变频恒压供水控制系统设计.doc

合集下载

变频恒压供水系统设计(论文)

变频恒压供水系统设计(论文)
通过整流桥将工频交流电压变为直流电压,再由逆变桥变换为频率可调的交流,作为交流异步电动机的驱动电源,使电动机获得无级调速所需的电压、电流和频率。
1.2水泵供水系统具有管网特性:
通道管网的流量与所消耗的能量之间的关系,如图1所示,它同时表明水泵的能量用来克服泵系统的水位及压力差,液体在管道中流动的阻力。水泵运行工作点位置与水泵负载有关,在水泵负载经常变化的情况下,水泵不能总处在高效区域里工作。为使水泵适应外界负载变化的要求。我们可采用变速调节,即在管网特性曲线基本不变时,采用改变水泵转速来改变泵的Q—H特性曲线。从而改变它的工作点,达到既改变流量又能保证水泵恒定和输入功率减少的目的。
一、题目:变频恒压供水系统设计
二、摘要:
随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。对于一个城市的建设,供水系统的建设是其中重要的一部分。供水的可靠性、稳定性、经济性直接影响到居民的生活质量。近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。经过一学期对《交流电机变频调速》的学习,以及以前对PLC控制器的了解。本次课程设计采用OMRON C系列小型PLC控制器结合富士FRENIC 5000G11S系列变频器控制两台水泵,实现变频恒压供水系统的设计,并结合一些辅助控制器件实现对系统的保护,使得系统控制可靠,操作方便。
0504
VVVF故障信号
0007
泵机组过载报警指示灯(HL6)
0505
VVVF故障报警指示灯(HL7)
0506
系统故障报警警铃
0507
图5变频恒压供水系统控制电路设计
2.4软件设计
要通过PLC控制器实现水泵的切换与系统的故障检测,本系统设计为:系统启动后,泵1首先进入变频运行,当出现压力上限时,变频泵切换为工频,启动另一台泵变频运行,当出现压力下限时,工频泵切除,仅又变频泵工作,系统程序设计流程图如图6。

