备1. 常用数列极限证明

合集下载

求数列极限的十五种解法

求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。

备常用数列极限证明

备常用数列极限证明


1
>1
由(2)知,

1

第7页/共11页


1


→0
2

lim = 0 ( > 1, ∈ ቇ
综上所述,→∞

第8页/共11页
log
证明 lim
= 0 ( > 0, ≠ 1, k > 0ቇ

→∞

(一) 当 >1 时,对 ∀ > 0 有 > 1
→∞ !
第5页/共11页

lim = 0 ( > 1, ∈ ቇ
证明 →∞

证 令 = 1 + (>0) 则=−1
( − 1) 2


= 1 + = 1 + +
+ ⋯ +
2!
( − 1) 2
>
(当>2 时)
2
2 2
>Biblioteka 4(因为 − 1 > )
现取一个确定的自然数 , 使得|a|< ,则
|| || ||
|| || || || ||
||

=(
⋯ )(
⋯ ቇ
1 2

1 2
+ 1 + 2

|| || ||
由于 确定,
中的每个因子放大为 |a|

1 2

|| || ||

从而
<
||

1 2

第4页/共11页

利用(2)与极限的除法运算法则,有

数列极限的证明方法介绍

数列极限的证明方法介绍

数列极限的证明方法介绍数列极限的证明方法介绍数列极限是数学中的知识,拿这个知识是怎么被证明的呢?证明的方法是怎样的呢?下面就是店铺给大家整理的数列极限的证明内容,希望大家喜欢。

数列极限的证明方法一X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会|Xn+1-A|<|Xn-A|/A以此类推,改变数列下标可得|Xn-A|<|Xn-1-A|/A;|Xn-1-A|<|Xn-2-A|/A;……|X2-A|<|X1-A|/A;向上迭代,可以得到|Xn+1-A|<|Xn-A|/(A^n)只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:①证明{x(n)}单调增加。

x(2)=√[2+3x(1)]=√5>x(1);设x(k+1)>x(k),则x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化)=[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。

数列极限的证明方法二证明{x(n)}有上界。

x(1)=1<4,设x(k)<4,则x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0当0构造函数f(x)=x*a^x(0令t=1/a,则:t>1、a=1/t且,f(x)=x*(1/t)^x=x/t^x(t>1)则:lim(x→+∞)f(x)=lim(x→+∞)x/t^x=lim(x→+∞)[x'/(t^x)'](分子分母分别求导)=lim(x→+∞)1/(t^x*lnt)=1/(+∞)=0所以,对于数列n*a^n,其极限为0数列极限的证明方法三根据数列极限的定义证明:(1)lim[1/(n的平方)]=0n→∞(2)lim[(3n+1)/(2n+1)]=3/2n→∞(3)lim[根号(n+1)-根号(n)]=0n→∞(4)lim0.999…9=1n→∞n个95几道数列极限的证明题:n/(n^2+1)=0√(n^2+4)/n=1sin(1/n)=0实质就是计算题,只不过题目把答案告诉你了,你把过程写出来就好了第一题,分子分母都除以n,把n等于无穷带进去就行第二题,利用海涅定理,把n换成x,原题由数列极限变成函数极限,用罗比达法则(不知楼主学了没,没学的话以后会学的) 第三题,n趋于无穷时1/n=0,sin(1/n)=0不知楼主觉得我的解法对不对呀limn/(n^2+1)=lim(1/n)/(1+1/n^2)=lim(1/n)/(1+lim(1+n^2)=0/1 =0lim√(n^2+4)/n=lim√(1+4/n^2)=√1+lim(4/n^2)=√1+4lim(1 /n^2)=1limsin(1/n)=lim[(1/n)*sin(1/n)/(1/n)]=lim(1/n)*lim[sin(1/n)]/( 1/n)=0*1=0数列的极限知识点归纳一、间断点求极限1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。

