第5章_线性定常系统的综合-现代控制理论 (1)
天津大学 现代控制理论课件 窦立谦 第5章 线性定常系统的综合
![天津大学 现代控制理论课件 窦立谦 第5章 线性定常系统的综合](https://img.taocdn.com/s3/m/c28f1e1a59eef8c75fbfb3f7.png)
将受控对象写 成不可控但可 观测的实现
5.2 极点配置问题
5.2 极点配置问题
5.2 极点配置问题
2 采用输出反馈
ur×1
xn×1
ym×1
vr×1
r ×m
∑ 0 :A, B, C ) (
∑ H = [ A + BHC , B, C ]
改变了系统的极点。
5.2 极点配置问题
(1)定理 )定理5.2-2
0 0 0 1 & x = 1 −1 0 x + 0 u , y = [ 0 1 1] x 0 1 −1 0
①验证原系统的能控性。 验证原系统的能控性。
1 0 0 rank[ B AB A2 B] = 0 1 −1 = 3 0 0 1
④计算K 计算
K = [ k1 k 2 k3 ] = [ −2 − 3 − 3]
5.2 极点配置问题
例5.2-2 试研究下列受控对象
G (s) = 10( s + 1) s ( s + 1)( s + 2)
采用状态反馈使闭环极点位于 −2,− 1 ± j 的可能性。 将受控对象写 成可控但不可 观测的实现
5.1 线性反馈控制系统的基本结构
5.1 线性反馈控制系统的基本结构
5.1 线性反馈控制系统的基本结构
定理5.1-2:输出反馈不改变原系统的能观性与能控性. 定理
5.1 线性反馈控制系统的基本结构
例5.1-1
5.1 线性反馈控制系统的基本结构
绪论
本章结构 • 第5章 线性定常系统的综合 章
f * (λ ) = (λ + 2)( λ + 1 + j 3)( λ + 1 − j 3) = λ 3 + 4λ 2 + 8λ + 8
课件-现代控制理论-刘豹第三版-第5章
![课件-现代控制理论-刘豹第三版-第5章](https://img.taocdn.com/s3/m/35cf734803020740be1e650e52ea551811a6c967.png)
能控性与能观性的判别方法
能观性判别方法
能控性判别方法
表示系统是否可以通过输入控制实现任意状态转移。若系统完全能控,则可以通过设计合适的控制器实现任意状态轨迹的跟踪或镇定;若部分能控或不能控,则存在状态无法被有效控制的风险。
能控性的物理意义
表示系统状态是否可以通过输出完全反映出来。若系统完全能观,则可以通过观测输出信号来准确估计系统状态;若部分能观或不能观,则存在状态无法被准确观测的风险,进而影响控制性能的实现。
控制系统稳定性分析是控制理论的核心内容之一,对于确保控制系统的正常运行具有重要意义。
章节内容结构
稳定性概念及定义
介绍稳定性的基本概念和定义,包括Lyapunov稳定性和BIBO稳定性等。
线性系统稳定性判据
详细阐述线性系统稳定性的判据,如Routh-Hurwitz判据、Nyquist判据和Bode图等。
图解法
状态转移矩阵的计算方法
1
2
3
状态转移矩阵反映了系统在时间间隔内从初始状态到最终状态的动态变化过程。
描述系统状态的动态变化过程
若系统稳定,则状态转移矩阵将逐渐趋于零,表示系统状态将逐渐趋于稳定。
反映系统稳定性
状态转移矩阵是进行系统分析和设计的重要工具,可用于研究系统的稳定性、能控性、能观性等性质。
非线性系统稳定性分析
介绍非线性系统稳定性分析方法,如相平面法、Lyapunov直接法等。
熟练掌握线性系统稳定性的判据和分析方法,能够应用所学知识分析和设计线性控制系统。
了解非线性系统稳定性分析方法的基本原理和应用范围,能够运用所学知识分析和设计简单的非线性控制系统。
掌握稳定性的基本概念和定义,理解不同稳定性定义之间的联系与区别。
现代控制理论试题详细答案
![现代控制理论试题详细答案](https://img.taocdn.com/s3/m/88df94c65ebfc77da26925c52cc58bd631869362.png)
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是cvcvx ,能观测的状态变量个数是。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个)解 1. 能控的状态变量个数是2,能观测的状态变量个数是1。