变频恒压供水控制系统设计

变频恒压供水控制系统设计

变频恒压供水控制系统设计一、引言变频恒压供水控制系统是一种能够自动调节水泵电机的转速,保持管网内水压恒定的系统。

该系统通过变频器控制水泵电机的转速,根据实时水压信号对水泵进行调节,从而实现供水系统的恒压供水。

本文将从系统设计原理、硬件选型、控制策略等方面对变频恒压供水控制系统进行设计。

2. 控制原理变频恒压供水控制系统采用闭环控制原理,主要分为压力调节环和流量调节环两部分。

压力调节环根据实时水压信号,控制变频器调节水泵电机的转速,以维持管网内的水压恒定。

流量调节环主要通过监测流量传感器的输出信号,控制变频器调节水泵电机的转速,以满足用户的实际用水量需求。

三、硬件选型1. 水泵电机选择适当功率的三相异步电动机,能够满足供水系统的实际需求,保证系统的正常运行。

2. 变频器选用带有PID调节功能的变频器,能够根据实时水压信号对电机转速进行精确调节,确保系统供水的恒压运行。

3. 压力传感器选择高灵敏度的压力传感器,能够实时监测管网内的水压信号,为系统提供准确的控制信号。

5. 控制面板控制面板应具有良好的人机界面,能够显示系统的运行状态、参数,方便用户对系统进行监测和操作。

6. 其他配件根据实际需求,可能需要选购接线端子、线缆、散热器等辅助设备。

四、控制策略1. 系统启动当系统启动时,变频恒压供水控制系统应自动进行初始化,自检各传感器和执行机构,确保系统能够正常运行。

3. 流量调节系统同时监测流量传感器的输人信号,根据用户的实际用水量,控制变频器调节水泵电机的转速,以满足流量调节环的要求。

4. 故障处理系统应具备故障自诊断功能,当系统发生故障时,能够自动报警或进入相应的故障处理程序,保证对用户的供水不受影响。

五、系统调试1. 对水泵电机、变频器等设备进行正确的接线和安装。

2. 对传感器进行校准,确保其输出信号的准确性。

3. 对控制系统进行相关参数的设定和调试。

4. 对整个系统进行联合调试,验证系统的正常运行。

高层住宅变频调速恒压供水系统设计

高层住宅变频调速恒压供水系统设计

高层住宅变频调速恒压供水系统设计随着城市化进程的不断加速,高层住宅的数量也不断增加。

在高层住宅中,稳定可靠的供水系统对于居民的日常生活至关重要。

传统的供水系统往往难以满足高层住宅对水压和水量的需求,因此,设计一套高效的变频调速恒压供水系统显得尤为重要。

本文将重点阐述高层住宅变频调速恒压供水系统的设计原则和具体方案。

一、设计原则1.1 提供稳定的水压在高层住宅中,为了满足居民的生活用水需求,供水系统必须能够提供均衡稳定的水压。

通过采用变频调速恒压供水系统,可以根据居民用水量的变化实时调节水泵的运行速度,以保证供水系统能够稳定地提供恒定的水压。

1.2 节约能源传统的供水系统通常采用恒速运行的水泵,这样会导致水泵在低负载时能耗较高。

而变频调速恒压供水系统则可以根据实际需求智能地调节水泵的转速,使水泵的运行始终处于高效工作状态,从而有效降低能耗,实现节能目的。

1.3 保证可靠性高层住宅供水系统的可靠性对于居民的生活质量至关重要。

在设计变频调速恒压供水系统时,应该选择质量可靠的水泵和控制设备,并设置备用设备以应对突发情况。

二、具体方案2.1 变频调速器的选型变频调速器是实现高层住宅变频调速恒压供水系统的核心设备。

在选型时应注意以下几点:首先,应选择具有较高工作效率和稳定性能的变频调速器。

其次,应根据实际需求选择变频调速器的额定功率和转速范围。

另外,还应注意变频调速器的运行噪音和对供水系统的电磁干扰问题。

2.2 水泵的选型水泵是供水系统的核心组成部分。

在选型时应注意以下几点:首先,应选择质量可靠、效率较高的水泵,以保证长期稳定运行。

其次,应根据高层住宅的水压和水量需求选择合适的水泵型号和数量。

另外,还应考虑水泵的噪音和振动情况,避免对住户生活造成不便。

2.3 控制策略的设计控制策略的设计决定了供水系统的运行效果和稳定性。

在设计过程中应注意以下几点:首先,应充分调研高层住宅的居民用水特点和峰谷用水变化情况,以便合理地设计供水系统的供水策略。

变频恒压供水控制系统方案

变频恒压供水控制系统方案

变频恒压供水控制系统方案1.方案介绍变频恒压供水控制系统基本由水泵、变频器、压力传感器和PLC控制器组成。

该系统可以对水泵的运行速度进行调节,以使供水系统的压力始终保持在设定值范围内。

当系统检测到压力超过设定值时,将降低水泵的运行速度,反之则提高运行速度。

2.系统原理变频恒压供水控制系统的原理基于水泵的调速运行。

通过变频器控制电机的转速,可以实现水泵的流量调节。

系统中的压力传感器会实时监测供水系统的压力,并将压力信号传给PLC控制器。

PLC控制器根据设定的压力范围和实际的压力信号来调节变频器的输出频率。

当实际压力超过设定范围时,PLC控制器会降低变频器的输出频率,降低水泵的运行速度;当实际压力低于设定范围时,则相反地提高运行速度。

3.系统优势(1)节能环保:相比传统的供水系统,在需求较低时能够降低水泵的运行速度,减少能耗和噪音。

在需求较高时,能够提高运行速度以满足压力需求,提高系统的响应性和供水能力。

(2)压力稳定:采用变频恒压供水控制系统可以实现对供水系统压力的精确控制,保证水压始终保持在设定值范围内,提高供水质量和稳定性。

(3)设备寿命长:通过变频器控制水泵的运行速度,可以减少启停次数,减轻设备的磨损,延长水泵和其他设备的使用寿命。

(4)自动监控保护:系统可以实时监测供水压力,一旦超过设定范围,系统会自动调节水泵的运行速度,确保供水稳定,同时还能提供报警功能,及时发现和排除故障。

4.实施步骤(1)系统设计:根据实际需求,确定供水系统的压力范围和变频器的参数配置。

(2)设备选型和采购:选购符合系统需求的水泵、变频器、压力传感器和PLC控制器等设备。

(3)设备安装和连接:安装和连接好水泵、变频器、压力传感器和PLC控制器等设备。

(4)系统调试和运行:通过调节变频器的参数和设定压力范围,实现系统的压力控制和供水调节。

(5)系统监测和维护:定期检查和维护系统的各个部件,确保系统正常运行。

总结:通过变频恒压供水控制系统的应用,可以实现供水系统的智能化、高效化和节能环保化。

变频恒压供水PLC控制系统的设计

变频恒压供水PLC控制系统的设计

变频恒压供水PLC控制系统的设计摘要:目前,我国的供水方式正朝着高效节能、自动化的方向发展,采用现代科学技术和变频技术,实现恒压供水自动化系统。

