1.4 自动控制系统的分类
1.4 自动控制系统的分类
输入 + A/D
--
计算 机
输出
D/A
放大器
执行器
被控对象
反馈装置
采样数字控制系统结构图
广东交通职业技术学院机电工程系
18:18
4. 按输入量变化的规律分类
1) 恒值控制系统(Fixed Set-Point Control System) 特点是:系统的输入量是恒量,并且要求系统 的输出量相应地保持恒定。例如电机速度控制、水 位控制等。
且要求输出量随之变化。例如数控伺服系统以及一些 自动化生产线等。
广东交通职业技术学院机电工程系
18:18
广东交通职业技术学院机电工程系
18:18
2) 非线性系统(Non Liner System)
特点是:系统中含有非线性元件,如具有死区、 出现饱和等非线性特性的元件,它的输出量与输入 量间的关系要用非线性微分方程来描述。
广东交通职业技术学院机电工程系
18:18
2. 按系统中的参数对时间的变化情况 1) 定常系统(Time-Invariant System) (又称时
1.4 自动控制系统的分类
自动控制系统可以从不同的角度来进行分类, 常见的有以下几种。
1. 按系统的输出量和输入量间的关系分类 1) 线性系统(Liner System) 特点是:系统全部由线性元件组成,它的输出
量与输入量间的关系用线性微分方程来描述。
线性系统的主要特点是具有叠加性和齐次性,即 当c1(系t)和统c的2(t输),入则分当别输为入r1为(t)r和(t)r=2a(t1)r时1(t,)+对a2r应2(t的)时输,出输分出别量为 为c(t)=a1c1(t)+a2c2(t),其中为a1、a2为常系数。
控制工程基础习题课
按输出量的变化规律:
恒值控制系统(自动调节系统): 系统的输出为恒定值。如恒温箱、液面控制等 此类系统同时也是闭环系统 程序控制系统: 系统的输出按规定程序变化。如数控加工系统 此类系统同时也是闭环系统
随动系统:
系统的输出相应于输入按任意规律变化。如炮瞄雷达系统 此类系统可以是开环系统,也可以是闭环系统
脉冲信号
等速和等加速信号
自动控制系统方框图的绘制步骤
• 分析控制系统的工作原理,找出被控对象; • 分清系统的输入量、输出量; • 按照控制系统各环节的定义,找出相应的 各个环节; • 按信息流动方向将各个环节用原件方框和 连线连接起来。
试说明如题图 (a)所示液面自动控 制系统的工作原理。若将系统的结 构改为如题图 (b)所示,将对系统 工作有何影响?
线性化的定义:
将一些非线性方程在一定的工作范围内用近似的线性方程来 代替,使之成为线性定常微分方程
2.2 系统的传递函数
传递函数:复数域中描述系统特性的数学模型
2.2 系统的传递函数
传递函数:复数域中描述系统特性的数学模型
E.g. 3 机械系统传递函数的建立:求图式所示系统的传递函数
1 确定系统的输入和输出:输入为f,输出为y。
1.4 自动控制系统的研究方法
基本问题:建立数学模型 、系统性能分析、控制器设计
分析: 在给定系统的条件下,将物理系统抽象成数学模型, 然后用已经成熟的数学方法和先进的计算工具来定性或 定量地对系统进行动、静态的性能分析。 综合: 在已知被控对象和给定性能指标的前提下,寻求控 制规律,建立一个能使被控对象满足性能要求的系统。 典型控制信号: 正弦信号 阶跃信号
1.2 反馈控制系统及其组成
闭环控制系统的组成:给定环节、测量环节、比较环节、放大及运算环 节、执行环节 给定环节:
自动控制原理与系统
对自动控制理论的具体描述
1、开环控1制.2系开统(环Op控en制L和oo闭p 环Co控nt制rol System)
若系统的输出量不被引回来对系统的控制部分产生影响, 则这样的系统称为开环控制系统。
图 1 - 1 数控加工机床示意图
图 1 - 2 为数控加工机床开环控制 框图。 此系统的输入量为加工程序指令, 输出量为机床工作台的位移, 系统的控 制对象为工作台, 执行机构为步进电动 机和传动机构。
(3) 反馈量(Feedback Variable): 通过检测 元件将输出量转变成与给定信号性质相同且数量级相 同信号电压。
(4) 扰动量(Disturbance Variable): 又称干扰 或“噪声”(Noise), 所以扰动量的角标常以d(或 n)表示。 它通常指引起输出量发生变化的各种因素。
(1) 输入量(Input Variable): 又称控制量或调 节量(Reference Input Variable), 所以输入量的角 标常用i(或 r)表示。它通常由给定信号电压构成,或通过 检测元件将非电输入量转换成信号电压。
(2) 输出量(Output Variable): 又称被控制量 (Controlled Variable), 所以输出量角标常用o(或 c) 表示。它是被控制对象的输出,是自动控制的目标。
自动控制系统性能的优劣, 将直接影响到产品的产 量、 质量、 成本、 劳动条件和预期目标的完成。
自动控制技术的应用可以追溯到18世纪(1788年) 瓦特(Watt)利用小球离心调速器使蒸汽机转速保持恒 定的开创性的突破, 以及19世纪(1868年)麦克斯威尔 (Maxwell)对轮船摆动(稳定性)的研究。 但在初 期, 自动控制技术的应用进展很缓慢。 自动控制技术 的真正发展是在20世纪。
1.4-1自动控制系统分类 -按输入量变化的规律.
