单元复习课件

第16章《 二次根式》单元复习课件

同类二次根式的定义: 几个二次根式化成最简二次 根式以后,如果被开方数相同, 这几个二次根式叫做同类二次 根式.
⑴ 同类二次根式的判断,一般首先需 要把所需判断的二次根式化成最简二次根 式,再观察被开方数是否相同.若相同, 则是同类二次根式,否则不是.
⑵ 几个二次根式是不是同类二次根式, 只与被开方数和根指数有关,而与根号外 的因式或因数无关.
⑶ 只有同类二次根式才可以合并,不 是同类二次根式的不能合并. ⑷ 合并同类二次根式时,将同类二次 根式的系数相加减,根指数与被开方数 (式)保持不变.
二次根式加减运算的一般步骤
⑴ 将每个二次根式化为最简二次根式; ⑵ 找出其中同类二次根式; ⑶ 合并同类二次根式. 1、在运算过程中要注意,根号外的因 式就是这个二次根式的系数,如果系数 是带分数,还要化成假分数. 2、二次根式化为最简二次根式后,被 开方数不同的二次根式不能合并,但是 绝不能丢弃,它们也是结果的一部分.
( )
求下列各式的值:
4 2 ⑴ ( 300)² ⑵ 3 9 ⑶ (- 2.7)² ⑷ (-2 5)²
⑴ 可直接运用性质 1 ,⑵ ⑶ ⑷ 先利用积的乘方性质 (ab)² = a² b²进行 变形,然后再计算.
( )
解: ⑴ ( 300)² =300

( ) ( )
3 4 9
2
=3² ×
4 9
2
1.从形式上看,二次根式必须含有 9 =3 “ ”如: ,等号左边是二 次根式,右边不是二次根式.
a (a≥o)的式子叫做二次根 形如__ 式。在二次根式 a中,字母 a 必须满 a≥0 足___,即被开方数必须是非负数 .
2. 被开方数 a 可以是一个数,也可 以是一个含有字母的式子,但前提是 a≥0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式全章总复习三个概念概念1 二次根式1.下列各式一定是二次根式的是( ) 2.下列式子中为二次根式的是( ) a B .x +1 C .1-x D .x +1 A .8 B .-1 C . 2 D .x(x <0)3.在代数式:①;②;③;④;⑤;⑥中,一定是二次根式的有( )A.5个 B.4个 C.3个 D.2个 4.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 5.已知a 为实数,下列式子一定有意义的是( )A. B. C. D.6.已知x ,y 为实数,且满足1+x -(y -1)1-y =0,那么x 2 016-y 2 017的值是多少?概念2 代数式1.下列式子中属于代数式的有( )①0;②a ;③x +y =2;④x -5;⑤2a ;⑥a 2+1;⑦a ≠1;⑧x ≤3. A .7个 B .6个 C .5个 D .4个2.农民张大伯因病住院,手术费为a 元,其他费用为b 元,由于参加农村合作医疗,手术费报销85%,其他费用报销60%,则张大伯此次住院共报销_________________元(用代数式表示). 概念3 最简二次根式1.二次根式45a ,2a 3,8a ,b ,13(其中a ,b 均大于或等于0)中,是最简二次根式的有_________个。