状态变量个数是2。
…..(4分)2.选取状态变量1x y =,2x y =,3x y =,可得 …..….…….(1分)…..….…….(1分)写成010*********x x u ⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦…..….…….(1分) []100y x = …..….…….(1分)二、1给出线性定常系统(1)()(),()()x k Ax k Bu k y k Cx k +=+=能控的定义。
(3分)2已知系统[]210 020,011003x x y x ⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分) 2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分)[][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=940320110 2CA CA C U O ………………..……….(1分)rank 2O U n =<,所以该系统不完全能观……..….…….(2分)三、已知系统1、2的传递函数分别为 求两系统串联后系统的最小实现。
现代控制理论基础线性定常系统的综合PPT课件
![现代控制理论基础线性定常系统的综合PPT课件](https://img.taocdn.com/s3/m/1bd114290c22590103029db9.png)
5.1 线性反馈控制系统的基本结构
• 带输出反馈结构的控制系统 • 带状态反馈结构的控制系统 • 带状态观测器结构的控制系统 • 解耦控制系统
• 状态观测器: • 状态观测器基于可直接量测的输出变量y和控制变量u来估计状态变量, 是一个物理可实现的模拟动力学系统。
20
第20页/共47页
状态重构: 不是所有的系统状态物理上都能够直接测量得到。需要从系统的 可量测参量,如输入u和输出y来估计系统状态 。
状态观测器: 状态观测器基于可直接量测的输出变量y和控制变量u来估计状态 变量,是一个物理可实现的模拟动力学系统。
(4)确定K阵
由 f *( ) f ( ) 得:6 k 14, 5 k 60, 1 k 200
3
2
1
求得:k1 199, k2 55, k3 8
所以状态反馈矩阵K为: K [199 55 8]
17
第17页/共47页
三、状态反馈下闭环系统的镇定问题
镇定的概念:一个控制系统,如果通过反馈使系统实现渐近稳
5.2 带输出反馈系统的综合
一、反馈至输入矩阵B后端的系统
将系统的输出量乘以相应的负反馈系数,馈送到状态微分处。
v
x
B u
x C
y
A
H
原受控系统
0
( A,
B, C )
:
x y
Ax Cx
Bu
输出反馈控制规律:u Bv Hy
输出反馈系统状态空间描述为:
现代控制理论大题
![现代控制理论大题](https://img.taocdn.com/s3/m/33168667561252d381eb6e09.png)
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观 7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出 11.系统解耦方法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u u y y 222++=+ ,试求其状态空间最小实现。
现代控制理论第一章(吴忠强版)
![现代控制理论第一章(吴忠强版)](https://img.taocdn.com/s3/m/2c216a4ce45c3b3567ec8b50.png)
吴忠强
目
录
第一章 控制系统的状态空间表达式 第二章 控制系统状态空间表达式的解 第三章 线性控制系统的能控性与能观性 第四章 控制系统的李亚普诺夫稳定性 第五章 线性定常系统的综合 第六章 最优控制系统设计 参考文献
内容简介
•
本书系统的介绍了现代控制理论的 基本内容,包括控制系统的状态空间描 述、运动分析与离散化、李亚普诺夫稳 定性分析、能控性与能观性、状态反馈 与状态观测器、最优控制系统设计。每 章配有一定的例题和习题.
