生产管理运筹学软件实例分析
简单的运筹学实际应用案例
![简单的运筹学实际应用案例](https://img.taocdn.com/s3/m/1f375df968dc5022aaea998fcc22bcd127ff4247.png)
简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
管理运筹学的部分案例分析
![管理运筹学的部分案例分析](https://img.taocdn.com/s3/m/d2070e0849649b6649d7475f.png)
精品课件
管理运筹学
12
案例分析—如何合理使用技术培训
因培训而产生的增加值
精品课件
管理运筹学
13
案例分析—光明制造厂经营报告书
Y2=10X0+(0.08X1+0.085X2+0.09X3+0.105X5)×700
精品课件
管理运筹学
14
案例分析—光明制造厂经营报告书
精品课件
管理运筹学
2
案例分析—北方化工厂月生产计划
精品课件
管理运筹学
3
案例分析—北方化工厂月生产计划
X2≦0.05∑xi
X3+X4 ≦X1
Y3 ≦4000
Xi≧0
精品课件
管理运筹学
4
案例分析—监理工程师配置问题
• 目标函数 • 约束条件 • 决案例分析—监理工程师配置问题
精品课件
15
案例分析—北方食品公司投资方案规划
精品课件
管理运筹学
16
案例分析—北方食品公司投资方案规划
精品课件
管理运筹学
17
案例分析—北方食品公司投资方案规划
精品课件
管理运筹学
18
案例分析—北方食品公司投资方案规划
精品课件
管理运筹学
19
案例分析
• 1、北方化工厂月生产计划 • 2、石华建设监理公司监理工程师配置
问题
• 3、北方印染公司就如何合理使用技术 培训费
• 4、光明制造厂经营报告书 • 5、北方食品公司投资方案规划
精品课件
管理运筹学
1
案例分析—北方化工厂月生产计划
1、目标函数 2、成品率问题如何处理 3、约束条件
精品课件
《管理运筹学》案例分析报告
![《管理运筹学》案例分析报告](https://img.taocdn.com/s3/m/c5d503cc58fafab068dc0268.png)
秋季流行服饰与衣料得准备(五人)目从办公室得十层大楼里,凯瑟琳·拉里俯视着下面忙忙碌碌得人流,在充塞着黄色出租车得街道以及乱放着一些买热狗得摊位得人行道上,成群得纽约人来来往往,好不热闹.在这闷热得暑天里,她注视着各类女性得穿衣时尚,心里想得却就是这些人在秋季将会选择怎样得款式.这并非就是她得一时得灵感,而就是她工作得重要得一部分因为她拥有并经营着一家妇女精品时装公司――时尚隧道(TrendLines)公司。
今天对她来说就是很重要得,因为她将与生产部经理泰德·罗森碰面,一起商讨下一个月秋季生产线得生产计划,特别就是在一定得生产能力得基础上确定要各种服装得生产量。
制定下个月得周密得生产计划对于秋季得销售就是至关重要得,因为这些产品在9月份将会上市,而妇女们通常在服装一上市时就会购买大部分得秋天得服饰。
凯瑟琳回转身,走到宽大得玻璃台旁去瞧铺上面得大量得资料及设计图。
她扫视着6个月以前就设计出来得服装图样,各种样式所需要得材料,以及在时装展上通过消费者调研取得得各种样式得需求预测。
现在,她还记得当时就是如何设汁图样并将样品在纽约,米兰与巴黎得服装展上展出,那些天可真就是既兴奋而又痛苦。
最后,她付给六个设计者得总酬金为$860,000.除此外,每次时装展得费用为$2,700,000,包括雇用职业模特、发型师、化妆师,以及衣服得裁制与缝纫、展台背景得设计、模特得走步与排练、会场得租用。
她研究着衣服得样式与所需得材料。
秋季得服装包括职业装与休闲装,而每种服装得价格就是由衣服得质量、材料得成本、人工成本、机器成本,以及对该产品得需求与品牌得知名度等因素来确定得。
她知道已经为下个月采购了下面得这些材料:羊毛45,000码、开司米28,000码、丝绸18,000码、人造纤维30,000码、天鹅绒20,000码、棉布30,000码。
各种材料得价格如下图所示:多余得材料(不包括下脚料)可以运回给衣料供应商,并得到全额得偿还。
管理运筹学案例分析
![管理运筹学案例分析](https://img.taocdn.com/s3/m/6c115d1c83c4bb4cf7ecd1ea.png)
【案例1】某厂排气管车间生产计划的优化分析
1.问题的提出 排气管作为发动机的重要部件之一,极大地影响发动机的性能。某
发动机厂排气管车间长期以来,只生产一种四缸及一种六缸发动机的排 气管。由于其产量一直徘徊不前,致使投资较大的排气管生产线,一直 处于吃不饱状态,造成资源的大量浪费,全车间设备开动率不足50%。
税收
15 16 14.8 17 16.5 14.5 15.6 15.5
售价
150 160.1 149 172 166 145.6 157.8 155.8
利润
13.545 14.00114.99 15.56 15.312 12.8735 15.892 13.74
(元)
注:表中售价为含税价。
表C-3 设备加工能力一览表
【案例2】配料问题
某饲料公司生产肉用种鸡配合饲料,每千克饲料所需营养质量要求如表
C-4所示。
表C-4
营养成分 肉用种鸡国家标准 肉用种鸡公司标准
产蛋鸡标准
代谢能
2.7~2.8Mcal/kg
≥2.7Mcal/kg
≥2.65Mcal/kg
粗蛋白
135 ~145g/kg
135 ~145g/kg
≥151g/kg