基于此,本文就对变频恒压供水PLC控制系统的设计进行了一定的分析,希望可以为有关人员提供一定的借鉴。

关键词:PLC;恒压供水;控制系统;设计我国目前的供水设备还处在智能化水平较低、自动化程度较低的状况。

PLC 具有较高的可靠性,较好的性价比,价格低廉,适应性广,便于扩充的优点。

将PLC技术和变频技术相结合,并将其用于恒压供水是当前系统设计的必然趋势。

恒压供水系统的首要目标是保证管网内的水压不变。

由于水泵电动机的转速随着流量的变化而经常发生变化,为了保证管网水压的稳定,需要采用变频调速装置为水泵电机供电。

1变频恒压供水详细情况小区内的生活用水因季节、昼夜差异较大,因用水与供水的不均衡主要体现在水压上,也就是用水量多、供水不足、水压低、水量少。

目前,国内的城市给水、工业生产的循环水等技术还处于起步阶段。

随着电力电子及计算机控制技术的发展,以PLC为主要控制器,变频调速装置为执行器,实现了恒压、节水、节能的供水,以满足生活用水和工业用水的需求[1]。

新的变频恒压供水系统在设备投入、运行经济性、稳定性、可靠性、自动化等方面均有明显的优越性,并且节能效果明显。

恒压供水系统的上述优点吸引了国内各大供水企业的关注,并不断投入研发、生产该高科技产品。

随着城市建设、智能楼宇的发展、供水网络的调度以及总体规划的需要,传统的单泵、恒压系统逐步被多泵控制取代。

尽管单泵产品系统结构简单、可靠,但是单泵电机的深度调节会导致水泵和电机的效率低下,而多泵产品的投资更少,运行效率更高。

2 PLC变频恒压供水控制系统设计理论2.1PLC变频供水系统的基本特性在实际使用中,一般使用离心泵,以离心速度驱动水流,使水进入给水管道。

根据具体的离心式水泵的给水转动曲线显示资料,可以得出,在实际的给水工作中,扬程与其流量成反比例。

变频恒压供水控制系统设计

变频恒压供水控制系统设计

变频恒压供水控制系统设计【摘要】本文介绍了变频恒压供水控制系统设计的相关内容。

在系统设计要求中,需要考虑稳定供水压力和节约能源的需求。

系统组成包括变频驱动器、传感器、控制器等部件。

系统控制原理是利用变频器对水泵速度进行调节来维持恒定的供水压力。

在系统设计方案中,需要考虑水泵的选型和安装位置等因素。

通过系统性能分析可以评估系统的稳定性和效率。

通过本文的研究,可以为变频恒压供水控制系统的设计和应用提供参考。

【关键词】变频恒压、供水控制系统、设计要求、系统组成、系统控制原理、系统设计方案、系统性能分析、结论。

1. 引言1.1 引言变频恒压供水控制系统设计是现代城市供水系统中的重要组成部分,它能够有效地调节水压,确保供水稳定性和节能高效性。

随着城市化进程的加快,供水需求不断增加,传统的供水系统已经不能满足需求,因此采用变频恒压供水控制系统已经成为一个必然趋势。

本文将首先介绍系统设计的基本要求,包括稳定的供水压力、节能高效、易维护等方面。

然后将详细介绍系统的组成,包括变频器、水泵、传感器等核心部件。

接着将介绍系统的控制原理,包括PID控制、频率调节等技术原理。

将提出系统的设计方案,包括硬件设计、软件设计以及系统整体架构。

对系统的性能进行分析,包括稳定性、节能性、可靠性等方面,以验证系统设计的合理性。

通过本文的介绍,读者可以了解变频恒压供水控制系统设计的基本原理与方法,为现代供水系统的优化设计提供参考。

2. 正文2.1 系统设计要求1. 稳定性要求:变频恒压供水控制系统需要保持稳定的工作状态,确保水压在设定范围内波动较小,以满足用户对水压稳定性的需求。

2. 响应速度要求:系统需要具有较快的响应速度,能够及时调整水泵的转速以保持设定的恒压供水状态,提高用户体验。

3. 节能性要求:设计要充分考虑系统的能耗情况,尽量减少无效能耗,优化控制算法以实现节能运行,降低运行成本。

4. 可靠性要求:系统设计应考虑到设备的可靠性,确保系统能够长时间稳定运行,减少维护和修复成本,提高系统的可用性和可靠性。

变频恒压供水系统方案设计

变频恒压供水系统方案设计

OCCUPATION 2012 12132研究R ESEARCH 变频恒压供水系统方案设计赵 毅摘 要:变频恒压供水系统由PLC、传感器、变频器及水泵机组组成闭环控制系统,经变频器内置PID进行运算,通过PLC控制变频与工频切换,实现闭环自动调节变频恒压供水,代替了传统的水塔供水控制方案。

关键词:恒压供水 变频调速 变频器 PLC一、系统总体方案的设计1.供水控制系统的结构供水控制系统的设计主要包括两方面:一方面是机械结构的设计;另一方面是PLC和变频器电气控制方面的设计。

(1)主要组成部分。

①压力传感器:作为系统的控制输入量,能否准确采集该信号决定控制系统的精度及可靠性。

②控制器:是整个控制系统的核心,通过对外界输入状态进行检测,输出控制量;对外界输入的数据进行运算处理后,输出相应的控制量。

例如单片机、可编程逻辑控制器、计算机等。

本系统采用西门子的SIMATIC S7-200系列。

CPU226具有24个输入点和16个输出点,共40个I/O点。

③变频器:作为核心控制器的后续控制单元,对终端设备进行控制,最终达到控制要求。

本系统主要采用全新一代标准变频器中的风机和泵类变转矩负载专用MM430型变频器。

功率范围7.5kW至250kW。

具有高度可靠性和灵活性。

④水泵:供水系统的执行机构,通过变频器控制电动机的转速,最后达到控制水泵流量大小的要求。

(2)电气控制系统。

电气控制系统主要包括操作面板、电气控制柜等单元。

在该系统中需要检测较多的数字输入量,并且还要检测模拟量的输入,然后根据设定的程序进行数据处理,供水系统的监控主要包括水泵的自动启停控制、供水压力的测量与调节、系统水处理设备运转的监视及控制、故障及异常状况的报警等。

电气控制系统安装在电气控制柜中,包括供水控制器(PLC系统)、变频器和电控设备三个部分。

2.恒压供水系统的工作原理变频恒压供水系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。

《2024年基于PLC的变频恒压供水系统的设计》范文

《2024年基于PLC的变频恒压供水系统的设计》范文

《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的不断发展和人民生活水平的持续提高,对于供水系统的稳定性和可靠性要求越来越高。

