第二章 轴向拉伸与压缩
材料力学(机械类)第二章 轴向拉伸与压缩
二
章
拉伸压缩与剪切
1
பைடு நூலகம்
§2-1
轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)
2
拉、压的特点:
1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3
§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4
材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。
现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:
N A
F
FN
σ
10
例题2-2
A 1
45°
C
2
5 材料力学第二章 轴向拉伸和压缩
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+
–
12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
材料力学 第2章轴向拉伸与压缩
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB
FN 1 A1
28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC
FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40
材料力学--轴向拉伸和压缩
2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图
目
§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比
录
§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。
材料力学第二章-轴向拉伸与压缩
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
材料力学第二章 轴向拉伸和压缩
2、计算各杆轴向变形
C
l 2 =1m a =170mm
B'
B2
F
l1 0.48mm
3、由变形的几何条件确定B点的位移 分别以A为圆心,AB1为半径,C为圆 心,CB1为半径画弧,相较于B’点,
B"
小变形条件,可以用切线代替弧线。
材料力学
第2章 轴向拉伸和压缩
FN FN ( x)
轴力方程
即为轴力图。
即:FN随x的变化规律
以x为横坐标,以FN为纵坐标,绘制FN F( )的关系图线, N x
FN
正的轴力画在x轴的上侧,负的画在下侧.
x
材料力学
第2章 轴向拉伸和压缩
例题1
等值杆受力如图所示,试作其轴力图
F =25kN F 4=55kN 4 1=40kN F
纵向线 即: 原长相同
变形相同
横截面上各点的纵向线应变相等
c
拉压杆变形几何方程.
反映了截面上各点变形之间的几何关系.
材料力学
第2章 轴向拉伸和压缩
§2-2 横截面上的正应力 应力分布规律 找变形规律 研究思路: 试验观察 综合几何方面、物理方面、静力学方面推导应力计算公式
一、几何方面
F
a' b'
材料力学
第2章 轴向拉伸和压缩
第二章 轴向拉伸和压缩
材料力学
第2章 轴向拉伸和压缩
• • • • • •
本章主要内容 轴力及轴力图 横截面上的应力 拉压杆的变形、胡克定律 强度计算 材料的力学性质
材料力学
第2章 轴向拉伸和压缩
§2-1 概述 一、工程实际中的轴向拉压杆
工程力学 第二章 轴向拉伸与压缩.
2 sin ( 2 cos 1 )ctg 3.9 103 m
B1 B B1 B3 B3 B
B B
B B12 B1 B 2 4.45 10 3 m
[例2-11] 薄壁管壁厚为,求壁厚变化和直径变化D。
解:1)求横截面上的正应力
dx
N ( x) l dx EA( x) l
例[2-4] 图示杆,1段为直径 d1=20mm的圆杆,2 段为边长a=25mm的方杆,3段为直径d3=12mm的圆杆。 已知2段杆内的应力σ 2=-30MPa,E=210GPa,求整个 杆的伸长△L
解: P 2 A2
30 25 18.75KN
N 1l Pl l1 l2 EA 2 EA cos l1 Pl cos 2 EA
[例2-8]求图示结构结点A 的垂直位移和水平位移。
解:
N1 P, N 2 0
Pl l1 , l2 0 EA Pl y l1 EA
N1
N2
Pl x l1ctg ctg EA
F
FN
FN F
F
F
CL2TU2
2.实验现象:
平截面假设
