浙大第四版概率论与数理统计知识点总结
浙江大学概率论与数理统计第4版复习笔记详解
浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。
理学概率论与数理统计浙江大学第四版盛骤概率论部分
例:
✓ ✓ ✓ ✓
抛一枚硬币,观察试验结果; 对某路公交车某停靠站登记下车人数; 对某批电子产品测试其输入电压; 对听课人数进行一次登记;
9
§2 样本空间·随机事件
(一)样本空间
定义:随机试验E的所有结果构成的集合称为E的 样本空间,记为S={e},
例:
➢ ➢
称S中的元素e为基本事件或样本点.
一枚硬币抛一次 S={正面,反面}; 记录一城市一日中发生交通事故次数
概率论与数理统计是研究随机现象 数量规律的一门学科。
1
第一章 概率论的基本概念
• 1.1 随机试验 • 1.2 样本空间 • 1.3 概率和频率 • 1.4 等可能概型(古典概型) • 1.5 条件概率 • 1.6 独立性
第二章 随机变量及其分布
• 2.1 随机变量 • 2.2 离散型随机变量及其分布 • 2.3 随机变量的分布函数 • 2.4 连续型随机变量及其概率密度 • 2.5 随机变量的函数的分布
第十二章 平稳随机过程
• 12.1 平稳随机过程的概念 • 12.2 各态历经性 • 12.3 相关函数的性质 • 12.4 平稳过程的功率谱密度
5
概率论
第一章概率论的基本概念
6
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
7
§1 随机试验
确定性现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次 试验中实际上几乎是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由 怀疑假设的正确性,从而推断接待站不是每天都接待来访者, 即认为其接待时间是有规定的。
概率论与数理统计第一章(浙大第四版)ppt课件
ppt课件
9
例:
概率论
一枚硬币抛一次
记录一城市一日中发生交通事故次数
记录一批产品的寿命x
记录某地一昼夜最高温度x,最低温 度y
ppt课件
10
概率论
S={正面,反面}; S={0,1,2,…}; S={ x|a≤x≤b }
S={(x,y)|T0≤y≤x≤T1};
ppt课件
111
n—总试验次数。称 fn ( A) 为A
在这n次试验中发生的频率。
ppt课件
27
例:
概率论
中国男子国家足球队,“冲出亚洲”
共进行了n次,其中成功了一次,在
这n次试验中“冲出亚洲”这事件发
生的频率为 1 n;
ppt课件
28
概率论
某人一共听了16次“概率统计”课,其 中有12次迟到,记A={听课迟到},则
ppt课件
33
(二) 概率
概率论
定义1:fn ( A) 的稳定值p定义为A的概率,记为P(A)=p
定义2:将概率视为测度,且满足:
1。 P( A) 0
2。 P(S ) 1
3。 A1, A2,...,Ak ,...,Ai Aj (i j),
P( Ai ) P( Ai )
(1)从袋中随机摸一球,记A={ 摸到红 球 },求P(A).
(2)从袋中不放回摸两球,记B={恰是一 红一黄},求P(B).
ppt课件
47
概率论
解:(1)
S={1,2, ,8},A={1,2,3}
P
A
3 8
(2)P(B)
C31C51
概率论与数理统计浙江大学第四版盛骤概率论部分ppt精选课件
1 P(A)1P(A)
P(A)0不能A; P(A)1不能AS;
A AS P(A)P(A)1 P()0
2 若 A B , 则 有 P ( B A ) P ( B ) P ( A ) P ( B ) P ( A )
BA AB P (B )P (A )P (A B )
P ( B ) P ( A ) P ( A B ) P ( B A ) 0P(B)P(A)
例:
向上抛出的物体会掉落到地上 ——确定
明天天气状况
——不确定
买了彩票会中奖 ——不确定
8
•篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
概率统计中研究的对象:随机现象的数量规律
对随机现象的观察、记录、试验统称为随机试验。 它具有以下特性:
3 概 率 的 加 法 公 式 : P ( A B ) P ( A ) P ( B ) P ( A B )
A B A ( B A B ) P ( A B ) P ( A ) P ( B A B ) 又 B A B , 由 2 。 知 P ( B A B ) P ( B ) P ( A B )
✓ A B A B { x |x A 且 x B }
S AB
✓ A 的 逆 事 件 记 为 A , A A A A S , 若 A A B B S , 称 A ,B 互 逆 、 互 斥
S
✓ “和”、“交”关系式
AA
n
n
Ai Ai A1 A2
n
n
An; Ai Ai=A1A2 An;
• 7.1 参数的点估计 • 7.2 估计量的评选标准 • 7.3 区间估计
概率论与数理统计浙大第四版
不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件.