传统的供水系统往往存在能耗高、调节不精确等问题。

因此,基于PLC(可编程逻辑控制器)的变频恒压供水系统应运而生,其通过变频技术实现恒压供水,不仅提高了供水的稳定性和可靠性,还大大降低了能耗。

本文将详细介绍基于PLC的变频恒压供水系统的设计。

二、系统设计目标本系统设计的主要目标是实现供水系统的恒压供水,降低能耗,提高供水的稳定性和可靠性。

具体来说,包括以下几点:1. 保持供水压力的稳定性,满足用户需求。

2. 通过变频技术实现电机的节能运行。

3. 实现系统的自动化控制,降低人工干预。

4. 具备故障自诊断和保护功能,确保系统安全稳定运行。

三、系统组成基于PLC的变频恒压供水系统主要由以下几部分组成:1. 水泵:负责供水的动力来源,采用变频电机实现调速。

2. PLC控制器:负责整个系统的控制,包括压力采集、电机控制、故障诊断等功能。

3. 压力传感器:实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。

4. 变频器:接收PLC控制器的指令,控制电机的运行速度,实现恒压供水。

5. 其他辅助设备:包括管网、阀门、过滤器等,保证供水的正常运行。

四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标等。

2. 硬件选型:选择合适的水泵、PLC控制器、压力传感器、变频器等硬件设备。

3. 系统布线:根据硬件设备的布局,进行合理的布线设计,确保系统的稳定性和可靠性。

4. 程序设计:编写PLC控制程序,实现压力采集、电机控制、故障诊断等功能。

5. 系统调试:对系统进行整体调试,确保系统的各项功能正常运行。

6. 运行维护:对系统进行定期检查和维护,确保系统的长期稳定运行。

五、系统实现1. 压力采集:通过压力传感器实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。

农村变频恒压供水控制系统的设计

农村变频恒压供水控制系统的设计

农村变频恒压供水控制系统的设计摘要:针对目前的农村供水供水不稳定、可靠性差等问题,设计出一种基于计算机远程分布式网络控制的恒压变频控制系统,主要包括远程监控与管理系统、中间路由传输系统和本地供水控制系统三大系统,该设计能实现用户段不管用水量大小,总保持管网水压基本恒定,实现了满足各部位的用户对水的需求的目标。

关键词:变频控制恒压供水系统设计水是生命之源、是人类生存的基础,居民生活用水质和量的水平是衡量一个国家和地区文明程度的一个重要标志,占全国人口70%的农村居民生活用水质量的高低直接关系到我国整体文明建设的进程和水平。

我国改革开放以来,经济“持续、快速、健康”的增长,综合国力明显增强,各行各业快速发展,全国提前实现了第二步战略目标。

而农村供水作为农民生活的重要基础设施基本处于一种自然发展状态,突出存在水压时低时高、各部位的水压差异大、供水可靠性差等问题,与快速发展的农村经济形势脱节,已开始制约农民生活质量的进一步提高。

截止到2005年全国共建成农村饮水工程300多万处,其中,乡镇集中供水工程3.2万处,村集中供水10多万处。

农村居民中享受自来水的人数约4亿多人,占农村总人口的45%。

但自然村屯自来水普及率仅29%。

供水量为北方每人每日供水10L左右,南方40L左右。

比国际上发展中国家农村供水量20~50L/d的标准低。

因此,加速发展农村饮水和乡镇供水工作是关系到农村社会经济发展、提高农村人口素质、稳定农村社会的大问题,是促进农业现代化建设的重要内容之一。

1 变频恒压供水控制系统设计思路本恒压变频供水控制系统设计旨在达到用户打开水龙头阀门,同时单片机、PLC等控制器采集水压传感器压力变化值,调节供水网中水泵旋转频率,调节水泵的输出流量,保证供水出口压力保持不变,实现恒压供水。

做到用户段不管用水量大小,总保持管网水压基本恒定,这样,即可满足各部位的用户对水的需求,又不使电动机空转,造成电能的浪费。

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》范文

《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。

恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。

本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。

二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。

同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。

三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。

其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。

四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。

2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。

3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。

4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。

五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。

2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。

3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。

4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。

六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。

2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。

变频恒压供水控制系统设计

变频恒压供水控制系统设计

一.摘要变频调速是一种新兴的技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。

随着社会经济的发展,绿色、节能、环保已成为社会建设的主题。

对于一个城市的建设,供水系统的建设是其中重要的一部分,供水的可靠性、稳定性、经济性直接影响到居民的生活质量。

近年来,随着自动化技术、控制技术的发展,以及这些技术在供水系统的应用,高性能、高节能的变频恒压控制的供水系统已成为现在城市供水管理的必然趋势。

本次课程设计采用CPM1A PLC控制器结合富士变频器控制两台水泵的各种转换,实现变频恒压供水系统的功能,并且实现故障转换与报警等保护功能,使得系统控制可靠,操作方便。

二.设计要求一楼宇供水系统,正常供水量为30m3/小时,最大供水量40m3/小时,扬程24米。

采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。

当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。

要求设计实现:⑴设二台水泵。

一台工作,一台备用。

正常工作时,始终由一台水泵供水。

当工作泵出现故障时,备用泵自投。

⑵二台泵可以互换。

⑶给定压力可调。

压力控制点设在水泵出口处。

⑷具有自动、手动工作方式,各种保护、报警装置。

采用OMRON CPM1APLC、富士变频器完成设计。

三.方案的论证分析传统的小区供水方式有:⑴恒速泵加压供水方式该方式无法对供水管网的压力做出及时的反应,水泵的增减都依赖人工进行手工操作,自动化程度低,而且为保证供水,机组常处于满负荷运行,不但效率低、耗电量大,而且在用水量较少时,管网长期处于超压运行状态,爆损现象严重,电机硬起动易产生水锤效应,目前较少采用。