数列极限证明题型及解题方法

数列极限证明题型及解题方法

数列极限证明题型及解题方法
数列极限证明题型主要包括单调有界数列的极限证明、递推数列的极限证明、函数极限与数列极限的关系证明等。

下面介绍一些常见的数列极限证明题型及解题方法。

1. 单调有界数列的极限证明:
设数列{an}为单调递增数列且有上界,要证明序列{an}收敛。

一般可采用以下两种方法之一:
- 利用单调有界原理:由于数列{an}为单调递增且有上边界,根据单调有界原理,该数列必定存在极限。

- 找到上确界和下确界:由于该数列有上界,可设上界为M,同时查找下确界,证明数列{an}的极限存在。

2. 递推数列的极限证明:
设数列{an}满足递推关系an+1 = f(an),其中f(x)为已知函数。

一般可采用以下两种方法之一:
- 显式计算法:若递推关系能够推导出显式的解析表达式an = g(n),则可通过计算g(n)的极限来证明数列{an}的极限存在。

- 极限迭代法:设数列{an}的极限为L,对递推关系an+1 =
f(an)两边同时取极限,得到L = f(L),进而求得L的值。

3. 函数极限与数列极限的关系证明:
对于给定的函数f(x),要证明该函数在某点c处存在极限L,可以采用以下方法之一:
- 利用数列极限定义:构造数列{an},使得函数f(x)在点c附近的取值与数列{an}之间存在关系,然后利用数列的极限来证明函数的极限存在。

- 利用函数极限定义:对于给定的极限L,构造函数f(x),使得当x趋近于c时,函数f(x)的极限趋近于L。

数列的极限的证明格式5篇

数列的极限的证明格式5篇

数列的极限的证明格式5篇以下是网友分享的关于数列的极限的证明格式的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇1。

例1 设数列 xn 满足0 x1 ,xn 1 sinxn n 1,2, (Ⅰ)证明limxn存在,并求该极限;n1xn 1 xn(Ⅱ)计算lim 。

nxn解(Ⅰ)用归纳法证明 xn 单调下降且有下界,由0 x1 ,得0 x2 sinx1 x1 ,设0 xn ,则0 xn 1 sinx n xn ,所以 xn 单调下降且有下界,故limxn存在。

n记a limxn,由xn 1 sinxn得xa sina,所以a 0,即limxn 0。

n(Ⅱ)解法1 因为sinx lim x 0x1x limex 01sinxlnx2xlimex 01 cosx12x sinxxx sinx6x2xcosx s inxlimex 02x3limex 0e16又由(Ⅰ)limxn 0,所以n1xn1xn 1 sinxn xn2lim lim n n xx n n 1sinxlim x 0x解法2 因为1xx e6sinx xsinx xsinx x 1 x xsinx xx3,又因为limsinx x1 sinx x,lim 1 x 0x36x 0 x 1xnxsinx xe,sinx 6所以lim , e x 0x111x lim n 1 nxnxnsinxn lim n x n sinx lim x 0 xxn1xe16.篇2数列极限的证明X1=2,Xn+1=2+1/Xn,证明Xn 的极限存在,并求该极限求极限我会|Xn+1-A||Xn-A|/A以此类推,改变数列下标可得|Xn-A||Xn-1-A|/A ;|Xn-1-A||Xn-2-A|/A;……|X2-A||X1-A|/A;向上迭代,可以得到|Xn+1-A||Xn-A|/(A)2只要证明{x(n)}单调增加有上界就可以了。

用数学归纳法:①证明{x(n)}单调增加。

证明数列极限的方法

证明数列极限的方法

证明数列极限的方法
证明数列极限的方法有以下常用的几种:
1. ε-N方法:根据极限的定义,给定一个很小的正数ε,要证明数列{a_n}的极限为L,则需要找到一个正整数N,使得当n>N时,a_n - L <ε。

这种方法常用于证明数列的极限存在和确定极限值。

2. 递推关系法:对于一些特殊的数列,可以通过推导出其递推关系来证明其极限存在及极限值。

例如斐波那契数列和等比数列的极限。

3. 子数列法:如果数列{a_n}的极限存在,但不易直接求出或证明,则可以考虑提取一个子数列{a_{n_k}},其中n_k是一个较大的整数序列,再证明该子数列的极限存在,并与原数列的极限相等。

4. Cauchy收敛准则:对于给定的数列{a_n},如果对于任意给定的正数ε,存在正整数N,使得当m,n>N时,a_m - a_n <ε,那么数列{a_n}的极限存在。

这种方法常用于证明数列的柯西收敛性。

以上为数列极限的常用证明方法,具体应根据数列的性质和问题的要求选择合适的方法进行证明。

数列极限的几种求法

数列极限的几种求法

数列极限的几种求法一、定义法:数列极限的定义如下:设{n a }是一个数列,若存在确定的数a,对ε∀>0 ∃N>0使当n>N 时,都有a a n -<ε则称数列{n a }收敛于a ,记为n n a ∞→lim =a ,否则称数列{n a }不收敛(或称数列{n a }发散)。