给定
温度 + 给定元件 -
微机控制 (控制器)
加热器 (执行器)
典型机电控制系统
干扰
恒温设备 (被控对象)
T (温度)
热电偶 (反馈环节)
恒值控制系统性能的关键在于检测元件和执行元件的性能,若采用了微机控制, 还与微机处理的速度有关。
典型机电控制系统
按系统输入量变化的规律划分 随动控制系统: 特征:该系统的输入量是一个事先无法确定的任意变化的量,要求系 统的输出量能迅速平稳地复现或跟踪输入信号的变化。
雷达随动系统
各种雷达都有随动系统,但是,通常所说的雷 达随动系统是指各种跟踪雷达中的天线角坐标 跟踪系统和距离跟踪系统。
典型机电控制系统
雷达随动系统
典型机电控制系统
机械传动 执行元件
R(目标斜距离) E(仰角)
A(方位角)
角度误差 形成
辅助跟 踪计算
机
E(仰角)
正割 补偿
伺服放大 及校正
典型机电控制系统
恒水位控制系统
浮子
水
典型机电控制系统
系统给定:由浮子联动机构
确定了水位的高度 扰动(阀门)
给定
执行元件
水位H
机构
固定位 +
活塞 动作
水箱
阀门 系统目标:水位高度达到设定
- 反保
测水位
持暂时稳定
恒温控制系统
空调
典型机电控制系统
燃气自动恒温加热炉
恒温恒湿试验箱
恒温控制系统 比较器
太阳能跟踪控制系统
太阳能电池又称为“太阳能芯片”或“光电 池”,是一种利用太阳光直接发电的光电半 导体薄片。它只要被满足一定照度条件的光 照到,瞬间就可输出电压及在有回路的情况 下产生电流。在物理学上称为太阳能光伏 (Photovoltaic,photo光,voltaics伏特, 缩写为PV),简称光伏。 若使太阳能电池板随时正对太阳,让太阳光的光
自动控制原理课件:自动控制系统概述
本章思考题:
• 自动控制的实质是什么? • 闭环控制的结构使得其具有哪些优缺点? • 对自动控制系统的基本要求有哪些?