⑵气压罐供水方式气压罐供水具有体积小、技术简单、不受高度限制等特点,但此方式调节量小、水泵电机为硬起动且起动频繁,对电器设备要求较高、系统维护工作量大,而且为减少水泵起动次数,停泵压力往往比较高,致使水泵在低效段工作,也使浪费加大,从而限制了其发展。

(完整word版)plc变频器控制恒压供水系统

(完整word版)plc变频器控制恒压供水系统

城市恒压供水系统一、前言1、供水系统概述城市规模的不断扩大,高层建筑的不断增长,对于高层的用户来说,在白天或者用水高峰时供水系统的电动机负荷最大,常常需要满负荷或超负荷运行,而在晚上或休闲是,所需水量减少很多,但是电动机依然处于满负荷运行状态,这样既浪费了大量的资源,对电动机的损耗也较大。

所以需要根据不同的需求条件来调节电动机的转速以实现恒压供水。

在供水系统中,当用水量需要变化时,传统的调节方法是通过人工改变阀门的开度来调整, 但是此类方法无法对供水管道内的压力和水位变化做出及时、恰当的反应,往往会造成用水高峰期时供水压力不足,用水低峰期时供水压力过高,不仅十分浪费能源而且存在事故隐患(例如压力过高容易造成爆管事故)。

因此无法满足城市供水系统的要求。

采用变频调速的供水系统可以有效解决以上的问题。

根据用水量的大小,控制水泵的转速,即用水量增大时,调高变频,使水泵转速升高,增加供水量。

当用水量超过一台水泵的供水量时启动新的水泵以增加供水量,当用水量减少时,使水泵转速降低或减少投入运行的水泵数量,减少供水量。

2、供水系统功能城市供水系统的主要功能是在用水量不断变化的情况下,维持管内的压力在一定范围内,既能满足用水的需求,又能最大程度节约能源,延长设备寿命。

变频供水的控制器经历了从继电器- 接触器,到单片机,再到PLC。

而变频器也从多端速度控制、模拟量输入控制发展到专用变频器,为实现城市供水系统简单、高效、低能耗的功能,并且实现自动化的控制过程,采用PLC作为核心控制器是个较好的方案。

(完整word版)plc变频器控制恒压供水系统PLC具有体积小、设计周期短、数据处理和通信方便、易于维护和操作、明显降低成本等优点,可满足城市供水系统的控制要求.除此以外,PLC作为城市供水控制系统使设计过程变得更加简单,可实现的功能变得更多。

由于PLC的CPU强大的网络通信能力,是城市供水系统的数据传输与通信变得可能,并且也可以实现其远程监控.利用「1。

变频恒压供水系统设计[]

变频恒压供水系统设计[]

1 绪论 (2)1.1引言 (5)1.2变频恒压供水产生的背景和意义 (7)1.3变频恒压供水的现况 (8)1.3.1国内外变频供水系统现状........................................................................................... .81.3.2变频供水系统应用范围 (10)1.3.3变频供水系统的发展趋势 (10)2 变频恒压供水的理论分析 (10)2.1水泵的工作原理 (11)2.2供水压力和变频器输出频率的关系 (11)3 变频恒压供水系统的构成及控制原理 (11)3.1 通用变频器+PLC (12)3.2变频恒压供水系统的结构 (13)3.2.1执行机构 (14)3.2.2信号检测 (14)3.2.3控制系统 (15)3.2.4人机界面 (16)3.2.5通讯接口 (16)3.2.6报警装置 (17)3.3变频恒压供水系统的控制方案 (176)3.4变频恒压供水系统的水压恒定控制 (17)3.5变频供水水泵加减的控制 (18)4 变频恒压供水系统的设计 (19)4.1理论可行性 (20)4.2技术可行性 (21)4.3硬件设计 (21)4.3.1变频供水主电路设计 (22)4.3.2控制系统硬件设计 (23)4.4软件设计 (24)4.4.1系统初始化程序设计 (25)4.4.3电机增减控制程序设计 (26)4.5本章小节 (27)参考文献 (29)摘要随着我国社会经济的发展,住房制度改革的不断深入,人们生活水平的不断提高,城市建设发展十分迅速,同时也对基础设施建设提出了更高的要求。