故可从最原始的定义出发计算数列极限。

例1、 用ε-N 方法求 nn n 1lim +∞→解:令 n n 1+=t+1 则 t>0∴ n+1=nt )1(+2)1(2)1(122t n n t n n nt -≥+-++≥ΛΛ ∴ 12)1(4)1()1(211-≤-≤-+≤=-+n n n n n n n t n n ∴ε∀>0 取 ⎥⎦⎤⎢⎣⎡+=142εN 则当N n >时,有 ε<-≤-+1211n n n∴n n n 1lim +∞→=1二、单调有界法: 首先我们介绍单调有界定理,其内容如下:在实数系中,有界的单调数列必有极限。

证明:不妨设{n a }为有上界的递增数列。

由确界原理,数列{n a }有上界,记为sup =a {n a }。

以下证明a 就是{n a }的极限。

事实上,ε∀>0,按上确界的定义,存在数列{n a }中某一项N a ,使得N a a <-ε 又由{n a }的递增性,当N n ≥时有εε+<<-a a a n ,这就证得 a a n n =∞→lim 。

同理可证有下界的递减数列必有极限,且其极限即为它的下确界。

例2、证明数列ΛΛΛ,222,22,2+++ 收敛,并求其极限。

证:222Λ++=n a ,易见数列{n a }是递增的。

现用数学归纳法来证明{n a }有上界。

显然 221<=a 。

假设2<n a ,则有22221=+<+=+n n a a ,从而对一切n 有2<n a ,∑=∞→n k n k n 141lim ε即{n a }有上界。

高中数学中的数列极限证明知识点总结

高中数学中的数列极限证明知识点总结

高中数学中的数列极限证明知识点总结在高中数学学习的过程中,数列极限证明是一个非常重要的知识点。

数列极限证明通过逐步逼近的方式,证明了数列趋向于一个确定的值。

本文将系统总结高中数学中关于数列极限证明的知识点。

一、初等数学运算法则在进行数列极限证明时,常常需要运用初等数学运算法则。

这些法则包括数列加减乘除、幂运算、开方运算等,利用这些运算法则可以对数列进行简化和变形,从而更好地展示数列的性质和极限。

二、数列极限定义数列极限是指当数列的项趋近于无穷大时,数列真正趋近的一个确定的值。

数列极限定义包括数列趋于正无穷、负无穷以及有限值的情况,根据具体的情况可以选择不同的证明方法,如夹逼定理、数列单调有界原理等。

三、数列单调性、有界性在证明数列极限时,常常需要运用数列单调性和有界性的性质。

当数列可以通过严格单调递增或递减的方式进行逼近时,可以通过证明单调有界数列的极限存在来得到极限结果。

四、数列极限存在时的夹逼定理夹逼定理是数列极限证明的常用方法之一。

当我们需要求解一个复杂的数列的极限时,可以通过构造两个趋近于同一个值的数列来夹住原数列,从而确定原数列的极限存在。

五、数列极限存在时的数列收敛性数列收敛性是指数列极限存在且有限,通过证明数列收敛性可以进一步得到数列的极限值。

在证明数列收敛性时,常常运用到初等数学运算、夹逼定理以及极限存在的特点。

六、数列极限不存在时的性质当数列的极限不存在时,需要证明该数列是发散的。

在证明数列发散性的过程中,常常运用到反证法、数列单调性的逆否命题以及数列的性质。

七、利用递推关系式证明数列极限在高中数学中,很多数列都可以通过递推关系式来定义。

当需要证明这类数列的极限存在时,可以通过递推关系式的性质和极限的特点来进行证明。

以上是高中数学中关于数列极限证明的主要知识点总结。

通过学习和应用这些知识点,我们可以更好地理解和掌握数列极限的证明方法,提高数学推理和证明能力。

希望本文对你在高中数学学习中有所帮助。

数列极限的概念及其性质证明

数列极限的概念及其性质证明

数列极限的概念及其性质证明数列是数学中的重要概念之一,它是由一系列按照一定规律排列的数所组成的序列。

而数列极限是数列理论中的核心概念之一,它描述了数列在无限项下的趋势和性质。

本文将探讨数列极限的概念及其性质证明。

一、数列极限的概念数列极限是指当数列的项数趋向无穷大时,数列中的数值逐渐趋近于某个固定的值。

具体地说,对于一个实数数列{an},如果存在一个实数a,使得对于任意给定的正数ε,总存在正整数N,使得当n>N时,有|an - a| < ε成立,那么称数列{an}的极限为a,记作lim(n→∞)an = a。

