详解开关电源的三大基础拓扑
DC-DC电源拓扑及其工作模式讲解
DC-DC电源拓扑及其工作模式讲解一、DC-DC电源基本拓扑分类:开关电源的三种基本拓扑结构有Buck、Boost、Buck-boost(反极性Boost)。
如果电感连接到地,就构成了升降压变换器,如果电感连接到输入端,就构成了升压变换器。
如果电感连接到输出端,就构成了降压变换器。
基本拓扑图如下:1.Buck2.Boost3.Buck-Boost二、DC-DC复杂拓扑结构1.反激隔离电源(FlyBack)另外有些隔离电源拓扑就是通过基本拓扑增加变压器或者变化得到的,例如反激隔离电源(FlyBack)。
2.Buck+Boost拓扑本质是用一个降压“加上”一个升压,来实现升降压。
SEPIC拓扑:集成了Boost和Flyback拓扑结构3.Cuk、Sepic、Zeta拓扑通过基本拓扑直接组合,形成了三个有实用价值的拓扑结构:Cuk、Sepic、Zeta。
Cuk的本质是Boost变换器和Buck变换器串联,Sepic的本质是Boost和Buck-Boost串联,Zeta可以看成Buck和Buck-Boost串联。
但是里面有些细节按照电流的方向在演进的过程中调整了二极管的方向,两极串联拓扑节省了复用的器件。
通过这样串联和演进,产生了新的三个电源拓扑。
同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑。
4.四开关Buck-Boost拓扑同时,如果我们把同步Buck拓扑串联同步Boost可以形成四开关Buck-Boost拓扑5.反激、正激、推挽拓扑的演进利用变压器代替电感,可以把Boost演进为一个新拓扑FlyBack即反激变换器(反激的公式来看又是很像Buck-Boost,这里变压器不同于电感,也有说法会说反激是Buck-Boost变过来的)。
可以把Buck电路的开关通过一个变压器进行能量传递,就形成正激变换器。
将两个正激变换器进行并联,可以形成推挽拓扑。
正激的变压器,是直接输送能量过去,而不是像反激变压器那样传递能量。
开关电源拓扑结构。
D1
NU o NU o Ui
N是变压器的变压比
Uo
Up Ni
iL
iL1 N
Hale Waihona Puke I L max N
2Io N
2U o NR
Ui D1Ts NL
i L1
Ui D1Ts L
L Ui D1Ts R 2U o
Flyback变换器的优缺点比较
优点: 1、电路简单,能高效提供多路直流输出,因此适合多组输 出的要求,并可通过调节占空比D1的大小升压或降压。 2、输出功率为20~100w,可以同时输出不同的电压且有较 好的电压调整率。不需接输出滤波电感,使反激变换器成本 降低,体积减小。 缺点: 1、输出的纹波电压较大,外特性差,负载调整精度不高, 因此输出功率受到限制,通常应用于150W 以下。适用于相对 固定的负载。 2、与其他隔离变换器相比效率较低。
K由接通突然转为关断瞬间,流过变压器初级线 圈的电流i1突然为0,由于磁通不能突变,因此, 在K关断的Toff期间,变压器铁心中的磁通主要由 N2线圈回路中的电流来维持,N2中产生反激电流 ,流过D向电容C和负载R供电。
开关管导通 时等效电路
开关管关断 时等效电路
Buck-Boost拓扑结构简介
反激式变压器开关电源的工作情况同BUCK-BOOST拓扑极为相似。
另两种电感电流模式的介绍
CCM模式 D1+D2=1
DCM模式 D1+D2<1
Uo D1 Ui (D1 D2 )
二、Boost拓扑结构——升压式变换电路(非隔离)
Boost变换器:也称升压式变换器,是一种输出电压高 于输入电压的单管不隔离直流变换器。 该稳压电路元器件与前面讲的Buck变换电路一样,只是 摆放位置不同,由此导致其功能也不同。
常见的开关电源拓扑结构
常见的开关电源拓扑结构本文主要讲述了常见的开关电源拓扑结构特点和优缺点对比。
常见的拓扑结构,包括Buck降压、Boost升压、Buck-Boost降压-升压、Flyback反激、Forward正激、Two-Transistor Forward双晶体管正激等。
上图是常见的基本拓扑结构。