事件的关系和运算 文氏图 ( Venn diagram )
A
随机事件的关系和运算 雷同集合的关系和运算
1. 事件的包含
A B —— A 包含于B
事件 A 发生必 导致事件 B 发生
非负性: A , P( A) 0
归一性: P( ) 1
可列可加性:P
i 1
Ai
P ( Ai )
i 1
其中 A1, A2 , 为两两互斥事件,
概率的性质
P() 0
有限可加性: 设 A1,A2,An 两两互斥
P
n i1
Ai
n i1
P(Ai )
P(A)1P(A) P(A)1
解 P(AB) P(A)P(B)P(AB)
P(AB) P(A) P(B) P(AB)
P(A)P(B)10.3 —— 最小值
最小值在 P( A B) 1 时取得
P( A B) P( A) 0.6 —— 最大值
最大值在 P(AB) P(B) 时取得
§1.4 古典概型
概率的 设 随机试验E 具有下列特点: 古典定义 基本事件的个数有限
(2) nB C31C122C150C55
P( A) 25 91
P(B) 6 91
例2 把标有 1,2,3,4 的 4 个球随机地放入 标有1,2,3,4 的 4 个盒子中,每盒放一球, 求有至少有一个盒子的号码与放入的球 的号码一致的概率。
解 n A44 4!
设 Ai 表示 i 号球入 i 号盒, i = 1,2,3,4
§1.1 随机事件
概率论与数理统计(第4版)浙江大学 盛聚编
对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.
概率论与数理统计浙江大学第四版盛骤概率论部分1-精选
----------与k无关
27
解2:
视哪几次摸到红球为一样本点
, ,,, 12 k n
总样本点数为 C
a n
,每点出现的概率相等,而其中有 C
a 1 n 1
个
样本点使 A k 发生, P(Ak)Cna 11/Cnaaa b
解3:
原 来
将第k次摸到的球号作为一样本点:
4040
2048
12000
6019
24000
12019
fn(H) 0.5181 0.5069 0.5016 0.5005
18
** 频率的性质:
1。 0fn(A)1
2。 fn(S)1
k
k
3。若 A1,A2,… ,Ak两 两 互 不 相 容 , 则fn( Ai) fn(Ai)
i1
i1
且 f n ( A ) 随n的增大渐趋稳定,记稳定值为p.
试验 序号
1 2 3 4 5 6 7 8 9 10
n =5
nH fn(H)
2
0.4
3
0.6
1
0.2
5
1.0
1
0.2
2
0.4
4
0.8
2
0.4
3
0.6
3
0.6
表1
n =50
nH fn(H)
22
0.44
25
0.50
21
0.42
25
0.50
24
0.48
21
0.42
18
0.36
24
0.48
27
0.54
31
0.62
概率。 解:将5为员工看成5个不同的球,
(完整word版)(浙大第四版)概率论与数理统计知识点总结详解
(7)概率 的公理化 定义
Ai Ai
德摩根率: i1
i1
AB AB,AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P(A),若满足下列三个条件:
件下,事件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A) 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
An 1) 。 ①两个事件的独立性
设事件 A 、B 满足 P(AB) P(A)P(B) ,则称事件 A 、B 是相互独 立的。
若事件 A 、 B 相互独立,且 P(A) 0 ,则有
A-B,也可表示为 A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
1
概率论与数理统计 公式(全)
知识点总结
A、B 同时发生:A B,或者 AB。A B=Ø,则表示 A 与 B 不可能同
时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不 相容的。
-A 称为事件 A 的逆事件,或称 A 的对立事件,记为 A 。它表示
1
概率论与数理统计 公式(全)
知识点总结
当 A=Ω时,P( B )=1- P(B)
