阻尼自由振动例题
阻尼对振动的影响
![阻尼对振动的影响](https://img.taocdn.com/s3/m/ac6009b8ba0d4a7302763adb.png)
设特解为:y=Asinθt +Bcos θt代入上式得:
A F
2 2
, B F
2
m ( 2 2 )2 4 2 2 2
m ( 2 2 )2 4 2 2 2
齐次解加特解得到通解:
y {et C1cosrt C2 sinrt} +{Asin θt +Bcos θt }
2f 4.48 1s
(3)阻尼特性
1 ln 2 0.0355, 2 1.6
r
12
1
(0.999) 2
(4)6周后的振幅
y0 y1
e t0 e (t0 T )
eT
y0 y6
e t0 e (t0 6T )
e6T
•当θ<<ω时,α→0°体系振动得很慢,FI、FD较小,动荷主
要由FS平衡,FS与y反向,y与P基本上同步;荷载可作静荷 载处理。
•当θ>>ω时,α→180°体系振动得很快,FI很大,FS、FD相对
说来较小,动荷主要由FI 平衡, FI 与y同向,y与P反向;
y yP sin(t ), FS ky kyP sin(t ), FI my m 2 yP sin(t ), FD cy c yP cos(t )
ξ >1
大阻尼
ξ =1
临界阻尼
ξ<1
小(弱)阻尼
1)低阻尼情形 ( <1 )
令 r 1 2
λi=-ωξ ± iωr
方程的一般解为:
y(t) et (C1 cosrt C2 sin rt)
由初始条件确定C1和C2;
设
单自由度系统的有阻尼自由振动
![单自由度系统的有阻尼自由振动](https://img.taocdn.com/s3/m/b10aba017cd184254b353528.png)
0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18
教科版高中物理选择性必修第一册第二章第5节阻尼振动 受迫振动
![教科版高中物理选择性必修第一册第二章第5节阻尼振动 受迫振动](https://img.taocdn.com/s3/m/201a8730ec630b1c59eef8c75fbfc77da369975e.png)
常见例子
由系统本身 性质决定, 即固有周期 或固有频率
由驱动力的
周期或频率决ຫໍສະໝຸດ ,即T= T驱或f=f驱T驱=T固或f驱 =f固
振动物体的 机械能不变
弹簧振子或 单摆
由产生驱动 力的物体提
供
机械工作时 底座发生的
振动物体获得 的能量最大
共振筛、声音 的共鸣等
四、共振的应用和防止
美国有一农场农妇,习惯于用吹笛的方式招 呼丈夫回家吃饭,可当她有一次吹笛时,居然发 现树上的毛毛虫纷纷坠地而死,惊讶之余,她到 自己的果园吹了几个小时,一下子将果树上的毛 毛虫收拾的一干二净,究其原因,还是笛子发出 的声音引起毛毛虫内脏发生剧烈共振而死亡。
微波炉加热原理: 食物中水分子的振动频率约为2500MHz ,具有
大致相同频率的电磁波称为 “微波” 。微波炉加 热食品时,炉内产生很强的振荡电磁场,使食物中 的水分子作受迫振动,发生共振,将电磁辐射能转 化为内能,从而使食物的温度迅速升高。微波加热 是对物体内部的整体加热,极大地提高了加热效率。
2.5 阻尼振动 受迫振动
一、阻尼振动
如图所示,在鼓皮上放几颗米 粒,猛敲一下鼓,观察米粒在鼓皮 上的运动.
猛敲一下鼓皮,开始时鼓声很大,随后迅速变弱.在鼓 皮上放一些米粒,开始时它跳动的幅度很大,随着鼓声变弱 ,米粒跳动的幅度变小.由此可知,鼓皮振动的振幅变小了. 这是振动的鼓皮受到阻力的缘故.弹簧振子和单摆在振动过 程中振幅总会不断减小,这是因为它们不可避免地要受到摩 擦力等阻力的作用.
25m/s
4、如图所示,在曲轴A上悬挂一个弹簧振子,如果不转动把 手B而用手拉振子,放手后让其上下振动,其作30次全振动 所用的时间是15s.如果匀速转动把手,弹簧振子也可上下振 动.若把手以30r/min的转速匀速转动,当弹簧振子的振动稳
实验题目悬臂梁一阶固有频率及阻尼系数测试
![实验题目悬臂梁一阶固有频率及阻尼系数测试](https://img.taocdn.com/s3/m/1aded3ecfad6195f302ba61c.png)
实验题目悬臂梁一阶固有频率及阻尼系数测试说明:在下面的数据处理中,如11A ,11d T ,1δ,1ξ,1n T ,1n ω:表示第一次实验中第一、幅值、对应幅值时间、变化率、阻尼比、无阻尼固有频率。
第二次和和三次就是把对应的1改成2或3.由于在编缉公式时不注意2,3与平方,三次方会引起误会,请老师见谅!!Ap0308104 陈建帆 2006-7-1实验题目:悬臂梁一阶固有频率及阻尼系数测试一、 实验要求以下:1. 用振动测试的方法,识别一阻尼结构的(悬臂梁)一阶固有频率和阻尼系数;2. 了解小阻尼结构的衰减自由振动形态;3. 选择传感器,设计测试方案和数据处理方案,测出悬臂梁的一阶固有频率和阻尼根据测试曲线,读取数据,识别悬臂梁的一阶固有频率和阻尼系数。
二、实验内容识别悬臂梁的二阶固有频率和阻尼系数。
三 、测试原理概述:1,瞬态信号可以用三种方式产生,有脉冲激振,阶跃激振,快速正弦扫描激振。
2,脉冲激励 用脉冲锤敲击试件,产生近似于半正弦的脉冲信号。
信号的有效频率取决于脉冲持续时间 τ,τ越小则频率范围越大。
3. 幅值:幅值是振动强度的标志,它可以用峰值、有效值、平均值等方法来表示。
频率:不同的频率成分反映系统内不同的振源。
通过频谱分析可以确定主要频率成分及其幅值大小,可以看到共振时的频率,也就可以得到悬臂梁的固有频率 4、阻尼比的测定自由衰减法 : 在结构被激起自由振动时,由于存在阻尼,其振幅呈指数衰减波形,可算出阻尼比。
一阶固有频率和阻尼比的理论计算如下:113344423.515(1)2=210;70;4;285;7800;,1212,, Ix= 11.43 cm Iy= 0.04 cm 0.004 2.810,,1x y y f kg E pa b mm h mm L mm mab a bI I I m m E L πρρ-----------⨯======⨯=⨯固x y =式惯性矩:把数据代入I 后求得载面积:S =bh=0.07m 把S 和I 及等数据代入()式,求得本41.65()HZ 固理悬臂梁理论固有频率f =阻尼比计算如下:2221111220,2,........ln ,,22;n d n n nd n d n T ii i j ji i i i j i i i j i n d i jn d n d d d d x dx c kx dt dtc e A A A A A T A T T ξωξωωξωωωξωωηηδξωωωωωπδπξ++-++++++++=++===≈==⨯⨯⨯==≈2二阶系统的特征方程为S 微分方程:m 很少时,可以把。