二、数列极限的性质证明1. 唯一性性质首先,我们来证明数列极限的唯一性性质。

假设数列{an}的极限既为a又为b,且a ≠ b。

根据极限的定义,我们可以取ε = |a - b|/2,那么存在正整数N1和N2,使得当n > N1时,有|an - a| < ε,当n > N2时,有|an - b| < ε。

考虑n > max(N1, N2),那么根据三角不等式,有:|a - b| = |(a - an) + (an - b)| ≤ |a - an| + |an - b| < ε + ε = |a - b|。

这与|a - b| < |a - b|矛盾,因此假设不成立,数列极限的唯一性得证。

2. 有界性性质接下来,我们证明数列极限的有界性性质。

假设数列{an}的极限为a,则存在正整数N,使得当n > N时,有|an - a| < 1。

令M = max{|a| + 1, |a1|, |a2|, ..., |aN|},那么对于任意的n > N,有:|an| = |an - a + a| ≤ |an - a| + |a| < 1 + |a| ≤ |a| + 1 ≤ M。

因此,数列{an}是有界的。

3. 单调性性质最后,我们证明数列极限的单调性性质。

数列极限判断方法

数列极限判断方法

数列极限判断方法数列是数学中的重要概念之一,它在许多数学领域中都有着广泛的应用。

而对于数列的极限问题也是数学分析中的重要内容之一。

数列极限判断是指通过一些特定的方法和理论判定一个数列是否存在极限,以及确定该极限的值。

在本文中,我们将介绍一些常见的数列极限判断方法。

首先,我们来介绍数列极限的定义:设有一个数列{an},如果存在一个实数a,对于任意给定的正实数ε,总存在自然数N,使得当n>N 时,不等式|an-a|<ε成立,那么我们就称a是数列{an}的极限,记作lim (n->∞)an=a。

其中,an称为数列的通项。

以下是一些常见的数列极限判断方法:一、有界性及无穷小数列判定法:如果数列{an}既有上确界又有下确界,并且当n趋于无穷大时,an趋于零,那么称该数列为无穷小数列。

如果数列{an}是无穷小数列,那么它的极限必定为零。

另外,如果数列{an}有界,并且数列{bn}也有界,且lim(n->∞)bn=0,那么数列{an}的极限等于数列{an}与{bn}的乘积的极限值。

二、夹逼定理:如果数列{an}、{bn}、{cn}满足an ≤ bn ≤ cn(n为自然数),且lim (n->∞)an=lim(n->∞)cn=a,那么数列{bn}的极限也等于a。

三、单调有界性定理:如果数列{an}单调递增且有上界(即存在M,使得对于任意的n,有an ≤ M),那么数列{an}必定收敛,且其极限为sup{an},即上确界。

同样地,如果数列{an}单调递减且有下界,那么数列{an}必定收敛,且其极限为inf{an},即下确界。

四、等比数列的收敛性:对于等比数列{an},如果0 < |q| < 1,那么数列{an}收敛且极限为0。

当|q| ≥ 1时,数列{an}发散。

五、数列的柯西准则:设数列{an}满足对于任意给定的正实数ε,存在自然数N,使得当m, n > N时,有|am-an|<ε。

证明极限的几种方法

证明极限的几种方法

证明极限的几种方法极限是微积分中的一个重要概念,用来描述函数在某一点或无穷远处的趋势。

在数学中,有多种方法可以用来证明极限的存在或计算极限的值。

本文将介绍几种常用的证明极限的方法。

一、数列极限的证明方法数列极限是极限的一种特殊情况,通常用来描述数列在无穷项处的趋势。

对于数列${a_n}$,如果存在一个实数$a$,使得对于任意给定的正实数$\varepsilon$,都存在正整数$N$,使得当$n>N$时,有$|a_n-a|<\varepsilon$成立,则称数列${a_n}$的极限为$a$,记作$\lim\limits_{n\to\infty} a_n=a$。

数列极限的证明方法主要有夹逼准则、单调有界准则等。

夹逼准则是证明数列极限存在的常用方法。

其思想是通过夹逼数列,找到一个已知的收敛数列,使得待证数列夹在这两个数列之间。

然后利用已知数列的极限,推导出待证数列的极限。

例如,要证明数列${\frac{1}{n}}$收敛于0,可以利用夹逼准则。

首先,我们知道对于任意正整数$n$,都有$0<\frac{1}{n}<\frac{1}{1}=1$。

又因为$\lim\limits_{n\to\infty} \frac{1}{1}=0$,所以根据夹逼准则,数列${\frac{1}{n}}$的极限存在且为0。

二、函数极限的证明方法函数极限是极限的一般情况,用来描述函数在某一点处的趋势。

对于函数$f(x)$,如果存在一个实数$a$,使得对于任意给定的正实数$\varepsilon$,都存在正实数$\delta$,使得当$0<|x-a|<\delta$时,有$|f(x)-a|<\varepsilon$成立,则称函数$f(x)$在点$a$处具有极限$a$,记作$\lim\limits_{x\to a} f(x)=a$。