2.把下列各式化成最简二次根式.(1) 1.25; (2)4a 3b +8a 2b(a ≥0,b ≥0); (3)-n m 2(mn >0); (4)x -y x +y(x ≠y).3.下列二次根式中,哪些是最简二次根式?哪些不是?不是最简二次根式的请说明理由.412-402,8-x 2,22,x 2-4x +4(x>2),-x 12x ,0.75ab ,ab 2(b>0,a>0),9x 2+16y 2,(a +b )2(a -b )(a>b>0),x 3,x 3.二次根式的性质性质1 (a)2=a(a ≥0)1,下列计算正确的是( )A .-(7)2=-7 B .(5)2=25 C .(9)2=±9 D .-⎝⎛⎭⎪⎫-9162=916 2.在实数范围内分解因式:x 4-9=________.3.要使等式(8-x)2=x -8成立,则x =________. 性质2 a 2=a(a ≥0)1.实数a 在数轴上对应点的位置如图所示,则(a -4)2+(a -11)2化简后为( ) A .7 B .-7C .2a -15 D .无法确定 2.若成立,则m 的取值范围是__________3.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4-14c 2-4c +16.4.先化简再求值:当a =5时,求a +1-2a +a 2的值,甲、乙两人的解答如下:甲的解答为:原式=a +(1-a )2=a +(1-a)=1;乙的解答为:原式=a +(1-a )2=a +(a -1)=2a -1=9. 请问谁的解答正确?请说明理由.性质3 积的算术平方根1.化简24的结果是( )A .4 6 B .2 6 C .6 2 D .8 32.能使得(3-a )(a +1)=3-a ·a +1成立的所有整数a 的和是________. 3.若3)3(-⋅=-m m m m ,则m 的取值范围是4.将根号外的移到根号内; .性质4 商的算术平方根1.化简下列二次根式:(1)449; (2)121b516a2(a <0,b >0).性质5。

a 的双重非负性 利用二次根式被开方数的非负性求字母取值范围 1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若 C .4284b a b a = D . 5的平方根是52.若ba是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0,b>0 D .0≥ba3.若5-x 不是二次根式,则x 的取值范围是4.二次根式4122--x x 有意义时的x 的取值范围是 ,式子中x 的取值范围是____________________,当x 满足条件______________时,式子有意义.5.有意义,则点P (a ,b )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.若3)3(-⋅=-m m m m ,则m 的取值范围是②利用二次根式的性质化简二次根式 1. 若x ≥0,那么等于( ) 2.当a ≥1,则=( )A. XB.-xC.-2xD. 2x A.2a -1 B. 1-2a C.-1 D. 13.化简)0(||2<<--y x x y x 的结果是( ) 4.已知a<b ,化简二次根式b a 3-的正确结果是( ) A .x y 2- B .y C .y x -2 D .y - A .ab a -- B .ab a - C .ab a D .ab a -5.已知a<b 化简二次根式b a 3-的正确结果是( )6.把mm 1-根号外的因式移到根号内,得( ) A .ab a --B .ab a -C .ab a D .ab a - A .m B .m - C .m -- D .m -7.下列各式中,一定能成立的是( ) A .22)5.2()5.2(=-B .22)(a a =C .1-x 122=+-x x D .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( )A .022=-y x B .033=+y x C .022=-y x D .0=+y x9.若a ≤1 )A .(a -1.(1.(.(1B aC aD a ---10.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= 11.已知a<2,=-2)2(a . 12.已知3<x<6,则化简的结果是________.13.=--x x1 ;③利用二次根式的性质求代数式的值 1.2.已知1888+-+-=x x y ,求代数式xy y x xyy x y x ---+2的值3.的值4.5.、已知实数a 满足,求a -20082的值.1.2.若20042005a a a -+-=,求22004a -的值 3.已知|x +y -7|+,求x 2+y 2的值.1. 2。

求代数式13432---x x 的最小值3.4.若m =m 的值.(4)利用被开方数相同的最简二次根式的条件求字母的值 1.如果最简根式b -a3b 和2b -a +2是被开方数相同的最简二次根式,那么( )A .a =0,b =2B .a =2,b =0C .a =-1,b =1D .a =1,b =-22.若最简二次根式5a +b 和2a -b 能合并,则代数式-3a2b+(3a +2b)2的值为________.3.如果最简二次根式3a -8与17-2a 在二次根式加减运算中可以合并,求使4a -2x 有意义的x 的取值范围.4.若m,n均为有理数,且3+12+34=m+n3,求(m-n)2+2n的值.考点三。