《概率论与数理统计》知识点整理
《概率论与数理统计》知识点整理概率论与数理统计是数学中的一个重要分支,它研究随机现象发生的规律以及对这些规律的推断和决策问题。
在现代科学、金融、医学、工程等领域中都有广泛的应用。
下面是《概率论与数理统计》的一些重要知识点:一、概率论:1.概率的基本概念:随机试验、样本空间、事件、概率公理化定义等。
2.条件概率与概率的乘法定理:条件概率的定义、条件概率的乘法定理、独立事件的定义与性质等。
3.全概率公式与贝叶斯公式:全概率公式的推导与应用、贝叶斯公式的推导与应用等。
4.随机变量与概率分布:随机变量的定义与分类、概率分布的基本性质、离散型随机变量与连续型随机变量的概率分布等。
5.两随机变量函数的概率分布:随机变量的函数、数学期望的定义与性质、方差的定义与性质等。
6.多维随机变量及其分布:二维随机变量的概率分布、联合分布函数与边缘分布、条件分布等。
二、数理统计:1.统计数据的描述:数据的集中趋势度量(均值、中位数、众数)、数据的离散程度度量(极差、方差、标准差)、数据的分布形态度量(偏度、峰度)等。
2.参数估计:点估计的概念与方法、矩估计法、极大似然估计法、最小二乘估计法等。
3.假设检验:假设检验的基本概念、显著性水平与拒绝域、假设检验的步骤、单侧检验与双侧检验等。
4.统计分布:正态分布的性质与应用、t分布与χ²分布的概念与性质、F分布的概念与性质等。
5.方差分析与回归分析:方差分析的基本原理与应用、单因素方差分析、回归分析的基本原理与应用、简单线性回归分析等。
三、随机过程:1.随机过程的基本概念与性质:随机过程的定义、状态与状态转移概率、齐次性与非齐次性等。
2.马尔可夫链:马尔可夫链的定义与性质、状态空间的分类、平稳分布与极限等。
3.随机过程的描述:概率密度函数、概率生成函数、随机过程的矩、协方差函数等。
4.随机过程的分类:齐次与非齐次、连续与间断、宽离散与窄离散等。
(完整word版)(浙大第四版)概率论与数理统计知识点总结
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
并且同时满足 P(ABC)=P(A)P(B)P(C)
那么 A、B、C 相互独立.
对于 n 个事件类似。
(15)全概 公式
设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n),
k)
CMk
•
ห้องสมุดไป่ตู้
C
nk N M
,
k
0,1,2, l
C
n N
l min(M , n)
随机变量 X 服从参数为 n,N,M 的超几何分布,记为
H(n,N,M)。
几何分布 P( X k) qk1 p, k 1,2,3, ,其中 p≥0,q=1-p.
随机变量 X 服从参数为 p 的几何分布,记为 G(p)。
1
均匀分布
(完整 word 版)(浙大第四版)概率论与数理统计知识点总结
设随机变量 X 的值只落在[a,b]内,其密度函数 f (x) 在[a,b]上为常数 1 ,即
ba
f
(x)
b
1
a
,
0,
a≤x≤b
其他,
则称随机变量 X 在[a,b]上服从均匀分布,记为 X~U(a,b). 分布函数为
x
F (x) f (x)dx
变量的
关系
(4)分 布函数
设 X 为随机变量, x 是任意实数,则函数
F(x) P(X x)
称为随机变量 X 的分布函数,本质上是一个累积函数。
P(a X b) F(b) F(a) 可以得到 X 落入区间 (a,b] 的概率。
概率论与数理统计(浙江大学_第四版--盛骤)——概率论部分(1)
第三章 多维随机变量及其分布
• 3.1 二维随机变量
• 3.2 边缘分布
• 3.3 条件分布
3
• 3.4 相互独立的随机变量
第四章
随机变量的数字特征
– 12.1 平稳随机过程的概念 – 12.2 各态历经性 – 12.3 相关函数的性质 – 12.4 平稳过程的功率谱密度
6
概率论
第一章概率论的基本概念
7
第一章 概率论的基本概念
关键词: 样本空间 随机事件 频率和概率 条件概率 事件的独立性
8
§1 随机试验
确定性现象
自然界与社会生活中的两类现象
解:假设接待站的接待时间没有规定,而各来访者在一周 的任一天中去接待站是等可能的,那么,12次接待来 访者都是在周二、周四的概率为 212/712 =0.000 000 3.