函数极限的证明方法主要有$\varepsilon-\delta$准则、夹逼准则等。

数分一知识点

数分一知识点

数列极限1.用定义证明数列极限 预备知识:A.数列极限定义的N ε-语言:lim 0,,,n n n x a N n N x a εε→∞=⇔∀>∃∈N ∀>-<关键点:0ε∀>,从不等式n x a ε-<寻找到满足条件的N 。

例1.用定义证明()211lim 01n n qq -→∞=<。

证:当11n ≥时,因2112110n nn q qq ---=≤,故01ε∀<<,要使2110n qε--<,只要nqε<,即ln ln n q ε>,取ln m ax 10,ln N q ε⎧⎫⎡⎤⎪⎪=⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭,则n N ∀>,恒有2110n q ε--<,故211lim 0n n q-→∞=。

注1:本题中将n x a ε-<放缩为()B n ε<(其中()n x a B n -≤)后求满足条件的界限N ,这种方法我们称为“放缩法”,满足后者的N 必满足前者,该方法好处是寻找N 更容易了,代价是N 可能会变大(见图),但我们只关心N 是否存在,不在乎它有多大。

注2:极限是n →∞时数列的性质,它是否存在或是多少与前面的任意有限项无关,故在放缩等情况下只需考虑0n n >(足够大)时数列的性质。

注3:必须对任意小的ε,找到满足条件的N ,但可假设00εε<<,因对较小的ε能找到N ,对较大的ε'必能找到N '(可取N N '=)。

注4:()N N ε=与ε有关,但不是ε的函数,因N 若存在,必有无穷多个,但有一个最小的,就是落在(),U a ε外的n x 的序号中的最大者,一般的,它随ε的减小而增大。

(见图1-2) 注5:[]n x n x >⇔>,因为n 是整数,每次跳跃1。

注6:当N 需满足多个条件时,可取它们之中最强的,一般取{}12max ,,,k N N N N = ,本题中这样取N 是为了使n N ∀>不等式成立的同时N 为自然数,因ln ln q ε⎡⎤⎢⎥⎣⎦可能为负。

数列极限方法总结

数列极限方法总结

数列极限方法总结数列极限是数学分析中的一个重要概念,它描述了数列随着项数的增加趋向于一个确定的数值或趋向于无穷大的特性。

数列是一系列按照一定规律排列的数的集合,数列极限的研究是为了求得这些数列的趋势和性质。

在数学和物理等学科中,数列极限的求解是基础和关键的一步。

数列极限的求解方法有很多,这里我将总结一些常用的数列极限方法。

一、代入法:代入法是数列极限求解的一个简单而直接的方法。

用代入法求解数列极限时,只需要将数列的项数逐一代入数列规律中,找出当项数趋于无穷大时数列的极限。

例如,对于数列an=3n-1,当n≥1时,对于任意的正整数n,有:当n=1时,a1=3*1-1=2;当n=2时,a2=3*2-1=5;当n=3时,a3=3*3-1=8;...当n趋于无穷大时,数列中的每一项都趋于无穷大,所以该数列的极限为正无穷大。

二、数列递推关系:对于一些含有递推关系的数列,可以通过观察数列之间的关系,找到数列极限的方法。

以Fibonacci数列为例,该数列的递推关系是每一项等于前两项的和,即:Fn=Fn-1+Fn-2。

根据这个递推关系,可以得到该数列的前几项:F1=1,F2=1,F3=2,F4=3,F5=5,F6=8,...通过观察可以发现,当n趋于无穷大时,Fn/Fn+1的值趋于黄金分割比例(1+√5)/2,即Fibonacci数列的极限是黄金分割比例。