随动系统与自动调整系统 线性系统与非线性系统 连续系统和离散系统 单输入单输出系统和多输入多数出系统
1.5 自动控制系统的基本要求 稳定性 稳态性能指标 暂态性能指标
经典控制理论的主要分析方法:时域分析,频域分析
1.6 控制系统数字仿真实践的必要性
进行数字仿真实 验在某种意义上比理 论和试验对问题的认 识可以更为细致,不 仅可以了解问题的结 果而且可以通过设定 仿真条件等方式连续 动态、重复地显示控 制系统发展演化的中 间过程,方便了解直 观试验不易观测到的 整体与局部细节过程。
自动控制系统概述
目 录
CONTENTS
1.1 引言 1.2 开环控制和闭环控制 1.3 闭环自动控制系统的基本组成 1.4 自动控制系统的分类 1.5 自动控制系统的基本要求 1.6 控制系统数字仿真实践的必要性
1.1 引言
自动控制的基本概念
自动控制 自动控制是在没有人的直接干预下,利用物理装置对生产设备和
闭环控制的特点
控制器与被控对象之间既有信号的正向作用,又 有信号的反馈作用。
优点:抗干扰能力强,稳态精度高、动态性能好等。
缺点:设计不合理时,将出现不稳定。在开控制器 2-控制对象 3-检测装置
1.3 闭环自动控制系统的基本组成
1.4 自动控制系统的分类
工艺过程进行合理的调节,使期望的物理量保持恒定,或者按照一定 的规律变化。
自动控制系统 自动控制系统是为实现某一控制目标所需要的所有物理部件的有
机组合体。
1.2 开环控制和闭环控制
图1-1 电炉加热系统 1-控制器(调压器) 2-被控对象(电炉箱)
自动控制系统的分类、渡过程和品质指标(doc 40页)
自动控制系统的分类、渡过程和品质指标(doc 40页)生影响的系统,称为开环控制系统。
把系统(或环节)的输出信号直接或经过一些环节重新引回到输人端的做法叫做反馈。
反馈信号的作用方向与设定信号相反,即偏差信号为两者之差,这种反馈叫做负反馈;反之为正反馈。
在闭环控制系统中,把输出信号(被控变量)经过测量元件和变送器后,又返回到系统的输入端,与给定值进行比较,这种系统的输出信号直接或经过一些环节返回到系统的输入端的做法叫反馈。
负反馈反馈信号能使原来的信号减弱。
与原来信号方向相反。
正反馈反馈信号能使原来信号加强。
自动控制系统控制方法基本上是采用负反馈的方法。
自动控制系统是具有被控变量负反馈的闭环系统,§1.3自动控制系统的分类1. 按被控参数分类:温度、流量、压力、液位等控制系统。
2. 按控制系统所处理的信号方式来分:有模拟控制系统与数字控制系统。
模拟信号:在时间上是连续变化的,在任何瞬时都可以确定其数值的信号,可转换为电信号。
在生产过程中任何连续变化的物理量和物理量都属于模拟信号。
数字信号:以离散形式出现的不连续的信号,数字量的增减只能一个一个单位增加或减小。
模拟信号和数字信号可以互相转换。
4.按控制器具有的控制规律分类:位式自动控制系统、比例(P)、比例积分(PI)、比例微分(PD)、比例积分微分(PID)等控制系统。
5. 按控制系统的复杂程度简单控制复杂控制:均匀控制、串级控制、前馈控制(1)定值控制系统:被控变量的给定值恒定不变。
定值控制系统的基本任务是克服扰动对被控变量的影响,(2)随动控制系统(自动跟踪系统):给定值是不断变化的且无规律,是随机变化的。
随动控制系统控制的目的,是使所控制的工艺参数准确而快速地跟随给定值的变化而变化。
(3)程序控制系统(顺序控制系统):工艺参数的给定值按一定的规律变化,是已知的时间函数。
即设定值按一定的时间程序变化。
9. 按信号种类分类:气动控制系统,电动控制系统§1.4 自动控制系统的过渡过程和品质指标在自动化领域内要研究两种状态:静态和动态。
自动控制理论概述
8.1 传感器的选用
• 8.1.2 传感器选择的一般步骤 选择传感器总的原则是:在满足对传感器所有要求的情况
下,力求成本低、工作可靠且便于维修的原则,即性能价格 比要高的原则。一般可按下列步骤进行: 1 .借助于传感器分类表。即按被测量的性质,从典型应用中可 以初步确定几种可供选用的传感器的类别。 2 .借助于常用传感器比较表。即按测量的范围、测量精度及环 境要求等进一步确定传感器的类别。 3 .借助于传感器的产品目录。根据所选的传感器的类别,借助 产品目录,选出传感器的规格、型号、性能和尺寸。
图1-3 直流电动机转速闭环控制方框图
闭环控制特点
循环控制, 路径闭合