《振动力学》习题集(附答案解析)
![《振动力学》习题集(附答案解析)](https://img.taocdn.com/s3/m/da41926b87c24028905fc313.png)
(1)保持水平位置:
(2)微幅转动:
故:
2.10求图T 2-10所示系统的固有频率,刚性杆的质量忽略不计。
图 T 2-10答案图 T 2-10
解:
m的位置:
, ,
,
,
2.11 图T 2-11所示是一个倒置的摆。摆球质量为m,刚杆质量可忽略,每个弹簧的刚度为 。
(1)求倒摆作微幅振动时的固有频率;
(3)
故:
由(3)得:
2.5在图E2.3所示系统中,已知m,c,k, 和 ,且t=0时, , ,求系统响应。验证系统响应为对初值的响应和零初值下对激励力响应的叠加。
图E2.3
解:
,
求出C,D后,代入上面第一个方程即可得。
2.7 由一对带偏心质量的等速反向旋转齿轮构成的振动机械安装在弹簧和阻尼器构成的支承上,如图E2.7所示。当齿轮转动角速度为 时,偏心质量惯性力在垂直方向大小为 。已知偏心重W= 125.5N,偏心距e=15.0cm,支承弹簧总刚度系数k= 967.7N/cm,测得垂直方向共振振幅 ,远离共振时垂直振幅趋近常值 。求支承阻尼器的阻尼比及在 运行时机器的垂直振幅。
,当 时
重复n次得到:
,等号两边左乘
故:
,等号两边左乘
,当 时
即 ,当 时
重复运算:
,当 时
重复n次。
2.10图T 4-11所示的均匀刚性杆质量为m1,求系统的频率方程。
图 T 4-11
解:
先求刚度矩阵。
令 , ,得:
令 , ,得:
答
则刚度矩阵为:
再求质量矩阵。
令 , ,得:
,
令 , ,得:
,
则质量矩阵为:
(2)摆球质量m为0.9 kg时,测得频率 为1.5 Hz,m为1.8 kg时,测得频率为0.75 Hz,问摆球质量为多少千克时恰使系统处于不稳定平衡状态?
[美]R.克里夫《结构动力学》补充详解及习题解
![[美]R.克里夫《结构动力学》补充详解及习题解](https://img.taocdn.com/s3/m/198055225627a5e9856a561252d380eb629423b8.png)
前言结构动力学是比较难学的一门课程,但是你一旦学会并且融会贯通,你就会为成为结构院士、大师和总工垫定坚实的基础。
结构动力学学习的难点主要有以下两个方面。
1 概念难理解,主要表现在两个方面,一是表达清楚难,如果你对概念理解的很透彻,那么你写的书对概念的表述也会言简意赅,切中要害(克里夫的书就是这个特点),有的书会对一个概念用了很多文字进行解释,但是还是没有说清楚,也有的书受水平限制,本身表述就不清楚。
二是理解难,有点只可意会不可言传的味道,老师讲的头头是道,自己听得云山雾绕。
2 公式推导过程难,一是力学知识点密集,推导过程需要力学概念清析,并且需要每一步的力学公式熟悉;二是需要一定的数学基础,而且有的是在本科阶段并没有学习的数学知识。
克里夫《结构动力学》被称为经典的结构动力学教材,但是也很难看懂。
之所以被称为经典,主要就是对力学的概念表达的语言准确,概念清楚。
为什么难懂呢?是因为公式的推导过程比较简单,省略过多。
本来公式的推导过程既需要力学概念清楚也需要数学公式熟悉,但是一般人不是力学概念不清楚,就是数学公式不熟悉,更有两者都不熟悉者。
所以在学习过程中感觉很难,本学习详解是在该书概念清楚的基础上,对力学公式推导过程进行详细推导,并且有的加以解释,帮助你在学习过程中加深理解和记忆。
达到融会贯通,为你成为结构院士、大师和总工垫定坚实的基础。
以下黑体字是注释,其它为原书文字。
[美] R∙克里夫《结构动力学》辅导学习详解第1章结构动力学概述… …第Ⅰ篇单自由度体系第2章基本动力体系的组成… …§2-5 无阻尼自由振动分析如上一节所述,有阻尼的弹簧-质量体系的运动方程可表示为mv̈(t)+cv̇(t)+kν(t)=p(t)(2-19)其中ν(t)是相对于静力平衡位置的动力反应;p(t)是作用于体系的等效荷载,它可以是直接作用的或是支撑运动的结构。
为了获得方程(2-19)的解,首先考虑方程右边等于零的齐次方程,即mv̈(t)+cv̇(t)+kν(t)=0(2-20)mv(t)+kν(t)=0(2-20a)此处公式应该为mv(t)+kν(t)=0,因为该节是无阻尼自由振,而且(2-20)的解,式(2-21)也是公式mv(t)+kν(t)=0的解在作用力等于零时产生的运动称为自由振动,现在要研究的即为体系的自由振动反应。
机械振动第2章(习题)
![机械振动第2章(习题)](https://img.taocdn.com/s3/m/ddf1513d76a20029bc642d5a.png)
1 / 21第二章 单自由度系统习题2.1 弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:2n=g/δ运动微分方程(式2.5):x +2nx=0初始条件:x (0)=3δ,x(0)=0 由式2.8有:A=2020)(ωnxx +=3δ=arctgnx xω00 =0由式2.7有: 响应:x =3δcos(δg t)2.2 弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
解:ω2n =g/δ=9.8/0.2=49运动微分方程(式2.5):x +ω2n x=0 初始条件:x (0)=-0.2,x(0)=0 由式2.8有:振幅:A=2020)(ωnxx +=0.2ϕ=arctgnx xω00 =0由式2.7有: 响应:x=0.2cos(7t) 周期:T=2/ωn弹簧刚度:k=mg/δ=19.8/0.2=49(N/m)最大弹簧力:F Smax =-kA=-490.2=9.8(N)2.3 重物m l 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物m 2从高度为h 处自由落到m l 上而无弹跳,如图T —2.3所示,求其后的运动。