基本的脉冲宽度调制波形这些拓扑结构都与开关式电路有关。
基本的脉冲宽度调制波形定义如下:常见的基本拓扑结构1 Buck降压•把输入降至一个较低的电压。
•可能是最简单的电路。
•电感/电容滤波器滤平开关后的方波。
•输出总是小于或等于输入。
•输入电流不连续(斩波)。
•输出电流平滑。
2 Boost升压•把输入升至一个较高的电压。
•与降压一样,但重新安排了电感、开关和二极管。
•输出总是比大于或等于输入(忽略二极管的正向压降)。
•输入电流平滑。
•输出电流不连续(斩波)。
3 Buck-Boost降压-升压•电感、开关和二极管的另一种安排方法。
•结合了降压和升压电路的缺点。
•输入电流不连续(斩波)。
•输出电流也不连续(斩波)。
•输出总是与输入反向(注意电容的极性),但是幅度可以小于或大于输入。
•“反激”变换器实际是降压-升压电路隔离(变压器耦合)形式。
4 Flyback反激•如降压-升压电路一样工作,但是电感有两个绕组,而且同时作为变压器和电感。
•输出可以为正或为负,由线圈和二极管的极性决定。
•输出电压可以大于或小于输入电压,由变压器的匝数比决定。
•这是隔离拓扑结构中最简单的。
•增加次级绕组和电路可以得到多个输出。
5 Forward正激•降压电路的变压器耦合形式。
•不连续的输入电流,平滑的输出电流。
•因为采用变压器,输出可以大于或小于输入,可以是任何极性。
•增加次级绕组和电路可以获得多个输出。
•在每个开关周期中必须对变压器磁芯去磁。
常用的做法是增加一个与初级绕组匝数相同的绕组。
•在开关接通阶段存储在初级电感中的能量,在开关断开阶段通过另外的绕组和二极管释放。
开关电源的基本拓扑结构
总结词
半桥型拓扑结构通过两个开关管和电容器的组合,实现输出电压的调节。
详细描述
在半桥型拓扑结构中,两个开关管交替导通和关断,通过调节占空比来调节输出电压。 这种拓扑结构适用于需要较高电压、大电流输出的应用场景,如逆变器和电机驱动等。
全桥型(Full-Bridge)
总结词
全桥型拓扑结构通过四个开关管的组合 ,实现输出电压的调节。
降压-升压型开关电源工作原理
总结词
根据输入电压和输出电压的大小关系,自动切换降压 或升压模式。
详细描述
在降压-升压型开关电源中,根据输入电压和输出电压 的大小关系,自动切换降压或升压模式。当输入电压 高于输出电压时,自动进入降压模式;当输入电压低 于输出电压时,自动进入升压模式。
反相开关型开关电源工作原理
VS
详细描述
在全桥型拓扑结构中,四个开关管两两交 替导通和关断,通过调节占空比来调节输 出电压。这种拓扑结构适用于需要极高电 压、大电流输出的应用场景,如高压直流 输电等。
03 开关电源的工作原理
降压型开关电源工作原理
总结词
通过控制开关管开通和关断的时间,调节输 出电压的大小。
详细描述
在降压型开关电源中,输入电压首先经过开 关管,通过控制开关管的开通和关断时间来 调节输出电压的大小。当开关管开通时,输 入电压加在负载上,当开关管关断时,输入 电压与负载断开,输出电压因此得到调节。
升压型开关电源工作原理
要点一
总结词
通过控制开关管开通和关断的时间,实现输出电压高于输 入电压的功能。
要点二
详细描述
在升压型开关电源中,当开关管开通时,输入电压同时加 在负载和储能元件上,当开关管关断时,储能元件释放能 量,使输出电压高于输入电压。通过控制开关管的开通和 关断时间,实现输出电压的调节。
开关电源拓扑结构
开关电源拓扑结构回顾Lloyd H·Dixon Jr前言本文回顾了在开关电源中常用的三种基本电路系列即降压变换电路、升压变换电路和反激(或升降压)电路的特性,这三种电路均可以工作于电感断流或续流模式下。
工作方式的选择对整体电路特性有很大的影响。
所使用的控制方式也能有助于减少与拓扑和工作模式相关的问题。
三种以恒频率工作的控制方法包括:直接占空比控制、电压前馈、和电流模式(双环)控制。
本文还论述了三个基本电路的一些扩展,以及每种拓扑、工作模式、组合控制方法的相对优点。
一、三种基本拓扑结构:三种基本的拓扑结构降压式,升压式,反激式如图1所示。
