函数的对称性与周期性(归纳总结)
函数的对称性与周期性(归纳总结)
![函数的对称性与周期性(归纳总结)](https://img.taocdn.com/s3/m/a3e8eb1aac02de80d4d8d15abe23482fb4da02bd.png)
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
(完整版)函数的周期性与对称性总结
![(完整版)函数的周期性与对称性总结](https://img.taocdn.com/s3/m/16aeb7f8a417866fb94a8e14.png)
一:有关周期性的讨论在已知条件()()f a x f b x +=-或()()f x a f x b +=-中,(1) 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2b a x +=。
(2)等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 f (x )的图像具有周期性,其周期T=a +b 。
设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立周期性规律 对称性规律(1))()(a x f a x f +=- a T 2=⇒ (1))()(x a f x a f -=+ a x =⇒(2))()(a x f x f += a T =⇒ (2))()(x b f x a f -=+ 2b a x +=⇒ (3))()(x f a x f -=+ a T 2=⇒ (3) )()(x b f x a f +=- 2b a x +=⇒ (4))(1)(x f a x f =+ a T 2=⇒ (4) )()(x b f x a f --=+ 中心点)0,2(b a +⇒ (5))(1)(x f a x f -=+ a T 2=⇒ (5) )()(x a f x a f --=+ 为对称中心点)0,(a ⇒ (6)1)(1)()(-+=+x f x f a x f a T 2=⇒ (7) 1()()1()f x f x a f x -+=+ a T 2=⇒ (8) 1()()1()f x f x a f x -+=-+ a T 4=⇒ (9) )(1)(1)(x f x f a x f -+=+ a T 4=⇒ (10) )()()(a x f a x f x f ++-=, 0>a a T 6=⇒(11) 若函数)(x f 同时关于直线a x =, b x =对称则函数)(x f 的周期a b T -=2(12) 若函数)(x f 同时关于点)0,(a , )0,(b 对称,则函数)(x f 的周期a b T -=2(13) 若函数)(x f 同时关于直线a x = 对称,又关于点)0,(b 对称)0(≠b 则函数)(x f 的周期a b T -=4(14) 若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且T=2a(15) 若奇函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且T=4a(16) 若奇函数y=f(x)满足f(x+T)=f(x)(x ∈R ,T ≠0),则f(2T )=0. ⒈ 若)x 2(f y =的图象关于 两类易混淆的函数问题:对称性与周期性例1. 已知函数y = f (x )(x ∈R )满足f (5+x )= f (5-x ),问:y = f (x )是周期函数吗?它的图像是不是轴对称图形?例2. 已知函数y = f (x )(x ∈R )满足f (x+5)= f (x -5),问:y = f (x )是周期函数吗?它的图像是不是轴对称图形?定理1:如果函数y = f (x )(x ∈R )满足)()(x a f x a f -=+,那么y = f (x )的图像关于直线x a =对称。
函数的对称性与周期性(解析版)--2024高考数学常考题型精华版
![函数的对称性与周期性(解析版)--2024高考数学常考题型精华版](https://img.taocdn.com/s3/m/e51f6b36854769eae009581b6bd97f192379bf56.png)
第2讲函数的对称性与周期性【考点分析】1.函数的对称性、周期性是高考命题热点,近两年新高考都考了一道选择题,分值5分,知识点比较灵活,需要全面掌握常见对称性,周期性的结论考点一:函数常见对称性结论①若函数()x f 对于任意的x 均满足()()f a x f b x +=-,则函数()y f x =关于直线()()22a xb x a bx ++-+==对称.②若函数()x f 对于任意的x 均满足()()2f a x f a x b ++-=则()y f x =关于点()a b ,对称.考点二:函数常见周期性结论若函数对于任意的x 都满足()()x f T x f =+,则T 为()x f 的一个周期,且()()x f nT x f =±几个常见周期性结论①若函数()y f x =满足()()f x m f x +=-,则2T m =.②若函数()y f x =满足)((1)f x m f x =±+,则2T m =.③若函数()y f x =满足1()()1()f x f x m f x -+=+,则2T m =.④若函数()y f x =满足()()b x f a x f +=+,则a b T -=.⑤若函数()y f x =的图象关于直线x a =,x b =都对称,则()f x 为周期函数且2||b a -是它的一个周期.⑥函数()y f x =()x R ∈的图象关于两点0()A a y ,、0()B b y ,都对称,则函数()y f x =是以2||b a -为周⑦函数()y f x =()x R ∈的图象关于0()A a y ,和直线x b =都对称,则函数()y f x =是以4||b a -为周期的周期函数.⑧若函数()y f x =满足1()()1()f x f x m f x ++=-,则函数()f x 是以4m 为周期的周期函数.