常见二次根式化简求值的九种技巧估算法1.若将三个数-3,7,11表示在数轴上,则其中被如图所示的墨汁覆盖的数是________.(第1题)公式法2.计算:(5+6)×(52-23).拆项法3.计算:6+43+32(6+3)(3+2).[提示:6+43+32=(6+3)+3(3+2)]换元法4.已知n=2+1,求n+2+n2-4n+2-n2-4+n+2-n2-4n+2+n2-4的值.整体代入法5.已知x=13-22,y=13+22,求xy+yx-4的值.已知x =2-1,y =2+1,求x y +yx的值. 已知x +y =-8,xy =8,求yy x +x xy的值.已知a -b =3+2,b -c =3-2,求2(a 2+b 2+c 2-ab -bc -ac)的值.因式分解法6.计算:2+32+6+10+15.配方法7.若a ,b 为实数,且b =3-5a +5a -3+15,试求b a +ab +2-b a +ab-2的值.辅元法8.已知x ∶y ∶z =1∶2∶3(x>0,y>0,z>0),求x +yx +z +x +2y的值.先判后算法9.已知a +b =-6,ab =5,求b b a+a ab的值.考点4.比较二次根式大小的八种方法平方法1.比较6+11与14+3的大小. 作商法2.比较a +1a +2与a +2a +3的大小.分子有理化法3.比较15-14与14-13的大小. 比较 2 018- 2 017与 2 017- 2 016分母有理化法4.比较12-3与13-2的大小.作差法5.比较19-13与23的大小.倒数法6.已知x =n +3-n +1,y =n +2-n ,试比较x ,y 的大小.特殊值法7.用“<”连接x ,1x,x 2,x(0<x<1).定义法8.比较5-a 与3a -6的大小.考点5运算——二次根式的运算1.计算:(1)(33+32)×(27-42); (2)【中考·临沂】(3+2-1)(3-2+1);(3)3105ab c ÷⎝ ⎛⎭⎪⎫35b 2ac ×⎝ ⎛⎭⎪⎫-215bc a +abc.【同步练习】一、选择题(每小题3分,共30分) 1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是5 2.二次根式13)3(2++m m 的值是( )A .23B .32C .22D .0 3.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y - 4.若ba是二次根式,则a ,b 应满足的条件是( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0,b>0 D .0≥ba5.(2005·湖北武汉)已知a<b ,化简二次根式b a 3-的正确结果是( ) A .ab a -- B .ab a - C .ab a D .ab a - 6.把mm 1-根号外的因式移到根号内,得( )A .mB .m -C .m --D .m - 7.下列各式中,一定能成立的是( )A .22)5.2()5.2(=-B .22)(a a =C .1-x 122=+-x x D .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( ) A .022=-y x B .033=+y x C .022=-y x D .0=+y x9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( ) A .2 B .22 C .55 D .5 10.已知1018222=++x xx x,则x 等于( ) A .4 B .±2 C .2 D .±4二、填空题(每小题3分,共30分)11.若5-x 不是二次根式,则x 的取值范围是 12.(2005·江西)已知a<2,=-2)2(a13.当x= 时,二次根式1+x 取最小值,其最小值为 14.计算:=⨯÷182712 ;=÷-)32274483( 15.若一个正方体的长为cm 62,宽为cm 3,高为cm 2,则它的体积为3cm16.若433+-+-=x x y ,则=+y x17.若3的整数部分是a ,小数部分是b ,则=-b a 3 18.若3)3(-⋅=-m m m m ,则m 的取值范围是19.若=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,13220.已知a ,b ,c 为三角形的三边,则222)()()(a c b a c b c b a -++--+-+= 三、化简(前5题每小题6分,后两题每题7分,共44分) 21.21418122-+- 22.3)154276485(÷+-23.x xx x 3)1246(÷- 24.21)2()12(18---+++25.已知:132-=x ,求12+-x x 的值。

相关文档
最新文档