系统精度高, 抗干扰能力强
结构复杂,元 件和参数配置 要求较高
第一章 自动控制的基本概念
1.4 自动控制系统的分类
定值、随动和程序控制系统
定值控制系统 系统给定值(参考输入)为恒定常数,这种控制系统称为定值控制
系统,这种系统可通过反馈控制使系统的被控参数(输出)保持恒定、 希望的数值。
返回
8.1 传感器的选用
由于传感器精度的高低、性能的好坏直接影响到检测的 结果,影响到自动检测系统的品质和整个系统的运行状态 ,因此,选择合适的传感器是一个很重要环节。
• 8.1.1 传感器的选择要求 传感器的选择要求是全面的、严格的,是选用传感器的依
据。具体要求主要有以下几点: 1)技术指标要求。
如绝缘电阻、耐压等级及接地保护等。
上一页 下一页 返回
8.1 传感器的选用
5)可靠性要求 如抗干扰、使用寿命、无故障工作时间等。
6)维修及管理要求 如结构简单、模块化、有自诊断能力、有故障显示等。 上述要求又可分为两大类:一类是共同的要求,如线性度
程鹏《自动控制原理》课件讲义1
• 20世纪60年代,数字计算机的出现为 复杂系统的基于时域分析的现代控制 理论提供了可能。
• 从1960年到1980,确定性系统、随机 系统的最佳控制,及复杂系统的自适 应和学习控制,都得到充分的研究。
• 控制装置(续)
• 放大元件:将比较元件给出的偏差进行放 大,
用来推动执行元件去控制被控对象; • 执行元件:直接推动被控对象,使其被控量发
生变化;
• 校正元件:亦称补偿元件,它是结构或参数便 于调整的元件,用串联或反馈的方式 连接在系统中,以改善系统性能。
输入量
反馈控制系统的基本组成图
当车子转弯偏离正南方向时车辕前端就顺此方向 移动,而后端则向反方向移动,并将传动齿轮放 落,使车轮的传动带动木人下的大齿轮向相反方 向转动,恰好抵消车子转弯产生的影响。
车辆 转弯
齿轮系 车身
方向
木人
指 南 车
原 理
• 18世纪, James Watt 为控制蒸汽 机速度设计 的离心调节 器,是自动 控制领域的 第一项重大 成果。
• 1932年,Nyquist提出了一种根据 系统的开环频率响应(对稳态正弦 输入),确定闭环系统稳定性的方 法。
• 1934年,Hezen提出了用于位置控 制系统的伺服机构的概念,讨论 了可以精确跟踪变化的输入信号 的机电伺服机构。
• 19世纪40年代,频率响应法为 闭环控制系统提供了一种可行 方法,Evans提出并完善了根轨 迹法。
1.2 自动控制系统示例
The Boeing 777 fly-by-wire aircraft
The F-18 aircraft, one of the first production military fighters to use “fly-by-wire”
自动控制理论
基本组成( 基本组成(续)
<6>校正元件:也叫补偿元件,它是结构或参数便于 校正元件:也叫补偿元件, 校正元件 调整的元件。用串联或并联(反馈) 调整的元件。用串联或并联(反馈)的方式连接 于系统中,以改善系统的性能。 于系统中,以改善系统的性能。如:电阻、电容 电阻、 组成的无源或有源网络,还有计算机。 组成的无源或有源网络,还有计算机。
00:39
1.2 自动控制的基本原理
自动控制:没有人直接参与,利用自动控制装置, 自动控制:没有人直接参与,利用自动控制装置, 工作机械或生产过程自动地按照预定规律运行或 使工作机械或生产过程自动地按照预定规律运行或 某些物理量按预定要求变化。 使某些物理量按预定要求变化
自动控制
连杆的长度 记下期望液位
基本组成
<1>给定元件:其职能是给出与期望的被控量相对 给定元件: 给定元件 应的系统输入量。一般为电位器。 应的系统输入量。一般为电位器。 <2>比较元件:其职能是把测量到的被控量实际值 比较元件: 比较元件 与给定元件给出的输入量进行比较,求出他们 与给定元件给出的输入量进行比较, 之间的偏差。常用的有差动放大器、 之间的偏差。常用的有差动放大器、机械差动 装置、电桥电路、计算机等。 装置、电桥电路、计算机等。 <3>测量元件:其职能是检测被控制量的物理量。 测量元件:其职能是检测被控制量的物理量。 测量元件 如测速机、热电偶、自整角机、电位器、 如测速机、热电偶、自整角机、电位器、旋转 变压器、浮子等。 变压器、浮子等。
00:39
1.2 自动控制的基本原理
3.准确性 .