图 T —2.3解:ω2n =k/(m 1+m 2)运动微分方程(式2.5):x+2nx=0初始条件:x (0)=- m 2g/km 2gh=21(m 1+m 2)x2(0)⇒ x (0) (以下略)2.4 一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆3 / 21心受到一弹簧k 约束,如图T —2.4所示,求系统的固有频率。
图 T —2.4解:系统的势能:U=21kr 2θ2系统的动能:E t =21I •θ2+21mr2•θ2由d(U+E t )=0得:(I+ mr 2)••θ+kr 2θ=0ω2n =22m r I kr +2.5 均质杆长L 、重G ,用两根长h 的铅垂线挂成水平位置,如图T —2.5所示,试求此杆相对铅垂轴OO 微幅振动的周期。
第三讲单自由度系统的振动(阻尼)
![第三讲单自由度系统的振动(阻尼)](https://img.taocdn.com/s3/m/d6ca43e804a1b0717fd5dd39.png)
解:振动衰减曲线的包络线方程为
x Ae
nt
设P、R两点在包络线上的幅值为xP、xR ,则有
xP e nNTd xR
当
2<<1时
2π N 1 2
ln
ln 2π N ln 2π N
此式对估算小阻尼系统的 ζ值是很方便的。例如, 经过10个周期测得P、R两点的幅值比 r=2,将N=10、 r=2代入上式,得到该系统的阻尼比:
t
当n>ω0(ζ >1)时,称为大阻尼情形。此时阻尼系数c> cc ;在这 种情形下,特征方程的根为两个不等的实根,即:
2 r1 n n 2 0
2 r2 n n 2 0
微分方程的解为
x e
nt
(C1e
2 n 2 0 t
C2 e
2 n 2 0 t
微分方程的解 x C1er1t C2er2t 可以表示为:
2 x Ae nt sin( 0 n2 t ) 或
x Ae
nt
sin(d t )
其中:A和φ为两个积分常数,由运动的初始条件确定
d n
2 0
2
称有阻尼自由振动的圆频率
x Ae
nt
c c m
f (t )
k
m
xs
k
kx
cx
m
o x x
x
m x
o x
振动过程中作用在物块上的力有: (1) 恢复力 Fk kx ;方向指向平衡位置O;
dx (2)粘性阻尼力 Fc c cx ;方向与速度方向相反。 dt
cx m x 根据达朗贝尔原理,质量块的微分方程为:
两个自由度体系自由振动例题
![两个自由度体系自由振动例题](https://img.taocdn.com/s3/m/9e5aae3f87c24028915fc3e0.png)
δ 11
δ 12
l3 4l 3 = , δ 22 = 3EI 3EI l3 = δ 21 = 2 EI
用 令
6 EI ml 3
乘上式, 乘上式,
m1 = 2m, m2 = m
(4 − λ )A1 + 3 A2 = 0 6 A1 + (8 − λ )A2 = 0
6 EI 1 ⋅ 2 = λ ,得 3 ml ω
2. 振型方程
) A1 + δ 12 m2 A2 = 0 ω2 1 δ 21m1 A1 + (δ 22 m2 − 2 ) A2 = 0 ω (δ 11m1 − 1
a 1 a 6 EI m − ω 2 A1 − 4 EI mA2 = 0 3 3 a a 1 − mA1 + m − 2 A2 = 0 EI 4 EI ω
y2 (t ) = − m1 &&1 (t )δ 21 − m2 &&2 (t )δ 22 y y
1 2 4 m − 2 A1 − mA2 = 0 EI ω 3EI 2 8 1 − mA1 + m − 2 A2 = 0 EI ω EI
y2 (t ) = − m1 &&1 (t )δ 21 − m2 &&2 (t )δ 22 y y
δ 11
a3 a3 = , δ 22 = 6 EI EI
用
12 EI ma 3
乘上式, 乘上式,
12 EI 1 ⋅ 2 = λ ,得 令 3 ma ω
δ 12 = δ 21
a3 =− 4 EI
(2 − λ )A1 − 3 A2 = 0 − 3 A1 + (12 − λ )A2 = 0
机械振动基础习题
![机械振动基础习题](https://img.taocdn.com/s3/m/5cc8a2f5ce2f0066f53322f2.png)
机械振动分析与应用习题第一部分问答题1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。
2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。
3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。
4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。
6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。
第二部分计算题1.求图2-1所示两系统的等效刚度。
图2-1 图2-2 图2-32.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。
3.如图2-3所示系统,求轴1的等效转动惯量。
图2-4 图2-5 图2-6 图2-74.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。
现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。
(注:飞轮外径100mm,R=150mm。
)5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。
6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。
7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。
8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。
图2-8 图2-99.长度为L 、重量为W 的均匀杆对称地支承在两根细绳上,如图2-8所示。
试建立杆相对于铅垂轴线o-o 的微角度振动方程并确定它的周期。
10.求图2-9所示系统的等效刚度和固有频率。
11.用能量法求图2-10所示均质圆柱体振荡的固有频率。
机械动力学第1、2章
![机械动力学第1、2章](https://img.taocdn.com/s3/m/99e4db1a59eef8c75fbfb38b.png)
2
2
1 2 2 1 d n 根据 Td 2 k mn cc 2mn