b11 b 21 B bn1
b12 b 22 bn 2
b1 r b2 r b nr
y1 y2 y ym
——m维输出矢量;
—— n r 输入(或控制)矩阵;
c 11 c 12 c 21 c 22 C c m1 c m 2
1
式(1-3)就是图1-1系统的输出方程,它的矩阵表示为
y 1
T
0
x1 x2
或
y C x
T
y c x
T
(1-4)
式中
c
1
0
六、状态空间表达式
l 状态方程和输出方程总合起来,构成对一个系统完整的动态 描述,称为系统的状态空间表达式, 在经典控制理论中,用指定某个输出量的高阶微分方程来描 述系统的动态过程。如图1-1所示的系统,在以 uc 作输出时, 从式(1-1)消去中间变量i ,得到二阶微分方程为
回到式(1-5)或式(1-6)的二阶系统,若改选 u C 和 u c 作为 两个状态变量,即令 x 1 u C ,
x2 uc
现代控制理论课后习题及答案
![现代控制理论课后习题及答案](https://img.taocdn.com/s3/m/b66f57f55901020206409c86.png)
《现代控制理论》课后习题及答案第一章控制系统的状态空间表达式1-1.试求图1-1系统的模拟结构图,并建立其状态空间表达式。
图1-27系统方块结构图图1-1 系统结构方块图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图图1-2 双输入—双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===••••••令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••6543211654321111111126543210000010000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2.有电路如图1-3所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
U图1-28 电路图图1-3 电路图解:由图,令32211,,x u x i x i c===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论线性反馈控制系统综合的基本概念
![现代控制理论线性反馈控制系统综合的基本概念](https://img.taocdn.com/s3/m/e7ed32e5f80f76c66137ee06eff9aef8941e481f.png)
现代控制理论线性反馈控制系统综合的基本概念《现代控制理论》MOOC课程第五章线性定常系统的综合第五章线性定常系统的综合线性反馈控制系统综合的基本概念极点配置问题系统镇定问题系统解耦问题状态观测器利⽤状态观测器实现状态反馈的系统⼀. 系统的综合给定系统的状态空间表达式:寻找⼀个控制u,使得在其作⽤下系统的性能指标满⾜所期望的要求。
x =A x +B u ,x 0=0,t ≥0y =Cx⼆. 状态反馈控制和输出反馈控制1. 状态反馈若系统的控制可表⽰为系统状态的⼀个线性向量函数, 即u =?Kx +v 则称为状态反馈控制。
其中v 为参考输⼊。
状态反馈系统的结构为:yxAC++Bux ?+vK-状态反馈系统的状态⽅程x =A x +B u原系统的状态⽅程为:引⼊状态反馈u =?Kx +v 后,系统的状态⽅程为:x =A ?BK x +Bv系统的性能主要由系统矩阵决定的,通过合理的选择状态反馈矩阵,就可改变系统矩阵以使系统的性能满⾜期望的要求。
状态反馈系统的传递函数:原开环系统的传递函数为:W0s=C(sI?A)?1B引⼊状态反馈u=?Kx+v后,系统的闭环传递函数为:W K s=C(sI?A+BK)?1B系统的性能主要由系统闭环传递函数的极点确定,通过合理的选择状态反馈矩阵,就可改变系统传递函数的极点,以使系统的性能满⾜期望的要求。
2. 输出反馈控制。
其中v 为参考输⼊。
输出反馈系统的结构为:yxAC++Bux ?+vH-若系统的控制可表⽰为系统输出的⼀个线性向量函数, 即u =?Hy +v 则称为输出反输出反馈系统的状态⽅程x =A x +B u原系统的状态⽅程为:引⼊输出反馈u =?Hy +v 后,系统的状态⽅程为:x =A ?BHC x +Bv通过合理的选择输出反馈矩阵,就可改变系统矩阵,以使系统的性能满⾜期望的要求。
输出反馈系统的传递函数:W 0s =C(sI ?A)?1B原开环系统的传递函数为:引⼊输出反馈u =?Hy +v 后,系统的闭环传递函数为:W K s =C(sI ?A+BHC)?1B5.1 线性反馈控制系统综合的基本概念3. 状态反馈与输出反馈的⽐较系统的输出通常只是系统状态的部分信息,所以输出反馈仅相当于部分状态反馈。
现代控制理论
![现代控制理论](https://img.taocdn.com/s3/m/7c67f70752d380eb62946d26.png)
5.1.2 输出反馈
设线性定常系统为
Ax Bu x y Cx Du
其输入u ,状态变量 x,输出量y 的维数分别是r,n,m 状态反馈控制律 u Fv Hy
F输入变换阵
D
H输出反馈阵
+ +
v
+
F
u
B
+ +
∫
A
x
C
y
H
u Fv Hy Fv H (Cx Du )
0 0 0 s 3 18s 2 72s det(sI A) 1 s 6 0 1 s 12 0
a 0= 0,a1= 72,a2=18
5.2.1状态反馈极点配置
计算由期望闭环极点组决定的特征多项式
3 2 f ( s) ( s * ) ( s 2 )( s 1 j )( s 1 j ) s 4 s 6s 4 i * i 1 3
性能指标的类型