x6 菜饼 0.32 1.62 360 113 8.1 7.1 5.3 8.4
x7 鱼粉 1.54 2.80 450 0 29.1 11.8 63 27
x8 槐叶粉 0.38 1.61 170 108 10.6 2.2 4.0 4.0
x9 DL-met 23.0
980
x10 骨粉 0.56
300 140
8.摇臂钻床 4.1 4.0 4.0 4.3 4.2 3.8 4.3 4.3
运筹学实验报告 运用EXCEL解线性规划 报告范文 让利益最大化 生产规划
![运筹学实验报告 运用EXCEL解线性规划 报告范文 让利益最大化 生产规划](https://img.taocdn.com/s3/m/1380750a763231126edb1155.png)
让利益最大化——关于皇氏乳业加工奶制品的生产计划摘要:如今乳制品的市场竞争越来越强,原料成本正在增加,为了提高皇氏乳业的竞争力,提高公司的利润,公司决定开发新产品,原料奶油及中老年奶粉。
先对皇氏乳业的原料成本,生产时间,产品利润等做了一系列调查,建立了线性规划模型,在对模型求解并进行灵敏度分析后,给出具体的对策建议。
关键词:线性规划;生产成本;最优生产计划一、问题的提出经过调查,每一桶牛奶的生产成本和利润如下表:每天至多加工50桶牛奶,机器最多使用480小时,至多加工100kg奶油A1。
(一)如何制定生产计划,使每天获利最大?(二) 35元可以买到一桶牛奶,买吗?若买,每天最多买多少?(三)可聘用临时工人,付出的工资最多是每小时几元?(四)奶油A1的获利增加到30元/公斤,是否改变生产计划?1.问题分析首先,工厂的经济效益主要取决于原料,劳动时间,产品利润等,至于劳动机械磨损,工人熟练程度等,均不予考虑。
所以我们主要研究原料成本,劳动时间,产品利润与工厂经济效益的关系。
2.数据的收集整理对于奶油A1、奶粉A2的产量,询问工厂管理人员得知。
对于加工时间,可以通人力资源管理部门查询。
对于利润,通过近期一个月的销售成绩,综合分析得出。
二、运筹模型1、模型的建立设X1桶牛奶生产奶油A1,X2桶牛奶生产奶粉A2。
Maxz=72X1+64X2St. X1+X2<=5012X1+8X2<=4803X1<=100X1,X2>=02、模型的求解应用EXCEL软件进行求解。
3、灵敏度分析包括对于目标系数(桶数)变化的灵敏度分析结果表和对于约束条件,如原料供应,劳动时间,加工能力等变化的灵敏度分析结果表。
4、结果分析(一)当20桶牛奶生产奶油A1,30桶生产奶粉A2,利润达到3360元,是最大值。
(二)原料增加1单位,利润增加48。
35元<48元,应该买(三)时间增加1单位,利润增加2元,能力增减不影响,所以临时雇用临时工人每小时不超过2元。
管理运筹学案例
![管理运筹学案例](https://img.taocdn.com/s3/m/6f0085385e0e7cd184254b35eefdc8d376ee1410.png)
管理运筹学案例
1.生产计划优化:某家汽车制造公司需要优化其生产计划,以降低成本和提高效率。
管理运筹学通过分析生产流程和数据,建立数学模型来帮助公司优化生产计划。
2. 集装箱装载优化:一家货运公司需要将不同尺寸和重量的物
品装入集装箱,以最大程度地利用空间和降低成本。
管理运筹学通过建立装载模型和运算方法,帮助公司实现最优化装载。
3. 供应链管理:一家服装公司需要优化其供应链,以降低库存
成本、提高订单响应速度和提高客户满意度。
管理运筹学通过分析供应链的各个环节,建立数学模型和算法,帮助公司优化供应链管理。
4. 机场货物分配优化:某个机场需要优化货物分配,以最大程
度地利用仓库和车辆容量,降低运输成本和提高效率。
管理运筹学通过建立货物分配模型和运算方法,帮助机场实现最优化货物分配。
5. 人力资源管理:一家公司需要优化其人力资源管理,以提高
员工的工作效率和满意度,降低人事成本。
管理运筹学通过建立人力资源管理模型和算法,帮助公司实现最优化人力资源管理。
6. 投资组合优化:一家投资公司需要优化其投资组合,以实现
最大化收益和最小化风险。
管理运筹学通过建立投资组合模型和算法,帮助公司实现最优化投资组合。
7. 网络规划优化:一家电信公司需要优化其网络规划,以提高
网络效率和降低成本。
管理运筹学通过建立网络规划模型和算法,帮助公司实现最优化网络规划。
8. 排班优化:一家医院需要优化其医护人员排班,以提高工作效率和员工满意度。
管理运筹学通过建立排班模型和算法,帮助医院实现最优化排班。
管理运筹学之案例分析1:化工厂月生产计划
![管理运筹学之案例分析1:化工厂月生产计划](https://img.taocdn.com/s3/m/266266cc6137ee06eff91872.png)
9.4
5.5 4.0 12.0 0.7
5.4
18.7 7.0 0.22 3.00
4.5
20.7 6.2 0.6
1.7
1.9 6.1 13.9
8.6
19.7 6.21
0.215
0.8 0.165 4.5 1.45
0.1 1.58 0.6 5.8 2.5 0.28 1.3 2.1 0.1 8.95 8.30 31.8 9.8 1.02 0.39
• 3.约束条件
ቤተ መጻሕፍቲ ባይዱ
• ①x1+x3=70%(x1+x2+x3+x4+x5)
• ②x2≤(x1+x2+x3+x4+x5)*5%
• x ≥(x +x ) • 0.094x +0.054x +0.045x +0.017x +0.08
1 3 4 1 2 3 4
6x5≤4000