人们在长期的实践中总结得到“概率很小的事件在一次试验中实际上几乎 是不发生的”(称之为实际推断原理)。 现在概率很小的事件在一次试验中竟然发生了,因此有理由怀疑假设的正确性, 从而推断接待站不是每天都接待来访者,即认为其接待时间是有规定的。
11
(二) 随机事件
一般我们称S的子集A为E的随机事件A,当且仅当源自所包含的一个样本点发生称事件A发 生。
例:观察89路公交车浙大站候车人数,S={0,1,2,…};
记 A={至少有10人候车}={10,11,12,…}S, A为随机事件,A可能发生,也可能不发生。
如果将S亦视作事件,则每次试验S总是发生, 故又称S为必然事件。 为方便起见,记Φ为不可能事件,Φ不包含 任何样本点。
浙江大学概率论与数理统计盛骤第四版数理统计部分
为什么?
答:只有(4)不是统计量。
17
随机变量独立性的两个定理
定理6.1:设X1, X 2 , , X n是相互独立的n个随机变量,
又设y gi x1, , xni , x1, , xni Rni , i 1, 2, k是k个连续函数,
且有n1 n2 nk n, 则k个随机变量:
[说明]:后面提到的样本均指简单随机样本,由概率论知,若总体X 具有概率密度f(x),
则样本(X1,X2,…,Xn)具有联合密度函数:
n
fn x1, x2, xn f xi
i 1
16
统计量:样本的不含任何未知参数的函数。
常用统计量:设(X1,X2,…,Xn)为取自总体X的样本
1.
样本均值
n
Yn x
lim P i1 n
n
x
x
证明略。
1
t2
e 2 dt
2
此定理表明,当n充分大时,Yn近似服从N 0,1.
n
即: X(i 近似)~N (n, n 2 ), i=1
从而,P(a
n i 1
Xi
b)
(b n ) ( a n ).
n
n
答案:N (, 2 )
n
9
定理5.5 德莫佛--拉普拉斯定理
解:设机器出故障的台数为X,则X b400,0.02,分别用三种方法计算:
1. 用二项分布计算
P X 2 1 P X 0 P X 1 1 0.98400 4000.020.98399 0.9972
2. 用泊松分布近似计算
np 400 0.02 8 查表得
P X 2 1 P X 0 P X 1 1 0.000335 0.002684 0.9969
概率论与数理统计浙大四版 第一章 第一章2讲(1)
• 但是,如何衡量可能性的大小,如何定义 可能性(概率)呢?下面我们首先从频率 入手研究概率的定义。
一、频率的定义与性质
1. 定义
在相同的条,进 件行 下n了次试验 ,在这n 次 试 验, 事 中件A发 生 的 次 nA数 称 为 事A件 发 生的频.比数值nA 称为事A件 发生的频 ,并率 记
二、概率的定义与性质
1. 概率的定义 设E是随机,S试 是验 它的样.对 本于 空 E 间
的每一A 事 赋件 予一个 ,记实为 P数 (A),称为事 件A的概,如 率果集合 P(函 )满数 足下列 : 条件
(1非 ) 负 : 对 性于每A 一 ,有 P 个 (A )事 0; 件 (2规 ) 范 : 对 性 于必 S,有 然 P (S) 事 1; 件 (3可 ) 列可:设 加 A1,性 A2, 是两两互不相 事,件 即对i于 j,AiAj ,i, j1,2, ,则有
• 而在这之前我们已经得到了一个2x2方格的遍历 方法,我们正好可以用它。把两个2x2的格子原 封不动地放在上面两排,右旋90度放在左下,左 旋90度放在右下,然后再补三条线段把它们连起 来。现在我们得到了一种从左下到右下遍历4x4
方格的方法,而这又可以用于更大规模的图形中。 用刚才的方法把四个4x4的方格放到8x8的方格中, 我们就得到了一条经过所有64个小方格的曲线。
P ( A 1 A 2 ) P ( A 1 ) P ( A 2 )
概率的可列可加性
2. 性质 (1)P ( )0.