截面变形前后一直保持为平面,两个平行的截面之 间的纤维伸长相同。 3.平面假设:变形前为平面的横截面变形后仍为平面。 4.应力的计算 轴力垂直于横截面,所以其应力也仅仅是正应力。按 胡克定律:变形与力成正比。同一截面上各点变形相 同,其应力必然也相同。 FN (2-1) A 式中: A横截面的面积;FN该截面的轴力。 应力的符号:拉应力为正值应力,压缩应力为负 值应力。
1. 截面法的三个步骤 切: 代: 平:
F F F F
材料力学轴向拉伸与压缩
第二章 轴向拉伸与压缩 2.2 杆旳变形
F
1.纵向变形 (1)纵向变形 (2) 纵向应变
b h
l l1
Δl l1 l
Δl
l
h1
F
b1
第二章 轴向拉伸与压缩
b
F
h
l l1
2.横向变形
h1
F
b1
(1)横向变形 (2)横向应变 3.泊松比
b b1 b
b1 b Δb
bb
A d 2 FN 4 [ ]
由此可得链环旳圆钢直径为
d
4F [ ]
4 12.5 103 3.14 45106
m=18.8mm
第二章 轴向拉伸与压缩
[例6]如图a所示,构造涉及钢杆1和铜杆2,A、B、C处为铰链连接。 在节点A悬挂一种G=20kN旳重物。钢杆AB旳横截面面A1=75 mm2, 铜杆旳横截面面积为A2=150 mm2 。材料旳许用应力分别为 ,
GB/T 228-2023 金属材料室温拉伸试验措施
原则拉伸试样:
标距: 试样工作段旳原始长度
要求标距: l 10 d 或者
l 5d
第二章 轴向拉伸与压缩
试验设备 (1)微机控制电子万能
试验机 (2)游标卡尺
第二章 轴向拉伸与压缩
试验设备
液压式
电子式
第二章 轴向拉伸与压缩
拉伸试验
第二章 轴向拉伸与压缩
第二章 轴向拉伸与压缩
应力非均布区 应力均布区 应力非均布区
圣维南原理
力作用于杆端旳分 布方式,只影响杆端 局部范围旳应力分布, 影响区约距杆端 1~2 倍杆旳横向尺寸。
端镶入底座,横向变形 受阻,杆应力非均匀分布。
拉伸与压缩(工程力学)
FN A
•公式适用范围
(1) 等截面杆(Bars with uniform cross sections) 有锥度的杆,上述公式不 能使用。但是,如果杆的 锥度很小(a<15°时), 可以近似用上述公式计算 应力,与弹性力学的精确 解相比,误差在5%以内 (2) 均匀材料(Homogeneous materials)
N AB 38.7 103 123 106 Pa AAB பைடு நூலகம் 3 2 (20 10 ) 4
§2-4
轴向拉伸或压缩时的 变形 b b
l l l
一、纵向线应变与横向线应变 纵向应变
b
l l
横向应变
b b
二、拉(压)胡克定律
当构件工作应力
0.272 mm ( 缩短)
AB长2m, 面积为200mm2。AC面积 为250mm2。E=200GPa。F=10kN。 试求节点A的位移。
解:1、计算轴力。(设斜杆 为1杆,水平杆为2杆)取节 点A为研究对象
F
FN 1
FN 2
300
x
0 0
FN 1 cosa FN 2 0 FN 1 sin a F 0
(1) 杆轴为直线 (2) 外力合力作用线与杆轴重合 计算模型
• §2-2 轴向拉压时横截面的内力
应用截面法
FN P
FN ' P
符号规定:拉伸为正,压缩为负
例1.1:求图示杆1-1、2-2、3-3截面 上的轴力
解:
N 1 10 kN
N 2 5 kN
N3 20kN
N 1 10 kN
FN 1l1 l1 1mm E1 A1 FN 2l2 l2 0.6mm E2 A2
第2章 轴向拉伸与压缩
2.5.5 塑性材料和脆性材料的主要区别
(5) 塑性材料承受动载荷的能力强,脆性材料承 受动荷载的能力很差,所以承受动载荷作用的构 件多由塑性材料制做。
2.5.5 塑性材料和脆性材料的主要区别
对于脆性材料,当应力达到其强度极限σb 时, 构件会断裂而破坏;对于塑性材料,当应力达到 屈服极限σs时,将产生显著的塑性变形,常会 使构件不能正常工作。
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段__弹性极限σe BC:屈服阶段__屈服极限σs CD:强化阶段__强度极限σb DE:颈缩阶段
2.5.2 低碳钢拉伸时的力学性能
OB:弹性阶段---弹性极限σe OA:线性阶段---比例极限σP
σ=Eε 胡克定律
E: 弹性模量 σe≈σP
伸长率
Fbs
Fbs
Fbs
实际挤压面
挤压应力:
2.8.2 挤压和挤压强度计算
smaxBiblioteka dFbs(a)
smax
(b)
t
(b)
ssj bs
(c) (c)
挤压面 计算挤压面积 =dt
两种材料的极限应力分别是? 许用应力=?
2.6 拉压杆的变形
2.6 拉压杆的变形
例: 已知等截面直杆横截面面积A=500mm2,弹性模量 E=200GPa,试计算杆件总变形量。
6KN
8KN 5KN
3KN
1m
2m
1.5m
ΔL=?