• x +x +x +x +x ≤800*2*24*30*0.6/10
1 2 3 4 5
• ⑥x1,x2,x3,x4,x5≥0
输入约束条件得:
由运筹学软件运算得:
由上表可知,约束条件4(即原料3的 约束条件)的对偶价格为146.828元,其上 限为4223.232Kg,尚未达到上限,因此阻 碍该厂提高生产能力的瓶颈问题是原料3的 储量不够,所以,该厂可以通过适当多购 买卡车,以供原料3的运输。
有关数据
1.生产概况
有一化工厂现有职工120人,其中生产工人 105人,该厂主要设备是2套提取生产线, 每套生产线容量是800Kg,至少需要10人 看管。该厂每天24小时连续生产,节假日 不停机,从原料投入到成品出线平均需要 10小时,成品率约为60%,该厂只有4t卡车 1辆,可供原材料运输。
《管理运筹学》案例分析报告
![《管理运筹学》案例分析报告](https://img.taocdn.com/s3/m/9a48881633d4b14e84246881.png)
秋季流行服饰与衣料得准备(五人)目从办公室得十层大楼里,凯瑟琳・拉里俯视着下面忙忙碌碌得人流,在充塞着黄色出租车得街道以及乱放着一些买热狗得摊位得人行道上,成群得纽约人来来往往,好不热闹.在这闷热得暑天里,她注视着各类女性得穿衣时尚,心里想得却就是这些人在秋季将会选择怎样得款式•这并非就是她得一时得灵感,而就是她工作得重要得一部分因为她拥有并经营着一家妇女精品时装公司一一时尚隧道(T r en d Lin e s)公司。
今天对她来说就是很重要得,因为她将与生产部经理泰德・罗森碰面,一起商讨下一个月秋季生产线得生产计划,特别就是在一定得生产能力得基础上确定要各种服装得生产量。
制定下个月得周密得生产计划对于秋季得销售就是至关重要得,因为这些产品在9月份将会上市,而妇女们通常在服装一上市时就会购买大部分得秋天得服饰。
凯瑟琳回转身,走到宽大得玻璃台旁去瞧铺上面得大量得资料及设计图。
她扫视着6个月以前就设计出来得服装图样,各种样式所需要得材料,以及在时装展上通过消费者调研取得得各种样式得需求预测。
现在,她还记得当时就是如何设汁图样并将样品在纽约,米兰与巴黎得服装展上展出,那些天可真就是既兴奋而又痛苦。
最后,她付给六个设计者得总酬金为$ 86 0 ,0 00.除此外,每次时装展得费用为$ 2, 70 0,000,包括雇用职业模特、发型师、化妆师,以及衣服得裁制与缝纫、展台背景得设计、模特得走步与排练、会场得租用。
她研究着衣服得样式与所需得材料。
秋季得服装包括职业装与休闲装,而每种服装得价格就是由衣服得质量、材料得成本、人工成本、机器成本,以及对该产品得需求与品牌得知名度等因素来确定得。
秋季得职业装包括秋季得休闲装包括她知道已经为下个月采购了下面得这些材料:羊毛45, 00 0码、开司米2 8,0 00 码、丝绸18,000码、人造纤维30, 000码、天鹅绒2 0,0 00码、棉布30,00 0码。
各种材料得价格如下图所示:多余得材料(不包括下脚料)可以运回给衣料供应商,并得到全额得偿还。
管理运筹学案例设计
![管理运筹学案例设计](https://img.taocdn.com/s3/m/6594b2315bcfa1c7aa00b52acfc789eb162d9e78.png)
管理运筹学案例设计管理运筹学是管理科学中一个重要的分支,通过运用数学、统计学和计算机科学等方法,对管理中的决策问题进行建模、分析和优化。
本文将介绍几个管理运筹学的案例,以帮助读者更好地理解其在实际管理中的应用。
案例一:生产调度优化某工厂生产多个产品,每个产品的生产需要不同的资源和时间。
工厂需要合理安排生产顺序,使得生产效率最大化,成本最小化。
通过管理运筹学的方法,可以建立数学模型来优化生产调度。
首先,我们需要确定每个产品的生产时间和资源需求。
然后,可以使用线性规划等数学方法,设计一个优化模型,以最小化总生产成本为目标函数,同时满足资源约束和交付期限。
案例二:库存管理优化某零售商经营多种商品,需要合理管理库存以满足需求,同时最小化库存成本。
通过管理运筹学的方法,可以建立库存管理模型来优化库存水平。
一种常见的方法是使用动态规划来确定最佳订货数量和补货时机,以最小化库存持有成本和缺货成本的总和。
通过对需求的预测和货架管理的优化,可以实现库存管理的最优化。
案例三:运输路线优化一家物流公司需要合理安排货物的运输路线,以最小化运输成本和时间。
通过管理运筹学的方法,可以设计运输路线优化模型,来寻找最佳的配送方案。
运输路线优化模型可以利用图论和网络优化方法,来确定最短路径和最优运输方案。
通过考虑货物的数量、目的地和运输方式等因素,可以制定最佳的运输策略,实现成本和效率的最优平衡。
结语管理运筹学是管理决策中的重要工具,可以帮助管理者在复杂的环境中做出最佳决策。
通过上述案例的介绍,我们可以看到管理运筹学在生产调度、库存管理和运输路线优化等方面的实际应用。
希望本文能够帮助读者更好地理解管理运筹学的概念和方法,从而在实际管理中取得更好的效果。
生产管理运筹学软件实例分析与求解
![生产管理运筹学软件实例分析与求解](https://img.taocdn.com/s3/m/3dd13a0fce84b9d528ea81c758f5f61fb636285f.png)
生产管理运筹学软件应用件应用案例分析
案例目的:通过分析实际生产管理问题,阐述运筹学软件在解决这些问题中的应用方法和优势。
案例问题:针对某制造企业的生产管理问题,如何运用运筹学软件进行优化和决策?