ln(16) 2.7726
k 200 3.43382 2358.2652( N / m) cc 2 200 3.4338 1373.54( N s / m) c cc 0.4037 1373.54 554.4981( N s / m)
第一章 单自由度系统
• • • • •
常用的推导动力学方程的方法 牛顿第二定律 达朗贝尔原理 虚位移原理 能量守恒原理
无阻尼自由振动
1.无阻尼自由振动解
如果一个质点偏离其平衡位置的距离 为 xm, 则其将进行自由振动,有牛顿 定律,质点力的平衡方程为
ma F W k st x kx
高塔消振 高塔消振 台北 101 大厦内部装有阻尼耗能减振器 台北 101 大厦内部装有阻尼耗能减振器
有阻尼自由振动的应用
网球 (( 羽毛球 )) 拍消 网球 羽毛球 拍消 网球拍或羽毛球拍在击球后产生自由振动,若不在 网球拍或羽毛球拍在击球后产生自由振动,若不在 下次击球之前停止振动,将影响再次击球的方向和 下次击球之前停止振动,将影响再次击球的方向和 角度,为此在铁合金管外面绕上石墨纤维,并在其 角度,为此在铁合金管外面绕上石墨纤维,并在其 外面用塑料捆扎住,石墨纤维外表面的库仑阻尼, 外面用塑料捆扎住,石墨纤维外表面的库仑阻尼, 使球拍在击球后,以最快的时间稳定下来 使球拍在击球后,以最快的时间稳定下来
p103
【解】由于x1.5=x1/4, 因而x2=x1/16
n t2
x1 Ae nt1 sin( 1 2 n t1 ) x2 Ae
第三章单自由度有阻尼系统的振动
![第三章单自由度有阻尼系统的振动](https://img.taocdn.com/s3/m/92f817c277232f60dccca120.png)
由(3-8)式得
N·s/cm
所以C= N·s/cm。
3—3在简谐激扰力作用下的强迫振动
单自由度粘性阻尼系统强迫振动的力学模型如图3-4所示。设系统中除了有弹性恢复力及阻尼力作用外,还始终作用着一个简谐扰力F(t)=F0sinωt,其中ω为激扰频率。由牛顿运动定律,直接写出系统的运动微分方程为:
式中P、f、T是无阻尼自由振动的固有圆频率、固有频率和周期。
由上可见,阻尼对自由振动的影响有两个方面:一方面是阻尼使自由振动的周期增大、频率减小,但在一般工程问题中n都比P小得多,属于小阻尼的情况。例 =n/p=0.05时,fd=0.9990f,Td=1.00125T;而在 =0.20时,fd=0.98f,Td=1.02T,所以在阻尼比较小时,阻尼对系统的固有频率和周期的影响可以略去不计,即可以近似地认为有阻尼自由振动的频率和周期与无阻尼自由振动的频率和周期相等。另一方面,阻尼对于系统振动振幅的影响非常显著,阻尼使振幅随着时间不断衰减,其顺次各个振幅是:t=t1时,A1=Ae-nt1;t=t1+Td时,A2=A ;t=t1+2Td时,A3=A ,…..。而相邻两振幅之比是个常数。即
s是待定常数。代入(3-1)式得 ,要使所有时间内上式都能满足,必须 ,此即微分方程的特征方程,其解为
(b)
于是微分方程(3-1)的通解为
(3-2)
式中待定常数c1与c2决定与振动的初始条件。振动系统的性质决定于根式 是实数、零、还是虚数。对应的根s1与s2可以是不相等的负实根、相等的负实根或复根。若s1与s2为等根时,此时的阻尼系数值称之为临界阻尼系数,记为cc,即cc=2mp。引进一个无量纲的量 ,称为相对阻尼系数或阻尼比。
4-有阻尼系统的自由振动解析
![4-有阻尼系统的自由振动解析](https://img.taocdn.com/s3/m/e42374ff50e2524de5187e66.png)
(
2
1)
B2e
n
t
(
2
1)
t
n
当 1 时,位移方程为
x ( B1
B
当
2
t) e
n
t
随时间t,按照指数规律减小,不是自由振动。 可见只有 1 时,振系才可能进行自由振动。
一、在题1所示的振系中,一个质量块m分别用两个 弹簧和一个阻尼器连接到上、下基础上,其中质 量m=10千克,弹簧刚度k1=k2=500牛顿/米, 阻尼系数c=160牛顿•秒/米。假设某一时刻将质 量块从平衡位置压低3厘米后,无初速释放,求系 统此后的运动方程。
典型振系的求解 根据振系受力情况,利用牛顿定律可得
m x c x kx
上式经过变形后可得
c k x x x 0 m m
由高等数学的理论可知,求解上式时可设:
xe
st
代入上式,可得其特征方程
s
2
c k s 0 m m
特征方程的根为
c k c s1,2 2m 2 m m
d
上式可改为
xe
t(
n
A cos
1
d
t
A sin
2
d
t)
对位移求导
x ne
t(
n
n t cos t sin t ) A1 d A2 d d e ( A1sind t A2 cosd t)
设在t=0时,有
x x0 , x
上次内容回顾:瑞利法和弹簧刚度系数 讲述的内容
阻尼对自由振动的影响
![阻尼对自由振动的影响](https://img.taocdn.com/s3/m/bb06738ccc22bcd126ff0cea.png)
阻尼比实测新方法
x(t )
A
Asin
S2
S4
S6
t1
t3
t5
t
0
ห้องสมุดไป่ตู้
t2
t4
t6
S3
S5
S1
面积衰减法计算阻尼比原理图
黄方林 何旭辉 陈政清 高赞明 倪一清,识别结构模态阻尼比的一种新方法,土木工程学报,35 (6),2002,20-23
2)=1 有二重根 通解为
eT
<0.2时,r
为提高计算精度,可取两个相隔n个周期的振幅yk和yk+n,有 或
• 存在的问题 :
– 实测响应 中,对数 衰减率 法中峰值是响应 的采样值,不一定 刚好与实际极大值相等;
– 易受噪声干扰。若y (t)受噪声干扰,yk和yk+n 的峰值可能在局部有很大的变化 ,从而影 响了阻尼比系数值的识别结果 。
yt
e t
y0
cosr
t
v0
y0 r
sinr
t
衰减的波动曲线 讨论:
a)逐渐衰减的波动曲线
低阻尼体系自由振动的y-t曲线 b)阻尼对自振频率的影响
r< , <0.2时, r c)阻尼比越大,波动曲线衰减越快
d)阻尼比的实测计算
相邻两个振幅yk与yk+1的比值
yk yk 1
e tk e (tk T )
例1:某结构自由振动经过10个周期后,振幅降为原来 的10%。试求结构的阻尼比ξ和在简谐荷载作用下共 振时的动力系数。
例2:试求图示体系1点的位移动力系数和0点的弯矩 动力系数;它们与动荷载通过质点作用时的动力系数 是否相同?不同在何处?