【题型目录】题型一:利用周期性求函数值题型二:利用周期性求函数解析式题型三:根据函数的对称性、周期性、奇偶性写函数题型四:根据函数的对称性、奇偶性、周期性综合运用【典型例题】题型一:利用周期性求函数值【例1】设()f x 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,其中m R ∈.若13(()162f f =,则m 的值是.答案:1解析: ()x f 是定义在R 上周期为2的函数,当(11]x ∈-,时,2210()01x x m x f x x ⎧++-<<⎪=≤≤,,∴m m f f +-=+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛432122121232,41161161==⎪⎭⎫⎝⎛f ,∴14341=⇒+-=m m 【例2】设()f x 为定义在R 上的奇函数,(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(7.5)f =__________答案:5.0-解析: (2)()f x f x +=-,∴()x f 是周期为4的函数,所以()()()5.05.05.05.7-=-=-=f f f 【例3】定义在R 上的函数()f x 对任意x R ∈,都有()()()()112,214f x f x f f x -+==+,则()2016f 等于A.14B.12C.13D.35答案:D解析: ()()()()()()()()x f x f x f x f x f x f x f x f =+-++--=+++-=+11111121214,所以()x f 是周期为4的函数,()()()()53212142016=+-==f f f f 【例4】(重庆南开高一上期中)已知定义在R 上的奇函数()f x 满足()()4f x f x +=,且()11f =,则()()20202019f f -的值为()A.1-B.0C.1D.2答案:C解析: ()()4f x f x +=所以4=T ,所以()()002020==f f ,()()()1112019-=-=-=f f f ,所以()()()20202010119f f =--=-【例5】(2022·云南昭通·高一期末)已知函数()y f x =是定义在R 上的周期函数,且周期为2,当[]0,1x ∈时,()21xf x =-,则132f ⎛⎫ ⎪⎝⎭=()A .1B .1C 1D .1【题型专练】1.(2021·山东·临沂市兰山区教学研究室高三开学考试)已知()f x 是R 上的奇函数,且()()2f x f x +=-,当()0,2x ∈时,()22f x x x =+,则()15f =()A .3B .3-C .255D .255-【答案】B【分析】根据题意可知()f x 是周期函数,根据周期以及奇函数即可求解.【详解】由()()2f x f x +=-可得,()()42=()f x f x f x +=-+,故()f x 是以4为周期的周期函数,故(15)(1)(1)3f f f =-=-=-,故选:B2.(2023·全国·高三专题练习)已知()f x 是定义在R 上的偶函数,且(6)()f x f x +=-,若当[]3,0x ∈-时,()6x f x -=,则(2021)f =()A .0B .1C .6D .216【答案】C【分析】由(6)()f x f x +=-可得函数周期为6,进而(2021)(33761)(1)f f f =⨯-=-,最后求出答案.【详解】根据题意,偶函数()f x 满足(6)()f x f x +=-,即(6)()f x f x +=,()f x 是周期为6的周期函数,则(2021)(33761)(1)f f f =⨯-=-,当[3,0]x ∈-时,()6x f x -=,则1(1)66f -==,故(2021)6f =故选:C3.(重庆南开高一上期末)函数()f x 的定义域为R ,且102f ⎛⎫=⎪⎝⎭,()00f ≠.若对任意实数x ,y 都有()()222x y y y f f x f x f +-⎛⎫⎛⎫= ⎪⎝⎭⎝+⎪⎭,则()2020f =()A.B.-1C.0D.1答案:D解析:由题意知,令0==y x ,可得()()02022f f =,因()00f ≠,所以()10=f 102f ⎛⎫=⎪⎝⎭所以()()0212121=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛++=++x x f x x f x f x f ,所以()()x f x f -=+1,所以2=T ,所以()()102020==f f 4.(2022·云南红河·高一期末)已知()f x 是定义在R 上的奇函数,R x ∀∈,都有(4)()f x f x +=,若当[0,1]x ∈时,2()log ()f x x a =+,则(7)f -=()A .1-B .0C .1D .2【答案】C【分析】()f x 是定义在R 上的奇函数得a ,有(4)=()f x f x +得到()f x 是周期函数,利用函数周期性可得答案.【详解】()f x 是定义在R 上的奇函数,(0)=0f ∴,得=1a ,∴当[]0,1x ∈时,2()log (1)=+f x x ,R x ∀∈,都有(4)=()f x f x +,()f x ∴是周期为4的周期函数,()()()7=7811f f f ∴--+==.故选:C.5.(2022·黑龙江·大庆中学高二期末)()f x 是定义在R 上的奇函数,且满足()()22f x f x -=+,又当(]0,1x ∈时,()3xf x =,则131log 72f ⎛⎫= ⎪⎝⎭______.题型二:利用周期性求函数解析式【例1】已知定义在实数集R 上的函数()x f 满足:(1)()()x f x f =-;(2)()()x f x f -=+22;(3)当[]2,0∈x 时解析式为12-=x y ,当[]0,4-∈x 时,求函数的解析式。
高一数学函数的对称性与周期性1
![高一数学函数的对称性与周期性1](https://img.taocdn.com/s3/m/6626fd2f52ea551810a6875f.png)