(2)若 A 1,A 2, ,A n是两两互不 ,则相 有 P ( A 1 A 2 A n ) P ( A 1 ) P ( A 2 ) P ( A n ). 概率的有限可加性
试验 n5
n50 n500
浙江大学概率论与数理统计第4版复习笔记详解
浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。
概率论与数理统计知识点总结
概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
概率论与数理统计浙大四版 第一章 第一章3讲
例5 假设每人的生日在一年 365 天中的任一天 是等可能的 , 即都等于 1/365 ,求 64 个人中至少 有2人生日相同的概率. 解 64 个人生日各不相同的概率为
365 364 ( 365 64 1) p1 . 64 365
故64 个人中至少有2人生日相同的概率为
例如,若一个男人有三顶帽子和两 件背心,问他可以有多少种打扮?
可以有 3 2 种打扮
加法原理和乘法原理是两个很重要 计数原理,它们不但可以直接解决不少 具体问题,同时也是推导下面常用排列 组合公式的基础 .
三、排列、组合的几个简单公式 排列和组合的区别:
顺序不同是 不同的排列 而组合不管 顺序
3把不同的钥匙的6种排列
C 3
2 3
从3个元素取出2个 的排列总数有6种
从3个元素取出2个 的组合总数有3种、排列: 从n个不同元素取 k个
(1k n)的不同排列总数为:
n! p n( n 1)( n 2)( n k 1) ( n k )!
定义2 设试验E是古典概型, 其样本空间S由n 个样本点组成 , 事件A由k个样本点组成 . 则定 义事件A的概率为: A包含的样本点数 P(A)=k/n= S中的样本点总数
称此概率为古典概率(Classical Probabilities). 这种确定概率的方法称为古典方法 . 这样就把求概率问题转化为计数问题 . 排列组合是计算古典概率的重要工具 .
次品
正品
M件 次品
N-M件
正品
这是一种无放回抽样.
……
例4 n双相异的鞋共2n只,随机地分成n堆, 每堆2只 . 问:“各堆都自成一双鞋”(事件A)的 概率是多少?
浙大四版《概率论与数理统计》第一章内容提要及课后习题解答
第一章概率论的基本概念内容提要考试要求1. 了解样本空间的概念, 理解随机事件的概念, 掌握事件的关系与运算.2. 理解概率、条件概率的概念, 掌握概率的基本性质, 会计算古典型概率和几何型概率, 掌握概率的加法公式、减法公式、乘法公式、全概率公式, 以及贝叶斯公式.3. 理解事件独立性的概念, 掌握用事件独立性进行概率计算;理解独立重复试验的概率, 掌握计算有关事件概率的方法.一、古典概型与几何概型1.随机试验,样本空间与事件.2.古典概型:设样本空间为一个有限集,且每个样本点的出现具有等可能性,则3.几何概型:设为欧氏空间中的一个有界区域, 样本点的出现具有等可能性,则二事件的关系与概率的性质1. 事件之间的关系与运算律(与集合对应), 其中特别重要的关系有:(1)A与B互斥(互不相容)(2)A与B互逆(对立事件),(3)A与B相互独立P(AB)=P(A)P(B).P(B|A)=P(B)(P(A)>0).(0<P(A)<1).P(B|A)=P(B|)(0 < P(A)< 1 )注: 若(0<P(B)<1),则独立P(A|B)=P(A)(P(B)>0)(0<P(B)<1).P(A|B)=P(A|)(0<P(B)<1)P(|B)=P(|)(0<P(B)<1)(4)A, B, C两两独立⇔P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(AC)=P(A)P(C).(5)A, B, C相互独立⇔P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(AC)=P(A)P(C);P(ABC)=P(A)P(B)P(C).2. 重要公式(1)(2)(3)(4)若A1, A2,…,A n两两互斥, 则.(5)若A, …, A相互独立, 则..(6) 条件概率公式: (P (A )>0)三、乘法公式,全概率公式,Bayes 公式与二项概率公式1. 乘法公式:2. 全概率公式:3.Bayes 公式:11(|)()(|),,,.(|)()j j j i j i i i ii P B A P A P A B A i j A P B A P A ∞∞====Φ≠=Ω∑ A 4.二项概率公式:,课后习题解答随机试验与随机事件1. 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n 表小班人数(2)生产产品直到得到10件正品,记录生产产品的总件数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙大第四版概率论与数理统计知识点总结
( 1 2) 条 件概率
( 13) 乘 法公式
定义 设A、B 是两个事件,且P(A)>0,则称 P( AB) 为事件 A 发生 P( A)
条件下,事件 B 发生的条件概率,记为 P(B / A) P( AB) 。 P( A)
P(A)= (1 ) (2 ) (m ) = P(1) P(2 ) P(m )
m n
A所包含的基本事件数 基本事件总数
( 9) 几 何 概型