2.8 拉压杆接头的计算
2.8 拉压杆接头的计算
2.8.1 剪切和剪切强度计算
(1) 多数塑性材料在弹性变形范围内,应力与应 变成正比关系,符合胡克定律;多数脆性材料在 拉伸或压缩时σ-ε图一开始就是一条微弯曲线, 即应力与应变不成正比关系,不符合胡克定律, 但由于σ-ε曲线的曲率较小,所以在应用上假设 它们成正比关系。
材力第2章:轴向拉伸与压缩
F
F
F
F
拉杆
压杆
§2-2 轴力及轴力图 1.内力的概念
构件因反抗外力引起的变形,而在其内部各质点间引起的相 互之间的作用力,称为内力。 显然,外力越大,变形越大,因而内力也越大,但内力不可 能无止境地随外力的增大而增大,总有个限度,一旦超过了 这个限度,材料将发生破坏。因此,材料力学中,首先研究 内力的计算,然后研究内力的限度,最后进行强度计算。
B
α α
FN1
α α
FN2
FN 2 cos + FN 1 cos - F = 0
FN 2 = FN 1 = F 2 cos Fl
A
A
F
l1 = l2 =
l2
FN 2l EA
=
=
2 EA cos
Fl
A = AA =
A l 1
=
A
l2 cos
2EA cos
2
= FN A ,
=
l l
=
E
又称为单轴应力状态下的胡克定律,不仅适用于轴向拉(压)杆,可以更普遍 地用于所有的单轴应力状态。
= E 表明在材料的线弹性范围内,正应力与线应变呈正比关系。
例题 试求图示杆 AC 的轴向变形△ l 。
FN 1
B
F1
F2
C
FN 2
C
F2
分段求解:
0
90 = 0
0
90 = 0
0
在平行于杆轴线的截面上σ、τ均为零。
• 作业: P41 • •
2-1(2)(3) 2-3 2-6
§2-5 拉、压杆的变形
杆件在轴向拉压时:
2材料力学轴向拉压.ppt课件
pcos co2s22co2s psincossin2sin2
U
W
n i1
12Fii
利用外力功计算应变能并不方便,在更多情况下主 要是通过内力功来计算。
单向应力状态单元体微面上的力在变形过程中做的功为
y
x
dy dx
x
dz x
dW 1 2xdydzxdx1 2xxdV
不考虑能量损耗,则力做的功全部转化为单元体的应变能
dUdW12xxdV
单位体积内储存的应变能,称为应变能密度,单向应力状态有
2.3
F
F
b b1
拉压杆的变形
F 二、拉压杆的横向变形
l l1
bb1b
b
b
横向变形
横向线应变
实验表明,在胡克定律适用的范围时,有:
or
F/ A 即 横向线应变与轴向线应变恒异号,两者之 比的绝对值为一常数,称为泊松比。
00.5
弹性模量 E 和泊松比μ都是材料的弹性常数, 由实验测得。
l
l /l
第二章 轴向拉伸和压缩
A
F
连杆
A
钢拉杆
B
B
F
F
F
F
F
F
F
F
F
F
受力(简)图
受力变形特点: 外力或其合力的作用线沿杆件的轴线(轴载), 主要变形为轴向伸缩。这样的杆件称拉压杆。
轴向拉伸与压缩
轴向拉伸与压缩的特点:
◆ 受力特点:
◆ 变形特点:
F
F
F
F
承受轴向变形的杆件称为拉杆或压杆。
外力合力的作用线与杆轴线重合
主要是沿轴线方向伸长或缩短
第二节 轴力与轴力图 一、内力与截面法 内力 —— 外力引起的构件内部相连部分之间的相互作用力。 ◆ 内力为作用于整个截面上的连续分布力。今后,内力一般被用来特指截面上的分布内力的合力、或合力偶矩、或向截面形心简化所得到的主矢和主矩。
塑性材料为塑性屈服;脆性材料为脆性断裂
极限应力 ——
材料强度失效时所对应的应力,记作 u ,有
塑性材料(拉压相同)
脆性材料(拉压不同)
2.许用应力与安全因数
材料安全工作所容许承受的最大应力,记 作 [ ],规定
许用应力 ——
02
其中,n 为大于 1 的因数,称为安全因数 。