阻尼对振动的影响
![阻尼对振动的影响](https://img.taocdn.com/s3/m/142070508e9951e79b89277c.png)
y(t ) = Ceλt
y
λ = −ξω ± iωr
(ωr = ω 1 − ξ )
2
λ = ω (−ξ ± ξ 2 − 1)
ae-ξωt
y (t ) = e −ξωt (C1 cos ωr t + C2 sin ωr t )
初始条件
−ξωt
t
υ0 + ξω y0 y (t ) = e ( y0 cos ωr t + sin ωr t ) 2 ( v y ) + ξω 2 0 ωr a = y0 + 0 2 ω r −ξωt y (t ) = e a sin(ωr t + α ) y0ωr tan α = v0 + ξωy0 位移曲线显示为一条逐渐衰减的波动曲线
当
小结
粘滞阻尼力
yk 低阻尼情况 ξ ≈ ln 2π n yk + n 1
临界阻尼常数
cr = 2mω = 2 mk
1 ¾ 在θ/ω=1的共振情况下,动力系数 β = 2ξ
¾ 在阻尼体系中,最大的动力系数βmax
β=
1 2ξ 1 − ξ 2
作业
习题 P482:10-15
¾ 下一节课内容 10-5两个自由度体系的自由振动 要点:刚度法、挠度法
在桥跨结构跨中桥面设置高度10cm的三角形垫木使30t汽车后轴置于其上然后突然下落测定桥梁结构在动荷载作用下的强迫振动响应阻尼比
10-4 阻尼对振动的影响
Theinfluenceduetodamping
教学目标:
了解阻尼的来源、种类和特点。 掌握阻尼对动力特性(自振频率、振幅等)的影响。
2. 有阻尼的自由振动
+ω y = 0 y + 2ξω y
1.4阻尼振动解析
![1.4阻尼振动解析](https://img.taocdn.com/s3/m/eb68ad9fd4d8d15abe234e8c.png)
【解题探究】
(1)共振曲线中,振幅最大的位置对应的频率的意义是什么?
提示:此频率应等于单摆的固有频率。
(2)怎样利用单摆的周期公式求摆长?
提示:由T=2π
2 L 得L= gT 。 4 2 g
【正确解答】(1)由图可知,单摆的固有频率为0.3Hz, T= 10 s=2π
3
L ,解得摆长L= 25 m。 g 9 g
动偏心轮,它每转一周,给筛子一个驱动力,这样就做成了一个共振筛,
筛子做自由振动时,完成10次全振动用时15s。在某电压下,电动偏心
轮转速是36r/min。已知增大电压可使偏心轮转速提高;增加筛子的质
量,可以增大筛子的固有周期。那么要使筛子的振幅增大,下列哪些做
法是正确的 ( ) B.降低输入电压 D.减小筛子质量
4 阻尼振动 受迫振动
一、固有振动、阻尼振动
不受外力 也不受任何阻力,只在自身_______ 回复力 作用 1.自由振动:系统_________, 无阻尼振动 。 下的振动,又叫作___________ 自由 振动的频率。 2.固有频率:_____ 摩擦力 或其他阻力。 3.阻尼:即阻力作用,通常包括_______
因此阻尼振动尽管是减幅振动,但其固有周期不变,当阻尼过大时由于 合外力可能为零,将不能提供回复力,则振动系统将不能发生振动,此 时振动系统的周期可看作无穷大,因此C选项不正确,D选项正确。
2.(2015·成都高二检测)A、B两个单摆,A摆的固有频率为f,B摆的固
有频率为4f,若让它们在频率为5f的驱动力作用下做受迫振动,那么A、
B两个单摆比较
(
)
A.A摆的振幅较大,振动频率为f
B.A摆的振幅较大,振动频率为5f
C.B摆的振幅较大,振动频率为5f D.B摆的振幅较大,振动频率为4f
常微分方程在有阻尼自由振动中的应用
![常微分方程在有阻尼自由振动中的应用](https://img.taocdn.com/s3/m/909706c2f90f76c661371a76.png)
常微分方程在有阻尼自由振动中的应用羊士林(数学科学学院,2008(4)班,08211439号)1 引言在数学的应用中微分方程是一个活跃的分支.这不是偶然的,因为许多自然科学的定律可以通过微分方程得到精确的表达.实际上,微分方程的应用已深入到许多学科之中.比如物理学科中的许多公式的推导以及一些题目的计算,就需用到微分方程的有关知识.微分方程来源于生活实际,研究微分方程的目的就在于掌握他所反应的客观规律,能动的解释所出现的现象并预测未来可能发生的情况.下面我们将简单的介绍常微分方程的几种解法及其在物理学中的应用.2 二阶常系数常微分方程的几种解法2.1特征方程法例1 求微分方程220d x dx p qx dt dt++=的通解. 解 特征方程02=++q p λλ的根21,λλ,(1)若这是两个不等实根,则该方程有两个实值解12,t t e e λλ,故通解为1212t t x c e c e λλ=+(21,c c 为任意常数).(2)若这两个根相等,则该方程有二重根,因此方程的通解具有形状1112t t x c e c te λλ=+(21,c c 为任意常数).(3)若这两个根为共轭复根z a bi =±,则该方程的通解具有形状12(sin cos )at x e c bt c bt =+(21,c c 为任意常数).数学的许多公式与定理都需要证明,下面本文给出上面前两个解答的理论依据.1 特征根是两个实根的情形设12,λλ是上面特征方程的两个不相等的实根,从而相应的方程有如下两个解12,t t e e λλ,我们指出这两个解在a t b ≤≤上线性无关,从而它们能够组成方程的基本解组.事实上,这时 121212()121211()t tt t t e e w t e e e λλλλλλλλλλ+==,而最后一个行列式是著名的范德蒙德(Vandermonde )行列式,它等于21()λλ-.由于假设21λλ≠,故此行列式不等于零,从而()0w t ≠,于是 12,t t e e λλ线性无关,这就是所要证明的.而此方程的通解可表示为1212t t x c e c e λλ=+(其中12,c c 为任意数).如果特征方程有复根,则因方程的系数是实常数,复根将成对共轭出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而与这对共轭复根对应的,方程有两个复值解()(cos sin )i t t e e t i t αβαββ+=+,()(cos sin )i t t e e t i t αβαββ-=-.根据定理可知,复值解的实部和虚部也是方程的解.这样一来,对应于特征方程的一对共轭复根i λαβ=±,我们可求的方程220d x dx p qx dt dt++=的两个实值解 cos ,sin t t e t e t ααββ.2 特征根有重根的情形 设特征方程有k 重根1,λλ=则众所周知'(1)111()()()0,k F F Fλλλ-====()1()0k F λ≠, 先设10λ=,即特征方程有因子k λ,于是110n n n k a a a --+====,也就是特征方程的形状为110n n k n k a a λλλ--+++=,而对应的方程[]11110n n n n n n d x d x L x a a a x dt dt ---≡++++=变为1110n n k n kn n k d y d y d y a a dx dx dx ---+++=. 