性能指标实质上是对所要综合的控制系统在运动过程行为 上的一种规定。
非优化型性能指标 (不等式型) 优化性型能指标 (极值型)
(1)镇定问题 (2)极点配置 (3)解耦控制 (4)跟踪问题
J (u()) ( x T Qx uT Ru)dt
0
5.1 反馈控制系统的基本结构
0 1 0 0 0 0 1 0 A bc K 0 0 0 0 1 (an 1 kn 1 ) (a0 k0 ) (a1 k1 )
sI ( Ac bc K ) s n ( an 1 kn 1 ) s n 1 ( a1 k1 ) s ( a0 k0 )
现代控制理论试习题(详细答案
![现代控制理论试习题(详细答案](https://img.taocdn.com/s3/m/87c6a652caaedd3383c4d375.png)
现代控制理论试题B 卷及答案一、1 系统[]210,01021x x u y x ⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦能控的状态变量个数是,能观测的状态变量个数是cvcvx 。
2试从高阶微分方程385y y y u ++=求得系统的状态方程和输出方程(4分/个) 解 12。
…..233118x x x x y x ==--=010080x ⎡⎢=⎢⎢-⎣分) 00⎣(5分)解 1.答:若存在控制向量序列(),(1),,(1)u k u k u k N ++-,时系统从第k 步的状态()x k 开始,在第N 步达到零状态,即()0x N =,其中N 是大于0的有限数,那么就称此系统在第k 步上是能控的。
若对每一个k ,系统的所有状态都是能控的,就称系统是状态完全能控的,简称能控。
…..….…….(3分)2.[][]320300020012 110-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=CA ………..……….(1分) [][]940300020012 3202=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=CA ……..……….(1分) ⎤⎡⎤⎡110C 1分)0140x ⎡⎤=⎢⎥⎣⎦ ()⎥⎦⎢⎢⎢⎣-=-8181881C U ……..…………..…….…….(1分) 11188P ⎡⎤=-⎢⎥⎣⎦……..………….…..…….…….(1分) ⎦⎤⎢⎣⎡=43412P ……..………….…...…….…….(1分)1314881148P -⎡⎤-⎢⎥=⎢⎥--⎢⎥⎣⎦..………….…...…….…….(1分) 101105C A PAP -⎡⎤==⎢⎥-⎣⎦………….…...…….…….(1分) ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==1011 43418181Pb b C ……….…...…….…….(1分)1分) 解(3分) 3分)2分)(81分)11121112221222420261p p p p p ⎪-+=⎨⎪-=-⎩………...……....…….…….(1分) 112212743858p p p ⎧=⎪⎪=⎨⎪=⎪⎩………...…………....…….…….(1分)1112122275485388p p P p p ⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎣⎦...…………....…….…….(1分) 111211122275717480 det det 05346488p p P p p ⎡⎤⎡⎤⎢⎥=>==>⎢⎥⎢⎥⎣⎦⎣⎦………...(1分) P 正定,因此系统在原点处是大范围渐近稳定的.………(1分)八、给定系统的状态空间表达式为1010x --⎡⎢=-⎢⎢⎣2322213332223321(21)3313332(3)(26)64E E E E E E E E E E E λλλλλλλλλλ=+++++++++++++=+++++++++ -- 2分 又因为 *32()331f λλλλ=+++ ------- 1分列方程32123264126333E E E E E E +++=++=+= ----- 2分1232,0,3E k E =-==- ----------- 1分观测器为10312ˆˆ0110010113x x u y ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦------- 1分 方法 2λ⋅分 分分分10ˆ0110x -⎡⎢=-⎢⎢⎣九 分) 1200A tAt A t e e e ⎛⎫= ⎪⎝⎭1A t t e e =…………………………..……….(1分) 11210()12s sI A s ---⎛⎫-= ⎪--⎝⎭101111212s s s s ⎛⎫ ⎪-= ⎪ ⎪- ⎪---⎝⎭………..……….(1分)(){}2112220t A t t t t e e L sI A e ee --⎛⎫=-= ⎪-⎝⎭……….…(1分)()112200000t At tt tt e e L sI A e e e e --⎛⎫ ⎪⎡⎤=-= ⎪⎣⎦ ⎪-⎝⎭……….……….(2分) 222001000001t t tt t t t e e e e e e e ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭……………..……….(2分)一、(( × ( × ( √ ( √二、(的能控标准型、能观标准型和对角线标准型,并画出能控标准型的状态变量图。
现代控制理论第五章讲义1
![现代控制理论第五章讲义1](https://img.taocdn.com/s3/m/c5b5f018c5da50e2524d7fef.png)