三、夹逼法:夹逼法是一种常用的求解数列极限的方法。

当数列难以直接求得极限时,可以通过迫近的方式利用夹逼法求得数列的极限。

夹逼法的思想是通过构造两个不等式,将数列逐渐夹逼到一个确定的极限值。

夹逼法的步骤如下:1)找到两个数列,一个上界数列bn,一个下界数列cn,并确定它们的极限值分别为L,M;2)构造两个不等式,即:cn≤an≤bn;3)证明bn和cn的极限都为L,M;4)由bn≥an和cn≤an可以得到bn=M≤an≤L=cn;5)根据夹逼定理,当n趋于无穷大时,数列an的极限也是L。

数列极限的证明方法

数列极限的证明方法

数列极限的证明方法
数列极限的证明方法有多种,以下列举几种基本的证明方法:
1. 利用定义:首先根据数列极限的定义,证明数列满足定义的条件,即对于任意给定的正实数,都存在一个正整数N,使得当n大于N时,数列的前N项与该实数之差的绝对值小于该实数。

然后根据定义的条件,利用数学运算等方法,对给定的实数和数列的项进行推导,最终得到数列的极限。

2. 利用夹逼定理:对于一个数列,如果它的所有项都被夹在两个极限不同的数列之间,那么该数列的极限与这两个数列的极限相同。

因此,可以利用夹逼定理来证明数列的极限。

3. 利用单调有界原理:如果一个数列单调递增或单调递减,并且有界,那么该数列一定收敛。

因此,可以利用单调有界原理来证明数列的极限。

4. 利用递推公式:如果一个数列能够用递推公式来表示,那么可以通过递推公式的性质来推导出该数列的极限。

5. 利用Cauchy准则:对于一个数列,如果满足Cauchy准则,即对于任意给定的正实数,都存在一个正整数N,使得当n,m大于N时,数列的第n项与第m项之差的绝对值小于该实数。

那么该数列一定收敛。

因此,可以利用Cauchy
准则来证明数列的极限。

证明极限的几种方法

证明极限的几种方法

证明极限的几种方法一、数列极限法数列极限法是证明极限的常用方法之一。

对于数列 {an},如果存在实数 a,使得当 n 趋向于无穷大时,数列 {an} 的每一项与 a 的差的绝对值趋近于零,即lim(n→∞)(an - a)= 0,那么我们称数列 {an} 的极限为 a。

例如,考虑数列 {1/n},当 n 趋向于无穷大时,数列的每一项与 0 的差的绝对值趋近于零,即lim(n→∞)(1/n - 0)= 0。

因此,数列 {1/n} 的极限为 0。

二、函数极限法函数极限法是证明极限的另一种常用方法。

对于函数 f(x),如果存在实数 a,使得当 x 趋向于某一点 x0 时,函数 f(x) 的取值趋近于 a,即lim(x→x0) f(x) = a,那么我们称函数 f(x) 在 x0 处的极限为 a。

例如,考虑函数 f(x) = 1/x,当 x 趋向于无穷大时,函数的取值趋近于 0,即lim(x→∞) 1/x = 0。

因此,函数 f(x) 在x = ∞ 处的极限为 0。

三、夹逼定理夹逼定理是一种常用的证明极限的方法,适用于一些比较复杂的函数。

夹逼定理的核心思想是找到两个函数 g(x) 和 h(x),使得对于给定的 x,有g(x) ≤ f(x) ≤ h(x),且当 x 趋向于某一点 x0 时,g(x) 和 h(x) 的极限相等,即lim(x→x0) g(x) = lim(x→x0) h(x) = a。

例如,考虑函数 f(x) = x^2sin(1/x),我们想证明当 x 趋向于 0 时,f(x) 的极限为 0。

为了使用夹逼定理,我们可以找到两个函数g(x) = -x^2 和 h(x) = x^2,使得对于任意 x,有g(x) ≤ f(x) ≤ h(x)。

当 x 趋向于 0 时,g(x) 和 h(x) 的极限都为 0。

因此,根据夹逼定理,我们可以得出lim(x→0) f(x) = 0。

四、极限的代数运算法则极限的代数运算法则是一组用于计算极限的规则。

数列极限证明

数列极限证明

数列极限证明数列极限证明是数学分析中非常重要的一类证明题型,涉及到数列的收敛与发散。

下面以一个简单的例子来介绍一种常用的数列极限证明方法。

例题:证明数列$\{a_n\}$,$a_n = \frac{3n+2}{2n+1}$,收敛于$\frac{3}{2}$。

证明过程:步骤1:先猜想数列的极限是$\frac{3}{2}$,即$\lim_{n\to\infty} a_n = \frac{3}{2}$。

步骤2:对于给定的$\varepsilon > 0$,需要找到一个正整数$N$,使得当$n > N$时,$|a_n - \frac{3}{2}| < \varepsilon$。