易见它有k 个解1,21,,,k t t t -,而且它们是线性无关的.这样一来,特征方程的k 重零根就对应方程的k 个线性无关的解1,21,,,k t t t -.如果这个k 重根10λ≠,我们作变量变换1t x ye λ=,注意到11()()()(1)2(2)111(1)()2!t t m m m m m m m m xye e y m y y y λλλλλ---⎡⎤==++++⎢⎥⎣⎦, 可得[]1111111()n n t t t n n n d y d y L ye b b y e L y e dt dt λλλ--⎡⎤=+++=⎣⎦,于是对应方程化为[]11110n n n n n d y d y L y b b y dt dt --=+++=,其中123,,,,n b b b b 仍为常数,而相应的特征方程为111()0n n n n G b b b μμμμ--≡++++=, 直接计算易得1111()()()11()()t t t t t F eL e L e e G e μλμλλμλμμλμ+++⎡⎤⎡⎤+===⎣⎦⎣⎦, 因此1()()F G μλμ+=,从而1()()j j F G μλμ+=,1,2,,j k =,这样,问题就化为前面讨论过的情形了. 2.2常数变易法对于二阶常系数非线性常微分方程的解法,只要先求出其一个特解,再运用特征方程法求得方程的通解.例2 求常微分方程 22()d x dx p qx f t dt dt++=的通解. 解 方程22()d x dx p qx f t dt dt++=对应齐次方程为 220d x dx p qx dt dt++=, 其特征方程为02=++q p λλ. (1)由于方程22()d x dx p qx f t dt dt++=的通解等于其对应的齐次线性微分方程的通解与其自身的一个特解之和,而二阶常系数齐次线性微分方程的通解我们已经研究过了,所以此处只需求出其一个特解.情形1:若λ为方程(1)的实根,则tx e λ=是方程220d x dx p qx dt dt ++=的解.由常数变易法设22()d x dx p qx f t dt dt++=的一个解为*()t x c t e λ=,代入原方程并化简得"'()(2)()()t c t p c t e f t λλ-++=,这是关于 '()c t 的一阶线性微分方程,其一个特解为()(2)()()()p tp t c t e e f t dt dt λλ-++⎡⎤=⎣⎦⎰⎰, 从而得方程(1)的一个特解为 *(2)()(())t p t p t x e e e f t dt dt λλλ-++⎡⎤=⎣⎦⎰⎰. 情形2:若λ为方程(1)的复根,我们可以设,,a bi a b R λ=+∈且0b ≠,则*sin atx e bt =是方程22()d x dx p qx f t dt dt ++=的解,根据常数变易法可设其一个特解为*()sin atx c t e bt =,与情形1的解法类似得方程22()d x dx p qx f t dt dt ++=的一个特解为 (2)(2)*2()sin sin .sin p a p a t at e f t e btdtx e bt dt bt -++=⎰⎰由于*x 是特解,则积分常量可以都取零.2.3拉普拉斯变换法常系数线性微分方程可以应用拉普拉斯变换法进行求解,这往往比较简单.由积分()()0st F s e f t dt -+∞=⎰. 所定义的确定于复平面(Re σ>)上的复变数s 的函数()F s ,称为函数()f t 的拉普拉斯变换,我们称()f t 为原函数,而()F s 称为像函数.拉普拉斯变换法主要是借助于拉普拉斯变换把常系数线性微分方程转换成复平面s 的代数方程.通过一些代数运算,一般地再利用拉普拉斯变换表,即可求出微分方程的解.方法十分简单方便,为工程技术工作者所普遍采用.当然,方法本身有一定的局限性,它要求所考察的微分方程的右端函数必须是原函数.例3 求解方程 2'22,(1)(1)0t d x dx x e x x dt dt-++===. 解 先使1t τ=-,将问题化为2(1)'22,(0)(0)0t d x dx x e x x dt dt--++===, 再对新方程两边作拉普拉斯变换,得到211()2()()1s X s sX s X s s e++=⋅+, 因此 311()(1)X s s e=⋅+, 查拉普拉斯变换表可得 211()2x e τττ--=, 从而 21()(1)2t x t t e -=-, 这就是所要求的解. 当然,求解二阶或者更高阶的常微分方程的方法还有很多,这里我们不能一一列出.然而我们利用上面的一些结论就可以解决下面的几个物理问题了.3常微分方程在有阻尼自由振动中的简单应用一般求解物理问题主要是分三步:1.分析问题建立方程并确定定解条件;2.求出方程满足初始条件的特解或讨论解的性质;3.对解做定性分析,反过来解释原问题,其中关键在于列出方程,主要有两种方法:1.瞬时变化率;2.微元分析法.在研究阻尼振动时,运动方程的求解问题较为复杂,一般教科书没有给出求解过程.下面分别用特征值法,常数变易法,拉普拉斯变换法来求动力学方程.3.1特征方程法例4 一弹簧振子系统,物体的质量 1.0m kg =,弹簧的劲度系数175k N m -=⋅,阻尼系数110.0s δ-=,设质点由静止开始运动,求位移方程.解 根据牛顿第二运动定律有kx cv ma --=, (2) 或 220d x dx m c kx dt dt++=, (3) 对一给定的振动系统,,,m k c 均为常量.若令20,2k m c m ωδ==,则上式可写成220220d d dt dtξξδωξ++=, (4) 将数据代入(4)得 2220750d x dx x dt dt++=. (5) 根据观察可以用特征值法求解.这里特征方程为220750λλ++=,有两个根1215,5λλ=-=-,则(5)的两个根为51512,t t e e ξξ--==. (6)计算可得振动子固有角频率数值为052k m ω==,而阻尼系数数值为10δ=,即220δω<,则方程(5)的解为515t t Ae Be ξ--=+(,A B 由初始条件决定). (7) 上式是一个非振动状态的,这种情况下质点仅仅是从非平衡位置恢复到平衡位置,而不具备周期振动的特点.我们更关心的是0δω<情况下,质点的衰减振动.由于阻尼的作用,一个自由振动系统的振动不能维持很久,它要逐渐衰减直至停止.要使振动持续不停,就需要不断地从外界获得能量,这种受到外部持续作用而产生的振动就称为强迫振动例5 设有一个外力100cos(30)F t N =作用在上面振动系统上,式中100A F =为驱动力的幅值,30ω=为驱动力的圆频率,f 为驱动力的频率.