对于q维输出系统,有q个输出变量可直接由 传感器测得,若选取该q个输出作为状态变 量,它们便无需由观测器作出估计,观测器 只需估计(n-q)个状态变量,称为降维观 测器。它是(n-q)维子系统,结构简单, 工程上易于实现。为此,需要由受控对象动 态方程导出(n-q)维子系统动态方程,建 立降维观测器的观测模型。
g1 8.5 3 2 g1 20 2 4 g1 2 g 2 100 g 2 32
状态观测器为
g1 G g2
ˆ ˆ x [ A GC ]x bu Gy ˆ ˆ y Cx
5.5 状态观测器的设计
四、降维观测器
第六节 状态观测器实现状态反馈
在前面几节中,我们讲述了利用状态观测器 解决受控系统的维数重构问题从而使得状态 反馈系统得以实现,本节主要讨论利用观测 器进行状态估值反馈的系统与状态直接反馈 的系统之间的区别。
5.6 利用状态观测器实现状态反馈 一、系统结构与状态空间表达式
在一个带有全 维状态观测器 的状态反馈系 统中,设能控 能观的受控系 统∑0=(A、B、 C)为
* g 0 a 0 a0 * g1 a1 a1 g a* a ˆn n 1 n 1
5.5 状态观测器的设计
例、已知系统 1 1 0 x x 1u 0 2 y 2 0x 试设计一个状态观测器 ,使其极点为- , 10。 10
1
sI A HC
1
1
B 0
C 0
sI A BK B
1
0
C sI A BK B
线性定常系统的综合
![线性定常系统的综合](https://img.taocdn.com/s3/m/f537db96a0116c175e0e480d.png)
状态反馈
( A BK ) x Bv x y Cx (A BHC ) x Bv x y Cx
输出反馈
反馈信息上:状态反馈优于输出反馈 状态反馈是一种完全的系统信息反馈。 输出反馈是一种不完全的系统信息反馈。 由于反馈引自系统输出,所以输出反馈不影响系统的可观测性
1
0.5
0
-0.5
-1.5
-2
Im [s]平面 Re
Im
[s]平面 Re
2阶系统
2阶系统
3阶系统 1阶系统 1阶系统
3阶系统
期望的极点的选择
– 对于 n 阶系统,必须给出 n 个期望的极点 – 期望的极点必须是实数或成对出现的共轭复数 – 期望的极点必须体现对闭环系统的性能品质指标等的要求
极点配置:设法使闭环系统的极点位于s平面上的一组 合理的、具有期望性能指标的极点 经典控制理论
– 超前校正、滞后校正、PID校正,通过改变极点的位置来改 善性能指标,本质上均属于极点配置方法
现代控制理论
– 如何选择状态反馈阵K,使得闭环系统的极点位于期望极点 上
Ax Bu 线性定常系统(单输入单输出) x
4)输出矩阵由C变成(C-DK) ; 系统的瞬态性能主要由系数矩阵A决定。 通过适当的方法选择反馈阵K,就可以使系统达到希望的控制 目的。
D
v
u
B
x
A
K r n
x
C
ym1
一般D=0
Ax Bu x 原系统: y Cx
G( s) C( sI A) 1 B
推论:输出反馈不改变系统的能控性
现代控制理论知识点总结
![现代控制理论知识点总结](https://img.taocdn.com/s3/m/2809967c10661ed9ad51f377.png)
现代控制理论知识点总结————————————————————————————————作者:————————————————————————————————日期:第一章控制系统的状态空间表达式1. 状态空间表达式n 阶DuCx y Bu Ax x+=+=&1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D直接传递矩阵,表示输入对输出的直接传递关系。
2.状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。
②状态方程和输出方程都是运动方程。
③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。
④状态变量的选择不唯一。
⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。
⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。
⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。
3.模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。
4. 状态空间表达式的建立①由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x &;c 由模拟图写出状态方程和输出方程。
②由系统的机理出发建立状态空间表达式:如电路系统。
现代控制理论试题与答案
![现代控制理论试题与答案](https://img.taocdn.com/s3/m/36df99266edb6f1afe001f24.png)
现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 f f 得:
3 k1 k2 4 2 2k1 k2 8
解得:
k1 13 k2 20
所以反馈阵为: K 13 20
D
ur1
B
1/s A
xn1
C
+ ym1
nm
G
若D=0,状态空间表达式为
x ( A GC ) x Bu y Cx
记作: G A GC, B, C
WG ( s ) C sI ( A GC ) B
1
5 闭环系统的能控与能观性 定理5.1-1:状态反馈不改变原系统的能控性, 但却不一定能保证能观性.