对于塑性材料,压缩与拉伸的许用应力基本相 同,无需区分;对于脆性材料,压缩与拉伸的许 用应力差异很大,必须严格区分。
(2)计算两杆应力
解得
AB 杆:
(2)计算两杆应力
AB 杆: AC 杆:
拉(压)杆斜截面上的应力 斜截面的方位角 : 以 x 轴为始边,以外法线轴 n 为终边,逆时针转向的 角为正,反之为负 。 斜截面上的全应力
将 p 沿斜截面的法向和切向分解,即得 斜截面上的正应力、切应力分别为 —— 横截面的面积 —— 横截面上的正应力 切应力的正负号规定:围绕所取分离体顺时针转向的切应力为正,反之为负。
[例 2-3] 试作出图示拉压杆的轴力图。
解:省略计算过程,直接作出轴力图如上图所示。
第三节 拉压杆的应力
一、应力的概念 应力是指截面上分布内力的集度 如图 为分布内力在 k 点的集度,称为 k 点的应力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章轴向拉伸与压缩(王永廉《材料力学》作业参考答案(第1-29题))2012-02-26 00:02:20| 分类:材料力学参答|字号订阅第二章轴向拉伸与压缩(第1-29题)习题2-1试绘制如图2-6所示各杆的轴力图。
图2-6解:由截面法,作出各杆轴力图如图2-7所示图2-7习题2-2 试计算图2-8所示结构中BC杆的轴力。
图2-8 a)解:(a)计算图2-8a中BC杆轴力截取图示研究对象并作受力图,由∑M D=0,即得BC杆轴力=25KN(拉)(b)计算图2-8 b中BC杆轴力图2-8b截取图示研究对象并作受力图,由∑MA=0,即得BC杆轴力=20KN(压)习题2-3在图2-8a中,若杆为直径的圆截面杆,试计算杆横截面上的正应力。
解:杆轴力在习题2-2中已求出,由公式(2-1)即得杆横截面上的正应力(拉)习题2-5图2-10所示钢板受到的轴向拉力,板上有三个对称分布的铆钉圆孔,已知钢板厚度为、宽度为,铆钉孔的直径为,试求钢板危险横截面上的应力(不考虑铆钉孔引起的应力集中)。
解:开孔截面为危险截面,其截面面积由公式(2-1)即得钢板危险横截面上的应力(拉)习题2-6如图2-11a所示,木杆由两段粘结而成。
已知杆的横截面面积A=1000 ,粘结面的方位角θ=45,杆所承受的轴向拉力F=10KN。
试计算粘结面上的正应力和切应力,并作图表示出应力的方向。
解:(1)计算横截面上的应力= = 10MPa(2)计算粘结面上的应力由式(2-2)、式(2-3),得粘结面上的正应力、切应力分别为cos245,=5 MPa45=sin(2*45。
)=5MPa45=其方向如图2-11b所示习题2-8 如图2-8所示,等直杆的横截面积A=40mm2,弹性模量E=200GPa,所受轴向载荷F1=1kN,F2=3kN,试计算杆内的最大正应力与杆的轴向变形。
解:(1)由截面法作出轴力图(2)计算应力由轴力图知,故得杆内的最大正应力(3)计算轴向变形轴力为分段常数,杆的轴向变形应分段计算,得杆的轴向变形习题2-9阶梯杆如图2-13a所示,已知段的横截面面积、段的横截面面积,材料的弹性模量,试计算该阶梯杆的轴向变形。
解:(1)作轴力图由截面法,作出杆的轴力图如图2-13b所示.(2)计算轴向变形轴力与横截面面积均为分段常数,由公式(2-7)分段计算,得杆的轴向变形习题2-11如图2-14a所示,刚性横梁用两根弹性杆和悬挂在天花板上。
已知、、、和。
欲使刚性横梁保持在水平位置,试问力的作用点位置应为多少?解:(1)计算两杆轴力采用截面法,截取横梁为研究对象(见图2-14b),由平衡方程得两杆轴力,(2)计算力作用点位置欲使刚性横梁保持在水平位置,应有,由胡克定律,即有联立上述各式,解得力的作用点位置习题2-13一外径、内径的空心圆截面杆,受到的轴向拉力的作用,已知材料的弹性模量,泊松比。
试求该杆外径的改变量。