解 将驱动力加到质点振动系统,得到系统振动方程为22d x dx m c kx F dt dt++=, (8) 或写成22022cos(30)d x dx x H t dt dtδω++=. (9) 式中A F H m=为作用在单位质量上的外力幅值.方程(8)和方程(9)都是质点强迫振动方程.强迫振动方程是二阶的非齐次常微分方程,其一般解为该方程的一个特解与相应的齐次方程一般解之和.我们已经获得了对应的自由振动方程的一般解,关键就是寻找(9)的一个特解.将数据代入(9)得222075100cos(30)d x dx x t dt dt++=, (10) 我们设(10)有形如1sin 30cos30x A t B t =+的特解,将它代入(10)并化简得到(3324)sin30(2433)cos304cos30A B t A B t t -++-=,比较同类项系数得3244,555555A B ==-,于是13244sin30cos30555555x t t =-,而原方程的通解为5153244()sin 30cos30555555t t x t Ae Be t t --=++-. 上式中,A B 由初始条件决定,前两项项称为瞬态解,它描述了系统的自由衰减振动,仅在振动的开始阶段起作用,当时间足够长以后,它的影响逐渐减弱并最终消失.后二项称为稳态解,它描述了系统在驱动力的作用下进行强制振动的状态,因为它的幅值恒定,因此称为稳态振动.从上式可以看到,当外力施加到质点振动系统以后,系统的振动状态比较复杂,它是自由衰减振动和稳态振动的合成,这种振动状态描述了强迫振动中稳态振动逐步建立的过程.当一定时间以后,瞬态振动消失,系统达到稳态振动.3.2 常数变易法情形1 已知5t x e -=为上面例5中特征方程220750λλ++=的实根,则5t x e -=是方程(10)的一根.由常数变易法设*5()t x c t e -=,则*x 也是方程的一个解.代入(10)并化简得"'5()10()100cos30t c t c t e t +=.这是关于'()c t 的一阶线性微分方程,其一个特解为'55184()sin 30cos3033t t c t e t e t c =++, 从而得出(10)的一个特解为(取120c c ==)*5551284()((sin 30cos30))33t t t x t e e t e t dt c -=++⎰ 3244sin 30cos30555555t t =-, 从而可得(10)的通解5153244()sin 30cos30555555t t x t Ae Be t t --=++-. 情形2 例6 一弹簧振子系统,物体的质量 1.0m kg =,弹簧的劲度系1400k N m -=⋅,阻尼系数110.0s δ-=,有一个外力cos(2)F t N =.作用在上面振动系统上,设质点由静止开始运动.求位移方程.解 由例5可知22d x dx m c kx F dt dt++=. (11)代入数据得 2220400cos(2)d x dx x t dt dt++=. (12) 根据观察可以用常数变易法求解,首先求(12)的齐次线性方程的根.有前面的研究可得(12)齐次线性微分方程的特征方程为2204000μμ++=.我们可设特征方程的根为10103i μ=-±.则10()sin(103)t x t e t -=是(12)的一个解.由常数变易法可设为*10()()sin(103)t x t c t e t -=.与情形1中的解法类似,将*()x t 代入(12)并化简得*1099()sin(2)cos(2)3960439604x t t t =+.由于*x 是特解,则积分常量可以都取零. 3.3 拉普拉斯变换法若仍然以例6为例,由牛顿第二运动定律得22d x dxm c kx F dt dt ++=,代入数据得2220400cos(2)d x dxx t dt dt ++=, (13)由于质点由静止开始运动.则00,0t dxx dt ===,对方程(13)施行拉普拉斯变换,得到22()20()400()4ss X s sX s X s s ++=+,即221()420400s X s s s s =+++,把上式右端分解为部分分式2210299()396044396044sX s s s =+++22221013103991011881239604(10)(103)(10)(103)s s s +--++++, 由拉普拉斯变换表可得 1099()sin(2)cos(2)3960439604x t t t =+ 1010101399sin(103)cos(103)11881239604t t e t e t ----.参考文献[1]王高雄.周之铭.宋思铭.等.常微分方程.北京高等教育出版社.2001.[2]美R.布朗森.(全美经典学习指导)微分方程.北京科学出版社.1998.[3]同济大学应用数学系.高等数学.高等教育出版社.2002.[4]常微分方程(第三版). 高等教育出版社.2004.[5]复旦大学物理系.上海师范大学物理系.物理学.上海科技出版社.1997.[6]刘克哲.物理学.北京:高等教育出版社.2000.总结综上所述,本文首先介绍二阶微分方程的三种求解方法:特征方程法、常数变易法、拉普拉斯变换法.然后列举了阻尼振动的几个具体例题,分别利用三种方法解题.另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件是近似的,这种近似之间的影响和变化还必须在理论上加以解决.。
《振动力学》习题集(含答案解析)
![《振动力学》习题集(含答案解析)](https://img.taocdn.com/s3/m/e21235b0e53a580216fcfe44.png)
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解:系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解:系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
1.3有阻尼的自由振动解析
![1.3有阻尼的自由振动解析](https://img.taocdn.com/s3/m/d6cf62791ed9ad51f11df21c.png)
可以看出:
t 时,
e0t 0
指数衰减运动,非振动。
3.过阻尼状态 1
1,2 ( 2 1)0
通解: x(t) C1e( 2 1)0t C2e( 2 1)0t
可以看出: t
时,
x(t) 0
是指数衰减运动,非振动。
系统的动力学方程:
J A&& l 2c& a2k 0
&& l2c & a2k 0
JA
JA
(2)由上式得:
0 a
k JA
l2c
2J A
JA
1 ml 2 3
lc 0 2a mk
3
发生自由振动的条件:
lc 1 2a mk
3
c 2a mk l3
0.391
例题2
对于阻尼较小 的 0系.1统 ,实验中有时可用半振幅