城市供水系统的建设是其中的一个重要方面,供水的可靠性、稳定性、经济性直接影响到用户的正常工作和生活,也直接体现了供水管理水平的高低。

传统供水厂,特别是中小供水厂所普遍采用的恒速泵加压供水方式存在效率较低、可靠性不高、自动化程度低等缺点,难以满足当前经济生活的需要。

变频恒压供水系统设计

变频恒压供水系统设计

33 层大楼变频恒压供水系统1 系统简介.................................................... 1.2 变频恒压供水系统构成及工作原理2.1 系统的构成1. .3.2.1.1执行机构 ............................................3..2.1.2信号检测 ............................................ 4..2.1.3控制系统 ............................................ 4..2.1.4通讯接口 ............................................ 5..2.1.5报警装置 ............................................ 6.. 2.2 工作原理................................................ 6.2.3 变频恒压供水系统中加减水泵的条件分析.................... 7..3基于PLC的变频恒压供水系统设计与实现....................... 9…3.1控制要求.............................................. 9 .....3.2变频器的选择与接线.................................... 1..0 3.3 压力传感器的接线图1..2 3.4原其它元器件的选择.................................... 1..3.. 3.5PLC 控制I/O 口配置.................................... 1..5.. 3.6电气控制系统原理及线图................................ 1..7.3.6.1主电路图 .......................................... 1..7..3.6.2控制电路接线图..................................... 1..8.. 3.7基于PLC的变频恒压供水系统程序流程 .................... 19.3.8 控制方式.............................................. 2..1..3.8.1 手动运行........................................... 2..13.8.2 自动运行........................................... 2..2 3.9 主要程序说明............................................ 2..3 3.9.1 总程序的顺序功能图................................. 2..3 3.9.2 自动运行顺序功能图................................. 2..3 3.9.3手动模式顺序功能图.................................. 2..5 3.9.4 程序说明........................................... 2..61 系统简介这是一套基于PLC变频恒压供水系统的可行性方案,选择了相应的器件,使系统通过安装在管网上的压力传感器,把水压转换成4~20mA 的模拟信号,通过变频器来控制改变水泵转速。

【精品】毕业设计(论文)-恒压供水控制系统设计

【精品】毕业设计(论文)-恒压供水控制系统设计

毕业设计题目恒压供水控制系统设计系别专业班级姓名学号指导教师日期设计任务书设计题目:恒压供水控制系统设计设计要求:1.设计一个采用全自动变频恒压控制方式来实现恒压供水的自控系统。

2.本系统主要以PLC来控制,按照控制要求选择器件,设计其硬件主控电路。

3.根据要求选择相应的传感器、驱动电机、阀门等;4.按照设计要求设计相应算法,编制相应的PLC控制程序。

设计进度要求:第一周:确定题目,查阅资料第二周:根据设计要求分析恒压供水的工作原理第三周:对硬件进行设计第四周:对软件进行设计第五周:进行调试,找出问题第六周:改进设计中存在不足第七周:撰写设计论文第八周:整理论文,准备答辩指导教师(签名):摘要恒压供水在城市自来水管网系统、住宅小区生活消防用水系统、楼宇中央空调冷却循环水系统等众多领域中均有应用。