解:横截面上的正应力轴向应变横向应变杆的外径改变量习题2-14 一圆截面拉伸试样,已知其试验段的原始直径d=10mm,标距L=50mm,拉断后标距长度为L1=63.2mm,断口处的最小直径d1=5.9mm。
试确定材料的伸长率和断面收缩率,并判断其属于塑性材料还是脆性材料。
解:材料的伸长率材料的断面收缩率因为伸长率>5%,故知材料为塑性材料。
习题2-15用钢制作一圆截面杆,已知该杆承受的轴向拉力,材料的比例极限、屈服极限、强度极限,并取安全因数。
(1)欲拉断圆杆,则其直径最大可达多少?(2)欲使该杆能够安全工作,则其直径最小应取多少?(3)欲使胡克定律适用,则其直径最小应取多少?解:(1)欲拉断圆杆,应满足≥解得≤即欲拉断圆杆,直径最大可达。
(2)欲使该杆能够安全工作,应满足≤解得≥即欲使该杆能够安全工作,直径最小应取。
(3)欲使胡克定律适用,应满足≤解得≥即欲使胡克定律适用,直径最小应取。
习题2-17一钢制阶梯杆受到图2-16a所示轴向载荷的作用。
已知粗、细两段杆的横截面面积分别为、,材料的许用应力,试校核该阶梯杆的强度。
解:(1)作轴力图由截面法,作出阶梯杆的轴力图如图2-16b所示。
(2)强度计算结合阶梯杆的轴力图和截面面积不难判断,段和段的任一截面均为可能的危险截面,应分别进行强度校核。
由拉压杆的强度条件,<<所以,该阶梯杆的强度符合要求。
习题2-19一正方形截面的粗短混凝土阶梯立柱如图2-18a所示,已知载荷;混凝土的质量密度、压缩许用应力。
试确定截面尺寸与。
解:(1)计算轴力考虑混凝土立柱的自重,不难判断可能的危险截面为上半段立柱的底部(见图2-18b)和整个立柱的底部(见图2-18c),其轴力分别为(2)强度计算对可能的危险截面逐一进行强度计算:根据拉压杆强度条件,由≤解得≥故取截面尺寸再由≤解得≥故取截面尺寸习题2-22解:(1)计算斜杆轴力用截面法截取部分吊环为研究对象,作出受力图,由对称性和平衡方程易得,两斜杆轴力F N==266.0KN(2)确定斜杆直径根据拉压杆强度条件解得d53.1mm故取斜杆直径d=54mm习题2-25一冷锻机的连杆如图2-24所示,已知其工作时所受的锻压力,连杆的横截面为矩形,规定高宽比,材料的许用应力。
试按强度确定连杆的横截面尺寸。
解:(1)计算连杆轴力显然,连杆轴力(2)确定连杆截面尺寸根据拉压杆强度条件,≤解得≥故取连杆截面尺寸,习题2-29构架如图2-28a所示,杆1与杆2均为圆截面杆,直径分别为与;两杆材料相同,许用应力。
若所承受载荷,试校核该构架的强度。
解:(1)计算杆件轴力截取结点为研究对象,作出受力图(见图2-28b),杆1、杆2均为拉杆,由平衡方程求得两杆轴力,(2)校核构架强度校核杆1强度,根据拉压杆强度条件,<杆1强度符合要求;校核杆2强度,根据拉压杆强度条件,<杆2强度符合要求。
所以,该构架的强度符合要求。
第二章轴向拉伸与压缩(王永廉《材料力学》作业参考答案第3 3-43题)2012-03-11 14:58:12| 分类:材料力学参答|字号订阅第二章轴向拉伸与压缩(第33-43题)习题2-33图2-32a所示阶梯杆两端固定,已知粗、细两段杆的横截面面积分别为、,材料的弹性模量,试计算杆内的最大正应力。
解:(1)列平衡方程解除杆的两端约束,作受力图,两端支座反力分别记作、(见图2-32b),列平衡方程,(a)这是一次超静定问题。
(2)建立变形协调方程杆的两端固定,其总长度保持不变,故有变形协调方程(3)建立补充方程由截面法易得,图2-32b所示三段杆的轴力分别为,,利用胡克定律,由变形协调方程整理得补充方程(b)(4)解方程,求支座反力联立求解方程(a)和(b),得支座反力,(5)应力计算计算得三段杆的轴力,,作出轴力图如图2-32c所示。