1.函数对称性与周期性知识归纳:一.函数自身的对称性结论结论1. 函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a -x) = 2b推论:函数 y = f (x)的图像关于原点O 对称的充要条件是f (x) + f (-x) = 0结论2. 若函数 y = f (x)满足f (a +x) = f (b -x)那么函数本身的图像关于直线x = 2a b对称,反之亦然。
推论1:函数 y = f (x)的图像关于直线x = a 对称的充要条件是f (a +x) = f (a -x) 即f (x) = f (2a -x)推论2:函数 y = f (x)的图像关于y 轴对称的充要条件是f (x) = f (-x)结论3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。
②若函数y = f (x) 图像同时关于直线x = a 和直线x = b 成轴对称 (a≠b ),则y = f (x)是周期函数,且2| a -b|是其一个周期。
③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b 成轴对称(a≠b ),则y = f (x)是周期函数,且4| a -b|是其一个周期。
二. 不同函数的对称性结论结论4.函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。
结论5.①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。
②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。
③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。
推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。
函数的周期性与对称性总结
![函数的周期性与对称性总结](https://img.taocdn.com/s3/m/a2c3ea1fbfd5b9f3f90f76c66137ee06eff94ea9.png)
一:有关周期性的讨论在已知条件()()f a x f b x +=-或()()f x a f x b +=-中,1 等式两端的两自变量部分相加得常数,如()()a x b x a b ++-=+,说明f x ()的图像具有对称性,其对称轴为2b a x +=; 2等式两端的两自变量部分相减得常数,如()()x a x b a b +--=+,说明 fx 的图像具有周期性,其周期T=a +b ;设a 为非零常数,若对于)(x f 定义域内的任意x 恒有下列条件之一成立周期性规律 对称性规律1)()(a x f a x f +=- a T 2=⇒ 1)()(x a f x a f -=+ a x =⇒2)()(a x f x f += a T =⇒ 2)()(x b f x a f -=+ 2b a x +=⇒ 3)()(x f a x f -=+ a T 2=⇒ 3 )()(x b f x a f +=- 2b a x +=⇒ 4)(1)(x f a x f =+ a T 2=⇒ 4 )()(x b f x a f --=+ 中心点)0,2(b a +⇒ 5)(1)(x f a x f -=+ a T 2=⇒ 5 )()(x a f x a f --=+ 为对称中心点)0,(a ⇒ 61)(1)()(-+=+x f x f a x f a T 2=⇒ 7 1()()1()f x f x a f x -+=+ a T 2=⇒ 8 1()()1()f x f x a f x -+=-+ a T 4=⇒ 9 )(1)(1)(x f x f a x f -+=+ a T 4=⇒ 10 )()()(a x f a x f x f ++-=, 0>a a T 6=⇒11 若函数)(x f 同时关于直线a x =, b x =对称则函数)(x f 的周期a b T -=212 若函数)(x f 同时关于点)0,(a , )0,(b 对称,则函数)(x f 的周期a b T -=213 若函数)(x f 同时关于直线a x = 对称,又关于点)0,(b 对称)0(≠b 则函数)(x f 的周期a b T -=414 若偶函数y=fx 的图像关于直线x=a 对称,则fx 为周期函数且T=2a15 若奇函数y=fx 的图像关于直线x=a 对称,则fx 为周期函数且T=4a16 若奇函数y=fx 满足fx+T=fx x ∈R,T ≠0,则f 2T =0. ⒈ 若)x 2(f y =的图象关于 两类易混淆的函数问题:对称性与周期性例1. 已知函数y = fxx ∈R 满足f 5+x = f 5-x ,问:y = fx 是周期函数吗它的图像是不是轴对称图形例2. 已知函数y = fxx ∈R 满足fx+5= fx -5,问:y = fx 是周期函数吗它的图像是不是轴对称图形定理1:如果函数y = fxx ∈R 满足)()(x a f x a f -=+,那么y = fx 的图像关于直线x a=对称;证明:设点()P x y 00,是y = fx 的图像上任一点,点P 关于直线x =a 的对称点为Q,易知,点Q 的坐标为()200a x y -,;因为点()P x y 00,在y = fx 的图像上,所以f x y ()00=于是()()[]()[]()000002y x f x a a f x a a f x a f ==--=-+=-所以点()Q a x y 200-,也在y = fx 的图像上;由P 点的任意性知,y = fx 的图像关于直线x =a 对称;定理2:如果函数y = fxx ∈R 满足fa +x = fb -x ,那么y = fx 的图像关于直线x a b =+2的对称; 定理3:如果函数y = fxx ∈R 满足fx +a = fx -a ,那么y = fx 是以2a 为周期的周期函数;证明:令x a x -=',则x x a x a x a =++=+'',2代入已知条件()()f x a f x a +=-得:()()f x a f x ''++2根据周期函数的定义知,y = fx 是以2a 为周期的周期函数;定理4:如果函数y = fxx ∈R 满足()()f x a f x b +=-,那么y = fx 是以a b +为周期的周期函数;。