恒压供水是指用户端在任何时候,不管用水量的大小总能保持管网中水压的基本恒定。

在恒压供水系统中可根据压力给定的理想值信号及管网水压的反馈信号进行比较,变频器根据比较结果调节水泵的转速,达到控制管网水压的目的。

本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。

全文共分为四章.第一章阐明了供水系统的应用背景、选题意义及主要研究内容。

第二章阐明了供水系统的变频调速节能原理。

第三章详细介绍了系统硬件的工作原理以及硬件的选择.第四章详细阐述了系统软件开发并对程序进行解释。

关键词:恒压供水,PLC,变频技术目录摘要 (II)1 变频控制系统简介 (1)1。

1变频调速供水控制系统简介 (1)1。

2变频调速在供水行业中的应用 (1)2 供水系统的变频调速节能原理 (4)2。

1 水泵调速运行的节能原理 (4)2。

2 本系统总体介绍 (5)3 系统硬件的工作原理及硬件选择 (7)3。

1 PLC的工作原理及选择 (7)3.2 变频调速系统原理及选择 (9)3。

变频恒压供水控制系统设计

变频恒压供水控制系统设计

变频恒压供水控制系统设计一、系统设计概述变频恒压供水控制系统是一种用于城市供水系统和建筑物水供系统的先进控制系统。

通过使用变频控制器和压力传感器,系统能够监测并调节系统的运行,实现水压恒定,避免因为供水系统压力不足或者过高而导致的浪费和损坏。

本文将阐述变频恒压供水控制系统的设计原理和技术要点。

二、变频恒压供水控制系统的工作原理1. 压力传感器检测变频恒压供水控制系统首先通过安装在管道上的压力传感器实时检测供水管道内的水压情况。

压力传感器将检测到的水压情况反馈给控制系统。

2. 控制器调节控制系统根据压力传感器反馈的水压情况,利用变频器调节水泵的转速,以使得供水管道内的压力始终维持在设定的恒定值之上。

当管道内的水压低于设定值时,控制系统将增加水泵的转速以增加供水量;当管道内的水压超过设定值时,控制系统将降低水泵的转速以减少供水量。

3. 故障自诊断系统还具有故障自诊断功能,当传感器或控制器出现故障时,系统能够自动诊断并给出报警信号,指示维修人员前往修复。

1. 变频器的选型变频器是变频恒压供水控制系统中的关键组件,它能够根据控制系统的指令调节水泵的转速。

在选型时,需要考虑控制系统对变频器的精度和稳定性的要求,以及水泵的功率和额定转速。

一般情况下,应选择具有较高性能和较高精度的变频器,以保证控制系统的准确性和稳定性。

压力传感器是变频恒压供水控制系统中用于检测管道内水压情况的装置,因此其精度和可靠性对系统的性能至关重要。

在选型时,需要考虑管道内水压的测量范围和精度要求,以及传感器的耐压能力和抗干扰能力。

3. 控制系统的程序设计控制系统的程序设计需要考虑到系统运行的稳定性和响应速度。

程序设计应充分考虑水泵和变频器的控制逻辑,并充分考虑各种工况下的供水量和供水压力的变化趋势,以实现系统的准确控制和稳定运行。

4. 系统的安全保护设计变频恒压供水控制系统需要具备完善的安全保护功能,以防止水泵和管道的损坏。

安全保护设计应考虑到水泵的过流、过载和短路等故障情况,并配备相应的保护装置,及时停止水泵的运行以避免对设备和管道的损坏。

变频器恒压供水

变频器恒压供水

变频器恒压供水变频器恒压供水系统设计目录工艺简介实验目的与要求系统设计内容及要求一、供水系统的具体要求二、总体设计方法三、变频器恒压供水系统原理四、水泵切换条件分析五、系统主电路分析六、系统控制电路分析七、系统的硬件设计参数设置系统主要设备的选型基本运行操作方式变频器恒压供水系统的技术要求实习心得1工艺简介一、变频恒压供水系统介绍变频恒压供水系统是指在供水管网中用水量发生变化时,出口压力保持不变的供水方式。

供水管网的出口压力值是根据用户需求确定的。

传统的恒压供水方式是采用水塔、高水位箱、气压罐等设施实现的。

近年来,随着变频调速技术的日益成熟,其显著的节能效果和可靠稳定的控制方式,在供水系统中得到广泛的应用。

变频恒压供水系统对水泵电机实行无级调速,依据用水量及水压变化通过微机检测、运算,自动改变水泵转速保持水压恒定以满足用水要求,是目前最先进,合理的节能供水系统。

与传统的水塔、高位水箱、气压罐等供水方式比较,不论是投资、运行的经济性、还是系统的稳定性、可靠性、自动化程度等方面都具有优势:(1)高效节能。

与传统供水方式相比变频恒压供水能节能30%-60%。

(2)占地面积小,投入少,效率高。

(3)配置灵活,自动化程度高,功能齐全,灵活可靠。

(4)运行合理,由于一天内的平均转速下降,轴上的平均扭矩和磨损减少,水泵的寿命将大为提高。

(5)由于能对水泵实现软停和软起,并可消除水锤效应(水锤效应:直接起动和停机时,液体动能的急剧变大,导致对管网的极大冲击,有很大破坏力)。

2(6)操作简便,省时省力。

二、城市供水系统的要求众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。

主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能导致水管爆破和用水设备的损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计
课题名称变频恒压供水控制系统设计学院(部)
专业
班级
学生姓名
学号
指导教师(签字)
一、设计概述
变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。

本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。

最终实现控制系统的自动稳定运行。

根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。

本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。

二、设计任务
例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。

采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。

当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。

本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。

水泵有2台,由一台变频器驱动。

PLC按照压力变送器(PIT)的信号,调节变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。

两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。

控制系统原理如图1所示:
PLC
图1 恒压供水变频控制系统原理图
三、系统设备选型
1主要电气元件参数指标
水泵:35KW,三相异步电动机
恒压设定点:1.0Mpa
压力变送器:0-1.6Mpa,两线制,4-20mA电流输出
变频器:VVVF变频器
(1)水泵
根据设计要求水泵正常供水20m3/小时,最大供水量35m3/小时,扬程45m。

参考相关资料选择型号为IS50-32-125(扬程50m,流量50 m3/小时)的水泵即可满足要求。

(2)远传压力表
由于远传压力表具有价格低、有数据读取表盘等优点,结合具体
实际设计,故在此处选择其作为反馈信号。

四、系统控制要求
1、设两台水泵。

一台工作,一台备用。

正常工作时,始终有一台水泵供水。

当工作泵出现故障时,备用泵自投。

2、两台泵可以互换。

3、给定压力可调,压力控制点设在水泵处。

4、具有自动,手动工作方式,各种保护、报警装置。

5、用PLC为主要器件完成控制系统的设计。

五、控制系统实现
1、系统工作原理
工作方式选择:分别闭合总电源开关QF1,控制电路电源开关QF2(此时控制电路电源指示灯HL9亮),变频器电源开关QF3 ,将自动档位开关SA2旋到自动档位,此时触点0001接通,进而使内部辅助触电1001导通,选择工作方式为自动方式。

水泵控制流程图如图2所示:
图2水泵控制流程图
备用泵选择:如选择1号泵为备用泵,则将其备用选择开关SA1旋到1号泵备用档位,此时触电0000被接通,内部辅助触电1002导
通,选择1号泵为备用泵。

如选择2号泵为备用泵,则将其备用选择开关SA1旋到2号泵备用档位,此时常闭触电0000被接通,内部辅助触电1003导通,选择2号泵为备用泵。

自动状态启动:按下启动按钮SB1,PLC内部触电002被接通,此时如果选择1号泵为备用泵则0502触电被接通,2号泵正常工作,1号泵为备用泵。

此时如果选择2号泵为备用泵则0500触电被接通,1号泵正常工作,2号泵为备用泵。

自动状态停止:按下自动停止按钮SB2则PLC内部触点0003被接通,此时可断开0502和0500输出继电器,可使整个系统停止运行。

同时,
手动启动1号泵:分别闭合总电源开关QF1,控制电路电源开关QF2(此时控制电路电源指示灯HL9亮),变频器电源开关QF3 ,将自动档位开关SA2旋到手动档位,此时触电0001被接通,同时常闭触电0001断开,即切除自动状态的功能。