串联式变换器(CUK)是反激式拓扑的倒置(不宜翻译为逆变,因其意思为DC-AC的变换),不作论述。
这三种不同的开关电路使用了三种相同的元件:电感,晶体管(晶体管包括三极管及MOSFET)和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。
理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。
有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。
三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个确定的关系。
例如:降压调整器的功能是使输出电压V0小于输入电压Vin,并和它Vin 有相同的极性。
升压电路的作用是使V大于Vin,并且有相同的极性。
反激拓扑电路的作用是使V0既可大于也可小于Vin,但是两者极性相反。
二、断流工作模式:在电感电流断续方式下,或者说“断流模式”下,降压、升压和反激电路的动作方式是相似的,电感电流在每个开关周期的最后部分期间为零(因此不连续)。
在每个周期的开始部分,感应电流从零增加,从输入端得到储存能量。
在周期的第二部分,所有储存的能量通过负载泄放,从输入端汲取能量到输出端。
开关电源三种拓扑的产生
开关电源三种拓扑的产生基本概念拓扑拓扑,即电路的组成结构,如buck,boost,正激,反激,全桥,半桥等。
其他电源电路都是以此发展而来。
而最基本的电源拓扑只有3种:buck、boost和buck-boost电路。
电源电路的输入是输入电压Vin或网压,输出则分输出电压和输出电流。
线性调整器传统的电压调整电路如线性调整器,是通过串联一个晶体管来实现分压的功能,使晶体管工作在线性区,以输出电压为反馈,改变晶体管的阻值,起可变电阻的作用,承受部分电压。
承受的电压只能以热能形式消耗,因此效率非常低。
(好处是没有噪声,没有电磁干扰(EMI))用改变开关时间来提高效率要提高效率,就不能用等效电阻耗能的方式(在工作条件不变的情况下,提高效率能够减小输入电流。
这是采用开关方式的重要优点之一。
)采用开关方式(半导体部件工作在开关区)可以提高效率,且配合电容*电感可更有效地利用能量。
常用的三种半导体元件BJT(双极型晶体管):电流控制型器件,适用于大电流工作。
MOSFET(场效应晶体管):电压控制型器件,速度快,适用于高频,单负载大时,导通损耗就大(导通压降与电流成正比)IGBT:适用于较低频率,大电流装置在开关情况下实现连续的能量供给•引入储能元件,想到使用电容以维持负载电压稳定。
•电容会有浪涌电流(电容上电压不能突变,但电流可不一定),导致噪声和EMI。
•用一个电阻串联以抑制浪涌电流(储桶式调整器),但电阻会提高能量的损耗(R*I^2)•采用电感限制电流√PS:电路中的开关元件不停地开/关,当开关断开时,电感很容易造成很高的电压,若此时没有回路能够释放电能,在开关处很容易产生高压电弧(开关触点距离越大,电压越高),最终,电感储能以热能和电火花形式消耗。
因此,采用二极管续流的方式,产生一个电流回路。
开关频率与性能的关系降低开关频率:提高效率(其他损耗减小),减小EMI升高开关频率:减小电源体积,减小噪声开关变换器的3种工作模式-连续导通模式:CCM-临界导通模式:BCM(临界模式属于CCM和DCM的极限情况)-断续导通模式:DCM伏秒平衡{重要}稳定状态下:ΔIon=ΔIoff即:Von*Ton=Voff*Toff [Von、Voff为电感两端电压]在这种情况下,电感能够成功复位。
开关电源的基本拓扑结构
反相型(Inverting)
总结词
反相型开关电源是输出电压与输入电压相位 相反的电源转换器。
详细描述
反相型开关电源主要由开关管、储能元件 (电容器)和二极管组成。当开关管导通时, 输入电压加在电容器上,电能转化为电场能 储存;当开关管断开时,电容器放电,输出 电压为输入电压减去二极管的压降,从而达 到改变输出电压相位的目的。
输出滤波器通常由电容、电感和电阻组成,能够有效地抑制纹波电压和电磁干扰。
输出滤波器的性能对电源的输出电压和电流的稳定性和精度具有重要影响。