设计状态反馈增益矩阵K,使闭环系统的极点为-1和-2, 并画出闭环系统的结构图。 解:先判断系统的能控性。
0 2 rank[Qc ] rank[ B AB] rank 2 2 6
系统状态完全能控,可以通过状态反馈任意配置其极点。 令
K k1 k2
则状态反馈闭环系统的特征多项式为
状态反馈闭环系统的结构图如下:
v
+-
u
2
++
3
x2
x1
y
+ +
3
1
例题
例题
例题
5.3 系统镇定问题
5.3 系统镇定问题
1 问题提出
5.3 系统镇定问题
2个定理
证明:由于系统 {A, B} 不完全可控,则有可控性结构分解
c Ac x xc 1 A B u A PAP x 0 c xc
(A, B, C) ,是能控的。 证明:设原系统为 0 :
2 n 1 Qc1 B AB A B A B
状态反馈后系统 K A BK , B, C
2 n 1 Qc 2 B A BK ) B A BK ) B A BK ) B
5.4 状态观测器
5.5 状态观测器
1 问题提出
状态反馈实现的前提是获得系统全部状态信息,然 而,状态变量并不一定是系统的物理量,选择状态 变量的这种自由性本是状态空间综合法的优点之一, 但这也使得系统的所有状态变量不一定都能直接量 测;另一方面,有些状态变量即使可测,但所需传 感器的价格可能会过高。状态观测或状态重构问题 正为了克服状态反馈物理实现的这些困难而提出的, 其核心是通过系统可量测参量(输出及输入)重新构 造在一定指标下和系统真实状态等价的估计状态或 重构状态。
u v Kx
ur1
D B 1/s A
xn1
+
C
0 :x Ax Bu y Cx Du
vr1
-
ym1
K :x ( A BK ) x Bv y (C DK ) x Dv
rn
K
若D=0
K :x ( A BK ) x Bv y Cx
( 3 )不能控部分的极点为- 5,与其中一个期望极点相同。 此时,只能对能控部分进行极点配置。设 K k1 , k,对 2 能控部分进行极点配置。
1 0 k1 A A BK 0 2 k1 1 k1 k 2 k1 2 k 2 k2 k2
为期望的闭环极点(实数极点或共轭复
1)若∑0完全能控,必存在非奇异变换:
能将∑0化成能控标准I型:
(33)
式中
受控系统∑0的传递函数为: (34) 2)加入状态反馈增益阵: (35)
可求得对 的闭环状态空间表达式:
(36)
式中
闭环特征多项式为:
(37) 闭环传递函数为:
(38) 3)使闭环极点与给定的期望极点相符,必须满足: 由等式两边
3 输出反馈
把输出乘以一个反馈系数,然后反馈到输入端与参考输入 相减形成控制律。
D
x Ax Bu y Cx Du
ur1
vr1
B
1/s A
rm
xn1
+
C
-
ym1
在系统中引入反馈控制律
u v Hy
其中, v r 1 H rm
H
参考输入; 输出反馈系数阵
对单输入系统,K为m维行向量。
③求出希望的闭环系统特征方程。
* n 1 f ( ) ( i* ) n an 1 * i 1 n * * a1 a0
④计算K
an1, ,a1,a0 K k1 k2 kn
例题:已知线性定常连续系统的状态空间表达式为
0 1 0 x u x 0 3 2 y 1 0 x
Qc 2 B ( A BK ) B ( A BK ) B
2
AB A2 B
2
AB BKB A B ABBK BKAB BKBKB
I BK KAB KBKB 2 B AB A B 0 I KB 0 I 0 rank(Qc 2 ) rank(Qc1 )
当n 1时,Qc1 Qc 2 , rank(Qc 2 ) rank(Qc1 )