步骤3:首先,计算$a_n - \frac{3}{2}$的值:$$a_n - \frac{3}{2} = \frac{3n+2}{2n+1} - \frac{3}{2} =\frac{6n+4-6n-3}{4n+2} = \frac{1}{4n+2}$$步骤4:由于要求$|a_n - \frac{3}{2}| < \varepsilon$,所以需要有$\frac{1}{4n+2} < \varepsilon$。

将不等式两边同时乘以$4n+2$得到:$$1 < \varepsilon(4n+2)$$步骤5:由于$\varepsilon(4n+2)$是一个乘积,其值取决于$n$的取值。

我们希望找到一个$N$,使得当$n > N$时,$\varepsilon(4n+2)$始终大于1,这样不等式$1 <\varepsilon(4n+2)$就成立了。

步骤6:令$N$等于$\frac{1}{4\varepsilon}-\frac{1}{2}$的向上取整(或者取十分之一整),即$N = \lceil\frac{1}{4\varepsilon}-\frac{1}{2} \rceil$。

步骤7:当$n > N$时,$\varepsilon > 0$,所以$\varepsilon \geq \frac{1}{4n+2}$。

数列的极限(证明)

数列的极限(证明)

2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
19
2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
2022年9月30日9时14分
第一步,证明极限存在:
法一:用压缩映像原理。
|
xn1
xn
|
1 2
|
xn
xn1
|,0
1 2
1,收敛。
2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
类例:a)设{xn}满足:| xn1 xn || qn | | xn xn1 |, | qn | r 1。证明:{xn}收敛。(武汉大学05、一、15分)
(n
1)xn ]
0
xn
1 n 1
易见,0
x2
x1(1
x1 )
( x1
1)2 2
1 4
1 4
1 3
2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
用数学归纳法证明0
xn
1 成立, n 1
从而nxn
n n 1
1, nxn单增有上界。
2)因为xn1 xn xn2 xn ,所以xn单减有下界。
上一页 下一页 主 页 返回 退出
2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
56
2022年9月30日9时14分
上一页 下一页 主 页 返回 退出
57
2022年9月30日9时14分

数列极限的定义证明数列的极限(含解答)

数列极限的定义证明数列的极限(含解答)

数列极限的定义证明数列的极限例1证明数列,)1(,,43,34,21,21nn n --+的极限是1.(分析:所证结论,即对任意给定的0>ε,求数)(εN N =,使得N n >时,ε<-1n x )证:nn x n n 1)1(--+=任给0>ε,要使ε<-1n x ,只要1(1)11n n n n ε-+--=<,即ε1>n ,∴对于0>ε,取]1[ε=N ,则当N n >时,1(1)1n n n ε-+--<即10(1)lim 1.n n n n-→+-=例2证明:02lim 1.1n n n →+=+证:21n n x n +=+任给0>ε(不妨设1ε<),要使ε<-1n x ,只要21111n n n ε+-=<++,即11n ε>-∴对于0>ε,取1[1]N ε=-,则当N n >时,211n n ε+-<+即02lim 1.1n n n →+=+注:取1ε<,保证110ε->,取N 时更方便.若不限定110ε->,则取1max{[1],1}.N ε=-例3已知2(1)(1)nn x n -=+,证明数列的极限是0.证:任给0>ε,要使ε<-1n x ,只要22(1)1110(1)(1)1n n n n nε--=<<<+++,即即ε1>n ,∴对于0>ε,取]1[ε=N ,则当N n >时,2(1)0(1)nn ε--=<+即20(1)lim 0.(1)nn n →-=+在利用数列极限的定义来论证某个数是数列的极限是,重要的是对任意给定的正数ε,定义中的正整数N 确实存在,但没有必要求最小的N .如果知道n x a -小于某个量,(这个量是n 的一个函数),那么当这个量小于ε时,ε<-a x n 当然也成立.若令这个量小于ε来定出N 比较方便的话,就可以采用这种方法(称为放大法).例4证明221lim .292n n n n n →∞+=++证222192922(29)n n n n n n n +--=++++当9n ≥时,有2229912(29)2(29)4n n n n n n n n n--=<<++++取1max{[],9}.N ε=注:第一个不等式是有条件放大(即9n ≥);第二个不等式是无条件放大,由此可知放大不等式一般有下列要求:(1)放大后的式子应该随着n 的增大而减小,能使该式小于ε.例如,式子如果是关于n 的有理分式,则要求分母n 的次数高于分子n 的次数.(2)使最后一个式子小于ε的不等式容易解出n .例5利用数列极限的定义证明1lim 1n n n →∞=(或1lim 1,0n n a a →∞=>).分析:由于1n n x n =,底数与指数都随着n 而变化,故不好直接求解不等式11nn ε-<.需将不等式用其它方法化简放大,使得关于解n 更容易证一:令111nn a a -==+,即222(1)(1)(1)12222n n n n n n n n n a na a a a a --=+=++++>>⋅ (当2n >)即224n a n <,亦即a <1-<ε<,即24n ε>取24max{[],2}N ε=证2依据几何平均不超过算术平均不等式12n a a a n+++≤11(2)1)1n n n n +++++--=≤==+2(1)21n n --≤<=ε<,即24n ε>,故取24[N ε=.。