按下SB3启动1号泵工作,触电0004被接通,输出继电器0501动作,启动1号泵工频工作。

手动停止1号泵:按下SB4,触电0005闭合,切断输出继电器0501,1号泵停止工作。

同时常闭触电0501断开,2号泵无法启动。

手动启动2号泵:按下SB5启动2号泵工作,触电0006被接通,输出继电器0503动作,启动1号泵工频工作。

手动停止2号泵:按下SB6,触电0007闭合,切断输出继电器0503,2号泵停止工作。

同时常闭触电0503断开,1号泵无法启动。

故障排除:1号泵热继电器出现故障时,输入端子FR1动作,
接通触点0009,使输出继电器0506接通,点亮HL8。

2号泵热继电器出现故障时,输入端子FR2动作,接通触点0010,使输出继电器0505接通,点亮HL7。

当变频器出现故障时,输入端子BP动作,接通触点0008,使输出继电器0507接通,点亮HL6。

2、信号检测
在系统控制过程中,需要检测的信号包括水压信号、报警信号: (1)水压信号:它反映的是用户管网的水压值,它是恒压供水控制的主要反馈信号。

此信号是模拟信号,读入变频器时,需进行转换。

(2)报警信号:它反映系统是否正常运行,水泵电机是否过载、变频器是否有异常,该信号为开关量信号。

3、PID自动调节原理框图如图3所示
图3 PID自动调节原理框图
为了使输出压力恒定,过压力检测仪表做为检测元件实现压力检测,根据检测仪表的反馈信号由PLC处理并调节变频器输出从而控制电机,使输出压力恒定在1.0Mpa的恒定值下。

4、PID控制器参数选择
根据设计要求结合PID的经验数据,可得其数据:采样周期T=3
秒,比例系数KP=140,积分时间Ti=24秒。

因为供水系统没有较大的惯性环节所以不需要设置微分参数。

5、变频器参数设定
6、部分器件选择
7、PLC外部接线图的设计
PLC根据表1的I/O分配关系和C20P的端子排列位置进行相应的接线,PLC系统外部接线图在中,图中各接触器采用220V电源,信号指示及报警指示灯与接触器共用220V电源。

(PLC外部接线图的设计
如附图1所示)
I/O分配表表1
8、梯形图指令
9、PLC编程梯形图10、主电路的设计
主电路线路如附1所示,图中的M1、M2、为带动水泵的电动机,由于电动机的功率较小,所以三台电动机都采用直接启动方式,各台
电动机分别使用两个接触器控制,KM1和KM3分别控制电动机M1和M2的变频运行。

KM2和KM4分别控制点动机的工频运行。

各电动机分别由FR1、FR2、提供过载保护。

(主电路的设计如附图1所示)六、操作使用说明书
自动启动:分别闭合总电源开关QF1,控制电路电源开关QF2(此时控制电路电源指示灯HL9亮),变频器电源开关QF3 ,将自动档位开关SA2旋到自动档位,如选择1号泵为备用泵,则将其备用选择开关SA1旋到1号泵备用档位。

如选择2号泵为备用泵,则将其备用选择开关SA1旋到2号泵备用档位。

自动启动:按下启动按钮SB1,则系统可自动工作。

自动停止:按下自动停止按钮SB2则可使整个系统停止运行,变频器自动关闭。

如长时间不用最好切断电源QF1、QF2、QF3。

手动启动1号泵:分别闭合总电源开关QF1,1号泵电源开关QF4,控制电路电源开关QF2(此时控制电路电源指示灯HL9亮),将自动档位开关SA2旋到手动档位。

按下SB3启动1号泵工作,按下SB5启动2号泵工作。

手动停车:按下SB4停止1号泵工作,断开电源开关QF4。

按下SB6停止2号泵工作,断开电源开关QF5。

故障排除:根据指示灯可判断其故障具体位置。

当HL8点亮时,说明一号泵热继电器出现故障。

当HL7点亮时,说明二号泵热继电器出现故障。

当HL6点亮时,说明变频器出现故障。

七、设计体会
交流电机变频调速及其应用我们电气工程及其自动化专业学生必修的一门课程,也是比较重要的专业基础课之一,更是我们将来工
作的基础,因此我们没有理由不把它学好。

平时在课堂上不乏有些厌倦老师一个人在那里讲个不停,直到这次课程的设计才感觉到交流电机变频调速及其应用这门课程的趣味性。

然而更让我受益匪浅的是通过对各部分电路的设计,不仅让我复习了以前学过的旧的知识,更让我对某部分电路有了更深一步的理解,因为没有透彻的理解是设计不出来的。

对于总的电路图的拼接也是对我平时学习的分散的知识和章节的一个综合考验,对知识的统一性和连贯性的一个升华。

现在我只是简单的设计出了自己的电路,至于设计的怎么样,我想只能是将就,因为还没有投入使用,还没有调试,更没有运行。

所以我想其中应该是问题百出,有些可能是自己的粗心大意,有些则可能是自己对电力的常规性设计还缺乏种种经验,总之,还请老师能够进一步细心的教导并支出不足之处,学生非常愿意聆听。

并愿老师能在今后的学习中及时纠正学生的错误之处,学生毕竟还是喜欢这门课程的。

八、主要参考资料
1、《交流调速系统》周绍英储方杰机工
2、《建筑电气控制技术》王剑建工
3、《过程控制》金以慧清华
4、富士变频器使用手册
5、电气图用图形符号(国际)
6、《给水排水工程仪表与控制》崔福义建工
7、《水暖空调电气控制技术》孙光伟建工
8、有关杂志、报纸、资料。

相关文档
最新文档