案例分析:通过对该企业生产管理问题的深入了解,结合运筹学软件的功能特点和应用场景,提 出针对性的解决方案和实施步骤。
案例问题建模
案例背景介绍 问题建模思路 建立数学模型 模型求解过程
案例问题求解过程及结果分析
案例背景介绍:说明案例问题的背景和重要性
建立数学模型:详细描述如何建立生产管理运筹学软件应用的数学模型
求解过程:详细介绍求解该问题的过程,包括使用的算法、计算步骤等 结果分析:对求解结果进行详细的分析和解释,包括结果的可信度、可靠 性等方面的评估
线性规划求解方 法:单纯形法、 迭代法、对偶法 等
线性规划在生产 管理中的应用: 资源分配、生产 计划、成本控制 等
软件实现:Excel 、Python等工具 的使用
非线性规划求解方法
定义:非线性规划是一种求解目标函数和约束条件均为非线性函数的最优 化问题的方法 特点:能够处理多变量、非线性、有约束的最优化问题
生产管理运筹学的应用范围
制造业 物流运输业 服务业 医疗保健业
生产管理运筹学的核心内容
线性规划 动态规划 整数规划 排队论
生产管理运筹学软件介绍
03
软件功能介绍
生产计划与调度:根据市场需求和生产能力,制定合理的生产计划和调度方案 资源优化配置:对生产过程中的资源进行优化配置,提高资源利用效率 质量控制与追溯:对生产过程中的质量数据进行采集、分析和追溯,确保产品质量 数据分析与决策支持:对生产过程中的数据进行挖掘和分析,为决策者提供数据支持
管理运筹学之案例分析1:北方化工厂月生产计划
![管理运筹学之案例分析1:北方化工厂月生产计划](https://img.taocdn.com/s3/m/4f5e1b6bdc36a32d7375a417866fb84ae55cc37d.png)
动态规划
动态规划是一种通过将问题分解为子问题并解决这些子问 题以找到全局最优解的方法。在北方化工厂月生产计划中 ,动态规划可以用来解决具有时间依赖性和状态转移的问 题。
动态规划通过将问题分解为一系列相互依赖的决策,以找 到最优的生产路径。这种方法特别适用于具有重叠子问题 和最优子结构的问题,可以避免重复计算和存储子问题的 解决方案。
THANKS FOR WATCHING
感谢您的观看
管理运筹学之案例分析1北方化工 厂月生产计划
目录
• 案例背景介绍 • 生产计划制定 • 生产计划优化 • 生产计划实施与监控 • 案例总结与启示
01 案例背景介绍
化工厂概况
北方化工厂是一家大型化工企业,主 要生产各类化工产品,如化肥、农药、 塑料等。
该化工厂拥有先进的生产设备和技术, 以及一支高素质的员工队伍。
制定具有一定弹性的生产 计划,以应对市场需求波 动、原材料供应不稳定等 因素。
计划调整策略
根据实际情况,适时调整 生产计划,优化资源配置, 确保生产顺利进行。
跨部门协作
生产部门需与采购、仓储、 销售等部门保持密切沟通, 共同应对生产计划调整带 来的影响。
05 案例总结与启示
月生产计划的成功经验
目标明确
03 生产计划优化
线性规划
线性规划是一种数学优化技术,用于解决具有线性约束和线 性目标函数的最大化或最小化问题。在北方化工厂月生产计 划中,线性规划可以用来确定最优的生产组合,以最小化生 产成本或最大化利润。
线性规划的优点在于其数学模型的简洁性和易解性。通过使 用标准形式的线性规划求解器,可以快速找到最优解。此外 ,线性规划还可以处理多种产品、多阶段生产和多资源约束 的情况。
《管理运筹学》案例分析报告
![《管理运筹学》案例分析报告](https://img.taocdn.com/s3/m/efdd306302768e9951e738e5.png)
秋季流行服饰与衣料的准备(五人)目从办公室的十层大楼里,凯瑟琳·拉里俯视着下面忙忙碌碌的人流,在充塞着黄色出租车的街道以及乱放着一些买热狗的摊位的人行道上,成群的纽约人来来往往,好不热闹。
在这闷热的暑天里,她注视着各类女性的穿衣时尚,心里想的却是这些人在秋季将会选择怎样的款式。
这并非是她的一时的灵感,而是她工作的重要的一部分因为她拥有并经营着一家妇女精品时装公司――时尚隧道(TrendLines)公司。
今天对她来说是很重要的,因为她将与生产部经理泰德·罗森碰面,一起商讨下一个月秋季生产线的生产计划,特别是在一定的生产能力的基础上确定要各种服装的生产量。
制定下个月的周密的生产计划对于秋季的销售是至关重要的,因为这些产品在9 月份将会上市,而妇女们通常在服装一上市时就会购买大部分的秋天的服饰。
凯瑟琳回转身,走到宽大的玻璃台旁去看铺上面的大量的资料及设计图。
她扫视着6个月以前就设计出来的服装图样,各种样式所需要的材料,以及在时装展上通过消费者调研取得的各种样式的需求预测。
现在,她还记得当时是如何设汁图样并将样品在纽约,米兰和巴黎的服装展上展出,那些天可真是既兴奋而又痛苦。
最后,她付给六个设计者的总酬金为$860,000。
除此外,每次时装展的费用为$2,700,000,包括雇用职业模特、发型师、化妆师,以及衣服的裁制与缝纫、展台背景的设计、模特的走步与排练、会场的租用。
她研究着衣服的样式和所需的材料。
秋季的服装包括职业装和休闲装,而每种服装的价格是由衣服的质量、材料的成本、人工成本、机器成本,以及对该产品的需求与品牌的知名度等因素来确定的。
她知道已经为下个月采购了下面的这些材料:羊毛45,000码、开司米28,000码、丝绸18,000码、人造纤维30,000码、天鹅绒20,000码、棉布30,000码。
各种材料的价格如下图所示:多余的材料(不包括下脚料)可以运回给衣料供应商,并得到全额的偿还。