完整版)常见函数对称性和周期性
![完整版)常见函数对称性和周期性](https://img.taocdn.com/s3/m/aa8dc2dcf9c75fbfc77da26925c52cc58bd69095.png)
完整版)常见函数对称性和周期性二、函数对称性的重要结论一)函数y=f(x)的图像本身的对称性(自身对称)若f(x+a)=±f(x+b),则f(x)具有周期性;若f(a+x)=±f(b-x),则f(x)具有对称性。
即,“内同表示周期性,内反表示对称性”。
1、f(a+x)=f(b-x)⟺y=f(x)的图像关于直线x=(a+b)/2对称。
推论1:f(a+x)=f(a-x)⟺y=f(x)的图像关于直线x=a对称。
推论2、f(x)=f(2a-x)⟺y=f(x)的图像关于直线x=a对称。
推论3、f(-x)=f(2a+x)⟺y=f(x)的图像关于直线x=a对称。
2、f(a+x)+f(b-x)=2c⟺y=f(x)的图像关于点(a+b/2,c)对称。
推论1、f(a+x)+f(a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。
推论2、f(x)+f(2a-x)=2b⟺y=f(x)的图像关于点(a,b)对称。
推论3、f(-x)+f(2a+x)=2b⟺y=f(x)的图像关于点(a,b)对称。
二)两个函数的图像对称性(相互对称)1、偶函数y=f(x)与y=f(-x)的图像关于Y轴对称。
2、奇函数y=f(x)与y=-f(-x)的图像关于原点对称。
3、函数y=f(x)与y=-f(x)的图像关于X轴对称。
4、互为反函数y=f(x)与函数y=f^-1(x)的图像关于直线y=x对称。
5、函数y=f(a+x)与y=f(b-x)的图像关于直线x=(b-a)/2对称。
推论1: 函数y=f(a+x)与y=f(a-x)的图像关于直线x=a对称。
推论2: 函数y=f(x)与y=f(2a-x)的图像关于直线x=a对称。
推论3: 函数y=f(-x)与y=f(2a+x)的图像关于直线x=-a对称。
三、函数周期性的重要结论1、f(x±T)=f(x)(T≠0)⟺y=f(x)的周期为T,kT(k∈Z)也是函数的周期。
2、f(x+a)=f(x+b)⟺y=f(x)的周期为T=b-a。
函数的对称性与周期性(归纳总结)
![函数的对称性与周期性(归纳总结)](https://img.taocdn.com/s3/m/f47fcd29561252d380eb6edc.png)
∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1+2﹣1+0+(﹣1)+0=1,
∴f(1)+f(2)+f(3)+…+f(2012)
=[f(1)+f(2)+f(3)+…+f(2010)]+f(2011)+f(2012)=335×1+f(1)+f(2)
解:因为函数f(x+1)为偶函数,所以f(x+1)的对称轴为x=0,
所以f(x)的对称轴为x=1,所以f(x+1)=f(1﹣x),
又因为f(x)是R上的奇函数,所以f(x+1)=f(1﹣x)=﹣f(x﹣1),
所以f(x+2)=﹣f(x),f(x+4)=﹣f(x+2)=f(x),所以f(x)的周期为4,
(3)若函数 满足: ,则 的图象的对称中心为________.
【解析】⑴ ;⑵ ;⑶ .
3.4函数的周期性
知识点睛
1.对于函数 ,如果存在一个非零常数 ,使得当 取定义域内的每一个值时,都有
,那么函数 就叫做周期函数.非零常数 叫做这个函数的一个周期.
2.如果周期函数 的所有周期中存在一个最小的正数,那么这个最小的正数就叫做 的最小正周期.
故选:C.
8.(2016•新课标Ⅱ)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则 xi=( )
A.0B.mC.2mD.4m
高中数学函数对称性和周期性小结
![高中数学函数对称性和周期性小结](https://img.taocdn.com/s3/m/2d60adfcba4cf7ec4afe04a1b0717fd5360cb2dd.png)
高中数学函数对称性和周期性小结高中数学中,函数对称性和周期性是重要的概念。
它们在数学理论和实际应用中都扮演着重要的角色。
本文将对函数的对称性和周期性进行详细的介绍和总结。
首先,我们来讨论函数的对称性。
对称性是指函数在某种变换下具有保持不变的性质。
在数学中,常见的函数对称性有对称、反对称和轴对称等。
对称函数是一种在镜像变换下保持不变的函数。
对称函数的概念可以延伸到两种情况:关于y轴对称和关于原点对称。
关于y轴对称的函数满足 f(x) = f(-x),这意味着函数的图像在y轴上对称。
而关于原点对称的函数满足 f(x) = -f(-x),这意味着函数的图像在原点上对称。
常见的对称函数有偶函数和奇函数。
偶函数是指关于y轴对称的函数,即满足 f(x) = f(-x) 的函数。
这种函数的图像关于y轴对称,例如 y = x^2 就是一个典型的偶函数。
偶函数的特点是在定义域的对称位置的函数值相等。
对偶函数来说,如果f(x)在定义域内有定义,则f(-x)也在定义域内有定义。
偶函数的性质还包括:偶函数相加仍为偶函数,偶函数与任意常数先乘后加仍为偶函数,偶函数乘以奇函数得到奇函数。
奇函数是指关于原点对称的函数,即满足f(x) = -f(-x) 的函数。
这种函数的图像关于原点对称,例如 y = x^3 就是一个典型的奇函数。
奇函数的特点是在定义域的对称位置的函数值互为相反数。
对奇函数来说,如果f(x)在定义域内有定义,则f(-x)也在定义域内有定义。
奇函数的性质还包括:奇函数相加仍为奇函数,奇函数与偶函数相加得到一个新的函数,既不是偶函数也不是奇函数。
反对称函数是指既不关于y轴对称也不关于原点对称的函数,而是在镜像变换下呈现一种特殊的关系。
即满足 f(x) = -f(-x)的函数。
这种函数的图像在关于y轴和原点的对称位置的函数值互为相反数。
例如 y = x 就是一个典型的反对称函数。
其次,我们来讨论函数的周期性。
周期性是指函数在某个特定的区间内,满足一个特定的周期性关系。