过渡过程结束后系统就 进入稳态,此时系统输 进入稳态,此时系统输 出量的期望值与实际值 之差称为稳态误差。 之差称为稳态误差。 稳态误差越小, 稳态误差越小,控制系 统的稳态精度越高。 统的稳态精度越高。 无差系统、有差系统。 无差系统、有差系统。
自动控制系统的分类
4.定常系统和时变系统
(1)定常系统 如果描述系统特性的微分方程中各项系数都
是与时间无关的常数,则称为定常系统。该类系统 只要输入信号的形式不变,在不同时间输入下的输 出响应形式是相同的。
(2)时变系统 如果描述系统特性的微分方程中只要有一
项系数是时间的函数,此系统称为时变系统。
5.连续系统和离散系统
本课程的主要内容是阐述构成、分析和设计自 动控制系统的基本理论。对实际系统,建立研究问题 的数学模型,进而利用所建立的数学模型来讨论构成、 分析、综合自动控制系统的基本理论和方法。
作为研究自动控制系统的分析与综合的方法来 说,对单输入单输出系统常采用的是时域法,频域法, 根轨迹法以及目前广泛应用的计算机辅助设计。
最后还要学习线性离散控制系统的基本分析方法。
本章小结
• 本章介绍了自动控制理论的应用领域、发展过程 和分类。通过一些控制系统实例讨论了手动控制、 自动控制、自动控制系统的工作原理、系统分类 及相关术语等基本概念。最后介绍了本课程将要 介绍的主要内容,以利于同学们从总体上把握本 课程的相关知识。
• 重点:要求掌握手动控制与自动控制、自动控制 系统及其工作原理与组成、开环控制与闭环控制、 系统输入量与输出量的相关基本概念。了解本课 程将要学习的内容。
6.单输入单输出系统与多输入多输出系统
(1)单输入单输出系统(单变量系统) 系统的输入量和输出量各为一个,称为单输入
单输出系统。
(2)多输入多输出系统(多变量系统) 若系统的输入量和输出量多于一个,称为多输
入多输出系统。对于线性多输入多输出系统,系统 的任何一个输出等于数个输入单独作用下输出的叠 加。
1-5 自动控制系统分析与设计工具
优点:具有强大的数值计算与符号计算功能,以及强大的数据 可视化、人机智能交互能力,发展比较快。
1.4自动控制系统的性能要求
第1章绪论随着生产和科学技术的发展,自动控制技术在国民经济和国防建设中所起的作用越来越大。
从最初的机械转速或位置的控制到生产过程中温度、压力或流量的控制,从远洋巨轮到深水潜艇的控制,从飞机自动驾驶、航天飞船的返回控制到“勇气”号、“机遇”号的火星登陆控制,自动控制技术的应用几乎无所不在。
从航空航天、电气、机械、化工、生物工程到经济管理,自动控制理论和技术已经渗入到许多学科,渗透到各个应用领域。
所以许多工程技术人员和科学工作者都希望具备一定的自动控制知识,根据任务需要分析和设计自动控制系统。
本章重点内容:●自动控制系统的组成●自动控制系统的分类●自动控制理论的发展历史●自动控制系统的性能要求1.1 自动控制系统的一般概念自动控制(automatic control)就是在没有人直接参与的条件下,利用控制器使被控对象(如机器、设备和生产过程)的某些物理量(或工作状态)能自动地按照预定的规律运行(或变化)。
自动控制是一门理论性很强的科学技术,一般泛称为“自动控制技术”。
把实现自动控制所需的各个部件按一定的规律组合起来,去控制被控对象,这个组合体叫做“控制系统”。
分析与设计自动控制系统的理论称为“控制理论”。
自动控制系统的种类较多,被控制的物理量也各种各样,如温度(temperature)、压力(pressure)、流量(flow)、转速(rotate speed)、位移(distance)和力(force)等。
组成这些控制系统的元部件虽然有较大的差异,但是系统的基本结构却有着共同特点,且一般都是通过机械、电气、液压等方法来控制。
为了解自动控制系统的结构,下面分析一下图1-1所示的液面控制系统。
图中F1为放水阀(drain valve),F2为进水阀(inlet valve),控制任务要求液面的希望高度等于h0。
当人参与控制时就要不断地将实际液面高度h1与希望液面高度h0作比较,根据比较的结果,决定进水阀F2的开度(aperture)是增大还是减小,以达到维持液面高度不变的目的。
自动控制原理一般概念
贝尔曼的动态规划。 特点:采用状态空间法(时域法),研究“对输入-多输出”、时变、非 线性系统等高精度和高复杂度的控制问题。