管理运筹学有关最优方案的案例分析报告
![管理运筹学有关最优方案的案例分析报告](https://img.taocdn.com/s3/m/50456b176c175f0e7cd137ca.png)
第一部分一、案例名称:北方印染公司应如何合理使用技术培训费。
二、案例目的:确定培养方案,使企业增加的产值最多。
三、案例分析:由案例给出的信息,可以设十三个变量,分别为x1、x2、x3、x4、x5、x6、x7、x8、x9、x10、x11、x12、x13。
其分别代表的含义是,第一年由高中生培养初级工的人数,第二年由高中生培养初级工的人数,第三年由高中生培养初级工的人数,由高中生培养中级工的人数,由高中生培养高级工的人数,第一年由初级工培养中级工的人数,第二年由初级工培养中级工的人数,第三年由初级工培养中级工的人数,第一年由初级工培养高级工的人数,第二年由初级工培养高级工的人数,第一年由中级工培养高级工的人数,第二年由中级工培养高级工的人数,第三年由中级工培养高级工的人数。
为了更加直观的各个变量的含义,可以用如下表格展现各个变量的含义,以便于理解和分析。
根据培养一名初级工在高中毕业后需要一年,费用为1000元;培养一名中级工,高中毕业后第一年费用为3000元;培养一名高级工,高中毕业后第一年费用为3000元;由初级工培养为中级工需一年且费用为2800元;由初级工培养为高级工第一年且费用为2000元;由中级工培养为高级工需一年且费用为3600元。
并且根据第一年的投资为55万。
可以列出如下约束条件:1000x1+3000x4+3000x5+2800x6+2000x9+3600x11≤550000。
根据培养一名初级工在高中毕业后需要一年,费用为1000元;培养一名中级工,高中毕业后第二年费用为3000元;培养一名高级工,高中毕业后第一年费用为2000元;由中级工培养为高级工需一年且费用为3600元;由初级工培养为中级工需一年且费用为2800元;由初级工培养为高级工第一年且费用为2000元;由中级工培养为高级工需一年且费用为3600元。
并且根据第二年的投资为45万。
可以列出如下约束条件:1000x2+3000x4+2000x5+2800x7+3200x9+2000x10+36 00x12≤450000。
管理运筹学lindo案例分析报告
![管理运筹学lindo案例分析报告](https://img.taocdn.com/s3/m/ca7dffeb77232f60ddcca1ca.png)
管理运筹学lindo案例分析⑻Lindo的数据分析及习题用该命令产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么围(此时假定其它系数不变)时,最优基保持不变。
灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。
为了激活灵敏性分析,运行LINGO|Options…,选择General Solver Tab , 在Dual Computations 列表框中,选择Prices and Ranges 选项。
灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。
下面我们看一个简单的具体例子。
例5.1某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。
生产数据如下表所示:用DESKS TABLES和CHAIRS分别表示三种产品的生产量,建立LP模型。
max=60*desks+30*tables+20*chairs;8*desks+6*tables+chairs<=48;4*desks+2*tables+1.5*chairs<=20;2*desks+1.5*tables+.5*chairs<=8;tables<=5;求解这个模型,并激活灵敏性分析。
这时,查看报告窗口(Reports Window),可以看到如下结果。
Global optimal solution found at iteration:3Objective value:280.0000Variable Value Reduced CostDESKS 2.0000000.000000TABLES0.000000 5.000000CHAIRS8.0000000.000000Row Slack or Surplus Dual Price1280.0000 1.000000224.000000.00000030.00000010.0000040.00000010.000005 5.0000000.000000“ Global optimal solution found at iteration: 3 ”表示 3 次迭代后得到全局最优解。
运筹学案例的分析
![运筹学案例的分析](https://img.taocdn.com/s3/m/8f33569d294ac850ad02de80d4d8d15abf230061.png)
运筹学案例的分析一、案例背景介绍本案例涉及一家制造业公司,该公司生产和销售汽车零部件。
由于市场竞争激烈,公司面临着多个挑战,如供应链管理、生产调度和库存管理等方面存在问题。
为了解决这些问题,公司决定运用运筹学方法进行分析和优化。
二、问题分析1. 供应链管理问题公司的供应链管理存在一些瓶颈,如供应商选择、物流运输和库存管理等方面存在问题。
如何优化供应链,降低成本,提高效率是一个亟待解决的问题。
2. 生产调度问题公司的生产线存在一些瓶颈,导致生产效率低下和交货周期延长。