函数对称性、周期性和奇偶性规律总结
![函数对称性、周期性和奇偶性规律总结](https://img.taocdn.com/s3/m/f9eaa005f5335a8103d2202d.png)
函数对称性、周期性和奇偶性规律总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII函数对称性、周期性和奇偶性关岭民中数学组(一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f(2)偶函数关于y (即x=0)轴对称,偶函数有关系式)()(x f x f =-2、奇偶性的拓展 : 同一函数的对称性(1)函数的轴对称:函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=- 若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。
∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f -=∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f +=-(2)函数的点对称:函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++ b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称 证明:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+- 可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称 得证。
完整版)函数的周期性与对称性总结
![完整版)函数的周期性与对称性总结](https://img.taocdn.com/s3/m/0bc969529a6648d7c1c708a1284ac850ad02041e.png)
完整版)函数的周期性与对称性总结在已知条件$f(a+x)=f(b-x)$或$f(x+a)=f(x-b)$中,可以得到以下结论:1.当等式两端的两自变量部分相加得常数,如$(a+x)+(b-x)=a+b$,则$f(x)$的图像具有对称性,其对称轴为$x=\frac{a+b}{2}$。
2.当等式两端的两自变量部分相减得常数,如$(x+a)-(x-b)=a+b$,则$f(x)$的图像具有周期性,其周期$T=a+b$。
如果对于$f(x)$定义域内的任意$x$,恒有下列条件之一成立:周期性规律对称性规律1.$f(x-a)=f(x+a)$,则$T=2a$;$f(a+x)=f(a-x)$,则$x=\frac{a^2+b^2}{2a+b}$。
2.$f(x)=f(x+a)$,则$T=a$;$f(a+x)=f(b-x)$,则$x=\frac{a+b}{2}$。
3.$f(x+a)=-f(x)$,则$T=2a$;$f(a-x)=f(b+x)$,则$x=2a-b$。
4.$f(x+a)=\frac{1}{a+b}$,则$T=2a$;$f(a+x)=-f(b-x)$,则点$(a,-\frac{1}{2})$为对称中心。
5.$f(x+a)=-\frac{1}{a+b}$,则$T=2a$;$f(a+x)=-f(a-x)$,则点$(a,0)$为对称中心。
6.$f(x+a)=\frac{f(x)+1}{1-f(x)}$,则$T=2a$;$f(x+a)=\frac{f(x)-1}{1+f(x)}$,则$T=2a$。
7.$f(x+a)=\frac{1+f(x)}{1-f(x)}$,则$T=4a$。
8.$f(x+a)=-\frac{1-f(x)}{1+f(x)}$,则$T=4a$。
9.$f(x+a)=\frac{1+f(x)}{1+f(x)}$,则$T=4a$。
10.$f(x)=f(x-a)+f(x+a)$,且$a>0$,则$T=6a$。
(完整版)对称性和周期性性质总结
![(完整版)对称性和周期性性质总结](https://img.taocdn.com/s3/m/e1cb268e02020740bf1e9b7c.png)
函数の对称性和周期性一、几个重要の结论(一)函数图象本身の对称性(自身对称)1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)の充要条件是 )(x f y =の图象关于直线 T x =对称。
3、函数 )(x f y =满足 )()(x b f x a f -=+の充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x +=-++=对称。
特殊地,如果a=0,b=0,则其关于x=0即关于y 轴对称,此时)()(x b f x a f -=+变为f(x)=f(-x),其实就是偶函数。
4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等の常数),则 )(x f y =是以为 )(212T T -为周期の周期函数。
5、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期の周期性函数。
6、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期の周期性函数。
我当初の总结是:函数对称包涵两种:一是点对称,而是线对称,比如偶函数属于线对称,奇函数属于点对称,奇偶函数对称都是关于0.即偶函数关于x=0对称,奇函数关于(0,0)对称。
那么如果一个函数是双重对称,那么该函数就是周期函数,那么什么叫多重对称呢?且看下面列子你就明白了:1, 若函数关于两条线x=a 和x=b 对称(这就叫双重对称),那么该函数一定是周期函数,且周期为2|b-a|。
2, 若函数关于两个点(a,0)和(b,0)(注都是x 轴上の点),那么该函数一定是周期函数,且周期为2|b-a|。
(完整版)函数的对称性与周期性
![(完整版)函数的对称性与周期性](https://img.taocdn.com/s3/m/ff4455bc856a561252d36fbc.png)