控制电路
控制电路:用于控制开关管的 通断时间,实现电源的稳压或 稳流输出。
控制电路通常由比较器、运放、 逻辑门电路等组成,能够根据 输出电压或电流的变化调整开 关管的通断时间。
正激式(Forward)
总结词
正激式开关电源是输出电压与输入电压相位相同的电源转换器。
详细描述
正激式开关电源主要由开关管、储能元件(电感器)和变压器组成。当开关管导通时, 输入电压加在电感器上,电能转化为磁能储存;当开关管断开时,变压器原边产生反向 电动势,输出电压为输入电压减去二极管的压降,从而达到提高输出电压幅度的目的。
反激式(Flyback)
要点一
总结词
反激式开关电源是输出电压与输入电压相位相反的电源转 换器。
要点二
详细描述
反激式开关电源主要由开关管、储能元件(变压器原边) 和二极管组成。当开关管导通时,输入电压加在变压器原 边,电能转化为磁能储存;当开关管断开时,变压器副边 产生反向电动势,输出电压为输入电压减去二极管的压降 ,从而达到改变输出电压相位的目的。
升压型(Boost)
总结词
升压型开关电源是输出电压大于输入电压的电源转换器。
开关电源三大基础拓扑
开关电源三大基础拓扑开关电源三大基础拓扑为:Buck、Boost、Buck-Boost,大部分开关电源都是采用这几种基础拓扑或者其对应的隔离方式。
拓扑的分类取决于电感的连接方式。
当我们在电路中设置合适的参考地后,可以得到三个端子:输入端、输出端、地。
若电感一端与地相连,得到buck-boost电路;若与输入端相连,得到boost电路;若与输出端相连,得到buck电路。
三种电路拓扑的小结Buck电路:占空比D≈VO/VIN ,输出电流IO=电感电流IL,电感电流IL额定值≥1.2IL,正输入负输出/负输入正输出;Boost电路:占空比D≈(VO-VIN)/VO,输出电流IO=电感电流IL(1-D),电感电流IL额定值≥1.2IL,提高输入的值,不改变输入极性;Buck-boost电路:占空比D≈VO/(VO+VIN),输出电流IO=电感电流IL(1-D),电感电流IL额定值≥1.2IL,降低输入的值,不改变输入极性。
各类拓扑下的器件选用一、电感的设计对buck拓扑,一般在输入电压最大值Vimax(即占空比最小值Dmin)下设计电感。
将电流纹波率r设置为0.3~0.4。
对buck-boost、boost拓扑,一般在输入电压最小值Vimin(即占空比最大值Dmax)下设计电感。
将电流纹波率r设置为0.3~0.4。
二、二极管的选用1、所选二极管的额定电流至少等于最恶劣平均电流的两倍。
对buck拓扑,ID≥2I0(1-Dmin);对buck-boost、boost拓扑, ID≥2I0。
2、所选二极管的额定电压至少比最恶劣二极管电压大20%。
对buck拓扑,VD≥1.2Vimax;对boost拓扑,VD≥1.2Vo , Vo为输出电压;对buck-boost拓扑,VD≥1.2(Vimax+ Vo)。
三、开关管的选用1、由P=UI,得开关管有效电流值输入电压最小值Vimin(即占空比最大值Dmax)处最大。
2、所选开关管的额定电流至少等于开关管有效电流值的两倍。
开关电源基本拓扑结构
I LfG
V in D y 2L f fs
I oG
(1 D y ) D y 2L f fs
V in
Fig 1.4 Vin=const
开关电源基本拓扑
25
Vout = constant (输出电压恒定) From eq. (2.14), then the eq.(2.16) and eq.(2.15) can be reformed as:
i Lf I Lf
max
V in Lf
T on
V in Lf
Ts D y
(3.9)
i Lf I Lf
max
Vo Lf T off
'
Ts D (1 D y )
(3.10)
where
Vo V in
D
Dy D
Ts
(3.11)
I in I Lf
I o D
2
(1 D y )V o 8L f C f fs
2
Vo
Q C
f
(1.8)
开关电源基本拓扑
8
电流断续时的工作模式 (DCM)
电流断续时的工作模式的典型情况:
Mode 1
输入电压Vin不变,输出电压Vo变化;譬如用作电机速度控制、充电
器对蓄电池恒流充电。 输入电压Vin变化,输出电压Vo不变,如普通开关电源。
I oG (1 D y ) 2L f fs V out
Fig 1.5 Vout=const
开关电源基本拓扑
13
湘潭电机股份有限公司150t工矿电机车IGBT直流斩波 1500V电压等级主要由IGBT功率组件、微机控制盒及 PLC控制单元构成。IGBT功率组件采用3 300V、 800A 斩波型IGBT模块作为主功率元件,主元件散 热器采用新型风冷热管散热器,一个IGBT功率组 件单独驱动一台牵引电机。 微机控制盒是装置的核心,配备16位单片机 80C196KC
开关电源常用拓扑结构图文解释
开关电源常用拓扑结构图文解释第一篇:开关电源常用拓扑结构图文解释开关电源常用拓扑结构开关变换器的拓扑结构是指能用于转换、控制和调节输入电压的功率开关器件和储能器件的不同配置。
开关变换器的拓扑结构可以分为两种基本类型:非隔离型和隔离型。
变换器拓扑结构是根据系统造价、性能指标和输入/输出负载特性等因素选定。
1、非隔离型开关变换器一,Buck变换器,也称降压变换器,其输入和输出电压极性相同,输出电压总小于输入电压,数量关系为:其中Uo为输出电压,Ui为输入电压,ton为开关管一周期内的导通时间,T为开关管的导通周期。
降压变换器的电路模式如图2所示。
工作原理是:在开关管VT导通时,输入电源通过L平波和C滤波后向负载端提供电流;当VT关断后,L通过二极管续流,保持负载电流连续。
二,Boost变换器,也称升压变换器,其输入和输出电压极性相同,输出电压总大于输入电压,数量关系为:。
升压变换器的电路模式如图3所示。
工作原理是:在VT导通时,电流通过L平波,输入电源对L充电。
当VT关断时,电感L及电源向负载放电,输出电压将是输入电压加上输入电源电压,因而有升压作用。
三,Buck-Boost变换器,也称升降压变换器,其输入输出电压极性相反,既可升压又可降压,数量关系为:。
升降压变换器的电路模式如图4所示。
工作原理是:在开关管VT导通时,电流流过电感L,L储存能量。
在VT关断时,电感向负载放电,同时向电容充电。
四,Cuk变换器,也称串联变换器,其输入输出电压极性相反,既可升压又可降压,数量关系为:。
Cuk变换器的电路模式如图5所示。
工作原理是:在开关管VT 导通时,二极管VD反偏截止,这时电感L1储能;C1的放电电流使L2储能,并向负载供电。
在VT关断时,VD正偏导通,这时输入电源和L1向C1充电;同时L2的释能电流将维持负载电流。
2、隔离型开关电源变换器一,推挽型变换器,其变换电路模型如图6所示。
工作过程为:VT1和VT2轮流导通,这样将在二次侧产生交变的脉动电流,经过VD1和VD2全波整流转换为直流信号,再经L、C滤波,送给负载。
三种基础拓扑的电路基础
《精通开关电源设计》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
开关电源常用拓扑电路
开关电源常用拓扑电路开关电源常用拓扑电路开关电源作为现代电子设备中不可或缺的一部分,其功效和性能日益受到重视。
而在开关电源的实际应用中,各种拓扑电路被广泛采用。
本文将按照类别,对开关电源常用的三种拓扑电路进行介绍,并从其原理、优缺点等方面进行分析。
第一类拓扑电路——降压型开关电源降压型开关电源是最基础、应用最广泛的开关电源拓扑电路之一。
其主要原理是通过控制开关管的导通与断开,将输入电压转换为所需的输出电压。
其中最经典的降压型拓扑电路是Buck变换器。
与其他拓扑电路相比,Buck变换器具有转换效率高、体积小、成本低等优点。
而且,它的工作原理相对简单,电路结构较为简洁。
第二类拓扑电路——升压型开关电源既然有降压型开关电源,自然也有升压型开关电源。
升压型开关电源的主要功能是将较低的输入电压转换为较高的输出电压,以满足特定应用的电压需求。
最常见的升压型拓扑电路是Boost变换器。
Boost变换器的工作原理是通过改变开关管的导通与断开时间,将输入电压分段升高,并最终得到所需的输出电压。