1.1 控制理论的发展
经典控制理论与现代控制理论比较
项目
经典控制理论
现代控制理论
研究对象 描述方法 研究办法
线性定常系统 (单输入、单输出)
一. 几个基本概念
注意:作用线的箭头方向只表示信号的传递方向,而不表示实际工质的 运动方向。
例如:对于汽包而言,输出量为水位,而引 起液位变化的因素有两个,即给水流量的变 化和蒸汽负荷的变化。而实际系统中,蒸汽 是从汽包中流出。
1.3 自动控制系统的方框图
二. 广义对象
方框图的应用可繁可简,其基本原则就是能清楚地表达所需研究的信号 的传递关系和所研究环节的性能。
图纸 指令
放大器
执行机构 (步进电机)
工作机床
切削刀具
1.4 自动控制系统的分类
一. 按信号的传递路径来分类 1. 开环控制系统
干扰 n
给定值 r
控制器
执行机构
受控对象
特点: • 系统的被控量对系统的控制作用没有影响; • 系统结构简单,控制精度取决于系统各组成环节元部件的精度; • 对于干扰无法自动补偿,控制精度难以保证; • 仅适用于输入/输出关系已知,且系统几乎不存在干扰的场合。
给定值 r
控制器 — 偏差e
测量信号
执行机构 测量、变送器
干扰 n
受控对象
c
1.3 自动控制系统的方框图
一. 几个基本概念
给定值 r
控制器 — 偏差e
测量信号
执行机构 测量、变送器
干扰 n
精品文档-自动控制原理及其应用(第二版)温希东-第1章
液位控制系统的工作原理如图 1-12 所示。
图 1-12 液位控制系统的原理图
第1章 自动控制系统概述
32
液位控制系统的原理方框图如图 1-13 所示。
图 1-13 液位控制系统的原理方框图
第1章 自动控制系统概述
33
4. 转速、电流双闭环直流调速系统 转速、电流双闭环直流调速系统原理图如图 1-14 所示。
炉温自动调节过程如图 1-6 所示。
第1章 自动控制系统概述
14
图 1-6 炉温自动调节过程
第1章 自动控制系统概述
15
1.3 自动控制系统的组成
现以图 1-4 和图 1-5 所示的恒温控制系统来说明自动控 制系统的组成和有关术语。为了表明自动控制系统的组成以及 信号的传递情况,通常把系统各个环节用框图表示,并 用箭头标明各作用量的传递情况,图 1-7 便是图 1-4 所示系 统的方框图。方框图可以把系统的组成简单明了地表达出来, 而不必画出具体线路。
随动控制系统的特点是:输入量是随机变化着的,并且要 求系统的输出量能跟随输入量的变化而作出相应的变化。
5. 对自动控制系统的性能指标的要求主要是稳、准、快。 6. 自动控制系统的研究方法,包括理论分析和实践探索。 我们主要研究线性定常单输入单输出系统,应用频域分析法来 进行分析设计。即 系统工作原理→传递函数→系统方框图→对数频率特性→ 工程计算法
第1章 自动控制系统概述
16
图 1-7 自动控制系统的方框图
第1章 自动控制系统概述
17
由图 1-7 可以看出,一般自动控制系统包括: (1) 给定元件(Command Element) (2) 检测元件(Detecting Element) (3) 比较环节(Comparing Element) (4) 放大元件(Amplifying Element) (5) 执行元件(Executive Element) (6) 控制对象(Controlled Plant) (7) 反馈环节(Feedback Element)
1第一章自动控制的基本概念
1.2 简要历史
原苏联学者庞特里亚金(Pontryagin)于1956年提出的极 于 原苏联学者庞特里亚金 年提出的极 大值原理、贝尔曼(Bellman)于1957年提出的动态规划和 大值原理、贝尔曼 于 年提出的动态规划和 卡尔曼(Kalman)于1960年提出的状态空间分析技术,开 年提出的状态空间分析技术, 卡尔曼 于 年提出的状态空间分析技术 创了控制理论研究的新篇章,他们的理论当时被统称为“ 创了控制理论研究的新篇章,他们的理论当时被统称为“现 代控制理论” 从那个时期以后, 代控制理论”。从那个时期以后,控制理论研究中出现了线 性二次型最优调节器(Kalman,1959), 性二次型最优调节器(Kalman,1959),最优状态观测器 (Kalman,1960)以及线性二次型高斯 以及线性二次型高斯(Linear , 以及线性二次型高斯 Quadric and Gaussian,LQG)问题的研究。 问题的研究。 问题的研究 从1960~1980年这段时间,人们对确定系统和随机系统 年这段时间, 年这段时间 的最优控制、 的最优控制、复杂系统的自适应控制和学习控制进行了充分 的研究。大约从1960年起,电子计算机开始应用于控制系 的研究。大约从 年起, 年起 统的研究与设计。 统的研究与设计。