函数的对称性与周期性吴江市盛泽中学数学组 徐建东对称性:函数图象存在的一种对称关系,包括点对称和线对称。
周期性:设函数)(x f 的定义域是D ,若存在非零常数T ,使得对任何D x ∈,都有D T x ∈+且)()(x f T x f =+,则函数)(x f 为周期函数,T 为)(x f 的一个周期。
对称性和周期性是函数的两大重要性质,他们之间是否存在着内在的联系呢?本文就来研究一下它们之间的内在联系,有不足之处望大家批评指正。
一、一个函数关于两个点对称。
命题1:如果函数)(x f y =的图象关于点)0,(a 和点)0,(b )(a b ≠对称,那么函数)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
证明:∵函数)(x f y =的图象关于点)0,(a 对称,∴)2()(x a f x f --=对定义域内的所有x 成立。
又∵函数)(x f y =的图象关于点)0,(b 对称,∴)2()(x b f x f --=对定义域内的所有x 成立。
从而)2()2(x b f x a f -=-∴)()]2(2[)]2(2[x f x b b f x b a f =--=-- 即:)()])22[(x f x b a f =+- ∴)(x f y =是周期函数,)(2b a T -=为函数)(x f y =的一个周期。
特例:当0=a 时,)(x f y =为奇函数,即奇函数)(x f y =如果又关于点)0,(b )0(≠b 对称,那么函数)(x f y =是周期函数,b T 2=为函数)(x f y =的一个周期。
命题1':如果函数)(x f y =的图象关于两点),(b a 和),(d c 对称,那么: 当d b =,c a ≠时,)(x f y =是周期函数,)(2c a T -=为函数)(x f y =的一个周期。
当d b ≠,c a ≠时,)(x f y =不是周期函数。
函数对称性、周期性和奇偶性规律总结
![函数对称性、周期性和奇偶性规律总结](https://img.taocdn.com/s3/m/a9237c722e3f5727a5e96256.png)
函数对称性、周期性和奇偶性关岭民中数学组(一)、同一函数的函数的奇偶性与对称性:(奇偶性是一种特殊的对称性)1、奇偶性:(1) 奇函数关于(0,0)对称,奇函数有关系式0)()(=-+x f x f(2)偶函数关于y (即x=0)轴对称,偶函数有关系式 )()(x f x f =-2、奇偶性的拓展 : 同一函数的对称性(1)函数的轴对称:函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+)()(x a f x a f -=+也可以写成)2()(x a f x f -= 或 )2()(x a f x f +=-若写成:)()(x b f x a f -=+,则函数)(x f y =关于直线22)()(b a x b x a x +=-++= 对称 证明:设点),(11y x 在)(x f y =上,通过)2()(x a f x f -=可知,)2()(111x a f x f y -==,即点)(),2(11x f y y x a =-也在上,而点),(11y x 与点),2(11y x a -关于x=a 对称。
得证。
说明:关于a x =对称要求横坐标之和为2a ,纵坐标相等。
∵1111(,)(,)a x y a x y +-与 关于x a =对称,∴函数)(x f y =关于a x =对称⇔)()(x a f x a f -=+∵1111(,)(2,)x y a x y -与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f -=∵1111(,)(2,)x y a x y -+与关于x a =对称,∴函数)(x f y =关于a x =对称⇔)2()(x a f x f +=-(2)函数的点对称:函数)(x f y =关于点),(b a 对称⇔b x a f x a f 2)()(=-++b x f x a f 2)()2(=-++上述关系也可以写成 或 b x f x a f 2)()2(=+-若写成:c x b f x a f =-++)()(,函数)(x f y =关于点)2,2(c b a + 对称证明:设点),(11y x 在)(x f y =上,即)(11x f y =,通过b x f x a f 2)()2(=+- 可知,b x f x a f 2)()2(11=+-,所以1112)(2)2(y b x f b x a f -=-=-,所以点 )2,2(11y b x a --也在)(x f y =上,而点)2,2(11y b x a --与),(11y x 关于),(b a 对称 得证。
函数的对称性与周期性
![函数的对称性与周期性](https://img.taocdn.com/s3/m/f13369d184254b35eefd3438.png)
函数的对称性与周期性一 函数的对称性 (一)函数图象的自对称所谓函数图象的自对称是指一个函数图象的对称(中心对称或轴对称)图象是其本身. 关于函数图象的自对称,有下列性质:1、奇函数的图象关于 对称,偶函数的图象关于 对称,反之亦然。
2、二次函数)0(2≠++=a c bx ax y 的图象关于直线 对称。
3、三角函数xy sin =的图象关于直线 对称,它也有对称中心是 ;xy c o s =的图象的对称轴是 ,对称中心是 。
4、函数()x f y =若对于定义域内任意一个x 都有()()x b f x a f -=+,则其图象关于直线对称。
5、函数()x f y =若对于定义域内任意一个x 都有()()b x a f x a f=-++,则其图象关于点对称。
6、曲线()x f y =关于直线a x =与bx =(a <b )对称,则()x f y =是周期函数且周期为()a b -2(二)函数图象的互对称所谓函数图象的互对称是指两个函数图象的上的点一一对应,且对应点相互对称(中心对称或轴对称)。
关于函数图象的互对称,有下列性质:1、互为反函数的两个函数的图象关于直线 对称;反之, 。