如何优化生产调度,提高生产效率,缩短交货周期是公司急需解决的问题。
3. 库存管理问题公司面临着库存管理方面的挑战,如库存过高、库存周转率低等问题。
如何优化库存管理,降低库存成本,提高库存周转率是公司亟需解决的问题。
三、运筹学方法的应用为了解决上述问题,公司决定运用运筹学方法进行分析和优化。
具体应用如下:1. 供应链管理优化通过对供应链进行建模和分析,确定关键节点和瓶颈环节,优化供应商选择和物流运输方案,以降低成本和提高效率。
同时,建立合理的库存管理模型,通过合理的库存控制策略,降低库存成本,提高库存周转率。
2. 生产调度优化通过对生产线进行建模和分析,确定生产瓶颈和瓶颈环节,优化生产调度方案,提高生产效率和缩短交货周期。
同时,建立合理的生产计划和排程模型,通过合理的生产计划和排程策略,提高生产效率和减少交货周期。
3. 库存管理优化通过对库存管理进行建模和分析,确定库存管理的关键指标和影响因素,优化库存管理策略,降低库存成本和提高库存周转率。
同时,建立合理的库存控制模型和库存管理系统,通过合理的库存控制和管理策略,降低库存成本和提高库存周转率。
四、数据分析和模型建立为了进行运筹学分析和优化,公司需要收集相关的数据,并建立相应的模型。
数据可以包括供应链的各个环节的成本、时间和效率等指标,生产线的各个环节的生产能力和效率等指标,以及库存管理的各个环节的库存成本和库存周转率等指标。
管理运筹学 案例分析
![管理运筹学 案例分析](https://img.taocdn.com/s3/m/ae654824001ca300a6c30c22590102020740f2f5.png)
管理运筹学案例分析案例背景在当今的商业环境中,管理运筹学扮演着至关重要的角色。
通过运用数学模型和分析技术,管理运筹学帮助企业有效地利用资源、提高效率和降低成本。
本文将通过一个实际案例来说明管理运筹学在企业管理中的应用和重要性。
案例描述ABC公司是一家制造业企业,面临着生产线的调度和管理难题。
公司生产多种不同产品,每种产品需要经过不同的加工工序,而每个工序的加工时间和资源消耗也不同。
在生产线上,不同的产品需要按照特定的顺序进行生产,以确保生产效率最大化。
然而,由于订单量的波动和资源限制,公司经常遇到生产调度不当、生产效率低下的问题。
问题分析ABC公司的管理团队意识到需要寻找一种方法来优化生产线的调度,提高生产效率。
他们决定运用管理运筹学的方法来解决这一问题。
通过建立数学模型和运用优化算法,他们希望找到一个最优的生产调度方案,使得生产效率达到最高,同时满足订单需求和资源限制。
解决方案ABC公司首先对生产线的各个工序进行了详细的分析和测量,确定了每个产品在每个工序的加工时间和资源消耗。
然后,他们建立了一个数学模型,以最小化总生产时间和成本为优化目标,同时考虑到订单优先级和资源限制等约束条件。
通过运用线性规划和整数规划等数学优化方法,ABC公司得到了一个最优的生产调度方案。
他们调整了各个工序的生产顺序,合理安排了各种产品的生产数量,最大限度地提高了生产效率,减少了生产时间和成本。
成果评估经过实际实施和运用,ABC公司发现新的生产调度方案确实带来了显著的效益。
生产效率得到了提高,订单交付时间缩短,生产成本也减少了。
公司不仅提高了客户满意度,还降低了生产的风险和压力。
结论通过本案例的分析,我们可以看到管理运筹学在企业管理中的重要性和价值。
通过运用数学模型和优化算法,企业可以找到最佳的决策方案,提高效率、降低成本、增加利润。
管理运筹学不仅可以帮助企业解决实际问题,还可以提升企业的竞争力和可持续发展能力。
以上是对管理运筹学在实际案例中的分析和应用,希望能够给企业管理者带来启发和借鉴。
运筹学案例分析报告示例
![运筹学案例分析报告示例](https://img.taocdn.com/s3/m/43dc7a8d6c175f0e7cd137eb.png)
食油生产问题(案例一)分析报告一、模型构造1.1 变量设置设两种硬质油代号分别为HD1、HD2(HD代表Hard),三种软质油代号分别为SF1、SF2、SF3(SF代表Soft)。
每种油的采购(Buy)、耗用(Use)和储存(Store)量分别在油品的代号前加B、U和S表示。
1—6月份5种油品的采购、耗用和储存量分别在油品代号后面加1—6表示。
总产量用PROD(Product)表示。
第一种硬质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BHD11,BHD12,BHD13,BHD14,BHD15,BHD16;UHD11,UHD12,UHD13,UHD14,UHD15,UHD16;SHD11,SHD12,SHD13,SHD14,SHD15;第二种硬质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BHD21,BHD22,BHD23,BHD24,BHD25,BHD26;UHD21,UHD22,UHD23,UHD24,UHD25,UHD26;SHD21,SHD22,SHD23,SHD24,SHD25;第一种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BSF11,BSF12,BSF13,BSF14,BSF15,BSF16;USF11,USF12,USF13,USF14,USF15,USF16;SSF11,SSF12,SSF13,SSF14,SSF15;第二种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