当n 2时,Qc1 B
AB I KB AB I 0
Qc 2 B ( A BK ) B B rank(Qc 2 ) rank(Qc1 )
当n 3时 , Qc1 B B
若D=0,状态空间表达式为
x ( A BHC ) x Bv y Cx
状态反馈:x ( A BK ) x Bv
如果
HC K
输出反馈等价于状态反馈
4 从输出到状态微分ẋ反馈
把输出乘以一个反馈系数,然后反馈到状态微分ẋ端
x Ax Bu y Cx Du x Ax Gy Bu y Cx Du x ( A GC ) x ( B GD)u y Cx Du
K A BK , B, C
改变了系统的极点。
(A, B, C) 任意配置极 (1)定理5.2-1 采用状态反馈对 0 : (A, B, C) 完全能控。 点的充要条件是 0 :
证明
只证充分性。若∑0完全能控,通过状态反馈必成立
(31)
式中, 为期望特征多项式。
(32)
式中 数极点)。
f ( ) | I ( A BK ) |
2k1
1 2 (3 2k2 ) 2k1 (3 2k2 )
f * ( ) ( 1)( 2) 2 3 2
期望的特征多项式为
由 f
f
,求得
K 1 3
n n, rank(Qc 2 ) rank(Qc1 )
状态反馈可能改变系统的能观性,举例说明
1 2 0 x x u 0 3 1 y 1 1 x
C 1 1 rank rank 2n CA 1 5
原系统可观,设状态反馈阵K=[0 4]
现 代 控 制 理 论
第5章 线性定常系统的综合
第5章 线性定常系统的综合
本章结构
5.1 线性反馈控制系统的基本结构及其特性 5.2 极点配置问题 5.3 系统镇定问题 5.4 状态观测器 5.5 利用状态观测器实现状态反馈的系统
5.1 线性反馈控制系统的基本结构及其特性
1 0 0 1 例题:系统的状态方程为 X AX bu 0 2 0 X 1 u 0 0 5 0
(1)该系统是否是渐近稳定的? (2)该系统是否是状态反馈能镇定的? (3)设计状态反馈,使期望的闭环极点为 1 2 j 2, 2 2 j 2, 3 5 [解]: (1)系统的特征值为1,2和-5。有两个特征值在右半S平面, 因此系统不是渐近稳定的。 (2)由动态方程知系统是不能控的,但不能控部分的特征值 是 -5 ,位于左半 S 平面,可知此部分是渐近稳定的。因 此该系统是状态反馈能镇定的。
1 2 0 x (A-BK )x Bv x u 0 1 1 C 1 1 rank rank 1 n C ( A BK ) 1 1
状态反馈系统不能观,原因是当用状态反馈配置的极点与原系 统零点相对消。 s 1 s 1 反馈后G f ( s) 原系统G0 ( s) ( s 1)(s 1) ( s 1)(s 3)
定理5.1-2:输出至参考输入端的反馈不改变原 系统的能观性与能控性.
定理5.1-3:输出至状态导数的反馈不改变原系 统的能观性,但可能改变原系统的能控性.
5.2 极点配置问题
5.2 极点配置问题
1 问题提出
2 采用状态反馈
ur1
vr1
B
1/s A
xn1
C
+
ym1
rn
K
0 : (A, B, C)
f I A
1 k1
k1
2 3 k1 k 2 1 k1 2 k 2 k1k 2 2 3 k1 k 2 2 2k1 k 2
2 k 2
k2
期望的特征多项式为:
D
u v Hy
vr1
ur1
B
1/s A H
xn1
+
C
+
ym1
x Ax Bu y Cx Du
u v H (Cx Du ) v HCx HDu ( I HD)1 (v HCx)