显然,杆内的最大正应力位于第1段的横截面上,为(压)习题2-35在图2-34a所示结构中,假设横梁是刚性的,两根弹性拉杆1与2完全相同,其长度为,弹性模量为,横截面面积,许用应力。
若所受载荷,试校核两杆强度。
解:(1)列平衡方程截取图2-34b所示部分结构为研究对象,作出受力图,列平衡方程,(a)(2)建立变形协调方程横梁是刚性的,其轴线保持为直线,据此作出变形图如图2-34b所示,其变形协调方程为(3)建立补充方程利用胡克定律,由变形协调方程得补充方程(b)(4)解方程,求拉杆轴力联立求解方程(a)和(b),得两根拉杆轴力分别为,(5)校核两杆强度显然,只需对杆2进行强度校核即可,根据拉杆强度条件,<因此,两杆强度符合要求。
习题2-37在图2-36a所示结构中,杆1、2、3的长度、横截面面积、材料均相同,若横梁是刚性的,试求三杆轴力。
解:(1)列平衡方程截取横梁为研究对象,假设各杆均受拉力,作出受力图如图2-36b所示,列平衡方程(a)为一次超静定问题。
(2)建立变形协调方程横梁是刚性的,其轴线保持为直线,据此作出变形图如图2-36b所示,其变形协调方程为(3)建立补充方程利用胡克定律,由变形协调方程得补充方程(b)(4)解方程,求三杆轴力联立求解方程(a)和(b),求得三杆轴力分别为(拉),(拉),(压)习题2-39阶梯钢杆如图2-38a所示,在温度时固定于两刚性平面之间,已知粗、细两段杆的横截面面积分别为、,钢的线膨胀系数,弹性模量。
试求当温度升高至时,杆内的最大正应力。
解:(1)列平衡方程解除约束,由平衡方程易知,钢杆两端约束力(见图2-38b)(a)为一次超静定问题。
(2)建立变形协调方程由于钢杆的总长度保持不变,故其变形协调方程为(b)(3)建立补充方程式(b)中,(c)为温度变化引起的杆的轴向伸长量;(d)为钢杆两端约束力引起的杆的轴向压缩量。
将式(c)与(d)代入变形协调方程(b)即得补充方程(e)(4)解方程,求轴力代入数据,联立求解方程(a)和(e),得杆端约束力(5)计算应力显然,较细段杆横截面上的正应力最大,为(压)习题2-43 如习题2-43图所示,已知钢杆1、2、3的长度为L=1m,横截面面积为A=2cm2,弹性模量匀为E=200GPa,若因制造误差,杆3短了δ=0.8mm,试计算强行安装后三根钢杆的轴力(假设横梁是刚性的)。
习题2-43图解:(1)列平衡方程截断三根钢杆,取下部为研究对象,强行安装后假设三杆均受压,横梁的受力图如下:列平衡方程为一次超静定问题。
(2)建立变形协调方程横梁为刚性的,其变形协调方程为(3)建立补充方程利用胡克定律,求变形协调方程即得补充方程(4)解方程,求轴力代入数据,联立求解方程(a)和(b),得三根支柱的轴力第三章剪切与挤压习题3-3如图3-8所示,用冲床将钢板冲出直径的圆孔,已知冲床的最大冲剪力为,钢板的剪切强度极限,试确定所能冲剪的钢板的最大厚度。
解:钢板的剪切面为圆柱面,其面积,欲将钢板冲出圆孔,剪切面上的切应力应满足条件≥解得≤故得所能冲剪的钢板的最大厚度习题3-8 如习题3-8图所示,拉杆用四个铆钉固定在格板上,已知拉力F=80kN,拉杆的宽度b=80mm,厚度δ=10mm,铆钉直径d=16mm,材料的许用应力[τ]=100MPa,许用挤压应力[σbs]=300MPa,许用拉应力[σ]=160MPa,试效核铆钉与拉杆的强度。
解:(1)校核铆钉的剪切强度四个铆钉,每个铆钉平均承受的剪力=F/4,由挤压强度条件故铆钉的剪切强度符合要求。
(2)校核铆钉与拉杆的挤压强度单个铆钉与拉杆之间的挤压力,由挤压强度条件故铆钉的挤压强度符合要求。
(3)校核拉杆的拉伸强度分析拉杆的受力情况可知,右边第一排孔所在截面为危险截面,由拉伸强度条件故拉杆的拉伸强度符合要求。
综上所述,铆钉与拉杆的强度均满足要求。
习题3-11如图3-16所示,已知轴的直径;键的尺寸,;键的许用切应力,许用挤压应力。