BSF21,BSF22,BSF23,BSF24,BSF25,BSF26;USF21,USF22,USF23,USF24,USF25,USF26;SSF21,SSF22,SSF23,SSF24,SSF25;第三种软质油六个月的采购量、耗用量、月末储存量共有17变量,其中,六月末的存储量为500吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
序言本实验指导书紧密配合《运筹学》课程的理论教案,系统地介绍了教案应用软件WINQSB (Quantitation Systems for Business Plus)和最新的建模与求解方法( Excel Spreadsheet方法)。
WINQSB是运筹学上机实验软件,它技术成熟稳定,内容齐全,使用方便,对于加深理解课程内容,提高初学者学习掌握本课程的兴趣具有良好的补充作用。
Excel Spreadsheet建模与求解方法是近年来国际上在经管科学教案与应用方面流行而有效的方法。
它为经管科学提供了一种问题描述、数据处理、模型建立与求解的有效工具,是在Excel(或其它)背景下就所需求解的问题进行描述与展开,然后建立数学模型,并使用Excel的命令与功能进行预测、模拟、决策、优化等运算与分析。
指导书分为两部分,第一部分是WINQSB的使用,通过五个实验来完成,每个实验主要包括三个方面内容:①内容简介;②操作步骤;③实例分析与操作,另外对WINQSB进行了简要说明。
第二部分是Spreadsheet建模与求解方法介绍,以实例的形式说明其中的重点和常用部分,实验内容基本同winQSB,对其余内容感兴趣的同学可参考相关资料自学。
五个实验分别为:①线性规划;②灵敏度分析;③运输问题;④整数规划;⑤图与网络分析。
目录第一部分 WinQSB软件操作指南21. WinQSB软件简介22. WinQSB的一般操作33. WinQSB的求解模块3第二部分 WINQSB实验内容51.实验教案目的和要求52.实验工程名称和学时分配63.单项实验的内容和要求6实验1:线性规划的WinQSB应用6实验1作业11实验2:对偶线性规划的WinQSB应用12实验2作业14实验3:运输问题的WINQSB应用16实验4:整数规划的WinQSB应用26实验4作业27实验5:指派问题的WINQSB应用27实验5作业29实验6:网络问题的WINQSB应用30实验6作业39第三部分 Spreadsheet建模与求解41第一章Spreadsheet建模41第一节模型的概念与建立41第二节Spreadsheet方法的应用41第二章应用Spreadsheet方法建立运筹学模型与求解45第一节线性规划问题建模和求解45第二节运输问题49第四节最大流问题54第一部分WinQSB软件操作指南1.WinQSB软件简介QSB是Quantitative Systems for Business的缩写,早期的版本是在DOS操作系统下运行的,后来发展成为在Windows操作系统下运行的WinQSB软件,目前已经有2.0版。
该软件是由美籍华人Yih-Long Chang 和Kiran Desai 共同开发,可广泛应用于解决经管科学、决策科学、运筹学及生产经管等领域的问题。
该软件界面设计友好,使用简单,使用者很容易学会并用它来解决经管和商务问题,表格形式的数据录入以及表格与图形的输出结果都给使用者带来极大的方便,同时使用者只需要借助于软件中的帮助文件就可以学会每一步的操作。
2. WinQSB 的一般操作(1)安装与启动点击WinQSB 安装程序的Setup ,指定安装目录后,软件自动完成安装。
读者在使用该软件时,只需要根据不同的问题,调用程序当中的不同模块,操作简单方便。
进入某个模块以后,第一项工作就是建立新问题或者打开已经存盘的数据文件。
在WinQSB 软件安装完成后,每一个模块都提供了一些典型的例题数据文件,使用者可以先打开已有的数据文件,了解数据的输入格式,系统能够解决什么问题,结果的输出格式等内容。
例如,打开线性规划文件LP.LPP ,系统显示如图A.1的界面。
图1-1(2)数据的录入与保存数据的录入可以直接录入,同时也可以从Excel 或Word 文档中复制数据到WinQSB 。
首先选中要复制的电子表格中单元格的数据,点击复制,然后在WinQSB 的电子表格编辑状态下选择要粘贴的单元格,点击粘贴即可。
如果要把WinQSB 中的数据复制到office 文档中,选中WinQSB 表格中要复制的单元格,点击Edi t →Copy ,to clipboard 即可。
数据的保存,只需要点击File →Save as 即可,计算结果的保存亦相同,只是注意系统以文本格式(*.txt )保存结果,使用者可以编辑该文本文件。
3.WinQSB 的求解模块程序名菜单栏标题栏工具、各式编辑栏信息栏关于WinQSB的各种模块及其功能,我们在下表中给出详细的说明。
分析第二部分WINQSB实验内容课程名称:运筹学/Operations Research实验总学时数:16适用专业:经管科学与工程本科专业1.实验教案目的和要求本实验与运筹学理论教案同步进行。
指导思想:运筹学是经管类学科的专业基础课,重点介绍运筹学模型和方法。
对于在实际问题中的应用,往往模型具有较大的规模,常常需要借助于计算机这样的工具,才有可能得到最终的计算结果。
经过上机实验,可使学生更好运用课堂上讲授的方法去解决实际问题,检测自己解决实际问题的能力。