数列极限四则运算法则的证明

数列极限四则运算法则的证明

数列极限四则运算法则的证明设limAn=A,limBn=B,则有法则1:lim(An+Bn)=A+B法则2:lim(An-Bn)=A-B法则3:lim(An·Bn)=AB法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于∀ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身)法则1的证明:∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.②设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义) ①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证)法则2的证明:lim(An-Bn)=limAn+lim(-Bn) (法则1)=limAn+(-1)limBn (引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义) 同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε=ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A) (法则1)=A-A (引理2) =0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB (法则1)=0+B·liman+A·limbn+limAB (引理3、引理2)=B×0+A×0+AB (引理1) =AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:由引理4,当B≠0时(这是必要条件),∃正整数N1和正实数ε0,使得对∀正整数n>N1,有|Bn|≥ε0.由引理5,又∃正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对∀ε>0, ∃正整数N2和N3,使得:当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);现在,当n>max(N1,N2,N3)时,有|An/Bn-A/B|=|An*B-Bn*A|/|B*Bn|=|An(B-Bn)+Bn(An-A)|/|B*Bn|≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε法则5的证明:lim(An的k次方)=limAn·lim(An的k-1次方) (法则3) ....(往复k-1次)=(limAn)的k次方=A的k次方.。

数列的极限

数列的极限

a1 a1 1, a2 1 , , 4. 设 1 a1 an 1 an 1 ( n 2, 3, ) 求 lim a n n 1 an 1
2. 用夹逼定理时,放缩后的数列{an },{cn }必须收敛且收敛 于同一极限值。
求 lim n 2n 3n . 例5. n
注:若a1 , a2 , ak 0, 则 lim a a a max{a1 , a2 , ak }.
n n n 1 n 2 n k
1 1 1 ) 例6. 求 lim( n n 1 n 2 n n
1 1 1 例7. 设an 1 2 2 2 , 证明{an }收敛. 2 3 n
例8.设a 0, x1 0, xn1 并求此极限值。 1 a ( xn ), 证明lim xn 存在, n 2 xn
分析: 判别单调性: 观察、减一减、除一除(不变号)。
例9. 证明
则a b.
则N N ,当n N时,有an b.
定理4(有理运算法则)
设 lim an a , lim bn b, 则
n n
(1) lim[an bn ] lim an lim bn a b ,
n n n
(2) lim(anbn ) lim an lim bn ab ,
极限存在准则
定理5(夹逼定理) 若三个数列{an },{bn },{cn }满足:
(1) an bn cn , n N ;
( 2) lim an lim cn a , n n
则 lim bn a . n
注1.若(1)中的不等式从某项N后开始成立,定理依然成立。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用(2)与极限的除法运算法则,有
所以,对
,有
证明 证 注意到, 可能比一部分自然数大,而比另一部分小, 现取一个确定的自然数 则 使得
由于
确定,
中的每个因子放大为
从而
对于 放大为 1,即 从而
除了
保留外,其余都
即,
由两边夹定理知,
证明 证 令 则
(当 (因为
时) )
(1) 当 (2) 当
时,显然有 时,
=0
(3) 当
时,

由(2)知,
综上所述,
证明 证 (一) 当 另有 对 时, 有 故存在正整数 也即, (1) ,当
时,有
(2)


,且有
故当 (二) 对一般的
时,
综上所述,
证明 目标: 证 因为
(易证
对于 0, 只须
) 取
当 n> N 时,就有 由定义知
成立只需证 而
或用均值不等式
证明 证 令 因为有 对于 只要 取 则当 时,就有 为使 则
由定义知
成立.
证明
(1) 当
(2) 当 (3) 当
时,显然
时, 由上例知
时, 由于
相关文档
最新文档