Boost变换器具有快速动态响应、输入电流波动小等特点。
第三类拓扑电路——反激型开关电源反激型开关电源也是开关电源的一种常用拓扑电路。
它主要用于输入电压范围较宽、输出电压变化大的电子设备。
反激型拓扑电路中最广泛使用的是Flyback变换器。
这种拓扑电路具有结构简单、成本低、输出电压可调等特点。
它的工作原理是通过供能开关管的瞬态导通和均衡导通,使原来存储于变压器中的能量通过绕组变换到输出端。
综上所述,开关电源常用的拓扑电路主要包括降压型、升压型和反激型。
不同的拓扑电路具有不同的工作原理和特点,适用于不同的应用环境。
在电子设备的设计和制造中,我们需要根据具体需求灵活选择拓扑电路,以满足能量转换的高效、稳定和可靠性要求。
总而言之,开关电源拓扑电路的选择应根据具体应用需求来进行,以确保电子设备在性能、效能和可靠性等方面的全面满足。
相信通过对不同拓扑电路的了解和应用,我们能够在开关电源领域中不断创新,为人们的生活带来更多的便利和发展。
开关电源拓扑结构
开关电源拓扑结构回顾Lloyd H·Dixon Jr摘要本文回顾了在开关电源中常用的三种电路结构即降压变换电路、升压变换电路和逆向变换电路的特性,这三种电路均可以在断续的感应电流或者连续的感应电流模式下使用。
运行方式的选择对整体电路特性有很大的影响。
所使用的控制方式也能有助于将与任何拓扑结构和运行方式相联系的问题减到最少。
三种以固定频率运行的控制方法包括:直接占空比控制、电压前馈、和电流模式(两个环路)控制。
本文还论述了三个基本电路的一些扩展,利用每个拓扑电路的相对优点—运行方式—控制方法组合。
一、三种基本拓扑结构:三种基本的拓扑结构如图1所示:降压式,升压式,反激式。
串联式变换器(CUK)是反激式拓扑的逆变,不作论述。
这三种不同的开关电路使用了三种相同的元件:电感,三极管,和二极管,但是使用了不同的安放方式,(输出电容是滤波元件,不是开关电路的一部分)。
理论上,还有另外三种由这三种元件组成的T型结构的电路,但这三种是前面三种电路的简单镜像和在相反方向的耦合能量。
有一条在任何运行模式和控制方式下都适用于上述三种电路拓扑的原则:在稳态运行下,在每个开关周期内,电感两端的平均电压必须为零,否则平均感应电流将会改变,违反稳态前提。
三种基本电路系列的每一个在输入和输出电压、电流、占空比之间都有一个独特的关系。
例如:降压调整器的功能是使输出电压V0小于输入电压V in,并和它V in有相同的极性。
升压电路的作用是使V0大于V in,并且有相同的极性。
反激拓扑电路的作用是使V0既不大于也不小于V in,但是两者极性必须相反。
二、断续操作方式:在断续的感应电流方式下,或者说“断续方式”下,降压、升压和反激电路的动作方式是相似的,感应电流在每个开关周期的最后部分期间为零(因此不连续)。
在每个周期的开始部分,感应电流从零增加,从输入端得到储存能量。
在周期的第二部分,所有储存的能量通过负载泄放,从输入端汲取能量到输出端。
开关电源基础拓扑的组合应用
开关电源基础拓扑的组合应用1、概述开关电源已经深入到国民经济的各个行业当中,设计师或是自行设计电源或是购买电源模块,但是这些电源都离不开电源的各种电路拓扑。
本文先介绍了开关电源的三大基础拓扑:Buck、Boost、Buck-Boost,并就这三者拓扑之间进行了简单地组合,得到了非常巧妙的电路,例如:正负输出电源、双向电源等,能够满足诸如运放供电、电池充放电等某些特殊的需求。
2、开关电源基础拓扑 开关电源三大基础拓扑为:Buck、Boost、Buck-Boost,大部分开关电源都是采用这几种基础拓扑或者其对应的隔离方式,下面以电感连续模式进行简单介绍。