若随机试验的结果为无限不可数并且每个结果出现的可能性均匀, 同时样本空间中的每一个基本事件可以使用一个有界区域来描述, 则称此随机试验为几何概型。对任一事件 A,
必然事件 和不可能事件 Ø 与任何事件都相互独立。 Ø 与任何事件都互斥。 ②多个事件的独立性 设 ABC 是三个事件,如果满足两两独立的条件, P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A) 并且同时满足 P(ABC)=P(A)P(B)P(C) 那么A、B、C相互独立。 对于n个事件类似。 设事件 B1, B2,, Bn 满足 1° B1, B2,, Bn 两两互不相容, P(Bi) 0(i 1,2,, n) ,
(5)基 本事件、 样本空间 和事件
( 6) 事 件 的关系与 运算
加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方 法可由 n 种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个 步骤可由 n 种方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果 不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称 这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事 件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。
条件概率是概率的一种,所有概率的性质都适合于条件概率。 例如 P(Ω/B)=1 P( B /A)=1-P(B/A) 乘法公式: P(AB) P(A)P(B / A) 更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 …
1° 0≤P(A)≤1,
2° P(Ω) =1
3° 对于两两互不相容的事件 A1, A2 ,…有
P Ai P
则称 P(A)为事件 A 的概率。
(8) 古 典 概型
1° 1, 2 n ,
2°
P(1 )
P(2 )
P( n
)
1 n
。
设任一事件 A ,它是由1, 2 m 组成的,则有
-B,也可表示为A-AB 或者 AB ,它表示 A 发生而 B 不发生的事件。
浙大第四版概率论与数理统计知识点总结
A、B同时发生:A B,或者AB。A B=Ø,则表示 A 与B不可
能同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互 不相容的。
-A称为事件A的逆事件,或称 A 的对立事件,记为 A 。它表示
A不发生的事件。互斥未必对立。 ②运算:
结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C 分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)
(7)概率 的公理化 定义
Ai Ai
德摩根率: i1
i1
AB AB,AB AB
设 为样本空间, A 为事件,对每一个事件 A 都有一个实数 P (A),若满足下列三个条件:
An 1) 。 ①两个事件的独立性
设事件 A 、 B 满足 P(AB) P(A)P(B) ,则称事件 A 、 B 是相互独 立的。
若事件 A 、 B 相互独立,且 P(A) 0 ,则有
P(B | A) P( AB) P( A)P(B) P(B)
P( A)
P( A)
( 1 4) 独 立性
若事件 A 、 B 相互独立,则可得到 A 与 B 、 A 与 B 、 A 与 B 也都 相互独立。
这样一组事件中的每一个事件称为基本事件,用 来表示。
基本事件的全体,称为试验的样本空间,用 表示。
一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大
写字母 A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø 为不可能事件。 不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事 件;同理,必然事件(Ω)的概率为 1,而概率为 1 的事件也不一定 是必然事件。 ①关系:
如果事件 A 的组成部分也是事件 B 的组成部分,(A 发生必有事件 B 发生): A B
如果同时有 A B , B A ,则称事件A与事件 B 等价,或称A等于 B:A=B。
A、B中至少有一个发生的事件:A B,或者 A+B。
属于 A 而不属于B的部分所构成的事件,称为 A 与 B 的差,记为A
P( A) L( A) 。其中L为几何度量(长度、面积、体积)。 L()
( 10 ) 加 法公式
( 11) 减 法公式
P(A+B)=P(A)+P(B)-P(AB) 当 P(AB)=0 时,P(A+B)=P(A)+P(B) P(A-B)=P(A)-P(AB) 当 B A 时,P(A-B)=P(A)-P(B)
浙大第四版概率论与数理统计知识点总结
第1章 随机事件及其概率
(1)排列 组合公式
Pmn
m! (m n)!
从 m 个人中挑出 n 个人进行排列的可能数
Cmn
m! n!(m n)!
从 m 个人中挑出 n 个人进行组合的可能数
(2) 加 法 和乘法原 理
( 3) 一 些 常见排列 ( 4) 随 机 试验和随 机事件