同时,会加深对实际应用的理解,做到学以致用。
目的:(1)熟练使用相关软件;(2)初步学会用运筹学方法解决实际问题;(3)加深对课堂内容的理解和消化。
充分发挥WinQSB软件的强大功能和先进的计算机工具,改变传统的教案手段和教案方法,将软件的应用引入到课堂教案,理论与应用相结合。
丰富教案内容,提高学习兴趣。
使学生能基本掌握WinQSB软件常用命令和功能。
要求:(1)熟悉程序的使用(2)学会对运算结果的分析;(3)学会根据运算结果修正模型。
熟悉WinQSB软件子菜单。
能用WinQSB软件求解运筹学中常见的数学模型。
实验考核(1)出勤检查,上机作业检查;(2)上机实验考试,占总成绩10%左右。
2. 实验工程名称和学时分配3. 单项实验的内容和要求 实验1:线性规划的WinQSB 应用(一)实验目的:安装WinQSB 软件,了解WinQSB 软件在Windows 环境下的文件经管操作,熟悉软件界面内容,掌握操作命令。
用WinQSB 软件求解线性规划。
(二)内容和要求:安装与启动软件,建立新问题,输入模型,求解模型,结果的简单分析。
(三)操作步骤:1.将WinQSB 文件复制到本地硬盘;在WinQSB 文件夹中双击setup.exe 。
2.指定安装WinQSB 软件的目标目录(默认为C:\ WinQSB )。
3. 安装过程需输入用户名和单位名称(任意输入),安装完毕之后,WinQSB 菜单自动生成在系统程序中。
4.熟悉WinQSB 软件子菜单内容及其功能,掌握操作命令。
5.求解线性规划。
启动程序开始→程序→WinQSB→Linear and Integer Programming 。
6.学习例题点击File→Load Problem→lp.lpp, 点击菜单栏Solve and Analyze 或点击工具栏中的图标用单纯形法求解,观赏一下软件用单纯形法迭代步骤。
用图解法求解,显示可行域,点击菜单栏Option →Change XY Ranges and Colors ,改变X1、X2的取值区域(坐标轴的比例),单击颜色区域改变背景、可行域等8种颜色,满足你的个性选择。
下面结合例题介绍WinQSB 软件求解线性规划的操作步骤及应用。
例1. 用WinQSB 软件求解下列线性规划问题:1234max657Z x x x x =+++s.t. 12341234123123431234269260852150730001020,,0,x x x x x x x x x x x x x x x x x x x x +++≤⎧⎪-+-≥⎪⎪++=⎪-≥⎨⎪-≥⎪≤≤⎪⎪≥⎩无约束解:应用WinQSB 软件求解线性规划问题不必化为规范型,如果是可以线性化的模型则先线性化,对于有界变量及无约束变量可以不用转化,只需要修改系统的变量类型即可,对于不等式约束可以在输入数据时直接输入不等式符号。
(1)启动线性规划(LP )和整数规划(ILP )程序点击开始→程序→WinQSB →Linear and Integer Programming ,显示线性规划和整数规划工作界面(注意菜单栏、工具栏和格式栏随主窗口内容变化而变化)。
这一程序解决线性规划(LP )以及整数线性规划(ILP )问题。
IP-ILP 的特殊性能包括: ● LP 的单纯形法与图形法 ● ILP 的分枝定界法 ● 显示单纯形表● 显示分枝定界法解决技术方案 ● 执行灵敏性或参数分析 ● 寻求可选择的解决● 对不可行问题进行不可行分析 ● 用电子表格矩阵式输入问题 ● 用普通模型形式输入问题 ● 定制变量边界与类型 ● 自动生成对偶问题(2)建立新问题或者打开磁盘中已有的文件点击File →New Problem 建立一个新问题。
输入本问题的文件名称lp1(读者可以任意取名),决策变量个数4和约束条件个数5,由于本问题是一个最大化问题,所以选择Maximization ,同时可以确定数据的输入形式,一种为表单形式,一种为模型形式。
如果我们选择了表单形式,如图2-1所示。
(3)输入数据按照例1以表格或模型形式输入变量系数和右端常数数据。
(4)修改变量类型图1-3种给出了非负连续、非负整数、0-1型和无符号限制或者无约束4种变量类型选项,当选择了某一种类型后系统默认所有变量都属于该种类型。
在例1中,31020x ≤≤,直接将3x 中图1-1 LP-ILP 模块的主要功能目标函数取极大还是极小进行选择数据输入方式选择: 表单式、一般模型形式约束条件个数决策变量个数数据类型定义图1-2 LP-ILP 模型基础设定的下界(Lower Bound )改为10,上界(Upper Bound )改为20。
把4x 设定为无约束(Unrestricted ),M 是一个任意大的正数。
得到如表1-1所示的表格。
表1-1 初始单纯型表(5)修改变量名和约束名。
系统默认变量名为X1,X2,…,Xn ,约束名为C1,C2,…,Cm 。
默认名可以修改,点击菜单栏Edit 后,下拉菜单有四个修改选项:修改标题名(Problem Name)、变量名(Variable Name)、约束名(Constraint Name)和目标函数准则(max 或min)。
由于WinQSB 软件支持中文,读者可以输入中文名称。
(6)求解点击菜单栏Solve and Analyze ,下拉菜单有三个选项:求解不显示迭代过程(Solve theProblem )、求解并显示单纯形法迭代步骤(Solve and Display Steps)及图解法(Graphic Method ,限两个决策变量)。