2.1 Buck降压型 Buck降压型电路拓扑,有时又称为Step-down电路,其典型的电路结构如下图1所示:图1 Buck电路的工作原理为: 当PWM驱动高电平使得NMOS管T导通的时候,忽略MOS管的导通压降,等效如图2,电感电流呈线性上升,MOS导通时电感正向伏秒为:图2当PWM驱动低电平的时候,MOS管截止,电感电流不能突变,经过续流二极管形成回路(忽略二极管电压),给输出负载供电,此时电感电流下降,如下图3所示,MOS截止时电感反向伏秒为:图3 D为占空比,0 2.2 Boost升压型 Boost升压型电路拓扑,有时又称为step-up电路,其典型的电路结构如下图4所示:图4 同样地,根据Buck电路的分析方式,Boost电路的工作原理为: 2.3 Buck-Boost极性反转升降压型 Buck-Boost电路拓扑,有时又称为Inverting,其典型的电路结构如下图5所示:图5 同样地,根据Buck电路的分析方式,Buck-Boost电路的工作原理为: 3、 Buck与Buck-Boost组合 金升阳K78系列的产品采用了Buck降压型的电路结构进行设计,是LM78XX系列三端线性稳压器的理想替代品,效率最高可达96%,不需要额外增加散热片,同时还兼有短路保护和过热保护,值得说明的是它能够完美支持负输出。
boost和buck两种开关电源的基本电路拓扑和工作原理
boost和buck两种开关电源的基本电路拓扑和工作
原理
Boost和Buck两种开关电源的基本电路拓扑和工作原理如下:
1. Boost拓扑电路:Boost电路是一个升压电路。
当开关管导通时,输入电压Vi对电感Ls充电,形成的回路是:输入Vi→电感Ls→开关管Q。
当开关管关断时,输入的能量和电感能量一起向输出提供能量,形成的回路是:输入Vi→电感Ls→二极管D→电容C→负载RL。
此时负载的供电电源相当于Vi加上电感的感应电动势,从而实现升压。
2. Buck拓扑电路:Buck电路是一个降压电路。
当开关闭合时,续流二极管D是截止的,由于输入电压Vi与储能电感Ls接通,因此输入-输出压差(Vi-Vo)就加在Ls上,使通过Ls上的电流线性地增加。
在此阶段,除向负载供电外,还有一部分电能储存在电感Ls和电容Cr中。
当开关断开时,在电感Ls上产生反向电动势,使二极管D从截止变成导通。
如需了解更多信息,建议咨询专业技术人员或者查阅相关技术手册。
开关电源三大拓扑之Boost电源中PFC电路是如何演变而来的
开关电源三大拓扑之Boost电源中PFC电路是如何演变而来的
上一集讲了Buck拓扑基础知识,相信都懂了吧,下面到电源三大拓扑中的Boost了,Boost在英文里是提高的意思,从字面就可看出,Boost拓扑就是升压,Boost电路的输出一定是大于输入的。
说得无益,直接上图,先来认识一下Boost拓扑结构。
很容易看出,电感连接到输入电压位置,这是判断Boost拓扑的简单方法。
下面是一个集成芯片组成的的一个升压电路,很容易识别出这就是Boost 拓扑构成的。
先熟悉一下Boost电路输出电压公式:CCM工作模式时,Vout = Vin/(1-D),D为占空比
从公式就可看出输出电压一定比输入电压大。
Boost的原理其实也不复杂,要分析原理还得是要看波形图。
1)MOS管Q1导通,电感一端被接地,输入电压对电感充电。
2)电感两端 = 输入电压
3)电感电流线性上升(电感电流不能突变)
4)MOS管关断,电感电压反向(懂Buck一定知道为何了)
5)电感通过二极管向负载供电
周而复始。
在开关电源中,Boost 拓扑是很常见的,用得最多的地方可能就是PFC(功率因素矫正),下面就是个实际应用是的PFC电路
从公式Vout = Vin/(1-D)可以看出随着占空比 D 的增大,输出电压也增大,那如果1-D --> 0,输出电压是否就可以无限大呢。
答案是否定的,由于MOS管的非理想性、杂散电容的影响、及电感电容等各种损耗的关系,输出电压随占空比的上升到一定的值会下跌,最惨的情况会跌倒零。
如图所示。
通常占空比做到0.5左右基本差不多了。
到0.75已经是极限了。
三种基础拓扑的电路基础
《精通开关电源设计》笔记三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dtdILV ==T I L ∆∆,推出ΔI =V ×ΔT/L2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间t OFF3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。