2、函数()x f y =与函数()x f b y -=2的图象关于直线 对称。
3、函数()x a f y +=与函数()x b f y -=的图象关于直线 对称。
4、函数()x f y=与函数()x h f k y --=22的图象关于点 对称。
二 函数的周期性如果函数y =f(x)对于定义域内任意的x ,存在一个不等于0的常数T ,使得f(x +T)=f(x)恒成立,则称函数f(x)是周期函数,T 是它的一个周期.一般情况下,如果T 是函数f(x)的周期,则kT(k ∈N +)也是f(x)的周期. 关于函数的周期性的结论: 1、已知函数()x f y=对任意实数x,都有()()x f a x f-=+,则()x f y=是以 为周期的函数;2、已知函数()x f y=对任意实数x ,都有()x a f+=f(x)1,则()x f y =是以 为周期的函数; 3、已知函数()x f y =对任意实数x ,都有()x a f+=-f(x)1-,则()x f y =是以 为周期的函数. 4、已知函数()x f y =对任意实数x,都有()()b x f x a f=++,则()x f y =是以 为周期的函数5、已知函数()x f y=对任意实数x ,都有f(x +m)=f(x -m),则 是()x f y=的一个周期.6、已知函数()x f y=对任意实数x ,都有f(x +m)=)x (f 1)x (f 1+-,则 是f(x)的一个周期.7、已知函数()x f y=对任意实数x,都有f(x +m)=-)x (f 1)x (f 1+-,求证:4m 是f(x)的一个周期.1. 证明:由已知f(x +2m)=f[(x +m)+m])(1)(1)(11)(1)(11)(1)(1x f x fx f x f x fm x f m x f -=+--+-+-=+++--= 于是f(x +4m)=-)m 2x (f 1+=f(x) 所以f(x)是以4m 为周期的周期函数.8、已知函数f(x)对任意实数x,都有f(a +x)=f(a -x)且f(b +x)=f(b -x), 求证:2|a -b|是f(x)的一个周期.(a≠b)证明:不妨设a >b于是f(x +2(a -b))=f(a +(x +a -2b)) =f(a -(x +a -2b))=f(2b -x)=f(b -(x -b)) =f(b +(x -b))=f(x) ∴ 2(a -b)是f(x)的一个周期 当a <b 时同理可得 所以,2|a -b|是f(x)的周期 例题应用 1、已知()1+x f 是偶函数,则函数()x f y 2=的图象的对称轴是( )A.1-=x B. 1=x C . 21-=x D. 21=x2、函数()()2122+-+=x a x x f 在区间()4,∞-上是减函数,那么实数a 的取值范围是( )A .3≥aB. 3-≤aC. 5≤aD. 3-=a3、函数⎪⎭⎫ ⎝⎛+=252sin πx y的图象的一条对称轴方程是( )A.2π-=x B.4π-=x C.8π=x D.45π=x4、如果函数f(x)=x 2+bx +c 对任意实数t 都有f(2+t)=f(2-t),那么A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)5、函数x a x y 2cos 2sin +=的图象关于直线8π-=x 对称,则a 的值为( )A. 1B. 2-C. 2D. 1-6、如果直线3-=x与2=x 均为曲线()x f y =的对称轴且()01=f 则()11f 的值为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴ ;
∴ .
故答案为:﹣1.
15.(2018•新课标Ⅲ)已知函数f(x)=ln( x)+1,f(a)=4,则f(﹣a)=﹣2.
解:函数g(x)=ln( x)
满足g(﹣x)=ln( x) ln( x)=﹣g(x),
所以g(x)是奇函数.
函数f(x)=ln( x)+1,f(a)=4,
可得f(a)=4=ln( a)+1,可得ln( a)=3,
∴方程f(x)=log3|x|的解个数等价于f(x)与y=log3|x|图象的交点,由图象可得它们有4个交点,故方程f(x)=log3|x|的解个数为4,
故选:C.
4.已知函数f(x)是R上的奇函数,对于∀x∈(0,+∞)都有f(x+2)=﹣f(x),且x∈(0,1]时,f(x)=2x+1,则f(﹣2012)+f(2013)的值为( )
函数值相等
当取的自变量互为相反数时,
函数值也互为相反数
3.3函数的对称性
知识点睛
一般的轴对称:
⑴ 函数 的图象关于直线 对称 ;
⑵ 若函数 满足 ,则 的图象关于直线 成轴对称.
【练习1】(1)若函数 满足: ,则 的图象的对称轴为________;
(2)若函数 满足: ,则 的图象的对称轴为________;
证明: .
⑶若函数 图象关于直线 对称,且关于点 对称,则函数 是周期为 的周期函数.
证明: .
2.正弦、余弦函数的对称性及其结论
【结论】
(1)对称中心到离他最近的一条对称轴的距离为四分之一各周期;
(2)相邻两条对称轴之间的距离为半个周期;
(3)相邻两对称中心之间的距离为半个周期。
1.已知f(x)是定义在R上的偶函数,且f(x+2)=f(x)对x∈R恒成立,当x∈[0,1]时,f(x)=2x,则 ( )
得f(﹣x+1)=f(x+1),f(﹣x﹣1)=f(x﹣1),即f(﹣x+2)=f(x),f(﹣x﹣2)=f(x),
则f(﹣x+2)=f(﹣x﹣2),则f(x+2)=f(x﹣2),则f(x+4)=f(x),
则函数f(x)是周期为4的周期函数,
又当x=0时,f(0)=f(2),f(﹣2)=f(0),f(0)=f(4),∴f(2)=f(4),
函数的对称性与周期性
3.1函数的单调性
知识回顾
1.一般地,设函数 的定义域为 ,区间 :
⑴ 增函数:如果对于 上的任意两个自变量的值 ,当 时,都有 ,那么就称函数 在区间 上是增函数;
⑵ 减函数:如果对于 上的任意两个自变量的值 ,当 时,都有 ,那么就称函数 在区间 上是减函数;
2.单调性:如果函数 在某个区间 上是增函数或减函数,那么就说函数 在这个区间上具有单调性,区间 叫做 的单调区间.