上一页 下一页 返回
1.2 简要历史
年到现在, 从1980年到现在,现代控制理论的研究主要集中于 年到现在 Robustt(鲁棒 控制等相关的课题,其中鲁棒控制是控制系 鲁棒)控制等相关的课题 鲁棒 控制等相关的课题, 统设计中又一个令人瞩目的研究领域。 统设计中又一个令人瞩目的研究领域。1981年,美国学者 年 查默斯(Zames)提出了基于哈代 提出了基于哈代(Hardy)空间范数最小化 查默斯 提出了基于哈代 空间范数最小化 方法的鲁棒最优控制理论。 年多依尔(Doyle)等人提 方法的鲁棒最优控制理论。1992年多依尔 年多依尔 等人提 出了最优控制的状态空间数值解法, 出了最优控制的状态空间数值解法,为该领域的发展作出了 重要的贡献。 重要的贡献。 目前,自动控制理论正向以控制论、 目前,自动控制理论正向以控制论、信息论和人工智能为基 础的智能控制理论方向发展;同时, 础的智能控制理论方向发展;同时,由于大规模信息网络管 理控制的需要, 理控制的需要,自功控制理论也在向大系统控制理论方向前 进。
自动控制系统的分类
加。
1-4 自动控制系统的基本要求
自动控制系统是否能很好地工作,是否能精确 地保持被控量按照预定的要求规律变化这取决于被 控对象和控制器及各功能元器件的特性参数是否设 计得当。 在理想情况下 , 控制系统的输出量和输入量 , 在任何时候均相等 , 系统完全无误差 , 且不受干扰 的影响。实际系统中 , 由于各种各样原因 , 系统在 受到输入信号(也包括扰动信号)的激励时,被控量 将偏离输入信号作用前的初始值 ,经历一段动态过 程(过渡过程),则系统控制性能的优劣,可以从动 态过程中较充分地表现出来。
1-3 自动控制系统的分类
1.按信号流向划分
(1)开环控制系统
信号流动由输入端到输出端单向流动。
(2)闭环控制系统 若控制系统中信号除从输入端到输出端外, 还有输出到输入的反馈信号,则构成闭环控制系 统,也称反馈控制系统,如图所示。
2.按系统输入信号划分 (1)恒值调节系统(自动调节系统) 这种系统的特征是输入量为一恒值,通常称为系 统的给定值。控制系统的任务是尽量排除各种干扰 因素的影响,使输出量维持在给定值(期望值)。如工 业过程中恒温、恒压、恒速等控制系统。
MATLAB分析与设计
1-6 本课程的内容和特点
一、自动控制理论的内容 自动控制理论的内容与自动控制系统需要研究的问题密切相关。 要研究的问题有两个方面,即控制系统的分析;控制系统设计与 综合。 (-)自动控制系统的分析 控制系统分析主要包括三个方面内容:①稳定性分析;②稳态 特性分析(准确性,精度);③动态特性分析(暂态特性或瞬态 特性)。(稳、准、快) 1.系统的稳定性分析 1、稳定性分析; 给出判断系统稳定性的基本方法,并阐述 系统的稳定性与系统结构(或称控制规律)及系统参数间的关系。 2、稳态特性分析:系统稳态特性表征了系统实际稳态值与希 望稳态值之间的差值,即稳态误差,表征了控制系统的控制精度。 给出计算系统稳态误差的方法,指出系统结构和参数对稳态特性 的影响。
第1章 自动控制系统简介
微积分(含微分方程)
课程学习要面临
数学基础宽而深 控制原理抽象 计算复杂且繁琐 绘图困难
ax bx c d
2
计算机数学语言 MATLAB 数值解/解析解(数学运算)
控制理论的内容
二十世纪三项科学革命:控制论、量子论、相对论 控制论:
经典控制理论 现代控制理论(智能控制理论)
1.1.2 自动控制系统举例
一个自动运行的系统,就是指它的运行不需要人为的干预。
令人的体温保持在37℃的自动温控系统 心跳控制系统 眼球聚焦系统 温控系统 汽车自动导航控制系统 电梯调度系统自动发送电梯搭载乘客
空调—自动调节房间温度:
以取暖为例,空调通过温度传 感器检测房间的温度高低,空调控 制器将检测的温度与设定值进行比 较,若温度低于设定值的下限,则 使压缩机运行,温度上升,温度上 升到设定值的上限时则停止运行。 空调运行基于反馈信息(温度 测量值),属于 “反馈控制”,最 为常见。
• 由于当时还没有自控理论,所以不能从理论上解 释这一现象。为了解决这个问题,盲目探索了大 约一个世纪之久。
自动控制理论的开端
• 1868年英国麦克斯韦尔的“论调速器”论文指出: • 不应单独研究飞球调节器,必须从整个系统分析控 制的不稳定。 • 建立系统微分方程,分析微分方程解的稳定性,从 而分析实际系统是否会出现不稳定现象。这样,控 制系统稳定性的分析,变成了判别微分方程的特征 根的实部的正、负号问题。
1.2.3 闭环控制系统(核心)
把输出量直接或间接地反馈到系统的输入端,形成 闭环,参与控制,称为闭环控制系统。
前/正向通道
反/负向通道
闭环控制系统的优缺点
自动控制原理课件可编辑全文
• 3、随动控制系统(或称伺服系统)
这类系统的特点是输入信号是一个未知 函数,要求输出量跟随给定量变化。如火炮自 动跟踪系统。
工业自动化仪表中的显示记录仪,跟踪卫 星的雷达天线控制系统等均属于随动控制系统。
1.2.3 按系统传输信号的性质来分
• 1、连续系统 系统各部分的信号都是模拟的连续函数。目前工业中
功率 放大器
电动机
转速自动控制系统。
电源变化、负载变化等引起转速变化, 称为扰动。电动机被称为被控对象, 转速称为被控量,当电动机受到扰动 后,转速(被控量)发生变化,经测 量元件(测速发电机)将转速信号 (又称为反馈信号)反馈到控制器 (功率放大器),使控制器的输出 (称为控制量)发生相应的变化,从 而可以自动地保持转速不变或使偏差 保持在允许的范围内。
直流电动机速度自动控制的原理结构
图如图1-1所示。图中,电位器电压为输
+U
入信号。测速发电机是电动机转速的测量
元件。图1-1中,代表电动机转速变化的
测速发电机电压送到输入端与电位器电压
进行比较,两者的差值(又称偏差信号) 控制功率放大器(控制器),控制器的输 出控制电动机的转速,这就形成了电动机
电+ 位 器
一个系统性能将用特定的品质指标来衡量其优劣, 如系统的稳定特性、动态响应和稳态特性。
1.3 对控制系统的基本要求
当自动控制系统受到干扰或者人为要求给定值改变, 被控量就会发生变化,偏离给定值。通过系统的自动 控制作用,经过一定的过渡过程,被控量又恢复到原 来的稳定值或者稳定到一个新的给定值。被控量在变 化过程中的过渡过程称为动态过程(即随时间而变的 过程),被控量处于平衡状态称为静态或稳态。
自动控制原理第一章绪论控制系统的一般概念
模糊控制 神经网络
智能控制理论
遗传算法
温度计
炉子 电热丝
调压器 220
自动控制
炉子 热电偶 _ 电热丝 +
给定信号 _+
u
ub
ur
电压 放大器
电动机
功率 +
放大器 _E
减速器 调压器
220
二.自动控制要解决的基本问题
自动控制是使一个或一些被控制 的物理量按照另一个物理量即控制量 的变化而变化或保持恒定,一般地说 如何使控制量按照给定量的变化规律 变化,就是一个控制系统要解决的基 本问题。
缺点:被控量可能出现振荡,甚至发散。
适用场合:系统元件参数变化和扰动无法预计的场合。
§3 反馈控制系统的组成
校正元件:基于偏差信号按一定函数规律产生供执行元件执行的 控制命令对系统进行校正以改善系统的动态和静态性能
如:由放大器、电阻、电容组成的具有预定传递函数的电路。 执行元件:也称执行器。用来执行校正元件产生的控制命令,以便
• 闭环控制(closed-loop control)
闭环控制工作原理: 外部作用:
给定量:使 c跟踪r 干扰量:使 c偏离r
控制目的:排除干扰因素、影响、使被控量随给定量变化。
1)、有反馈,能够成闭回路 是按偏差控制的、
2)、偏差信号起控制作用
具有负反馈的闭环系统
优点:具有自动修正被控制量出现偏离的能力,可以修 正元件参数变化以及外界扰动引起的误差,控制精 度高。
• 被控变量:简称被控量,指被控对象输出需按控制要 求变化的物理量,在单输出系统中,也就是系统得输 出量。
• 控制通道:控制变量通过被控对象(被控过程)到控 制系统输出的通道。