那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD→t OFF =(1-D )/f电流纹波率r P51 52r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面:A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。
开关电源的拓扑
开关电源的拓扑
开关电源的拓扑主要有以下几种:
1. 单端正激式(Buck)拓扑:投入电压大于输出电压时,将电源输入关断,输出电容释放能量给负载;
2. 升压式(Boost)拓扑:投入电压小于输出电压时,通过开关周期性充放电操作,将输出电压升高;
3. 反激式(Flyback)拓扑:通过磁共振,利用辅助绕组将输入电能转移到输出端,适用于输出电压变化较大的场景;
4. 无互感式(Push-Pull)拓扑:利用两个互补的开关管周期性地切换,通过变压器将输入电能传递到负载端;
5. 电桥式(Full-Bridge)拓扑:利用四个开关管,通过变压器传递电能,具有较高的输出功率能力。
不同的拓扑结构适用于不同的应用场景,可以根据需要选择最合适的拓扑。
几种常见的开关电源拓扑结构及应用
几种常见的开关电源拓扑结构及应用什么是拓扑呢?所谓电路拓扑就是功率器件和电磁元件在电路中的连接方式,而磁性元件设计,闭环补偿电路设计及其他所有电路元件设计都取决于拓扑。
最基本的拓扑是Buck(降压式)、Boost(升压式)和Buck/Boost(升/降压),单端反激(隔离反激),正激、推挽、半桥和全桥变化器。
下面简单介绍一下常用的开关电源拓扑结构。
Buck电路首先我们要讲的就是Buck电路。
Buck电路也成为降压(step-down)变换器。
它的电路图是下面这样的:晶体管,二极管,电感,电容和负载构成了主回路,下方的控制回路一般采用PWM(脉冲宽度调制)芯片控制占空比决定晶体管的通断。
Buck电路的功能是把直流电压Ui转换成直流电压Uo,实现降压目的。
展开剩余88%反激变换器反激式开关电源是指使用反激高频变压器隔离输入输出回路的开关电源,与之对应的有正激式开关电源。
反激(FLY BACK),具体是指当开关管接通时,输出变压器充当电感,电能转化为磁能,此时输出回路无电流;相反,当开关管关断时,输出变压器释放能量,磁能转化为电能,输出回来中有电流。
反激式开关电源中,输出变压器同时充当储能电感,整个电源体积小、结构简单,所以得到广泛应用。
应用最多的是单端反激式开关电源。
优点:元器件少、电路简单、成本低、体积小,可同时输出多路互相隔离的电压;缺点:开关管承受电压高,输出变压器利用率低,不适合做大功率电源。
Boost电路Boost(升压)电路是最基本的反激变换器。
Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。
上面的图就是Boost电路图。
Boost电路是一个升压电路,它的输出电压高于输入电压。
Buck/Boost变换器Buck/Boost变换器:也叫做升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但它的输出电压的极性与输入电压相反。
Buck/Boost变换器可以看做是Buck变换器和Boost变换器串联而成,合并了开关管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
详解开关电源的三大基础拓扑
1、摘要
开关电源已经深入到国民经济的各个行业当中,设计师或是自行设计电源或是购买电源模块,但是这些电源都离不开电源的各种电路拓扑。
本文先介绍了开关电源的三大基础拓扑:Buck、Boost、Buck-Boost,并就这三者拓扑之间进行了简单地组合,得到了非常巧妙的电路,例如:正负输出电源、双向电源等,能够满足诸如运放供电、电池充放电等某些特殊的需求。
2、开关电源基础拓扑
开关电源三大基础拓扑为:Buck、Boost、Buck-Boost,大部分开关
电源都是采用这几种基础拓扑或者其对应的隔离方式,下面以电感连续模式进行简单介绍。
2.1 Buck降压型。