方法测定相对阻尼系数在振幅衰减曲线的包络线
上已测得相隔N个周期的两点 P 、 R之间幅值减小一
半,试确定 。
解:振幅衰减曲线的包络线方程为
设 R、 P两点在包络线上的幅值为
则
xP e0NTd 2
xR
当 = 时1可近似为
1 j
ln
A1 A j1
2 1 2
2
1
例题1 系统衰减振动的振幅在10次振动的过程中,由 A1=3cm缩小到A2=0.06cm,求对数减缩率。
解:
1 j
ln
A1 Aj 1
1 10
ln
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问质量 m 的最大振幅是多少?发生在何时?最大速 度是多少?发生在何时?设ξ <1。
1
例 1 一弹簧 K 与阻尼器 C 并联于无质量的水平板上。今将一质量 m 轻放 在板上后立即释手,系统即作衰减振动。
x
=
x0e −ξω0t
⎜⎜⎝⎛ cosωd t
+
ξ ω0 ωd
sinωd t
⎟⎟⎠⎞
(1)
式中 ω d = ω 0 1 − ξ 2
对(1)式取一次导数
x&
=
− x0e −ξ ω0t
ω02 ωd
sin ωd t
(2)
最大振幅应发生在 x& = 0 时,由(2)式可知
时质量 m 振幅最大,代入(1)式得
X1
−
X2
=
2µmg k
由于振幅的改变量与振幅无关,在每半个循环中它为常数。所以, 一个循环运动振幅改变量为
∆A = 4µmg
k
8
例 5 用一自由振动测试装置来确定一弹性构件的刚 度和阻尼性质。构件上系有 20kg 的物块,移动物块 1cm 然后释放,监测的振荡结果如图所示,求构件的 k 和 c。
动不同之处。
2
例 2. 图示为铣床切削过程的力学模型,工件随平 台以等速 v 向左运动。刀具与工件之间摩擦系数在一定范 围内可表达为 f = a − bu , u 为工件与刀具之间相对速度, a、b 为常数。试写出系统的振动微分方程,并问 C 在什 么范围内时,系统将动态不稳定。
3
例 2. 图示为铣床切削过程的力学模型,工件随平台以等速 v 向 左运动。刀具与工件之间摩擦系数在一定范围内可表达为
=
s
= 105.3 rad
1 − ξ 2 1 − (0.11)2
s
所以刚度和阻尼系数为
k
=
mω
2 0
=
(20kg )⎜⎛105.3 rad
⎝
s
⎟⎞ 2 ⎠
=
2.22 ×105
N m
,
c
=
2ξ mω 0
=
2(0.11)(20kg )⎜⎛105.3 rad
⎝
s
⎟⎞ ⎠
=
4.63 ×102
N ⋅s m
。
10
问质量 m 的最大振幅是多少?发生在何时?最大速度是多少?发生在
何时?设ξ <1。
解:系统自由振动的微分方程为
m &x& + C x& + Kx = 0
x
=e −δt ( x 0 cosω
dt
+
x&0 + δx 0 ωd
sin ω
dt)
在 t = 0 , x = x0 , x& = 0 的初始条件下的响应为
Λ = lnη = δTd =
2πζ 1−ζ 2
因此,阻尼比可确定为
ξ= Λ =
0.693
= 0.11
4π 2 + δ 2 4π 2 + (0.693)2
从图可知阻尼周期为 0.06s,阻尼固有频率为
ωd
=
2π Td
=
2π 0.06s
= 104.7 rad s
无阻尼固有频率为
ω0 =
ωd
104.7 rad
9
例 5 用一自由振动测试装置来确定一弹性构件的刚度和阻尼性 质。构件上系有 20kg 的物块,移动物块 1cm 然后释放,监测的振 荡结果如图所示,求构件的 k 和 c。
解 图中的物块在第一循环的末尾位移为 0.005。其对数减缩 率可计算为
Λ = ln⎜⎛ 0.01m ⎟⎞ = 0.693 ⎝ 0.005m ⎠
f = a − bu , u 为工件与刀具之间相对速度, a、b 为常数。试写
出系统的振动微分方程,并问 C 在什么范围内时,系统将动态不 稳定。
解:设 x 座标如图。刀具受到的摩擦力
F = −mg[a − b(v + x&)]
系统的振动微分方程为
m&x& + Cx& + Kx = −mg[a − b(v + x&)]
的反映可看成临界阻尼系统,并有 x(0) = 0.05m ,和 x&(0) = 0 ,
有
x(t) = 0.05e−ω0t (1+ ω0t )
要求 x(0.5) = 0.0005m ,可推出
0.0005 = 0.05e−0.5ω0 (1 + 0.5ω0 )
由试凑法可得到ω0 = 13.2rad / s ,由此解出
k
=
mω
2 0
=
(10kg )⎜⎛13.2
⎝
rad s
⎟⎞ 2 ⎠
= 17400
N m
,
c
=
2mω 0
=
2(10kg )⎜⎛13.2 rad
⎝
s
⎟⎞ ⎠
=
264
N ⋅s m
。
6
例 4. 质量为 m 的物体与刚度为 k 的弹簧相连,并 沿摩擦系数为 µ 的表面上滑移,试用动能定理确定物体 每次循环的振幅的变化量。
5
例 3.枪的机械反冲通常设计成临界阻尼情况,以致它迅速的返回 到它开枪时的位置而产生过冲,为一个 10kg 的枪设计一个机械反 冲装置(即求 c 和 k),使其具有 5cm 的反冲,并要求在最大反冲 后的 0.5s 内,开火机械能返回到 0.5mm 以内。
解 当机械达到最大反冲时,设 t = 0 。机械从这个时刻开始
或
m&x& + (C − mgb)x& + Kx = −mg(a − bv)
当 b>0,C<mgb 时系统将出现负阻尼,导致系统动态不稳定。
4
例 3.枪的机械反冲通常设计成临界阻尼情况,以致 它迅速的返回到它开枪时的位置而产生过冲,为一个 10kg 的枪设计一个机械反冲装置(即求 c 和 k),使其具 有 5cm 的反冲,并要求在最大反冲后的 0.5s 内,开火机 械能返回到 0.5mm 以内。
7
例 4. 质量为 m 的物体与刚度为 k 的弹簧相连,并沿摩擦系数 为 µ 的表面上滑移,试用动能定理确定物体每次循环的振幅的变
化量。 解 令X1为循环运动开始,并出现速度为零时的振幅;X2为
下次循环又出现速度为零时的振幅。在此时间间隔上,应用动能 定理为
T1 + V1 + W1→2 = T1 + V2 ,
其中
T1 = T2 = 0 ,
V1=Biblioteka 1 2kX2 1
,
V2
=
1 2
kX
2 2
并且摩擦力作功为
W1→2 = −µmg(X 1 + ) X 2 ,
则有
1 2
kX
2 1
−
µmg ( X 1
+
X
2
)
=
1 2
kX
2 2
,
( ) 1 k
2
X
2 1
−
X
2 2
= µmg (X 1 + X 2 )
所以在半个循环里振幅的改变为
tm = 0
xmax
=
x0
= mg K
最大速度应发生在 &x& = 0 时,由(2)式可得
cosω d tm
−
ξω 0 ωd
sin ω d tm
=
0
或
tgω d tm
=
ωd ξω 0
时速度最大,代入(2)式得
x& max
= g e −ξω0tm ω0
应注意最大速度并不发生在质量 m 过静平衡位置时,这是和无阻尼自由振