f(4)=f(﹣2)=﹣(﹣2+2)2=0,
∴f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1+2﹣1+0+(﹣1)+0=1,
∴f(1)+f(2)+f(3)+…+f(2012)
=[f(1)+f(2)+f(3)+…+f(2010)]+f(2011)+f(2012)=335×1+f(1)+f(2)
A. B. C. D.1
解:∵f(x+2)=f(x)对x∈R恒成立,∴f(x)的周期为2,(x)是定义在R上的偶函数,
∴ f( )=f( ),
∵当x∈[0,1]时,f(x)=2x,∴f( ) ,
故选:B.
2.定义在R上的函数f(x)满足f(x+6)=f(x),当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=( )
3.判断函数单调性的基本方法:
⑴ 定义法:任取 , ,判断 的正负;
⑵ 图象法:判断常见函数的单调性,包括一次函数、二次函数与反比例函数;
⑶ 复合函数的单调性——同增异减.
3.2函数的奇偶性(一)
知识点睛
函数图象的对称性
轴对称
中心对称
函数示意图
奇偶性
偶函数
奇函数
满足的关系式
本质
当取的自变量互为相反数时,
A.1B.2C.3D.4
解:∵f(x+2)=﹣f(x),∴f(x+4)=f(x),即函数的周期是4,∴f(﹣2012)=f(0),
f(2013)=f(1),
∵f(x)是R上的奇函数,∴f(0)=0,当x∈(0,1]时,f(x)=2x+1,∴f(1)=2+1=3,
∴f(﹣2012)+f(2013)=f(0)+f(1)=3.
故选:B.
6.已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=( )
A.﹣50B.0C.2D.50
解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,
则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,
∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,
f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,
则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)
…
则有 (xi+yi)=(x1+y1)+(x2+y2)+…+(xm+ym)
[(x1+y1)+(﹣x1+2﹣y1)+(x2+y2)+(﹣x2+2﹣y2)+…+(xm+ym)+(﹣xm+2﹣ym)]
=m.
故选:B.
10.(2016•全国)定义域为R的偶函数f(x)为周期函数,其周期为8,当x∈[﹣4,0]时,f(x)=x+1,则f(25)=0.
=f(1)+f(2)=2+0=2,
故选:C.
7.(2017•全国)函数f(x)的定义域(﹣∞,+∞),若g(x)=f(x+1)和h(x)=f(x﹣1)都是偶函数,则( )
A.f(x)是偶函数B.f(x)是奇函数
C.f(2)=f(4)D.f(3)=f(5)
解:∵g(x)=f(x+1)和h(x)=f(x﹣1)都是偶函数,∴g(﹣x)=﹣g(x),h(﹣x)=h(x),
A.335B.338C.1678D.2012
解:∵f(x+6)=f(x),∴f(x)是以6为周期的函数,
又当﹣1≤x<3时,f(x)=x,
∴f(1)+f(2)=1+2=3,f(﹣1)=﹣1=f(5),f(0)=0=f(6);
当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,
∴f(3)=f(﹣3)=﹣(﹣3+2)2=﹣1,
且f(1)=1,f(2)=f(﹣2)=﹣f(2),
所以f(2)=0,f(3)=f(﹣1)=﹣1,f(4)=f(0)=0,
f(i)=504×[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)=1,
故答案为:1.
13.设函数f(x)是定义在R上的偶函数,且对任意的x,都有f(x)=f(2﹣x),当x∈[0,1]时,f(x)=x ,则f(21)= .
解:∵定义域为R的偶函数f(x)为周期函数,其周期为8,当x∈[﹣4,0]时,f(x)=x+1,
∴f(25)=f(8×3+1)=f(1)=f(﹣1)=﹣1+1=0.
故答案为:0.
11.(2014•新课标Ⅱ)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=3.
解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),
故选:C.
8.(2016•新课标Ⅱ)已知函数f(x)(x∈R)满足f(x)=f(2﹣x),若函数y=|x2﹣2x﹣3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则 xi=( )
A.0B.mC.2mD.4m
解:∵函数f(x)(x∈R)满足f(x)=f(2﹣x),故函数f(x)的图象关于直线x=1对称,
函数y=|x2﹣2x﹣3|的图象也关于直线x=1对称,
故函数y=|x2﹣2x﹣3|与y=f(x) 图象的交点也关于直线x=1对称,故 xi 2=m,
故选:B.
9.(2016•新课标Ⅱ)已知函数f(x)(x∈R)满足f(﹣x)=2﹣f(x),若函数y 与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则 (xi+yi)=( )
注意区别如下四个关系式反映的函数性质:
① : 有对称轴 ;
② : 有对称中心 ;
③ : 有周期 ;
④ : 有周期 .
3.6双对称
知识点睛
1.双对称性函数具有周期性.
⑴若函数 的图象关于点 ,及点 对称,则函数 是周期为 的函数.